JP2014056779A - Photocatalyst film formation method of dye-sensitized solar cell - Google Patents

Photocatalyst film formation method of dye-sensitized solar cell Download PDF

Info

Publication number
JP2014056779A
JP2014056779A JP2012202144A JP2012202144A JP2014056779A JP 2014056779 A JP2014056779 A JP 2014056779A JP 2012202144 A JP2012202144 A JP 2012202144A JP 2012202144 A JP2012202144 A JP 2012202144A JP 2014056779 A JP2014056779 A JP 2014056779A
Authority
JP
Japan
Prior art keywords
dye
film
solar cell
sensitized solar
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012202144A
Other languages
Japanese (ja)
Inventor
Takeshi Sugio
剛 杉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2012202144A priority Critical patent/JP2014056779A/en
Priority to PCT/JP2013/072797 priority patent/WO2014041999A1/en
Publication of JP2014056779A publication Critical patent/JP2014056779A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst film formation method of a dye-sensitized solar cell, which enables formation of a photocatalyst film in a short time in which an oxide semiconductor film is color-coded by a plurality of colors.SOLUTION: A photocatalyst film formation method of a dye-sensitized solar cell including a transparent electrode 1, a counter electrode, an electrolyte layer arranged between both electrodes and a photocatalyst film 4 which is arranged between both electrodes and on the transparent electrode 1 side and which is formed by adsorption of a photosensitized dye to an oxide semiconductor film 41 comprises: forming a dye inhibition film 5 which composes the dye-sensitized solar cell in an intended range in the oxide semiconductor film 41 arranged on the transparent electrode 1 side; and subsequently, inhibiting adsorption of the photosensitized dye from being adsorbed in the range where the dye inhibition film 5 is formed by bringing the oxide semiconductor film 41 into contact with a dye solution and causing the photosensitized dye to be adsorbed by a portion of the oxide semiconductor film 41 other than the range where the dye inhibition film 5 is formed.

Description

本発明は、色素増感太陽電池における光触媒膜の形成方法に関するものである。   The present invention relates to a method for forming a photocatalytic film in a dye-sensitized solar cell.

一般に、色素増感型太陽電池は、その素子として、ガラス板などの透明基板上に透明導電膜が形成されてなる透明電極と、対向電極と、これら両電極間に配置されるヨウ素系の電解質と、上記両電極間で且つ上記透明電極の表面に配置される光触媒膜とから構成されている。また、上記光触媒膜としては、酸化チタン(TiO)などの酸化物半導体膜を形成した後、これにルテニウムなどの光増感色素を吸着させたものが知られている(例えば、特許文献1参照)。 In general, a dye-sensitized solar cell includes, as its elements, a transparent electrode in which a transparent conductive film is formed on a transparent substrate such as a glass plate, a counter electrode, and an iodine-based electrolyte disposed between these electrodes. And a photocatalyst film disposed between the electrodes and on the surface of the transparent electrode. As the photocatalyst film, a film obtained by forming an oxide semiconductor film such as titanium oxide (TiO 2 ) and adsorbing a photosensitizing dye such as ruthenium to the oxide semiconductor film is known (for example, Patent Document 1). reference).

このような色素増感太陽電池は、光触媒膜が光増感色素により着色されているので、その色彩および模様を組み合わせることにより、デザイン性を高められるという長所がある。   Such a dye-sensitized solar cell has an advantage that the design can be improved by combining the color and the pattern because the photocatalyst film is colored with the photosensitizing dye.

そして、デザイン性を高めた色素増感太陽電池およびその製造方法の例としては、次の3つが挙げられる。第一に、凹凸が形成された反射手段を対向電極側に設けることにより、この反射手段からの反射光で明度や彩度を変化させた色素増感太陽電池である(例えば、特許文献2参照)。第二に、酸化物半導体膜の厚さや、その酸化チタン微粒子の粒径などを異なるようにして、色彩の濃淡を出すようにした色素増感太陽電池である(例えば、特許文献3参照)。第三に、複数の空間に区分けされた仕切り器具を酸化物半導体膜に設置し、区分けされた空間にそれぞれ異なる色素溶液を注入することにより、酸化物半導体膜の色を塗り分ける方法である(例えば、特許文献4参照)。   And the following three are mentioned as an example of the dye-sensitized solar cell which improved the designability, and its manufacturing method. The first is a dye-sensitized solar cell in which lightness and saturation are changed by reflected light from the reflection means by providing a reflection means having irregularities on the counter electrode side (see, for example, Patent Document 2). ). The second is a dye-sensitized solar cell in which the thickness of the oxide semiconductor film, the particle diameter of the titanium oxide fine particles, and the like are made different so as to produce shades of color (for example, see Patent Document 3). Third, a partition device divided into a plurality of spaces is installed in the oxide semiconductor film, and a different dye solution is injected into each of the divided spaces to separately paint the colors of the oxide semiconductor film ( For example, see Patent Document 4).

特開2001−35549号公報JP 2001-35549 A 特許第4936648号Japanese Patent No. 4936648 特開2010−3468号公報JP 2010-3468 A 特開2010−9769号公報JP 2010-9769 A

しかしながら、上記特許文献2に記載の色素増感太陽電池によると、反射光で明度や彩度が変化するものの、酸化物半導体膜の色を塗り分けることはできない。また、上記特許文献3に記載の色素増感太陽電池によると、色彩の濃淡は出せるものの、この色彩は一色のみに限定される。さらに、上記特許文献4に記載の方法によると、色を塗り分けることはできるが、酸化物半導体膜を傷つけるおそれがあるとともに、上記仕切り器具を別途製造する必要がある。   However, according to the dye-sensitized solar cell described in Patent Document 2, although the brightness and saturation change with reflected light, the colors of the oxide semiconductor film cannot be applied separately. Further, according to the dye-sensitized solar cell described in Patent Document 3, although the color density can be obtained, this color is limited to only one color. Further, according to the method described in Patent Document 4, colors can be applied separately, but the oxide semiconductor film may be damaged, and the partition device needs to be manufactured separately.

また、上記特許文献1〜4に記載の色素増感太陽電池では、色を塗り分けるために色素接触防止用のマスクを用いたとしても、このマスクは色素増感太陽電池を構成せず取り外されるものであるから、マスクと酸化物半導体膜との僅かな隙間に色素が浸入することになる。このため、上記マスクを除去した後に、浸入した色素を除去するクリーニング工程が必要となり、光触媒膜の形成に時間を要するという問題があった。   Further, in the dye-sensitized solar cells described in Patent Documents 1 to 4, even if a dye contact prevention mask is used to paint different colors, this mask is removed without constituting the dye-sensitized solar cell. Therefore, the dye penetrates into a slight gap between the mask and the oxide semiconductor film. For this reason, after the removal of the mask, a cleaning process for removing the infiltrated dye is necessary, and there is a problem that it takes time to form the photocatalyst film.

そこで、本発明では、酸化物半導体膜が複数の色に塗り分けられた光触媒膜を短時間で形成することができる色素増感太陽電池における光触媒膜の形成方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for forming a photocatalyst film in a dye-sensitized solar cell, in which a photocatalyst film in which an oxide semiconductor film is coated in a plurality of colors can be formed in a short time.

上記課題を解決するため、請求項1に係る本発明の色素増感太陽電池における光触媒膜の形成方法は、透明電極と、対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置されるとともに酸化物半導体膜に色素を吸着させてなる光触媒膜とを具備する色素増感太陽電池における光触媒膜の形成方法であって、
上記透明電極側に配置された酸化物半導体膜における所望の範囲に、色素増感太陽電池を構成する色素阻害膜を形成し、
その後、上記酸化物半導体膜に色素溶液を接触させることで、上記色素阻害膜が形成された範囲に色素が吸着することを阻害するとともに、上記酸化物半導体膜における上記色素阻害膜が形成された範囲以外に色素を吸着させるものである。
In order to solve the above problems, a method for forming a photocatalyst film in a dye-sensitized solar cell of the present invention according to claim 1 includes a transparent electrode, a counter electrode, an electrolyte disposed between these electrodes, and a gap between both electrodes. And a method for forming a photocatalyst film in a dye-sensitized solar cell, which is disposed on the transparent electrode side and comprises a photocatalyst film formed by adsorbing a dye to an oxide semiconductor film,
In a desired range in the oxide semiconductor film disposed on the transparent electrode side, a dye-inhibiting film constituting a dye-sensitized solar cell is formed,
Thereafter, the dye solution is brought into contact with the oxide semiconductor film to inhibit the dye from adsorbing in the range where the dye inhibition film is formed, and the dye inhibition film in the oxide semiconductor film is formed. A dye is adsorbed outside the range.

また、請求項2に係る本発明の色素増感太陽電池における光触媒膜の形成方法は、請求項1に記載の色素増感太陽電池における光触媒膜の形成方法において、酸化物半導体膜に色素溶液を接触させる前に、
透明電極における酸化物半導体膜が配置されていない範囲に、色素増感太陽電池を構成する色素阻害膜を形成するものである。
A method for forming a photocatalyst film in a dye-sensitized solar cell of the present invention according to claim 2 is the method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 1, wherein a dye solution is applied to the oxide semiconductor film. Before contact
A dye-inhibiting film constituting the dye-sensitized solar cell is formed in a range where the oxide semiconductor film in the transparent electrode is not disposed.

さらに、請求項3に係る本発明の色素増感太陽電池における光触媒膜の形成方法は、請求項1または2に記載の色素増感太陽電池における光触媒膜の形成方法における色素阻害膜が、色素溶液および電解質に溶出しないものである。   Furthermore, the method for forming a photocatalyst film in the dye-sensitized solar cell of the present invention according to claim 3 is characterized in that the dye-inhibiting film in the method for forming a photocatalyst film in the dye-sensitized solar cell according to claim 1 is a dye solution. And does not elute into the electrolyte.

また、請求項4に係る本発明の色素増感太陽電池における光触媒膜の形成方法は、請求項1乃至3のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法において、色素阻害膜を形成する方法として、
所望の範囲がくり抜かれたマスクを酸化物半導体膜に配置し、
その後、色素阻害膜の前駆体または溶液を、スプレー法、スピンコート法、スキージ法、またはスクリーン印刷法により上記酸化物半導体膜に塗布し、
塗布された上記前駆体または溶液を乾燥させるものである。
Moreover, the formation method of the photocatalyst film | membrane in the dye-sensitized solar cell of this invention which concerns on Claim 4 is a pigment | dye in the formation method of the photocatalyst film | membrane in the dye-sensitized solar cell as described in any one of Claims 1 thru | or 3. As a method of forming an inhibitory film,
A mask in which a desired range is hollowed is placed on the oxide semiconductor film,
Thereafter, a dye-inhibiting film precursor or solution is applied to the oxide semiconductor film by a spray method, a spin coating method, a squeegee method, or a screen printing method,
The applied precursor or solution is dried.

また、請求項5に係る本発明の色素増感太陽電池における光触媒膜の形成方法は、請求項4に記載の色素増感太陽電池における光触媒膜の形成方法におけるマスクが、所定の部分と他の部分とで、色素阻害膜の前駆体または溶液を通過させる通過率が異なるものである。   Further, in the method for forming a photocatalyst film in the dye-sensitized solar cell of the present invention according to claim 5, the mask in the method for forming a photocatalyst film in the dye-sensitized solar cell according to claim 4 includes a predetermined portion and another mask. The portion that passes through the dye-inhibiting membrane precursor or solution is different in the portion.

また、請求項6に係る本発明の色素増感太陽電池における光触媒膜の形成方法は、請求項1乃至5のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法において、形成された色素阻害膜が、所定の部分と他の部分とで、色素が吸着することを阻害する阻害率が異なるものである。   Moreover, the formation method of the photocatalyst film | membrane in the dye-sensitized solar cell of this invention which concerns on Claim 6 is formed in the formation method of the photocatalyst film | membrane in the dye-sensitized solar cell as described in any one of Claims 1 thru | or 5. The inhibition rate at which the dye inhibition film inhibits the adsorption of the dye is different between the predetermined portion and the other portion.

また、請求項7に係る本発明の色素増感太陽電池における光触媒膜の形成方法は、請求項1乃至3のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法における色素阻害膜が、金属膜であり、
色素阻害膜を形成する方法として、スパッタリングが用いられたものである。
Moreover, the formation method of the photocatalyst film in the dye-sensitized solar cell of this invention which concerns on Claim 7 is the dye inhibition in the formation method of the photocatalyst film in the dye-sensitized solar cell as described in any one of Claims 1 thru | or 3. The film is a metal film,
Sputtering is used as a method for forming the dye-inhibiting film.

上記色素増感太陽電池における光触媒膜の形成方法によると、酸化物半導体膜が複数の色に塗り分けられた光触媒膜を短時間で形成することができる。   According to the method for forming a photocatalyst film in the dye-sensitized solar cell, it is possible to form a photocatalyst film in which an oxide semiconductor film is coated in a plurality of colors in a short time.

本発明の実施の形態に係る色素増感太陽電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the dye-sensitized solar cell which concerns on embodiment of this invention. 同色素増感太陽電池における酸化物半導体膜にマスクを配置して色素阻害膜溶液を塗布する様子を説明するための概略斜視図である。It is a schematic perspective view for demonstrating a mode that a mask is arrange | positioned to the oxide semiconductor film in the dye-sensitized solar cell, and a pigment | dye inhibition film solution is apply | coated. 同色素増感太陽電池における光触媒膜の形成方法を説明するための断面図であり、(a)は色素阻害膜溶液を塗布する図、(b)はマスクを取り外す図、(c)は色素阻害膜が形成された範囲以外に光増感色素を吸着させる図である。It is sectional drawing for demonstrating the formation method of the photocatalyst film | membrane in the same dye-sensitized solar cell, (a) is a figure which apply | coats a pigment | dye inhibition film solution, (b) is a figure which removes a mask, (c) is pigment inhibition. It is a figure which adsorb | sucks a photosensitizing dye outside the range in which the film | membrane was formed. 同色素増感太陽電池における光触媒膜が形成された透明電極を対向電極側から見た平面図である。It is the top view which looked at the transparent electrode in which the photocatalyst film in the same dye-sensitized solar cell was formed from the counter electrode side.

以下、本発明の実施の形態に係る色素増感太陽電池における光触媒膜の形成方法について説明する。
まず、実施の形態に係る色素増感太陽電池の概略構成を図1に基づき説明する。
Hereinafter, a method for forming a photocatalyst film in a dye-sensitized solar cell according to an embodiment of the present invention will be described.
First, a schematic configuration of the dye-sensitized solar cell according to the embodiment will be described with reference to FIG.

この色素増感太陽電池は、図1に示すように、負極としての透明電極1と、正極としての対向電極2と、これら両電極1,2間に配置される電解質層3と、両電極1,2間で且つ透明電極1側に配置される光触媒膜(光触媒層または発電層ともいう)4と、両電極1,2間でこれらの外縁部を封止する封止部6とが具備されている。また、上記光触媒膜4は、酸化物半導体膜41に光増感色素(図示省略)を吸着させてなるものである。さらに、上記色素阻害膜5は、光触媒膜4を形成する過程で色素増感太陽電池に残存しており(つまり色素増感太陽電池を構成する)、酸化物半導体膜41に光増感色素が吸着されるのを阻害するために形成されたものである。このため、酸化物半導体膜41において、色素阻害膜5が形成されていない範囲は光増感色素が吸着されて光触媒膜4となり、色素阻害膜5が形成されている範囲は光増感色素が吸着されず(または極僅かの光増感色素が吸着されて)酸化物半導体膜41のままとなる。すなわち、上記酸化物半導体膜41は、複数の色に塗り分けられている。したがって、上記色素増感太陽電池は、対向電極2側からだと、光触媒膜4(光増感色素の色)および色素阻害膜5(透明または有色)による色彩および模様が見える。また、上記色素増感太陽電池は、透明電極1側からだと、光触媒膜4(光増感色素の色)および酸化物半導体膜41(通常は白色)の色彩および模様が見える。   As shown in FIG. 1, the dye-sensitized solar cell includes a transparent electrode 1 as a negative electrode, a counter electrode 2 as a positive electrode, an electrolyte layer 3 disposed between the electrodes 1 and 2, and both electrodes 1. , 2 and on the transparent electrode 1 side, a photocatalyst film (also referred to as a photocatalyst layer or a power generation layer) 4 and a sealing portion 6 that seals the outer edge between the electrodes 1 and 2 are provided. ing. The photocatalyst film 4 is formed by adsorbing a photosensitizing dye (not shown) to the oxide semiconductor film 41. Further, the dye-inhibiting film 5 remains in the dye-sensitized solar cell in the process of forming the photocatalytic film 4 (that is, constitutes a dye-sensitized solar cell), and the photosensitizing dye is added to the oxide semiconductor film 41. It is formed to inhibit adsorption. For this reason, in the oxide semiconductor film 41, the photosensitizing dye is adsorbed in the area where the dye inhibiting film 5 is not formed to become the photocatalytic film 4, and the photosensitizing dye is formed in the area where the dye inhibiting film 5 is formed. The oxide semiconductor film 41 remains as it is not adsorbed (or a slight amount of photosensitizing dye is adsorbed). That is, the oxide semiconductor film 41 is coated in a plurality of colors. Therefore, when the dye-sensitized solar cell is from the counter electrode 2 side, the color and pattern of the photocatalyst film 4 (color of the photosensitizing dye) and the dye-inhibiting film 5 (transparent or colored) can be seen. In the dye-sensitized solar cell, the color and pattern of the photocatalyst film 4 (photosensitizing dye color) and the oxide semiconductor film 41 (usually white) can be seen from the transparent electrode 1 side.

上記透明電極1は、透明基板11およびこの透明基板11の表面に形成(配置)された透明導電膜12から構成されている。また対向電極2は、透明基板21およびこの透明基板21の表面に形成(配置)された透明導電膜22から構成されている。   The transparent electrode 1 includes a transparent substrate 11 and a transparent conductive film 12 formed (arranged) on the surface of the transparent substrate 11. The counter electrode 2 includes a transparent substrate 21 and a transparent conductive film 22 formed (arranged) on the surface of the transparent substrate 21.

上記各透明基板11,21としては、特に限定されるものではないが、合成樹脂板、ガラス板などが適宜使用されるものの、軽量化、低価格化および安全性(破損しにくい)の点で、熱可塑性樹脂からなるフィルムが好ましい。上記熱可塑性樹脂の例には、ポリエチレン・ナフタレート(PEN)、ポリエチレン・テレフタレート(PET)などのポリエステル樹脂、ポリカーボネート樹脂、およびポリオレフィンなどの樹脂が挙げられる。   The transparent substrates 11 and 21 are not particularly limited, but although a synthetic resin plate, a glass plate, or the like is used as appropriate, it is light in weight, low in price, and safe (not easily damaged). A film made of a thermoplastic resin is preferred. Examples of the thermoplastic resin include polyester resins such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), polycarbonate resins, and resins such as polyolefins.

また、透明導電膜12,22としては、特に限定されるものではないが、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物を含む薄膜が使用される。なお、対向電極2の透明導電膜22は、触媒性を有する材料を形成したものである。 Further, the transparent conductive films 12 and 22 are not particularly limited, but include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), tin oxide (SnO 2 ), and indium zinc oxide (IZO). A thin film containing a conductive metal oxide such as zinc oxide (ZnO) is used. The transparent conductive film 22 of the counter electrode 2 is formed by forming a catalytic material.

ところで、上記対向電極2は、上述のように、透明基板21および触媒性を有する材料を形成した透明導電膜22から構成されるものに限定されず、触媒性を有するものであればよい。この対向電極2としては、アルミニウム、銅、スズなどの金属シートやメッシュ状電極上に、触媒性を有する白金やカーボンなどの材料を形成したものであってもよい。この触媒性を有する材料を形成する方法の例には、スパッタリングや、上記対向電極2を白金ナノコロイド溶液に浸漬することなどが挙げられる。また、上記対向電極2は、透明基板21における電解質層3側の面に導電性接着剤層を形成し、別途生成された垂直配向型のカーボンナノチューブ群を、上記導電性接着剤層に転写させたものであってもよい。   By the way, the counter electrode 2 is not limited to the transparent substrate 21 and the transparent conductive film 22 formed with a material having catalytic properties, as described above. As the counter electrode 2, a material such as platinum or carbon having catalytic properties may be formed on a metal sheet such as aluminum, copper or tin or a mesh electrode. Examples of the method for forming the material having catalytic properties include sputtering and immersing the counter electrode 2 in a platinum nanocolloid solution. The counter electrode 2 has a conductive adhesive layer formed on the surface of the transparent substrate 21 on the electrolyte layer 3 side, and a vertically aligned carbon nanotube group generated separately is transferred to the conductive adhesive layer. It may be.

上記電解質層3としては、例えば、ヨウ素系電解液が使用される。これは、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されたものである。なお、電解質層3は、電解液に限られるものではなく、固体電解質であってもよい。   For example, an iodine electrolyte solution is used as the electrolyte layer 3. This is an electrolyte component such as iodine, iodide ion, or tertiary butyl pyridine dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile. The electrolyte layer 3 is not limited to the electrolytic solution, and may be a solid electrolyte.

上記固体電解質としては、例えば、DMPImI(ジメチルプロピルイミダゾリウムヨウ化物)が例示され、この他、LiI、NaI、KI、CsI、CaIなどの金属ヨウ化物、テトラアルキルアンモニウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物とIとを組み合わせたもの、LiBr、NaBr、KBr、CsBr、CaBrなどの金属臭化物、およびテトラアルキルアンモニウムブロマイドなど4級アンモニウム化合物の臭素塩などの臭化物とBrとを組み合わせたものなどを適宜使用することができる。 As the solid electrolyte, for example, is illustrated DMPImI (dimethylpropyl imidazolium iodide), but this addition, LiI, NaI, KI, CsI, metal iodide such as CaI 2, tetraalkylammonium iodide and quaternary ammonium compounds Bromide such as a combination of iodide such as iodine salt and I 2 , metal bromide such as LiBr, NaBr, KBr, CsBr and CaBr 2 , and bromide salt of quaternary ammonium compound such as tetraalkylammonium bromide and Br 2 And the like can be used as appropriate.

そして、上記光触媒膜4は、光増感色素が吸着された酸化物半導体膜41により形成されている。上記酸化物半導体としては、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などの金属酸化物の微粒子(光触媒微粒子)が使用される。これら微粒子の粒径は、特に限定されるものではないが、5〜100μm程度であることが好ましい。また、光増感色素としては、ビピリジン構造若しくはターピリジン構造を含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、またはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などが使用される。特に、汎用性の観点からはルテニウム錯体を使用することが好ましく、有機溶媒に対する溶解性の観点からは有機色素を使用することが好ましい。また、光増感色素を溶解させる溶媒としては、エタノールなどのアルコール、アセトニトリルなどが使用される。なお、上記酸化物半導体として酸化チタン(TiO)が使用された場合、酸化チタンの結合を強化することを目的として、チタン(IV)イソプロポキシド(TTIP)をプロパノールに溶解して得られた溶液(光触媒前駆体溶液である)を、上記色素溶液に混合してもよい。 The photocatalytic film 4 is formed of an oxide semiconductor film 41 to which a photosensitizing dye is adsorbed. Examples of the oxide semiconductor include fine particles of metal oxide such as titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and niobium oxide (Nb 2 O 5 ). Photocatalyst fine particles) are used. The particle size of these fine particles is not particularly limited, but is preferably about 5 to 100 μm. Examples of photosensitizing dyes include ruthenium complexes and iron complexes having ligands containing a bipyridine structure or a terpyridine structure, porphyrin-based or phthalocyanine-based metal complexes, or organic dyes such as eosin, rhodamine, merocyanine, and coumarin. used. In particular, it is preferable to use a ruthenium complex from the viewpoint of versatility, and it is preferable to use an organic dye from the viewpoint of solubility in an organic solvent. As a solvent for dissolving the photosensitizing dye, alcohol such as ethanol, acetonitrile, or the like is used. When titanium oxide (TiO 2 ) was used as the oxide semiconductor, it was obtained by dissolving titanium (IV) isopropoxide (TTIP) in propanol for the purpose of strengthening the bond of titanium oxide. A solution (which is a photocatalyst precursor solution) may be mixed with the dye solution.

以下、本発明の要旨である上記光触媒膜4の形成(製造)方法について説明する。
まず、所望の範囲(色素増感太陽電池および光触媒膜4の着色させたくない範囲)をくり抜いたマスクMを予め準備しておく。図2には、例として、非常口灯にデザインした色素増感太陽電池を製造するためのマスクMを示す。このマスクMを用いて製造される色素増感太陽電池は、図4に示すように、非常口灯において、避難する人影およびその囲いの部分(図4に示す符号4)の酸化物半導体膜41に光増感色素が吸着し、上記人影と囲いとの間の部分(図4に示す符号5,41)の酸化物半導体膜41に光増感色素が吸着しないようにされたものである。すなわち、このマスクMは、図2に示すように、非常口灯のデザインにおいて、上記人影と囲いとの間の範囲がくり抜かれている。なお、図示しないが、このマスクMを用いて色素阻害膜5を形成する前に、酸化物半導体膜41に集電極を形成しておくことが好ましい。
Hereinafter, a method for forming (manufacturing) the photocatalytic film 4 which is the gist of the present invention will be described.
First, a mask M in which a desired range (a range in which the dye-sensitized solar cell and the photocatalyst film 4 are not desired to be colored) is cut out is prepared in advance. FIG. 2 shows, as an example, a mask M for manufacturing a dye-sensitized solar cell designed as an emergency exit lamp. As shown in FIG. 4, the dye-sensitized solar cell manufactured using this mask M is formed on the oxide semiconductor film 41 of an evacuated figure and its surrounding portion (reference numeral 4 in FIG. 4) in an emergency exit lamp. The photosensitizing dye is adsorbed to prevent the photosensitizing dye from adsorbing to the oxide semiconductor film 41 in the portion between the human shadow and the enclosure (reference numerals 5 and 41 shown in FIG. 4). That is, as shown in FIG. 2, the mask M has an area between the human figure and the enclosure in the emergency exit lamp design. Although not shown, it is preferable to form a collector electrode on the oxide semiconductor film 41 before forming the dye inhibiting film 5 using the mask M.

次に、このマスクMを、透明電極1に形成された酸化物半導体膜41上に配置する。このとき、マスクMの外周縁と酸化物半導体膜41の外周縁とを一致させる。これにより、マスクMで覆われないのは、マスクMの外周縁より外側の範囲(つまり透明電極1において酸化物半導体膜41が形成されていない範囲)と、マスクMにおいてくり抜かれた上記所望の範囲とである。その後、図3(a)に示すように、マスクMの上から色素阻害膜溶液をスプレーS(本体S1およびノズルS2からなる)で噴霧するスプレー法により、マスクMで覆われていない範囲に色素阻害膜5溶液を塗布する。この塗布方法には、上記スプレー法に限定されず、静電スプレー法、スピンコート法、スキージ法、スクリーン印刷法などを用いてもよい。   Next, this mask M is disposed on the oxide semiconductor film 41 formed on the transparent electrode 1. At this time, the outer peripheral edge of the mask M and the outer peripheral edge of the oxide semiconductor film 41 are matched. As a result, the mask M is not covered with a range outside the outer peripheral edge of the mask M (that is, a range where the oxide semiconductor film 41 is not formed in the transparent electrode 1) and the above-described desired portion cut out in the mask M. With a range. Thereafter, as shown in FIG. 3 (a), the dye is applied to the range not covered with the mask M by a spraying method in which the dye inhibiting film solution is sprayed from above the mask M with the spray S (consisting of the main body S1 and the nozzle S2). The inhibitor film 5 solution is applied. This coating method is not limited to the spray method described above, and an electrostatic spray method, a spin coating method, a squeegee method, a screen printing method, or the like may be used.

ここで、色素阻害膜溶液の塗布回数、塗布圧および塗布速度などを調整することにより、色素阻害膜5を、所定の部分と他の部分とで、厚さが異なるようにしてもよい。また、色素阻害膜5を、所定の部分と他の部分とで、粒径および高分子の種類が異なるようにしてもよい。これらを簡単に行う方法は、材料(溶質)の異なる色素阻害膜溶液を、複数回スプレーSで噴霧することである。こうして、所定の部分と他の部分とで、色素阻害膜5の厚さ、粒径および高分子の種類が異なると、酸化物半導体膜41に光増感色素が吸着することの色素阻害膜5の阻害率(以下では色素阻害率という)が異なるので、着色に濃淡をつけることができる。   Here, the thickness of the dye-inhibiting film 5 may be different between a predetermined part and another part by adjusting the number of times of application of the dye-inhibiting film solution, the application pressure, the application speed, and the like. In addition, the dye inhibiting film 5 may have different particle diameters and polymer types between a predetermined portion and another portion. A simple way to do this is to spray the dye-inhibiting membrane solutions of different materials (solutes) with the spray S multiple times. Thus, if the thickness, the particle size, and the type of polymer of the dye inhibiting film 5 are different between the predetermined part and the other part, the dye inhibiting film 5 that the photosensitizing dye is adsorbed to the oxide semiconductor film 41 is obtained. Since the inhibition rate (hereinafter referred to as pigment inhibition rate) is different, coloring can be shaded.

上記色素阻害膜溶液は、色素阻害膜5の材料を溶媒に溶かしたものである。この色素阻害膜5の材料としては、色素溶液の溶媒および電解質に耐性があるもの、つまり、色素溶液および電解質に溶出しないものが使用される。これは、色素溶液および電解質に溶出しない高分子(例えばポリビニルアルコール)、金属若しくは有機(例えばITO)の材料、樹脂、またはガラスコーティング剤などである。このガラスコーティング剤には、クォーツ系、シラン系、ケイ素系または樹脂系のものなどが使用される。また、色素阻害膜5の材料が金属の場合は、前駆体として金属有機化合物または金属無機化合物などが使用される。金属有機化合物には、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートなどが挙げられる。金属無機化合物には、硝酸塩、オキシ塩化合物、塩化物などが挙げられる。このような前駆体を均質溶液調整用の溶媒に溶解させた溶液が使用されることもある。なお、色素阻害膜5は、色素増感太陽電池を構成する(色素増感太陽電池に残存する)ので、色素阻害膜5が導電性を有していれば、酸化物半導体膜41の平行方向の導電性を向上させる。この場合、色素阻害膜5である金属膜と対向電極2との短絡を防止するために、スペーサを両電極1,2間に配置する必要がある。   The dye inhibiting film solution is obtained by dissolving the material of the dye inhibiting film 5 in a solvent. As the material of the dye inhibiting film 5, a material that is resistant to the solvent and electrolyte of the dye solution, that is, a material that does not elute into the dye solution and the electrolyte is used. This is a polymer (eg, polyvinyl alcohol), a metal or organic (eg, ITO) material, a resin, or a glass coating agent that does not elute into the dye solution and the electrolyte. Quartz-based, silane-based, silicon-based, or resin-based materials are used as the glass coating agent. Moreover, when the material of the pigment | dye inhibition film | membrane 5 is a metal, a metal organic compound or a metal inorganic compound etc. are used as a precursor. Examples of the metal organic compound include metal alkoxide, metal acetylacetonate, metal carboxylate and the like. Metal inorganic compounds include nitrates, oxysalt compounds, chlorides and the like. A solution in which such a precursor is dissolved in a solvent for preparing a homogeneous solution may be used. In addition, since the dye inhibition film 5 constitutes a dye-sensitized solar cell (remains in the dye-sensitized solar cell), if the dye inhibition film 5 has conductivity, the parallel direction of the oxide semiconductor film 41 Improve the conductivity. In this case, in order to prevent a short circuit between the metal film as the dye inhibiting film 5 and the counter electrode 2, it is necessary to arrange a spacer between the both electrodes 1 and 2.

そして、図3(b)に示すように、酸化物半導体膜41からマスクMを除去した後、酸化物半導体膜41上および透明電極1上の色素阻害膜溶液を乾燥させる。すると、酸化物半導体膜41上および透明電極1上におけるマスクMで覆われていなかった範囲に、色素阻害膜5が形成される。なお、色素阻害膜5の材料が金属であれば、上記の塗布および乾燥ではなく、スパッタリングが用いられてもよい。   Then, as shown in FIG. 3B, after removing the mask M from the oxide semiconductor film 41, the dye inhibiting film solution on the oxide semiconductor film 41 and the transparent electrode 1 is dried. Then, the dye inhibiting film 5 is formed in a range that is not covered with the mask M on the oxide semiconductor film 41 and the transparent electrode 1. In addition, if the material of the pigment | dye inhibition film | membrane 5 is a metal, sputtering may be used instead of said application | coating and drying.

その後、透明電極1を略水平の姿勢まま色素溶液に浸漬して、酸化物半導体膜41に光増感色素を接触させる。この色素溶液は、光増感色素をアルコールやアセトニトリルなどの溶媒に溶かしたものである。色素溶液の温度は常温〜80℃とし、浸漬する時間は10〜120分程度とする。すると、図3(c)に示すように、酸化物半導体膜41において、色素阻害膜5が形成されなかった範囲に、色素が吸着される。また、色素阻害膜5が形成された範囲にも、その膜厚によっては、極僅かに色素が吸着される。ここで、色素溶液に浸漬する透明電極1の姿勢は、略水平に限られず、略垂直または傾斜させてもよい。勿論、酸化物半導体膜41に光増感色素を接触させて吸着させるのであれば、透明電極1に色素溶液を浸漬する方法に限定されず、酸化物半導体膜41に色素溶液を滴下する方法であってもよい。こうして、所望の範囲が着色されず、それ以外が着色された光触媒膜4が形成される。   Thereafter, the transparent electrode 1 is immersed in a dye solution in a substantially horizontal posture, and a photosensitizing dye is brought into contact with the oxide semiconductor film 41. This dye solution is obtained by dissolving a photosensitizing dye in a solvent such as alcohol or acetonitrile. The temperature of the dye solution is normal temperature to 80 ° C., and the immersion time is about 10 to 120 minutes. Then, as illustrated in FIG. 3C, the dye is adsorbed in the oxide semiconductor film 41 in a range where the dye inhibiting film 5 is not formed. Further, even in the range where the dye inhibiting film 5 is formed, the dye is adsorbed very slightly depending on the film thickness. Here, the posture of the transparent electrode 1 immersed in the dye solution is not limited to being substantially horizontal, and may be substantially vertical or inclined. Of course, as long as the photosensitizing dye is brought into contact with and adsorbed on the oxide semiconductor film 41, the method is not limited to the method of immersing the dye solution in the transparent electrode 1, but the method of dropping the dye solution onto the oxide semiconductor film 41. There may be. In this way, the photocatalyst film 4 is formed in which the desired range is not colored and the others are colored.

次に、この光触媒膜4が形成された透明電極1を使用して製造される色素増感太陽電池の製造方法について説明する。
電解質として電解液を使用する場合は、予め、光触媒膜4が形成された透明電極1または対向電極2に、電解液を注入するための孔を形成しておく。そして、両電極1,2間に光触媒膜4が配置されるようにして、透明電極1と対向電極2とを対向させて位置合わせする。次に、両電極1,2間の周囲を熱融着フィルムまたは封止剤で封止し、上記孔から両電極1,2間に電解液を注入することにより、電解質層3を配置する。
Next, the manufacturing method of the dye-sensitized solar cell manufactured using the transparent electrode 1 in which this photocatalyst film | membrane 4 was formed is demonstrated.
When an electrolytic solution is used as the electrolyte, a hole for injecting the electrolytic solution is previously formed in the transparent electrode 1 or the counter electrode 2 on which the photocatalytic film 4 is formed. Then, the transparent electrode 1 and the counter electrode 2 are opposed to each other so that the photocatalytic film 4 is disposed between the electrodes 1 and 2. Next, the periphery between the electrodes 1 and 2 is sealed with a heat-sealing film or a sealant, and the electrolyte layer 3 is disposed by injecting an electrolyte solution between the electrodes 1 and 2 through the holes.

一方で、電解質として粘性の高い電解質を使用する場合は、両電極1,2間に光触媒膜4が配置されるようにして、透明電極1と対向電極2とを対向させて位置合わせするとともに、両電極1,2間(正確には光触媒膜4と対向電極2との間)に固体電解質を配置する。次に、両電極1,2の周囲を封止剤で封止して加熱接着する。この加熱接着には、金型により両電極1,2を加圧するとともに封止剤を加熱して硬化させる方法、封止剤にエネルギービームを照射して封止剤を硬化させる方法、塗布した紫外線硬化樹脂を紫外線照射により硬化させる方法などがある。なお、エネルギービームには、プラズマ、波長が600nm以上の可視光、赤外線、マイクロ波などがある。ところで、色素増感太陽電池が100mm角程度以上のように大面積である場合には、両電極1,2の短絡を防止するために、電解液にスペーサを配置することもある。   On the other hand, when a highly viscous electrolyte is used as the electrolyte, the transparent electrode 1 and the counter electrode 2 are opposed to each other so that the photocatalyst film 4 is disposed between both the electrodes 1 and 2, and A solid electrolyte is disposed between the electrodes 1 and 2 (more precisely, between the photocatalyst film 4 and the counter electrode 2). Next, the periphery of both electrodes 1 and 2 is sealed with a sealant and heat bonded. For this heat bonding, both the electrodes 1 and 2 are pressed with a mold and the encapsulant is heated and cured, the encapsulant is irradiated with an energy beam to cure the encapsulant, and the applied ultraviolet light There is a method of curing a cured resin by ultraviolet irradiation. Examples of the energy beam include plasma, visible light having a wavelength of 600 nm or more, infrared rays, and microwaves. By the way, when the dye-sensitized solar cell has a large area of about 100 mm square or more, a spacer may be disposed in the electrolyte solution in order to prevent short-circuiting of both electrodes 1 and 2.

このように、上記光触媒膜4の形成方法によると、酸化物半導体膜41の所望の範囲に、色素増感太陽電池を構成する色素阻害膜5を形成したことにより、この色素阻害膜5を使用した範囲に色素溶液が浸入せず、酸化物半導体膜41上に浸入した色素溶液を除去するためのクリーニングが不要になるので、光触媒膜4の形成時間を短縮することができる。   As described above, according to the method for forming the photocatalytic film 4, the dye-inhibiting film 5 constituting the dye-sensitized solar cell is formed in the desired range of the oxide semiconductor film 41. Since the dye solution does not enter the range, and cleaning for removing the dye solution that has entered the oxide semiconductor film 41 is not necessary, the formation time of the photocatalyst film 4 can be shortened.

また、透明電極1における酸化物半導体膜41が配置されていない範囲に、色素増感太陽電池を構成する色素阻害膜5を形成したことにより、この色素阻害膜5を使用した範囲にも色素溶液が浸入せず、透明電極1上に浸入した色素溶液を除去するためのクリーニングも不要になるので、光触媒膜4の形成時間を一層短縮することができる。   In addition, since the dye inhibiting film 5 constituting the dye-sensitized solar cell is formed in the transparent electrode 1 in the area where the oxide semiconductor film 41 is not disposed, the dye solution is also used in the area where the dye inhibiting film 5 is used. Therefore, it is not necessary to perform cleaning for removing the dye solution that has entered the transparent electrode 1, so that the formation time of the photocatalytic film 4 can be further shortened.

さらに、色素増感太陽電池を構成する色素阻害膜5が色素溶液に溶出しないので、色素阻害膜5の形状が維持されて、酸化物半導体膜41をきれいに塗り分けることができる。また、色素阻害膜5が電解質に溶出しないので、製造される色素増感太陽電池の電池性能の低下を防ぐことができる。   Furthermore, since the dye inhibition film 5 constituting the dye-sensitized solar cell does not elute into the dye solution, the shape of the dye inhibition film 5 is maintained, and the oxide semiconductor film 41 can be neatly applied. Moreover, since the pigment | dye inhibition film | membrane 5 does not elute to electrolyte, the fall of the battery performance of the dye-sensitized solar cell manufactured can be prevented.

また、色素阻害膜5が金属膜の場合、酸化物半導体膜41の平行方向の導電性が向上するので、製造される色素増感太陽電池の電池性能を向上させることができる。   Moreover, when the pigment | dye inhibition film | membrane 5 is a metal film, since the electroconductivity of the parallel direction of the oxide semiconductor film 41 improves, the battery performance of the dye-sensitized solar cell manufactured can be improved.

以下、上記実施の形態をより具体的に示した実施例に係る色素増感太陽電池における光触媒膜4の形成方法ついて説明する。
透明電極1に形成する酸化物半導体膜41を、酸化チタン膜とした。この酸化チタン膜を形成するのに、粒径20nmの酸化チタン微粒子(光触媒微粒子)と、t−ブタノールと、水とを混合および攪拌することにより酸化チタンペーストを生成し、この酸化チタンペーストを透明電極1に塗布および焼成した。なお、この酸化チタン膜の厚さは4〜10μmとした。そして、図示しないが、酸化チタン膜に厚さが10μm程度の集電極を形成した。
Hereinafter, a method of forming the photocatalyst film 4 in the dye-sensitized solar cell according to the example showing the above embodiment more specifically will be described.
The oxide semiconductor film 41 formed on the transparent electrode 1 was a titanium oxide film. To form this titanium oxide film, titanium oxide fine particles (photocatalyst fine particles) having a particle diameter of 20 nm, t-butanol, and water are mixed and stirred to produce a titanium oxide paste, and this titanium oxide paste is transparent. The electrode 1 was applied and baked. The thickness of the titanium oxide film was 4 to 10 μm. Although not shown, a collector electrode having a thickness of about 10 μm was formed on the titanium oxide film.

次に、図2に示すマスクMを、透明電極1に形成された酸化チタン膜上に配置した。このとき、マスクMの外周縁と酸化チタン膜の外周縁とを一致させた。その後、図3(a)に示すように、マスクMの上からスプレー法により、マスクMで覆われていない範囲に色素阻害膜溶液を塗布した。この色素阻害膜溶液として、ポリビニルアルコールを水に溶かしたものを使用した。   Next, the mask M shown in FIG. 2 was placed on the titanium oxide film formed on the transparent electrode 1. At this time, the outer peripheral edge of the mask M and the outer peripheral edge of the titanium oxide film were matched. Thereafter, as shown in FIG. 3A, the dye-inhibiting film solution was applied to the area not covered with the mask M by spraying from above the mask M. As this dye inhibiting film solution, a solution in which polyvinyl alcohol was dissolved in water was used.

そして、図3(b)に示すように、酸化チタン膜からマスクMを除去した後、酸化チタン膜上および透明電極1上の色素阻害膜溶液を150℃程度で乾燥させた。すると、酸化チタン膜上および透明電極1上におけるマスクMで覆われていなかった範囲に、色素阻害膜5が形成された。なお、この色素阻害膜5の厚さは10μm(数μ〜数十μmであればよい)とした。   Then, as shown in FIG. 3B, after removing the mask M from the titanium oxide film, the dye-inhibiting film solution on the titanium oxide film and on the transparent electrode 1 was dried at about 150 ° C. Then, the pigment | dye inhibition film | membrane 5 was formed in the range which was not covered with the mask M on a titanium oxide film and the transparent electrode 1. FIG. In addition, the thickness of this pigment | dye inhibition film | membrane 5 was 10 micrometers (it should be several micrometers-several tens of micrometers).

その後、透明電極1を略水平の姿勢のまま色素溶液に浸漬して、酸化チタン膜に光増感色素を接触させた。この色素溶液は、スクアリリウム系色素SQ2と、有機色素とをエタノール(アルコールの一例である)に溶かし、色素濃度を0.1mmol/L(0.04〜0.5mmol/Lであればよい)としたものである。なお、この色素溶液において、上記スクアリリウム系色素SQ2と有機色素との重量混合比を1:9にしたが、これに限定されるものではない。色素溶液の温度は常温〜80℃の任意とし、浸漬する時間は10〜120分の任意とした。こうして、所望の範囲が着色されず、それ以外が着色された光触媒膜4が形成された。   Thereafter, the transparent electrode 1 was immersed in a dye solution in a substantially horizontal posture, and a photosensitizing dye was brought into contact with the titanium oxide film. In this dye solution, the squarylium dye SQ2 and the organic dye are dissolved in ethanol (which is an example of an alcohol), and the dye concentration is 0.1 mmol / L (may be 0.04 to 0.5 mmol / L). It is a thing. In this dye solution, the weight mixing ratio of the squarylium dye SQ2 and the organic dye is 1: 9, but the present invention is not limited to this. The temperature of the dye solution was arbitrarily selected from room temperature to 80 ° C., and the immersion time was arbitrarily determined from 10 to 120 minutes. Thus, the photocatalyst film 4 in which the desired range was not colored and the others were colored was formed.

次に、この光触媒膜4が形成された透明電極1を使用して、100mm角の色素増感太陽電池を製造した。この色素増感太陽電池にAM1.5,100mW/cmの標準光源を照射して電力変換効率を計測した。その結果、電流密度が3.43mA/cm、開放電圧が0.70V、フィルファクタが0.51、変換効率が1.22%であった。 Next, a 100 mm square dye-sensitized solar cell was manufactured using the transparent electrode 1 on which the photocatalytic film 4 was formed. The dye-sensitized solar cell was irradiated with a standard light source of AM 1.5, 100 mW / cm 2 to measure the power conversion efficiency. As a result, the current density was 3.43 mA / cm 2 , the open-circuit voltage was 0.70 V, the fill factor was 0.51, and the conversion efficiency was 1.22%.

このように、本実施例に係る光触媒膜4の形成方法によると、上記実施の形態に係る光触媒膜4の形成方法と同様の効果が得られた。
また、本実施例に係る色素増感太陽電池は、素子にもかかわらず、電池性能の低下を防止することができた。
Thus, according to the method for forming the photocatalyst film 4 according to the present example, the same effect as the method for forming the photocatalyst film 4 according to the above embodiment was obtained.
In addition, the dye-sensitized solar cell according to this example was able to prevent the battery performance from being deteriorated regardless of the element.

ところで、上記実施の形態および実施例では、色素増感太陽電池の素子について説明したが、色素増感太陽電池のモジュールであってもよい。具体的には、各素子が並列または直列に接続されて、モジュールが製造される。並列に接続される場合は、隣り合う素子において、透明導電膜12、電解質層3、光触媒膜4および透明導電膜22がシール材によって仕切られるとともに、透明導電膜12と透明導電膜22が導体によって接続される。また、直列に接続される場合は、隣り合う素子において、電解質層3および光触媒膜4のみがシール材によって仕切られるとともに、透明基板11、透明導電膜12、透明導電膜22および透明基板21を共通する。   By the way, in the said embodiment and Example, although the element of the dye-sensitized solar cell was demonstrated, the module of a dye-sensitized solar cell may be sufficient. Specifically, each element is connected in parallel or in series to manufacture a module. When connected in parallel, in the adjacent elements, the transparent conductive film 12, the electrolyte layer 3, the photocatalyst film 4, and the transparent conductive film 22 are partitioned by a sealing material, and the transparent conductive film 12 and the transparent conductive film 22 are separated by a conductor. Connected. When connected in series, only the electrolyte layer 3 and the photocatalyst film 4 are separated by a sealing material in adjacent elements, and the transparent substrate 11, the transparent conductive film 12, the transparent conductive film 22, and the transparent substrate 21 are shared. To do.

また、上記実施の形態および実施例では、マスクMの材質などについて詳しく説明しなかったが、例えば、部分的にメッシュ状にされたマスクMを用いてもよい。具体的には、マスクMにおける所定の部分のみをメッシュ状にして、その部分で色素阻害膜溶液を僅かに通過させるようにしてもよい。これにより、上記所定の部分に極僅かな厚さの色素阻害膜5が形成される。この僅かな厚さの色素阻害膜5は、色素阻害率が低く、酸化物半導体膜41に僅かな光増感色素を吸着させる。このため、上記僅かな厚さの色素阻害膜5が形成された部分では、酸化物半導体膜41が淡く着色される。したがって、上記マスクMを使用することにより、所定の部分と他の部分とで、形成される色素阻害膜5の色素阻害率が異なるので、着色に濃淡をつけることができる。   In the above-described embodiment and examples, the material of the mask M has not been described in detail. For example, a partially meshed mask M may be used. Specifically, only a predetermined part of the mask M may be meshed so that the dye-inhibiting membrane solution is slightly passed through the part. As a result, the dye inhibiting film 5 having a very small thickness is formed on the predetermined portion. This slight thickness of the dye-inhibiting film 5 has a low dye inhibition rate and adsorbs a slight amount of photosensitizing dye to the oxide semiconductor film 41. For this reason, the oxide semiconductor film 41 is lightly colored in the portion where the dye inhibiting film 5 having the slight thickness is formed. Therefore, by using the mask M, the pigment inhibition rate of the pigment inhibition film 5 to be formed is different between the predetermined portion and other portions, so that the coloring can be shaded.

さらに、上記実施の形態および実施例では、非常口灯にデザインしたマスクMを用いたが、このデザインは一例に過ぎず、勿論、他のデザインであってもよい。   Furthermore, in the said embodiment and Example, although the mask M designed as an emergency exit lamp was used, this design is only an example and, of course, another design may be sufficient.

M マスク
1 透明電極
2 対向電極
4 光触媒膜
5 色素阻害膜
11 透明基板
12 透明導電膜
41 酸化物半導体膜
M mask 1 transparent electrode 2 counter electrode 4 photocatalytic film 5 dye inhibiting film 11 transparent substrate 12 transparent conductive film 41 oxide semiconductor film

Claims (7)

透明電極と、対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置されるとともに酸化物半導体膜に色素を吸着させてなる光触媒膜とを具備する色素増感太陽電池における光触媒膜の形成方法であって、
上記透明電極側に配置された酸化物半導体膜における所望の範囲に、色素増感太陽電池を構成する色素阻害膜を形成し、
その後、上記酸化物半導体膜に色素溶液を接触させることで、上記色素阻害膜が形成された範囲に色素が吸着することを阻害するとともに、上記酸化物半導体膜における上記色素阻害膜が形成された範囲以外に色素を吸着させることを特徴とする色素増感太陽電池における光触媒膜の形成方法。
A dye comprising: a transparent electrode; a counter electrode; an electrolyte disposed between the two electrodes; and a photocatalyst film disposed between the electrodes and on the transparent electrode side and having the oxide semiconductor film adsorbed with the dye. A method of forming a photocatalytic film in a sensitized solar cell,
In a desired range in the oxide semiconductor film disposed on the transparent electrode side, a dye-inhibiting film constituting a dye-sensitized solar cell is formed,
Thereafter, the dye solution is brought into contact with the oxide semiconductor film to inhibit the dye from adsorbing in the range where the dye inhibition film is formed, and the dye inhibition film in the oxide semiconductor film is formed. A method for forming a photocatalyst film in a dye-sensitized solar cell, wherein a dye is adsorbed outside the range.
酸化物半導体膜に色素溶液を接触させる前に、
透明電極における酸化物半導体膜が配置されていない範囲に、色素増感太陽電池を構成する色素阻害膜を形成することを特徴とする請求項1に記載の色素増感太陽電池における光触媒膜の形成方法。
Before bringing the dye solution into contact with the oxide semiconductor film,
The formation of a photocatalytic film in a dye-sensitized solar cell according to claim 1, wherein a dye-inhibiting film constituting the dye-sensitized solar cell is formed in a range where the oxide semiconductor film in the transparent electrode is not disposed. Method.
色素阻害膜が、色素溶液および電解質に溶出しないものであることを特徴とする請求項1または2に記載の色素増感太陽電池における光触媒膜の形成方法。   The method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 1 or 2, wherein the dye-inhibiting film does not elute into the dye solution and the electrolyte. 色素阻害膜を形成する方法として、
所望の範囲がくり抜かれたマスクを酸化物半導体膜に配置し、
その後、色素阻害膜の前駆体または溶液を、スプレー法、スピンコート法、スキージ法、またはスクリーン印刷法により上記酸化物半導体膜に塗布し、
塗布された上記前駆体または溶液を乾燥させることを特徴とする請求項1乃至3のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法。
As a method of forming a dye-inhibiting film,
A mask in which a desired range is hollowed is placed on the oxide semiconductor film,
Thereafter, a dye-inhibiting film precursor or solution is applied to the oxide semiconductor film by a spray method, a spin coating method, a squeegee method, or a screen printing method,
The method for forming a photocatalytic film in a dye-sensitized solar cell according to any one of claims 1 to 3, wherein the applied precursor or solution is dried.
マスクが、所定の部分と他の部分とで、色素阻害膜の前駆体または溶液を通過させる通過率が異なるものであることを特徴とする請求項4に記載の色素増感太陽電池における光触媒膜の形成方法。   5. The photocatalytic film in a dye-sensitized solar cell according to claim 4, wherein the mask has different pass rates for allowing the precursor or the solution of the dye-inhibiting film to pass between the predetermined part and the other part. Forming method. 形成された色素阻害膜が、所定の部分と他の部分とで、色素が吸着することを阻害する阻害率が異なるものであることを特徴とする請求項1乃至5のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法。   6. The formed dye-inhibiting film has different inhibition rates for inhibiting the adsorption of the dye between the predetermined part and the other part, according to any one of claims 1 to 5. Of forming a photocatalytic film in a dye-sensitized solar cell. 色素阻害膜が、金属膜であり、
色素阻害膜を形成する方法として、スパッタリングが用いられたことを特徴とする請求項1乃至3のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法。
The dye inhibiting film is a metal film,
The method for forming a photocatalytic film in a dye-sensitized solar cell according to any one of claims 1 to 3, wherein sputtering is used as a method of forming the dye-inhibiting film.
JP2012202144A 2012-09-14 2012-09-14 Photocatalyst film formation method of dye-sensitized solar cell Pending JP2014056779A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012202144A JP2014056779A (en) 2012-09-14 2012-09-14 Photocatalyst film formation method of dye-sensitized solar cell
PCT/JP2013/072797 WO2014041999A1 (en) 2012-09-14 2013-08-27 Method for forming photocatalyst film in dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202144A JP2014056779A (en) 2012-09-14 2012-09-14 Photocatalyst film formation method of dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2014056779A true JP2014056779A (en) 2014-03-27

Family

ID=50278121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202144A Pending JP2014056779A (en) 2012-09-14 2012-09-14 Photocatalyst film formation method of dye-sensitized solar cell

Country Status (2)

Country Link
JP (1) JP2014056779A (en)
WO (1) WO2014041999A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966638B2 (en) * 1999-03-19 2007-08-29 株式会社東芝 Multicolor dye-sensitized transparent semiconductor electrode member and production method thereof, multicolor dye-sensitized solar cell, and display element
JP2002064214A (en) * 2000-08-17 2002-02-28 Honda Motor Co Ltd Electrode for current collection of solar battery and its manufacturing method
JP2002164563A (en) * 2000-09-14 2002-06-07 Fuji Photo Film Co Ltd Photovoltaic power generating/emitting apparatus pigment sensitizing method for photoelectric transducer
JP2004039471A (en) * 2002-07-04 2004-02-05 Sumitomo Osaka Cement Co Ltd Pigment-sensitized solar cell
JP2012094321A (en) * 2010-10-26 2012-05-17 Nippon Steel Chem Co Ltd Dye-sensitized solar cell anode electrode manufacturing method
JP2012199096A (en) * 2011-03-22 2012-10-18 Sony Corp Method for manufacturing photoelectric conversion element, and method for manufacturing electronic device
JP2013157223A (en) * 2012-01-31 2013-08-15 Hitachi Zosen Corp Dye-sensitised solar cell electrode manufacturing method

Also Published As

Publication number Publication date
WO2014041999A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
KR101172374B1 (en) Dye-sensitized solar cell based on perovskite sensitizer and manufacturing method thereof
JP2012064485A (en) Dye-sensitized photoelectric conversion device
WO2011083689A1 (en) Method for forming buffer layer in dye-sensitized solar cell
WO2011083688A1 (en) Method for manufacturing dye-sensitized solar cell
KR20120040322A (en) Dye-sensitized solar cell with light scattering layer, and manufacturing method thereof
KR101354957B1 (en) Dye-Sensitized Solar Cell and Manufacturing Method Thereof
JP5599221B2 (en) Method for forming buffer layer in dye-sensitized solar cell
KR20130001387A (en) Porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode
WO2014041999A1 (en) Method for forming photocatalyst film in dye-sensitized solar cell
KR101409067B1 (en) Dye sensitized solar cell and its manufacturing method
JP2010205581A (en) Manufacturing method of photoelectric conversion element using conductive mesh
WO2011132288A1 (en) Method for producing electrode for photoelectric conversion element
WO2014010393A1 (en) Dye-sensitized solar cell
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2008041258A (en) Substrate for action electrode, and photoelectric conversion element
JP5511490B2 (en) Method for forming photocatalytic film in dye-sensitized solar cell
JP2014063677A (en) Method of forming photocatalyst film in dye-sensitized solar cell, dye-sensitized solar cell having the photocatalyst film, and continuously manufacturing device for the dye-sensitized solar cell
JP5452037B2 (en) Method for producing electrode for photoelectric conversion element
JP2012212539A (en) Method for manufacturing counter electrode of dye-sensitized solar cell, and dye-sensitized solar cell
WO2013114983A1 (en) Method of manufacturing dye-sensitized solar cell
JP2014056719A (en) Process of manufacturing porous metal oxide film
KR101017805B1 (en) Dye-sensitized solar cell and method for preparing the same
JP2015191984A (en) Dye-sensitized solar battery and manufacturing method thereof
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element
JP5376837B2 (en) Method for manufacturing photoelectric conversion element