JP5599221B2 - Method for forming buffer layer in dye-sensitized solar cell - Google Patents

Method for forming buffer layer in dye-sensitized solar cell Download PDF

Info

Publication number
JP5599221B2
JP5599221B2 JP2010102790A JP2010102790A JP5599221B2 JP 5599221 B2 JP5599221 B2 JP 5599221B2 JP 2010102790 A JP2010102790 A JP 2010102790A JP 2010102790 A JP2010102790 A JP 2010102790A JP 5599221 B2 JP5599221 B2 JP 5599221B2
Authority
JP
Japan
Prior art keywords
buffer layer
transparent electrode
dye
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010102790A
Other languages
Japanese (ja)
Other versions
JP2011233376A (en
Inventor
剛 杉生
鉄也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2010102790A priority Critical patent/JP5599221B2/en
Publication of JP2011233376A publication Critical patent/JP2011233376A/en
Application granted granted Critical
Publication of JP5599221B2 publication Critical patent/JP5599221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感太陽電池におけるバッファ層の形成方法に関する。   The present invention relates to a method for forming a buffer layer in a dye-sensitized solar cell.

一般に、色素増感型太陽電池は、ガラス板などの透明基板上に透明導電膜が形成されてなる透明電極と、同様に透明基板の表面に透明導電膜が形成されてなる対向電極と、これら両電極間に配置されるヨウ素系の電解質層と、上記両電極間で且つ上記透明電極の表面に配置される光触媒膜とから構成され、且つこの光触媒膜としては、酸化チタン(TiO)などの金属酸化物を形成した後、ルテニウムなどの光増感色素を染色したものが知られている。 Generally, a dye-sensitized solar cell includes a transparent electrode in which a transparent conductive film is formed on a transparent substrate such as a glass plate, a counter electrode in which a transparent conductive film is similarly formed on the surface of the transparent substrate, and these It is composed of an iodine-based electrolyte layer disposed between both electrodes, and a photocatalytic film disposed between the two electrodes and on the surface of the transparent electrode. The photocatalytic film includes titanium oxide (TiO 2 ) and the like. It is known that after forming a metal oxide, dyeing a photosensitizing dye such as ruthenium.

そして、この構成によると、透明電極と電解質層とが接触していることから、電解質に液体を用いた場合には、透明電極から電解質層に電子が漏れ出してしまい、逆電流が発生して発電効率が低下するという問題があった。   According to this configuration, since the transparent electrode and the electrolyte layer are in contact, when liquid is used for the electrolyte, electrons leak from the transparent electrode to the electrolyte layer, and a reverse current is generated. There was a problem that the power generation efficiency decreased.

この問題を解決するものとして、透明電極と光触媒膜(金属酸化物)との間に酸化チタン、酸化亜鉛などの半導体からなる緻密な膜、所謂バッファ層を形成することで、上記逆電流を防止する方法が知られている(例えば、特許文献1参照)。   As a solution to this problem, the reverse current is prevented by forming a dense film made of a semiconductor such as titanium oxide or zinc oxide between the transparent electrode and the photocatalyst film (metal oxide), a so-called buffer layer. There is a known method (see, for example, Patent Document 1).

特開2007−311162号公報JP 2007-31162 A

ところで、上記特許文献1の構成によると、半導体膜を形成する際に、500℃程度の高温で焼結させる必要があるため、透明電極の基板として軽量で且つ安価な合成樹脂を用いることができないという問題があった。   By the way, according to the structure of the said patent document 1, when forming a semiconductor film, since it is necessary to sinter at about 500 degreeC high temperature, a lightweight and cheap synthetic resin cannot be used as a board | substrate of a transparent electrode. There was a problem.

なお、低温でバッファ層を形成する方法も開示されているが、スパッタ法や真空蒸着を用いているため、装置が大掛かりで高価なものになるという問題があった。
そこで、本発明は、基板として、例えば合成樹脂などの高温に弱い材料を用いることができる色素増感太陽電池におけるバッファ層の形成方法を提供することを目的とする。
Although a method for forming a buffer layer at a low temperature is also disclosed, there is a problem that the apparatus becomes large and expensive because a sputtering method or vacuum deposition is used.
Therefore, an object of the present invention is to provide a method for forming a buffer layer in a dye-sensitized solar cell in which a material that is weak against high temperature such as a synthetic resin can be used as a substrate.

上記課題を解決するため、本願発明の色素増感太陽電池におけるバッファ層の形成方法は、透明電極と、対向電極と、これら両電極間に配置される電解質層と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池における上記透明電極と光触媒膜との間に配置されるバッファ層の形成方法であって、
光触媒の前駆体をアルコール液に溶かしてなる液体を上記透明電極の表面に塗布するとともに、または塗布した後、過熱水蒸気を噴霧して焼成させることにより、バッファ層を形成する方法である。
In order to solve the above problems, a method for forming a buffer layer in a dye-sensitized solar cell according to the present invention includes a transparent electrode, a counter electrode, an electrolyte layer disposed between these electrodes, and a transparent electrode between both electrodes. A method of forming a buffer layer disposed between the transparent electrode and the photocatalytic film in a dye-sensitized solar cell comprising a photocatalytic film disposed on the side,
With a precursor of the photocatalyst coating liquid comprising dissolving in an alcohol solution to the surface of the transparent electrode, or after coating, by firing the spray superheated steam, a method of forming a buffer layer.

また、上記形成方法において、光触媒が、酸化チタン、酸化タングステン、酸化スズ、酸化亜鉛または酸化ニオブであり、且つ前駆体がその金属アルコキシドとする方法である。   In the above formation method, the photocatalyst is titanium oxide, tungsten oxide, tin oxide, zinc oxide, or niobium oxide, and the precursor is the metal alkoxide.

また、上記各形成方法において、液体を透明電極の表面に塗布する際に、スプレー法、スピンコート法またはディップ法を用いる方法である。
また、上記各形成方法において、過熱水蒸気の温度が100℃を超えて300℃までの範囲であり、
さらに過熱水蒸気の噴霧を二段にて行うとともに、1段目に噴霧する過熱水蒸気の温度が100℃を超えて300℃までの範囲であり、2段目に噴霧する過熱水蒸気の温度範囲が300℃を超えて500℃までの範囲とする方法である。
Further, in each of the above forming methods, a spray method, a spin coating method, or a dip method is used when applying the liquid to the surface of the transparent electrode.
Further, in each of the above forming methods, the temperature of the superheated steam is in the range from over 100 ° C. to 300 ° C.
Further, the superheated steam is sprayed in two stages, the temperature of the superheated steam sprayed in the first stage is in the range of over 100 ° C. to 300 ° C., and the temperature range of the superheated steam sprayed in the second stage is 300. In this method, the temperature is in the range of more than 500 ° C up to 500 ° C.

上記バッファ層の形成方法によると、バッファ層を透明電極に形成する際に、アルコール液に光触媒前駆体を含ませてなる液体を透明電極の表面に塗布するとともに、または塗布した後、過熱水蒸気を噴霧して焼成するようにしたので、つまり電極全体を加熱する必要がないため、透明電極の基板材料として、合成樹脂などの耐熱性の低い材料を用いることができ、したがって太陽電池そのものの軽量化および低価格化を図ることができる。 According to the method for forming the buffer layer, when the buffer layer is formed on the transparent electrode, the liquid containing the photocatalyst precursor in the alcohol liquid is applied to the surface of the transparent electrode, or after the application, the superheated steam is applied. Since it is sprayed and fired, that is, it is not necessary to heat the entire electrode, a material with low heat resistance such as a synthetic resin can be used as a substrate material for the transparent electrode, and thus the weight of the solar cell itself is reduced. In addition, the price can be reduced.

また、温度が異なる過熱水蒸気を二段で噴霧することにより、下記のような効果が得られる。すなわち、低温の過熱水蒸気を噴霧して焼成することにより、酸化チタンの加水分解や結晶化が促進される。これによって、バッファ層内の酸化チタン量が増加する。そして、高温の過熱水蒸気を噴霧して焼成することにより、生成した酸化チタン粒子同士や、粒子と透明電極との結合が強固となり、また、余分な水分やアルコール、ごみなどを除去することができる。   Moreover, the following effects are acquired by spraying the superheated steam from which temperature differs in two steps. That is, by spraying and baking low-temperature superheated steam, hydrolysis and crystallization of titanium oxide are promoted. Thereby, the amount of titanium oxide in the buffer layer increases. And, by spraying high-temperature superheated steam and firing, the generated titanium oxide particles and the bond between the particles and the transparent electrode become strong, and excess water, alcohol, dust, etc. can be removed. .

本発明の実施の形態に係る色素増感太陽電池の基本構成を示す断面図である。It is sectional drawing which shows the basic composition of the dye-sensitized solar cell which concerns on embodiment of this invention. 本発明の実施例1に係るバッファ層の形成方法を説明する側面図である。It is a side view explaining the formation method of the buffer layer which concerns on Example 1 of this invention. 同実施例1に係るバッファ層の形成方法に用いられる蒸気噴霧ノズルの外観斜視図である。It is an external appearance perspective view of the vapor spray nozzle used for the formation method of the buffer layer based on the Example 1. FIG. 本発明の実施例2に係るバッファ層の形成方法を説明する側面図である。It is a side view explaining the formation method of the buffer layer based on Example 2 of this invention. 本発明の実施例3に係るバッファ層の形成方法を説明する側面図である。It is a side view explaining the formation method of the buffer layer based on Example 3 of this invention.

以下、本発明の実施の形態に係る色素増感太陽電池におけるバッファ層の形成方法を、図面に基づき説明する。
まず、本実施の形態に係る色素増感太陽電池の概略構成を図1に基づき説明する。
Hereinafter, a method for forming a buffer layer in a dye-sensitized solar cell according to an embodiment of the present invention will be described with reference to the drawings.
First, a schematic configuration of the dye-sensitized solar cell according to the present embodiment will be described with reference to FIG.

この色素増感太陽電池は、図1に示すように、負極としての透明電極1と、正極としての対向電極2と、これら両電極1,2間に配置される電解質層3と、両電極1,2間で且つ透明電極1側に配置される光触媒膜(光触媒層でもある)4とが具備され、さらに上記透明電極1と光触媒膜4との間に、酸化チタン、酸化亜鉛などからなるバッファ層5が設けられて、電子の逆流が防止されている。   As shown in FIG. 1, the dye-sensitized solar cell includes a transparent electrode 1 as a negative electrode, a counter electrode 2 as a positive electrode, an electrolyte layer 3 disposed between the electrodes 1 and 2, and both electrodes 1. , 2 and a photocatalyst film (also a photocatalyst layer) 4 disposed on the transparent electrode 1 side, and a buffer made of titanium oxide, zinc oxide or the like between the transparent electrode 1 and the photocatalyst film 4. Layer 5 is provided to prevent backflow of electrons.

上記透明電極1は、透明基板11およびこの透明基板11の表面に形成(配置)された透明導電膜12から構成されており、また対向電極2は、透明基板21およびこの透明基板21の表面に形成(配置)された透明導電膜22から構成されている。   The transparent electrode 1 is composed of a transparent substrate 11 and a transparent conductive film 12 formed (arranged) on the surface of the transparent substrate 11, and the counter electrode 2 is formed on the surface of the transparent substrate 21 and the transparent substrate 21. The transparent conductive film 22 is formed (arranged).

上記各透明基板11,21としては、合成樹脂板、ガラス板などが適宜使用されるが、軽量化および低価格化の点で、ポリエチレン・ナフタレート(PEN)フィルムなどの熱可塑性樹脂が好ましい。なお、ポリエチレン・ナフタレートの他に、ポリエチレン・テレフタレート、ポリエステル、ポリカーボネート、ポリオレフィンなどを使用することもできる。   As each of the transparent substrates 11 and 21, a synthetic resin plate, a glass plate, or the like is used as appropriate, but a thermoplastic resin such as a polyethylene naphthalate (PEN) film is preferable in terms of weight reduction and price reduction. In addition to polyethylene naphthalate, polyethylene terephthalate, polyester, polycarbonate, polyolefin and the like can also be used.

また、透明導電膜12,22として、好ましくは、スズ添加酸化インジウム(ITO)が使用され、この他に、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物を含む薄膜を使用することができる。 Further, as the transparent conductive films 12 and 22, tin-added indium oxide (ITO) is preferably used. In addition, fluorine-added tin oxide (FTO), tin oxide (SnO 2 ), and indium zinc oxide (IZO) are used. A thin film containing a conductive metal oxide such as zinc oxide (ZnO) can be used.

上記電解質層3としては、例えばヨウ素系電解液が使用される。具体的には、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されたものが用いられる。なお、電解質層3は、電解液に限られるものではなく、固体電解質であってもよい。   As the electrolyte layer 3, for example, an iodine-based electrolyte is used. Specifically, an electrolyte component such as iodine, iodide ion or tertiary butyl pyridine dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile is used. The electrolyte layer 3 is not limited to the electrolytic solution, and may be a solid electrolyte.

上記固体電解質としては、例えば、DMPImI(ジメチルプロピルイミダゾリウムヨウ化物)が例示され、このほか、LiI、NaI、KI、CsI、CaIなどの金属ヨウ化物、テトラアルキルアンモニウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物とIとを組み合わせたもの、LiBr、NaBr、KBr、CsBr、CaBrなどの金属臭化物、およびテトラアルキルアンモニウムブロマイドなど4級アンモニウム化合物の臭素塩などの臭化物とBrとを組み合わせたものなどを適宜使用することができる。 As the solid electrolyte, for example, is illustrated DMPImI (dimethylpropyl imidazolium iodide) is, in addition, LiI, NaI, KI, CsI, metal iodide such as CaI 2, tetraalkylammonium iodide and quaternary ammonium compounds Bromide such as a combination of iodide such as iodine salt and I 2 , metal bromide such as LiBr, NaBr, KBr, CsBr and CaBr 2 , and bromide salt of quaternary ammonium compound such as tetraalkylammonium bromide and Br 2 And the like can be used as appropriate.

上記光触媒膜4は、光増感色素42が吸着された酸化物半導体層41により形成されており、その製造に際しては、光触媒微粒子つまり金属酸化物微粒子である酸化物半導体を粘性剤とともにアルコール液に溶かしてなるペーストを透明電極1の表面に、正確にはバッファ層5の表面に塗布し、乾燥させた後、光増感色素を酸化物半導体に吸着させることにより得られる。   The photocatalyst film 4 is formed of an oxide semiconductor layer 41 to which a photosensitizing dye 42 is adsorbed, and in the production thereof, the photocatalyst fine particles, that is, the oxide semiconductor that is metal oxide fine particles, together with a viscosity agent is added to an alcohol liquid. The melted paste is applied on the surface of the transparent electrode 1, more precisely on the surface of the buffer layer 5, dried, and then adsorbed with a photosensitizing dye on the oxide semiconductor.

また、上記酸化物半導体としては、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などの金属酸化物が用いられ、光増感色素としては、ビピリジン構造若しくはターピリジン構造を含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、またはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などが用いられる。また、溶媒であるアルコール液としては、プロパノール、t−ブチルアルコール、エトキシエタノール、エタノールなどが用いられる。さらに、加水分解を抑制する目的として、ジエタノールアミンやアセチルアセトンなど、または必要に応じて硝酸、酢酸、塩酸といった酸を加えてもよい。上記粘性剤としては、エチレングリコール、アセチルアセトンなどが用いられる。 Examples of the oxide semiconductor include metal oxides such as titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and niobium oxide (Nb 2 O 5 ). As photosensitizing dyes, ruthenium complexes and iron complexes having a ligand containing a bipyridine structure or a terpyridine structure, metal complexes of porphyrins or phthalocyanines, or organic dyes such as eosin, rhodamine, merocyanine, coumarin, etc. Is used. Moreover, propanol, t-butyl alcohol, ethoxyethanol, ethanol, etc. are used as an alcohol liquid which is a solvent. Furthermore, for the purpose of suppressing hydrolysis, diethanolamine, acetylacetone, or the like, or if necessary, an acid such as nitric acid, acetic acid, hydrochloric acid may be added. Examples of the viscosity agent include ethylene glycol and acetylacetone.

また、上記対向電極2としては、透明基板21の表面に透明導電膜22を形成したものとして説明したが、アルミニウム、銅、スズなどの金属シートを用いることもできる。この他、アルミニウム、銅、スズなどの金属またはカーボン製のメッシュ状電極にゲル状固体電解質を保持させることにより当該対向電極を構成してもよく、また、透明基板21の片面に且つ導電性接着剤層でもって当該透明基板21を覆うように形成し、接着剤層を介して、別途形成されたブラシ状カーボンナノチューブ群を当該透明基板21側に転写することで、対向電極2を構成してもよい。   Further, the counter electrode 2 has been described on the assumption that the transparent conductive film 22 is formed on the surface of the transparent substrate 21, but a metal sheet such as aluminum, copper, or tin can also be used. In addition, the counter electrode may be configured by holding a gel-like solid electrolyte on a mesh electrode made of metal such as aluminum, copper, tin, or carbon, or conductively bonded to one surface of the transparent substrate 21. The counter electrode 2 is formed by covering the transparent substrate 21 with an agent layer and transferring a separately formed brush-like carbon nanotube group to the transparent substrate 21 side through the adhesive layer. Also good.

そして、上記透明電極1の表面に設けられるバッファ層5は、光触媒前駆体をアルコール液に溶かしてなる液体を上記透明電極の表面に数nm〜数十nm程度(好ましくは、数nm〜20nm)の厚さでもって塗布するとともに、または塗布した後、過熱水蒸気を噴霧して焼成させることにより形成される。 The buffer layer 5 provided on the surface of the transparent electrode 1 has a liquid obtained by dissolving a photocatalyst precursor in an alcohol liquid on the surface of the transparent electrode, which is about several nm to several tens nm (preferably several nm to 20 nm). It is formed by spraying with superheated steam and baking after coating with or after coating.

例えば、透明電極1としてのPEN−ITOフィルムの表面に、スプレー法を用いて、光触媒前駆体である金属アルコキシド(例えば、チタンアルコキシドが用いられる)をアルコール液に溶かしてなる液体をスプレー法によりつまり液噴霧ノズルから塗布した後、その直後に、100℃を超えて300℃までの温度範囲に調整された過熱水蒸気を蒸気噴霧ノズルから噴霧して焼成(焼結ともいう)させることにより、所定厚さ、例えば10nm程度のバッファ層5が形成される。 I.e. for example, the surface of the PEN-ITO film as the transparent electrode 1, using a spray method, a metal alkoxide is a photocatalyst precursor (for example, a titanium alkoxide is used) by spraying a liquid to become dissolved in the alcohol solution After coating from the liquid spray nozzle, immediately after that, the superheated steam adjusted to a temperature range exceeding 100 ° C. to 300 ° C. is sprayed from the steam spray nozzle and fired (also referred to as sintering) to obtain a predetermined thickness. For example, the buffer layer 5 of about 10 nm is formed.

なお、透明基板にフィルムを用いたが、ガラス基板を用いてもよい。上記液体の塗布方法についてもスプレー法に限られるものではなく、静電スプレー法、スピンコート法、ディップ法などを用いることもできるが、基板表面が粗い場合にはスプレー法が最適である。また、上記静電スプレー法は、透明電極に向かって液体を塗布すなわち噴霧する液噴霧ノズルの中心に針状電極を配置するとともに、この針状電極と透明電極を載置する印加用電極との間に所定電圧の直流電源を接続し、噴霧時に、針状電極側に正の電圧を印加することにより、噴霧液に帯電させて負の印加用電極上に配置された透明電極の表面に噴霧して付着させる方法である。 In addition, although the film was used for the transparent substrate, you may use a glass substrate. The method for applying the liquid is not limited to the spray method, and an electrostatic spray method, a spin coat method, a dip method, or the like can be used. However, when the substrate surface is rough, the spray method is optimal. Further, the electrostatic spraying is configured to place the needle electrodes on the center of the liquid spray nozzle for applying i.e. spraying liquid towards the transparent electrode, the application electrode for mounting the needle electrode and the transparent electrode A DC power supply with a predetermined voltage is connected between them, and during spraying, a positive voltage is applied to the needle electrode side, so that the spray solution is charged and sprayed onto the surface of the transparent electrode disposed on the negative application electrode. It is the method of making it adhere.

また、上記光触媒前駆体として、チタンアルコキシドの他に、チタンテトラエトキシド、四塩化チタン、水酸化チタンなどを用いることができる。なお、光触媒の前駆体については光触媒膜の材質に必ずしも一致する必要はなく、例えば光触媒が酸化チタンである場合、前駆体として酸化ニオブの前駆体を用いることができる。   In addition to titanium alkoxide, titanium tetraethoxide, titanium tetrachloride, titanium hydroxide, or the like can be used as the photocatalyst precursor. The photocatalyst precursor does not necessarily match the material of the photocatalyst film. For example, when the photocatalyst is titanium oxide, a niobium oxide precursor can be used as the precursor.

以下、このバッファ層の形成方法を具体的に示す実施例について説明する。   Hereinafter, examples specifically showing the method of forming the buffer layer will be described.

実施例1では、透明電極としてのPEN−ITOフィルムの表面に、スプレー法を用いて、光触媒前駆体としてのチタン(IV)イソプロポキシド(TTIP)0.05gをプロパノール液99.95gに溶かしてなる液体を塗布した直後に、100℃を超えて300℃までの温度範囲に調整された過熱水蒸気を噴霧して焼成させることにより、例えば10nm程度のバッファ層を形成した。 In Example 1, 0.05 g of titanium (IV) isopropoxide (TTIP) as a photocatalyst precursor was dissolved in 99.95 g of a propanol solution on the surface of a PEN-ITO film as a transparent electrode using a spray method. Immediately after applying the liquid , the superheated steam adjusted to a temperature range of over 100 ° C. to 300 ° C. was sprayed and fired to form a buffer layer of about 10 nm, for example.

この場合、図2に示すように、透明電極1の上方に、液体Bを噴霧する液噴霧ノズル61および過熱水蒸気Hを噴霧する蒸気噴霧ノズル62が並置され、そして液噴霧ノズル61から液体Bを噴霧するとともに蒸気噴霧ノズル62から過熱水蒸気Hを噴霧しながら矢印a方向に移動させることにより、透明電極1の表面にバッファ層5が形成される。 In this case, as shown in FIG. 2, above the transparent electrodes 1, the steam spray nozzle 62 for spraying a liquid spray nozzle 61 and superheated steam H spraying liquid B are juxtaposed, and the liquid B from the liquid spray nozzles 61 The buffer layer 5 is formed on the surface of the transparent electrode 1 by spraying and moving in the direction of arrow a while spraying the superheated steam H from the steam spray nozzle 62.

なお、両ノズル61,62を移動させない場合には、透明電極1側を矢印b方向に移動させればよい。相対移動速度は、数mm〜1000mm/secの範囲内で行われる。
ここで、蒸気噴霧ノズル62を図3に基づき説明する。
In addition, what is necessary is just to move the transparent electrode 1 side to the arrow b direction, when not moving both the nozzles 61 and 62. FIG. The relative moving speed is performed within a range of several mm to 1000 mm / sec.
Here, the vapor spray nozzle 62 will be described with reference to FIG.

すなわち、この蒸気噴霧ノズル62は、下面が開放され且つ上部側面に飽和水蒸気Sの噴出用開口部(供給口ともいえる)が設けられた細長い箱型形状にされるとともに内部に電気ヒータ(図示せず)が配置されたものである。具体的には、蒸気噴霧ノズル62の噴出用開口部は、透明電極1の前後の移動方向と直交する幅方向で長くされている。   That is, the vapor spray nozzle 62 has an elongated box shape in which the lower surface is opened and the upper side surface is provided with an opening (also referred to as a supply port) for saturated water vapor S, and an electric heater (not shown) is provided inside. ) Is placed. Specifically, the ejection opening of the vapor spray nozzle 62 is elongated in the width direction orthogonal to the front-rear movement direction of the transparent electrode 1.

したがって、100℃の飽和水蒸気Sが蒸気噴霧ノズル62に供給されると電気ヒータにより所定温度に、例えば100℃を超えて300℃までの温度に加熱されて、その下面の噴出用開口部から過熱水蒸気Hがバッファ層5の表面に供給されることになる。この意味で、蒸気噴霧ノズル62は、過熱蒸気発生装置付きといえる。なお、液噴霧ノズル61は、蒸気噴霧ノズル62と同じ噴霧範囲に噴霧し得るような噴出用開口部を有するように構成されている。   Accordingly, when saturated steam S of 100 ° C. is supplied to the steam spray nozzle 62, it is heated to a predetermined temperature by the electric heater, for example, to a temperature of over 100 ° C. to 300 ° C., and overheated from the ejection opening on the lower surface. The water vapor H is supplied to the surface of the buffer layer 5. In this sense, it can be said that the steam spray nozzle 62 is provided with a superheated steam generator. The liquid spray nozzle 61 is configured to have an ejection opening that can spray in the same spray range as the vapor spray nozzle 62.

また、スプレー法による液体つまり塗布溶液の塗布条件としては、ノズルの種類、塗布溶液粘度、霧化エアー圧、パターン幅、吐出量、吐出圧、ノズルの移動速度、重ね幅、ノズルと塗布面である透明電極との距離などが挙げられるが、これらは使用する吐出機によって異なるため、所望の膜厚が得られるように、適宜塗布条件を選択して塗布すればよい。なお、1回の過熱水蒸気の噴霧では、焼成が不十分である場合には、複数回噴霧してもよい。 In addition, the application conditions of the liquid by the spray method, that is, the application solution, include nozzle type, application solution viscosity, atomizing air pressure, pattern width, discharge amount, discharge pressure, nozzle moving speed, overlap width, nozzle and application surface. Although the distance with a certain transparent electrode, etc. are mentioned, since these differ with the discharge machine to be used, what is necessary is just to select and apply | coat suitably a coating condition so that a desired film thickness may be obtained. In addition, you may spray in multiple times, when baking by one superheated steam spraying is inadequate.

本実施例1では、例えば霧化エアー圧が0.3MPa、吐出量が15g/min、ノズルと透明電極との距離が20cm、ノズルの移動速度が100m/minで行われた。
そして、バッファ層を用いずに、市販の低温用酸化チタンペーストを用いて有効径がφ6mmの色素増感太陽電池を作製すると、電池性能は1sun、AM1.5下で電流密度は8.58mA/cm、開放電圧は0.71V、フィルファクタは0.62、変換効率は3.78%であったのに対し、過熱水蒸気を用いてバッファ層を形成したものによると、電流密度は9.00mA/cm、開放電圧は0.72V、フィルファクタは0.65、変換効率は4.20%であった。すなわち、本発明に係る光触媒膜の形成方法により得られたものが優れているのが分かる。
In Example 1, for example, the atomizing air pressure was 0.3 MPa, the discharge amount was 15 g / min, the distance between the nozzle and the transparent electrode was 20 cm, and the moving speed of the nozzle was 100 m / min.
When a dye-sensitized solar cell having an effective diameter of φ6 mm is produced using a commercially available low-temperature titanium oxide paste without using a buffer layer, the battery performance is 1 sun, the current density is 8.58 mA / under 1.5 AM. cm 2, the open circuit voltage is 0.71V, while the fill factor 0.62, the conversion efficiency was 3.78% according to that forming the buffer layer by using superheated steam, the current density is 9. 00 mA / cm 2 , open-circuit voltage was 0.72 V, fill factor was 0.65, and conversion efficiency was 4.20%. That is, it can be seen that the photocatalytic film forming method according to the present invention is excellent.

次に、実施例2に係るバッファ層の形成方法について説明する。
本実施例2においては、スプレー法による塗布膜の形成と同時に100℃を超えて300℃までの温度範囲の過熱水蒸気で焼成させることで、上述した実施例1と同じ厚さ程度のバッファ層を形成するようにしたものである。
Next, a method for forming a buffer layer according to Example 2 will be described.
In Example 2, the buffer layer having the same thickness as that of Example 1 described above is formed by baking with superheated steam in the temperature range of over 100 ° C. to 300 ° C. simultaneously with the formation of the coating film by the spray method. It is to be formed.

すなわち、図4に示すように、透明電極1の上方に、実施例1と同様に、液体を噴霧(塗布)する液噴霧ノズル61および過熱水蒸気を噴霧する蒸気噴霧ノズル62が並置されるとともに、噴霧ノズル61による噴霧領域(塗布領域)に、蒸気噴霧ノズル62からの過熱水蒸気の噴霧領域が重なるように、それぞれの噴出方向が設定される。勿論、実施例1と同様に、両ノズル61,62は、矢印a方向に移動されて、透明電極1の表面に、バッファ層が形成される。また、実施例1同様に、両ノズル61,62を移動させない場合には、透明電極1側を矢印b方向に移動させればよい。相対移動速度は、数mm〜1000mm/secの範囲内で行われる。 That is, as shown in FIG. 4, above the transparent electrodes 1, in the same manner as in Example 1, together with the steam spray nozzle 62 for spraying a liquid spray nozzle 61 and the superheated steam is sprayed (coated) the liquid is juxtaposed, The spray directions are set so that the spray region of the superheated steam from the steam spray nozzle 62 overlaps the spray region (application region) of the spray nozzle 61. Of course, as in the first embodiment, both the nozzles 61 and 62 are moved in the direction of the arrow a, and a buffer layer is formed on the surface of the transparent electrode 1. Similarly to the first embodiment, when both the nozzles 61 and 62 are not moved, the transparent electrode 1 side may be moved in the arrow b direction. The relative moving speed is performed within a range of several mm to 1000 mm / sec.

次に、実施例3に係るバッファ層の形成方法について説明する。
本実施例3の形成方法は、スプレー法により形成された塗布膜の表面に、100℃を超えて300℃までの温度範囲の過熱水蒸気を噴霧した後、さらに300℃を超えて500℃までの温度範囲の過熱水蒸気を噴霧することで、塗布膜の焼成を瞬時に行う方法である。
Next, a method for forming a buffer layer according to Example 3 will be described.
In the formation method of Example 3, the surface of the coating film formed by the spray method is sprayed with superheated steam in the temperature range exceeding 100 ° C. to 300 ° C., and further exceeding 300 ° C. to 500 ° C. In this method, the coating film is fired instantaneously by spraying superheated water vapor in the temperature range.

すなわち、図5に示すように、透明電極1の上方に、液体を噴霧する液噴霧ノズル61および過熱水蒸気を噴霧する第1蒸気噴霧ノズル62を並置するとともに、第1蒸気噴霧ノズル62から少し離れた箇所に、やはり過熱水蒸気を噴霧する第2蒸気噴霧ノズル63を配置しておき、そして矢印cで示すように、透明電極1を数mm/sec〜1000mm/secの速度で移動させながら、液噴霧ノズル61から液体Bを噴霧させるとともに第1蒸気噴霧ノズル62から同時に100℃を超えて300℃までの低温の過熱水蒸気Hを噴霧させた後、さらに第2蒸気噴霧ノズル63から300℃を超えて500℃までの高温の過熱水蒸気H′を噴霧させることにより、バッファ層を形成する。なお、透明電極1を移動せずに、上述した実施例1および実施例2のように、噴霧ノズル61〜63側を矢印d方向に移動させてもよい。 That is, as shown in FIG. 5, a liquid spray nozzle 61 that sprays liquid and a first steam spray nozzle 62 that sprays superheated steam are juxtaposed above the transparent electrode 1, and a little apart from the first steam spray nozzle 62. A second steam spray nozzle 63 that sprays superheated water vapor is also disposed at the spot, and the liquid electrode 1 is moved while moving the transparent electrode 1 at a speed of several mm / sec to 1000 mm / sec as indicated by an arrow c. After spraying the liquid B from the spray nozzle 61 and simultaneously spraying the low-temperature superheated steam H from 100 ° C. to 300 ° C. from the first steam spray nozzle 62, the second steam spray nozzle 63 further exceeds 300 ° C. The buffer layer is formed by spraying high-temperature superheated steam H ′ up to 500 ° C. In addition, you may move the spray nozzles 61-63 side to the arrow d direction like Example 1 and Example 2 mentioned above, without moving the transparent electrode 1. FIG.

このように、温度の違う過熱水蒸気を二段で噴霧させて、すなわち100℃を超えて300℃までの温度範囲に調整された過熱水蒸気を噴霧することで塗布膜の加水分解や結晶化の促進を図った後、さらに300℃を超えて500℃までの温度範囲に調整された過熱水蒸気を噴霧することで、品質の良いバッファ層を瞬時に形成することができる。   In this way, superheated steam at different temperatures is sprayed in two stages, that is, spraying superheated steam adjusted to a temperature range exceeding 100 ° C. to 300 ° C. to promote hydrolysis and crystallization of the coating film. Then, by spraying superheated steam adjusted to a temperature range of more than 300 ° C. and up to 500 ° C., a high quality buffer layer can be instantaneously formed.

詳しく言えば、低温の過熱水蒸気を噴霧して焼成することにより、酸化チタンの加水分解や結晶化が促進され、これによって、バッファ層内の酸化チタン量が増加する。そして、さらに高温の過熱水蒸気を噴霧して焼成することにより、生成した酸化チタン粒子同士や、粒子と透明電極との結合が強固となり、また、余分な水分やアルコール、ごみなどを除去することができる。   More specifically, spraying and baking low-temperature superheated steam promotes hydrolysis and crystallization of titanium oxide, thereby increasing the amount of titanium oxide in the buffer layer. Further, by spraying and baking high-temperature superheated water vapor, the generated titanium oxide particles and the bond between the particles and the transparent electrode become strong, and excess water, alcohol, dust, etc. can be removed. it can.

なお、上記各実施例においては、液噴霧ノズルおよび蒸気噴霧ノズルを幅方向で長くされた噴出用開口部を有するものとして説明したが、勿論、通常の円形の噴出用開口部を有するノズルを用いてもよく、この場合、前後の移動に加えて、幅方向で往復移動されることになる。   In each of the above-described embodiments, the liquid spray nozzle and the steam spray nozzle have been described as having an ejection opening that is elongated in the width direction, but of course, a nozzle having a normal circular ejection opening is used. In this case, in addition to the back-and-forth movement, it is reciprocated in the width direction.

上記各実施例に係るバッファ層の形成方法によれば、自然乾燥やヒータなどによる焼成工程を省いても光触媒膜を形成することができる。また、過熱水蒸気を用いることで、フィルムや透明導電膜にダメージを与えずに焼成することができる。   According to the method for forming a buffer layer according to each of the above embodiments, the photocatalytic film can be formed without the natural drying or the firing step using a heater or the like. Moreover, by using superheated steam, it can be fired without damaging the film and the transparent conductive film.

1 透明電極
2 対向電極
3 電解質層
4 光触媒膜
5 バッファ層
11 透明基板
12 透明電導膜
21 透明基板
22 透明電導膜
41 酸化物半導体層
42 光増感色素
61 液噴霧ノズル
62 蒸気噴霧ノズル(第1蒸気噴霧ノズル)
63 第2蒸気噴霧ノズル
DESCRIPTION OF SYMBOLS 1 Transparent electrode 2 Counter electrode 3 Electrolyte layer 4 Photocatalyst film 5 Buffer layer 11 Transparent substrate 12 Transparent conductive film 21 Transparent substrate 22 Transparent conductive film 41 Oxide semiconductor layer 42 Photosensitizing dye 61 Liquid spray nozzle 62 Vapor spray nozzle (1st Steam spray nozzle)
63 Second steam spray nozzle

Claims (5)

透明電極と、対向電極と、これら両電極間に配置される電解質層と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池における上記透明電極と光触媒膜との間に配置されるバッファ層の形成方法であって、
光触媒の前駆体をアルコール液に溶かしてなる液体を上記透明電極の表面に塗布するとともに、または塗布した後、過熱水蒸気を噴霧して焼成させることにより、バッファ層を形成することを特徴とする色素増感太陽電池におけるバッファ層の形成方法。
The transparent electrode and photocatalyst film in a dye-sensitized solar cell comprising a transparent electrode, a counter electrode, an electrolyte layer disposed between the two electrodes, and a photocatalyst film disposed between the electrodes and on the transparent electrode side A method of forming a buffer layer disposed between
A dye formed by applying a liquid obtained by dissolving a precursor of a photocatalyst in an alcohol liquid to the surface of the transparent electrode, or forming a buffer layer by spraying superheated water vapor after baking. A method for forming a buffer layer in a sensitized solar cell.
光触媒が、酸化チタン、酸化タングステン、酸化スズ、酸化亜鉛または酸化ニオブであり、且つ前駆体がその金属アルコキシドであることを特徴とする請求項1に記載の色素増感太陽電池におけるバッファ層の形成方法。   2. The formation of a buffer layer in a dye-sensitized solar cell according to claim 1, wherein the photocatalyst is titanium oxide, tungsten oxide, tin oxide, zinc oxide or niobium oxide, and the precursor is a metal alkoxide thereof. Method. 液体を透明電極の表面に塗布する際に、スプレー法、スピンコート法またはディップ法を用いたことを特徴とする請求項1または2に記載の色素増感太陽電池におけるバッファ層の形成方法。 The method for forming a buffer layer in a dye-sensitized solar cell according to claim 1 or 2, wherein a spray method, a spin coating method, or a dip method is used when applying the liquid to the surface of the transparent electrode. 過熱水蒸気の温度が100℃を超えて300℃までの範囲であることを特徴とする請求項1乃至3のいずれか一項に記載の色素増感太陽電池におけるバッファ層の形成方法。   The method for forming a buffer layer in a dye-sensitized solar cell according to any one of claims 1 to 3, wherein the temperature of the superheated steam is in the range of more than 100 ° C to 300 ° C. 過熱水蒸気の噴霧を二段にて行うとともに、1段目に噴霧する過熱水蒸気の温度が100℃を超えて300℃までの範囲であり、2段目に噴霧する過熱水蒸気の温度範囲が300℃を超えて500℃までの範囲であることを特徴とする請求項1乃至のいずれか一項に記載の色素増感太陽電池におけるバッファ層の形成方法。 The superheated steam is sprayed in two stages, the temperature of the superheated steam sprayed in the first stage is in the range of over 100 ° C. to 300 ° C., and the temperature range of the superheated steam sprayed in the second stage is 300 ° C. The method for forming a buffer layer in a dye-sensitized solar cell according to any one of claims 1 to 3 , wherein the temperature is in the range of up to 500 ° C.
JP2010102790A 2010-04-28 2010-04-28 Method for forming buffer layer in dye-sensitized solar cell Expired - Fee Related JP5599221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102790A JP5599221B2 (en) 2010-04-28 2010-04-28 Method for forming buffer layer in dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102790A JP5599221B2 (en) 2010-04-28 2010-04-28 Method for forming buffer layer in dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2011233376A JP2011233376A (en) 2011-11-17
JP5599221B2 true JP5599221B2 (en) 2014-10-01

Family

ID=45322510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102790A Expired - Fee Related JP5599221B2 (en) 2010-04-28 2010-04-28 Method for forming buffer layer in dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5599221B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101797831B1 (en) 2012-10-23 2017-11-15 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 Photoelectrode for dye-sensitized solar cells, and dye-sensitized solar cell
CN103606460A (en) * 2013-10-27 2014-02-26 沈阳建筑大学 Novel electrostatic-spraying dye-sensitization method
EP3133657B1 (en) 2014-04-16 2021-12-08 Ricoh Company, Ltd. Photoelectric conversion element
JP7452503B2 (en) * 2021-08-27 2024-03-19 株式会社豊田中央研究所 Method for producing photocatalyst coating film and photocatalyst coating film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954367B2 (en) * 1990-12-22 1999-09-27 大川原化工機株式会社 Equipment for drying goods
JP4026501B2 (en) * 2003-01-27 2007-12-26 セイコーエプソン株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and electronic device
JP5191647B2 (en) * 2006-11-07 2013-05-08 電源開発株式会社 Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP4980331B2 (en) * 2008-01-31 2012-07-18 富士電機株式会社 Heat treatment device with superheated steam

Also Published As

Publication number Publication date
JP2011233376A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
US9105409B2 (en) Dye-sensitized solar cell and manufacturing method for thereof
JP6061475B2 (en) All-solid photosensitized solar cell
JP5338897B2 (en) Dye adsorption method and adsorption apparatus for photosensitized dye, and method and apparatus for producing dye-sensitized solar cell
JP5599221B2 (en) Method for forming buffer layer in dye-sensitized solar cell
JP2008071535A (en) Photoelectric conversion element and its manufacturing method
KR20120136578A (en) Dye-sensitized solar cells and manufacturing method for thereof
US8592243B2 (en) Method for forming buffer layer in dye-sensitized solar cell
US20120288977A1 (en) Method for manufacturing dye-sensitized solar cell
US20110061722A1 (en) Dye-sensitized solar cell and manufacturing method of the same
JP6773859B1 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element
JP5511490B2 (en) Method for forming photocatalytic film in dye-sensitized solar cell
JP5343242B2 (en) Method for manufacturing photoelectric conversion element, photoelectric conversion element and photovoltaic cell
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
TWI589051B (en) Manufacturing apparatus and method for production of dye-sensitized solar cell
JPWO2006038495A1 (en) Dye-sensitized solar cell and manufacturing method thereof
JP2015028857A (en) Dye-sensitized photo-electric conversion element and method for manufacturing dye-sensitized solar battery using the same
JP2012212539A (en) Method for manufacturing counter electrode of dye-sensitized solar cell, and dye-sensitized solar cell
KR20110040153A (en) Dye-sensitized solar cells and manufacturing method for thereof
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell
JP5452037B2 (en) Method for producing electrode for photoelectric conversion element
TWI559598B (en) Manufacturing apparatus and method for production of dye-sensitized solar cell
JP2012156022A (en) Method for forming photocatalyst film in dye-sensitized solar cell
JP2013093247A (en) Dye-sensitized solar cell manufacturing method
JP2012156071A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2011222430A (en) Method of forming photocatalyst film in dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140812

R150 Certificate of patent or registration of utility model

Ref document number: 5599221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees