JP2014052368A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2014052368A5 JP2014052368A5 JP2013158527A JP2013158527A JP2014052368A5 JP 2014052368 A5 JP2014052368 A5 JP 2014052368A5 JP 2013158527 A JP2013158527 A JP 2013158527A JP 2013158527 A JP2013158527 A JP 2013158527A JP 2014052368 A5 JP2014052368 A5 JP 2014052368A5
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- optical
- quantum dots
- core
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 claims description 132
- 239000002096 quantum dot Substances 0.000 claims description 60
- 239000002131 composite material Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 46
- 238000005253 cladding Methods 0.000 claims description 31
- 230000003287 optical effect Effects 0.000 claims description 25
- 230000001902 propagating effect Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims description 2
- 230000005284 excitation Effects 0.000 claims 2
- 230000000644 propagated effect Effects 0.000 claims 2
- 230000009022 nonlinear effect Effects 0.000 description 13
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 230000007547 defect Effects 0.000 description 9
- 230000003993 interaction Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 230000009291 secondary effect Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/562,832 | 2012-07-31 | ||
| US13/562,832 US9170172B2 (en) | 2011-08-23 | 2012-07-31 | Composite structure having an embedded sensing system |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2014052368A JP2014052368A (ja) | 2014-03-20 |
| JP2014052368A5 true JP2014052368A5 (enExample) | 2017-06-15 |
| JP6226612B2 JP6226612B2 (ja) | 2017-11-08 |
Family
ID=48782191
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013158527A Active JP6226612B2 (ja) | 2012-07-31 | 2013-07-31 | 埋め込み検出システムを有する複合構造物 |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP2693187B1 (enExample) |
| JP (1) | JP6226612B2 (enExample) |
| KR (1) | KR102022728B1 (enExample) |
| CN (1) | CN103575740B (enExample) |
| BR (1) | BR102013019350B1 (enExample) |
| CA (1) | CA2815788C (enExample) |
| RU (1) | RU2641638C2 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103913577A (zh) * | 2014-03-07 | 2014-07-09 | 吉林出入境检验检疫局检验检疫技术中心 | 一种基于光纤倏逝波生物传感器检测大肠杆菌o157:h7的方法 |
| CN103901210A (zh) * | 2014-03-07 | 2014-07-02 | 吉林出入境检验检疫局检验检疫技术中心 | 一种基于光纤倏逝波生物传感器检测单核细胞增生李斯特氏菌的方法 |
| CN104315990B (zh) * | 2014-10-31 | 2017-08-01 | 山东大学 | 一种树脂基复合材料热模压固化变形的测试装置及装置的制备和使用方法 |
| JP6346214B2 (ja) | 2016-03-24 | 2018-06-20 | 株式会社Subaru | 複合材成形治具、複合材成形方法、超音波検査システム、超音波検査方法及び航空機構造体 |
| US10337935B2 (en) | 2016-12-12 | 2019-07-02 | Sikorsky Aircraft Corporation | Systems and methods for integrated, multi-functional, fault tolerant sensing and communication |
| US10424056B2 (en) | 2018-02-22 | 2019-09-24 | The Boeing Company | Active real-time characterization system for monitoring absorption and curing rates of chemical substances |
| CN108982427A (zh) * | 2018-10-15 | 2018-12-11 | 中国计量大学 | 球形熔接长周期光纤光栅表面等离子体共振氢敏传感器 |
| MX2021005541A (es) | 2018-11-12 | 2021-06-18 | Nec Corp | Sistema de monitoreo de estructuras de ingenieria civil, un aparato de monitoreo de estructuras de ingenieria civil, un metodo de monitoreo de estructuras de ingenieria civil y un medio legible por computadora no transitorio. |
| RU192790U1 (ru) * | 2019-06-21 | 2019-10-01 | Общество с ограниченной ответственностью "Квантум-Центр" | Волоконно-оптический датчик перемещений |
| US11611029B2 (en) | 2020-05-21 | 2023-03-21 | Saudi Arabian Oil Company | Methods to harvest thermal energy during subsurface high power laser transmission |
| FR3111189B1 (fr) * | 2020-06-05 | 2022-08-26 | Commissariat Energie Atomique | Capteur d’érosion à réseau de bragg pour environnement difficile |
| CN114397279B (zh) * | 2022-01-19 | 2023-07-18 | 天津大学 | 任意应变状态下二维材料和应变物体的应变状态检测方法 |
| CN114383805B (zh) * | 2022-03-23 | 2022-05-31 | 中国空气动力研究与发展中心超高速空气动力研究所 | 一种放电减阻设备的测量系统及测量方法 |
| FR3135140B1 (fr) * | 2022-04-28 | 2024-10-11 | Epsilon Composite | Dispositif de detection d’un defaut dans un element structurel en materiau composite |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5862797A (ja) * | 1981-10-08 | 1983-04-14 | アロカ株式会社 | レ−ザプロ−ブ |
| GB2197946B (en) * | 1986-06-19 | 1989-12-20 | Pirelli General Plc | Sensing strain and temperature |
| US5682237A (en) | 1995-05-26 | 1997-10-28 | McDonnell Douglas | Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer |
| US20020110180A1 (en) * | 2001-02-09 | 2002-08-15 | Barney Alfred A. | Temperature-sensing composition |
| US7005669B1 (en) * | 2001-08-02 | 2006-02-28 | Ultradots, Inc. | Quantum dots, nanocomposite materials with quantum dots, devices with quantum dots, and related fabrication methods |
| US6978070B1 (en) * | 2001-08-14 | 2005-12-20 | The Programmable Matter Corporation | Fiber incorporating quantum dots as programmable dopants |
| US7054513B2 (en) * | 2003-06-09 | 2006-05-30 | Virginia Tech Intellectual Properties, Inc. | Optical fiber with quantum dots |
| US7004452B2 (en) * | 2003-09-25 | 2006-02-28 | Hp&T Products, Inc. | Valve seal assemblies and methods |
| JP4377642B2 (ja) * | 2003-09-26 | 2009-12-02 | 富士重工業株式会社 | 構造用複合材料の損傷探知システム |
| US7492463B2 (en) * | 2004-04-15 | 2009-02-17 | Davidson Instruments Inc. | Method and apparatus for continuous readout of Fabry-Perot fiber optic sensor |
| JP3848660B2 (ja) * | 2004-05-06 | 2006-11-22 | 川崎重工業株式会社 | 損傷検知装置 |
| CA2702298A1 (en) * | 2007-10-11 | 2009-04-16 | Tufts University | Systems, devices, and methods employing fiber optic shape tracking |
| US8111385B2 (en) * | 2009-01-26 | 2012-02-07 | The Boeing Company | Quantum dot-mediated optical fiber information retrieval systems and methods of use |
| JPWO2011033649A1 (ja) * | 2009-09-18 | 2013-02-07 | 公立大学法人高知工科大学 | 複数のセンシング領域を有する分布型光ファイバーセンサー装置 |
| US20130050685A1 (en) * | 2011-08-23 | 2013-02-28 | The Boeing Company | Composite structure having an embedded sensing system |
-
2013
- 2013-05-07 CA CA2815788A patent/CA2815788C/en active Active
- 2013-05-20 KR KR1020130056542A patent/KR102022728B1/ko active Active
- 2013-07-03 EP EP13174925.1A patent/EP2693187B1/en active Active
- 2013-07-03 RU RU2013130320A patent/RU2641638C2/ru active
- 2013-07-30 BR BR102013019350-0A patent/BR102013019350B1/pt active IP Right Grant
- 2013-07-31 CN CN201310328724.4A patent/CN103575740B/zh active Active
- 2013-07-31 JP JP2013158527A patent/JP6226612B2/ja active Active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2014052368A5 (enExample) | ||
| JP6058314B2 (ja) | 埋め込み検出システムを有する複合構造物 | |
| JP6226612B2 (ja) | 埋め込み検出システムを有する複合構造物 | |
| CN104246448B (zh) | 感测系统和用于这种系统的少模光纤 | |
| JP4511857B2 (ja) | フォトニック結晶を応用したセンサおよび検出対象物質の検出方法 | |
| US20130050685A1 (en) | Composite structure having an embedded sensing system | |
| US8922789B2 (en) | Displacement measuring device and displacement measuring method | |
| Rong et al. | Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding | |
| CA2898142C (en) | Real-time non-linear optical strain gauge system | |
| Amorebieta et al. | Twin-core fiber sensor integrated in laser cavity | |
| US11977254B2 (en) | Composed multicore optical fiber device | |
| JP5581955B2 (ja) | 微小物質検出センサおよびそれを有する微小物質検出装置 | |
| Gong et al. | Large dynamic-range fiber Bragg grating sensor system for acoustic emission detection | |
| JP5451893B2 (ja) | 電磁波放射装置 | |
| Wang et al. | Fully distributed fiber-optic temperature sensing using acoustically-induced rocking grating | |
| Zhou et al. | Fabrication of Optical Fiber Sensors Based on Femtosecond Laser Micro Machining | |
| Wei et al. | Direct laser writing of polymer micro-ring resonator ultrasonic sensors | |
| Hu et al. | Refractive index sensing using all-dielectric metasurface with analogue of electromagnetically induced transparency | |
| Guzmán-Sepúlveda et al. | Multimode interference fiber optic vibration sensor | |
| JP2013007908A (ja) | 光ファイバカップラ | |
| KR101094671B1 (ko) | 광섬유 타원율 측정 장치 및 방법 | |
| US20220244168A1 (en) | Photothermal gas detector including an integrated on-chip optical waveguide | |
| Rivera-Pérez et al. | A new technique for the measurement of the nonlinear refractive index in optical fibers | |
| Guo et al. | Measurement of acoustic noise induced linewidth broadening of unpackaged distributed feedback fiber laser | |
| Silva et al. | Suspended core size effect in interaction of longitudinal acoustic waves and fiber Bragg gratings |