CA2815788C - Composite structure having an embedded sensing system - Google Patents
Composite structure having an embedded sensing system Download PDFInfo
- Publication number
- CA2815788C CA2815788C CA2815788A CA2815788A CA2815788C CA 2815788 C CA2815788 C CA 2815788C CA 2815788 A CA2815788 A CA 2815788A CA 2815788 A CA2815788 A CA 2815788A CA 2815788 C CA2815788 C CA 2815788C
- Authority
- CA
- Canada
- Prior art keywords
- optical fiber
- signals
- composite structure
- optical
- quantum dots
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0091—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/86—Incorporated in coherent impregnated reinforcing layers, e.g. by winding
- B29C70/865—Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/08—Testing mechanical properties
- G01M11/083—Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Composite Materials (AREA)
- Optics & Photonics (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Optical Transform (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/562,832 | 2012-07-31 | ||
| US13/562,832 US9170172B2 (en) | 2011-08-23 | 2012-07-31 | Composite structure having an embedded sensing system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2815788A1 CA2815788A1 (en) | 2014-01-31 |
| CA2815788C true CA2815788C (en) | 2016-10-11 |
Family
ID=48782191
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2815788A Active CA2815788C (en) | 2012-07-31 | 2013-05-07 | Composite structure having an embedded sensing system |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP2693187B1 (enExample) |
| JP (1) | JP6226612B2 (enExample) |
| KR (1) | KR102022728B1 (enExample) |
| CN (1) | CN103575740B (enExample) |
| BR (1) | BR102013019350B1 (enExample) |
| CA (1) | CA2815788C (enExample) |
| RU (1) | RU2641638C2 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103913577A (zh) * | 2014-03-07 | 2014-07-09 | 吉林出入境检验检疫局检验检疫技术中心 | 一种基于光纤倏逝波生物传感器检测大肠杆菌o157:h7的方法 |
| CN103901210A (zh) * | 2014-03-07 | 2014-07-02 | 吉林出入境检验检疫局检验检疫技术中心 | 一种基于光纤倏逝波生物传感器检测单核细胞增生李斯特氏菌的方法 |
| CN104315990B (zh) * | 2014-10-31 | 2017-08-01 | 山东大学 | 一种树脂基复合材料热模压固化变形的测试装置及装置的制备和使用方法 |
| JP6346214B2 (ja) | 2016-03-24 | 2018-06-20 | 株式会社Subaru | 複合材成形治具、複合材成形方法、超音波検査システム、超音波検査方法及び航空機構造体 |
| US10337935B2 (en) * | 2016-12-12 | 2019-07-02 | Sikorsky Aircraft Corporation | Systems and methods for integrated, multi-functional, fault tolerant sensing and communication |
| US10424056B2 (en) * | 2018-02-22 | 2019-09-24 | The Boeing Company | Active real-time characterization system for monitoring absorption and curing rates of chemical substances |
| CN108982427A (zh) * | 2018-10-15 | 2018-12-11 | 中国计量大学 | 球形熔接长周期光纤光栅表面等离子体共振氢敏传感器 |
| JPWO2020100509A1 (ja) | 2018-11-12 | 2021-10-07 | 日本電気株式会社 | 土木構造物監視システム、土木構造物監視装置、土木構造物監視方法、及びプログラム |
| RU192790U1 (ru) * | 2019-06-21 | 2019-10-01 | Общество с ограниченной ответственностью "Квантум-Центр" | Волоконно-оптический датчик перемещений |
| US11611029B2 (en) | 2020-05-21 | 2023-03-21 | Saudi Arabian Oil Company | Methods to harvest thermal energy during subsurface high power laser transmission |
| FR3111189B1 (fr) * | 2020-06-05 | 2022-08-26 | Commissariat Energie Atomique | Capteur d’érosion à réseau de bragg pour environnement difficile |
| CN114397279B (zh) * | 2022-01-19 | 2023-07-18 | 天津大学 | 任意应变状态下二维材料和应变物体的应变状态检测方法 |
| CN114383805B (zh) * | 2022-03-23 | 2022-05-31 | 中国空气动力研究与发展中心超高速空气动力研究所 | 一种放电减阻设备的测量系统及测量方法 |
| FR3135140B1 (fr) * | 2022-04-28 | 2024-10-11 | Epsilon Composite | Dispositif de detection d’un defaut dans un element structurel en materiau composite |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5862797A (ja) * | 1981-10-08 | 1983-04-14 | アロカ株式会社 | レ−ザプロ−ブ |
| GB2197946B (en) * | 1986-06-19 | 1989-12-20 | Pirelli General Plc | Sensing strain and temperature |
| US5682237A (en) | 1995-05-26 | 1997-10-28 | McDonnell Douglas | Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer |
| US20020110180A1 (en) * | 2001-02-09 | 2002-08-15 | Barney Alfred A. | Temperature-sensing composition |
| US7005669B1 (en) * | 2001-08-02 | 2006-02-28 | Ultradots, Inc. | Quantum dots, nanocomposite materials with quantum dots, devices with quantum dots, and related fabrication methods |
| US6978070B1 (en) * | 2001-08-14 | 2005-12-20 | The Programmable Matter Corporation | Fiber incorporating quantum dots as programmable dopants |
| US7054513B2 (en) * | 2003-06-09 | 2006-05-30 | Virginia Tech Intellectual Properties, Inc. | Optical fiber with quantum dots |
| US7004452B2 (en) * | 2003-09-25 | 2006-02-28 | Hp&T Products, Inc. | Valve seal assemblies and methods |
| JP4377642B2 (ja) * | 2003-09-26 | 2009-12-02 | 富士重工業株式会社 | 構造用複合材料の損傷探知システム |
| US7492463B2 (en) * | 2004-04-15 | 2009-02-17 | Davidson Instruments Inc. | Method and apparatus for continuous readout of Fabry-Perot fiber optic sensor |
| JP3848660B2 (ja) * | 2004-05-06 | 2006-11-22 | 川崎重工業株式会社 | 損傷検知装置 |
| AU2008310799A1 (en) * | 2007-10-11 | 2009-04-16 | Tufts University | Systems, devices, and methods employing fiber optic shape tracking |
| US8111385B2 (en) * | 2009-01-26 | 2012-02-07 | The Boeing Company | Quantum dot-mediated optical fiber information retrieval systems and methods of use |
| WO2011033649A1 (ja) * | 2009-09-18 | 2011-03-24 | 公立大学法人高知工科大学 | 複数のセンシング領域を有する分布型光ファイバーセンサー装置 |
| US20130050685A1 (en) * | 2011-08-23 | 2013-02-28 | The Boeing Company | Composite structure having an embedded sensing system |
-
2013
- 2013-05-07 CA CA2815788A patent/CA2815788C/en active Active
- 2013-05-20 KR KR1020130056542A patent/KR102022728B1/ko active Active
- 2013-07-03 EP EP13174925.1A patent/EP2693187B1/en active Active
- 2013-07-03 RU RU2013130320A patent/RU2641638C2/ru active
- 2013-07-30 BR BR102013019350-0A patent/BR102013019350B1/pt active IP Right Grant
- 2013-07-31 CN CN201310328724.4A patent/CN103575740B/zh active Active
- 2013-07-31 JP JP2013158527A patent/JP6226612B2/ja active Active
Also Published As
| Publication number | Publication date |
|---|---|
| RU2013130320A (ru) | 2015-01-10 |
| JP2014052368A (ja) | 2014-03-20 |
| CN103575740A (zh) | 2014-02-12 |
| KR102022728B1 (ko) | 2019-09-18 |
| BR102013019350B1 (pt) | 2021-06-22 |
| EP2693187A2 (en) | 2014-02-05 |
| EP2693187A3 (en) | 2016-02-24 |
| BR102013019350A2 (pt) | 2014-12-23 |
| CN103575740B (zh) | 2017-09-15 |
| JP6226612B2 (ja) | 2017-11-08 |
| RU2641638C2 (ru) | 2018-01-18 |
| CA2815788A1 (en) | 2014-01-31 |
| EP2693187B1 (en) | 2018-09-05 |
| KR20140016807A (ko) | 2014-02-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9170172B2 (en) | Composite structure having an embedded sensing system | |
| CA2815788C (en) | Composite structure having an embedded sensing system | |
| US20130050685A1 (en) | Composite structure having an embedded sensing system | |
| Chamoin et al. | An educational review on distributed optic fiber sensing based on Rayleigh backscattering for damage tracking and structural health monitoring | |
| Fu et al. | Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors | |
| JP2014052368A5 (enExample) | ||
| US20210404969A1 (en) | Interferometric Sensor Based on Slab Waveguide | |
| JP6391305B2 (ja) | 光ファイバセンサ装置 | |
| Majewska et al. | Assessment of delamination in composite beam using infrared thermography, optical sensors and terahertz technique | |
| Keulen et al. | Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components | |
| Qiu et al. | Free-space input and output coupling to an embedded fiber optic strain sensor: dual-ended interrogation via transmission | |
| Wei et al. | Direct laser writing of polymer micro-ring resonator ultrasonic sensors | |
| Hu et al. | Refractive index sensing using all-dielectric metasurface with analogue of electromagnetically induced transparency | |
| KR20110043834A (ko) | 분광기와 선형 배열 광감지기를 이용한 fbg 센서 복조화 장치 | |
| Ramani et al. | An evaluation of the performance of a lens-based plastic optical fiber strain sensor | |
| Hudson | Real-time cure monitoring of composites using a guided wave-based system with high temperature piezoelectric transducers, fiber Bragg gratings, and phase-shifted fiber Bragg gratings | |
| Jannesari et al. | Vertical coupling into a photonic crystal waveguide using band folding design | |
| Terdale et al. | Optical fibre-based refractive index measurement sensor | |
| Bikandi et al. | Side-illumination fluorescence critical angle: theory and application to F8BT-doped polymer optical fibers | |
| Hongo et al. | Embedded small-diameter fiber Bragg grating sensors and high-speed wavelength detection | |
| Khan | Optic Fiber Sensor for Assessing Layer Waviness in Smart Structure | |
| Calderón et al. | Modelling Of Polarimetric Lspr Sensing With Bowtie Nanoantennas Arrays | |
| Wei et al. | Grating based high-frequency ultrasonic sensors | |
| Kueh | Fiber optic flow monitoring system and methodology for sensor placement to identify flow disturbances in liquid composite molding | |
| Tsesses et al. | Modeling of ultrasound detection by silicon-photonics-based sensors |