JP2014051404A - ガラス板の製造方法 - Google Patents

ガラス板の製造方法 Download PDF

Info

Publication number
JP2014051404A
JP2014051404A JP2012195712A JP2012195712A JP2014051404A JP 2014051404 A JP2014051404 A JP 2014051404A JP 2012195712 A JP2012195712 A JP 2012195712A JP 2012195712 A JP2012195712 A JP 2012195712A JP 2014051404 A JP2014051404 A JP 2014051404A
Authority
JP
Japan
Prior art keywords
glass
piece
plate
glass piece
slow cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012195712A
Other languages
English (en)
Inventor
Yusaku Matsuo
優作 松尾
Takehito Watanabe
岳人 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012195712A priority Critical patent/JP2014051404A/ja
Publication of JP2014051404A publication Critical patent/JP2014051404A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】生産性が良好で、強化処理後に高い機械的強度が得られるガラス板の製造方法を提供すること。
【解決手段】本発明に係るガラス板の製造方法は、溶融状態のガラスを板状に成形する工程と、板状に成形されたガラスを所望の長さに切断し、矩形状のガラス片とする工程と、ガラス片をメッシュコンベア上に直接載置した状態で、第1の連続徐冷炉にて徐冷し、ガラスの自重により平坦化する工程と、を有する。
【選択図】図1

Description

本発明は、ガラス板の製造方法に関し、特に、生産性が良好で、強化処理後に高い機械的強度が得られるガラス板を製造できるガラス板の製造方法に関する。
ガラス板の製造方法として、ロールアウト法、ダウンドロー法、スリットダウンドロー法、オーバーフロー法等の手法が知られている。例えば、ダウンドロー法では、溶融したガラスを鉛直方向に板状に引出ながら成形を行う。そして、鉛直方向に引き出された板状のガラス(以下、ガラス板と記載)は、下方へ搬送されながら徐冷が行われた後、所望の長さに切断される(特許文献1)。
また、高い機械的強度が得られる強化ガラスが知られている。これら強化ガラスは、徐冷点から歪点までの温度域を200℃/分以下の冷却速度で冷却した後、化学強化処理することで、強化処理にてガラス表面に形成される圧縮応力層の圧縮応力値を高めることができるとされている(特許文献2)。
特開2008−88005号公報 特開2010−168252号公報
しかしながら、特許文献1に記載のガラス板の製造方法は、溶融ガラスを板状に成形した後、引き続いて徐冷工程を行う。そのため、ガラス板の成形装置および徐冷装置は、高さ方向に非常に長い設備となるおそれがある。またそれに伴い、ガラスを溶融する設備を成形装置にあわせて高い位置に設置する必要がある。
さらに、ガラス板の徐冷工程におけるガラス板の搬送速度は、ガラス板の成形速度に依存する。そのため、前述のようにガラス板の冷却速度を200℃/分以下となるように徐冷しようとすると、ガラス板の板厚を薄くするためにガラス板の搬送速度が速くなった場合、それに伴い徐冷装置を長くする必要がある。
以上のように、強化処理されるガラス板の製造についての好ましい徐冷条件を満たすようにガラス板の製造装置を製作すると、製造装置が非常に大きくなり、また、製造されるガラス板のコストが高くなるという問題がある。
本発明は、生産性が良好であり、また強化処理することによって高い機械的強度のガラス板を得ることができるガラス板の製造方法を提供することを目的とする。
本発明に係るガラス板の製造方法は、溶融状態のガラスを板状に成形する工程と、板状に成形されたガラスを所望の長さに切断し、矩形状のガラス片とする工程と、ガラス片をメッシュコンベア上に直接載置した状態で、第1の連続徐冷炉にて徐冷し、ガラスの自重により平坦化する工程と、を有することを特徴とする。
本発明によれば、板状に成形されたガラスを所望の長さに切断し、それら切断された矩形状のガラス片をメッシュコンベア上に直接載置した状態で、第1の連続徐冷炉にて徐冷し、ガラスの自重により平坦化しているので、生産性が良好であり、また強化処理することによって高い機械的強度のガラス板を得ることができる。
実施形態に係るガラス板の製造装置の構成図である。 実施形態に係るガラス板を積み重ねた図である。
以下、図面を参照して、実施形態に係るガラス板の製造方法について説明する。なお、実施形態では、ロールアウト法により、ガラス板を製造する場合について説明するが、他の方法、例えば、ダウンドロー法、スリットダウンドロー法、オーバーフロー法、又はフロート法により、ガラス板を製造するようにしてもよい。また、実施形態に係るガラス板の製造方法は、板厚が2mm以下の薄いガラス板を製造するのに適している。
(実施形態)
図1は、実施形態に係るガラス板の製造方法で使用するガラス板の製造装置10の構成図である。ガラス板の製造装置10は、ガラス板の成形装置100と、第1の徐冷炉200と、端部切除機300と、第2の徐冷炉400とを備える。
高い平坦性が求められる用途のガラス板を製造する場合、ロールアウト法でガラス板を成形した後、成形したガラス板を平坦化する必要がある。そこで、この実施形態では、第1の徐冷炉200及び第2の徐冷炉400において、ガラス板を平坦化している。
第1の徐冷炉200では、ガラス板を徐冷しながら、ガラス板の比較的大きな反りやうねりを取り除いている(粗徐冷)。その後、第2の徐冷炉400で、ガラス板を徐冷しながら、ガラス板の小さな反りやうねりを取り除き(精密徐冷)、平坦度の高いガラス板としている。以下、ガラス板の製造装置10の各構成について説明する。
(ガラス板の成形装置100の構成)
ガラス板の成形装置100は、溶融ガラスを板状に成形した後、所定の長さに切断してガラス片を作成する。ガラス板の成形装置100は、一対の引出ローラー110A,110Bと、複数の搬送用ローラー120と、切断機構130とを備える。
一対の引出ローラー110A,110Bは、スリット状の開口を有するスリットノズルSNから、溶融したガラスGを板状に引き出す。複数の搬送用ローラー120は、所定の間隔で並べられている。複数の搬送用ローラー120は、回転することにより、一対の引出ローラー110A,110Bにより引き出された板状のガラスT(以下、ガラス板Tと記載する)を切断機構130へと搬送する。
切断機構130は、複数の搬送用ローラー120により搬送されてくるガラス板Tを所望の長さに切断し、矩形状のガラス片Pとする。切断機構130は、例えば、ガラス板Tに割れ目(クラック)を入れるカッターと、割れ目が入ったガラス板Tに衝撃を与え、割れ目に沿ってガラス板Tを割るブレークローラー130Bとを備える。
第1の徐冷炉200は、連続徐冷炉であり、金属製のメッシュベルトを使用したメッシュコンベア210と、駆動ローラー220と、複数の搬送用ローラー230と、複数枚のパネルヒーター240と、筐体250とを備える。
メッシュコンベア210は、駆動ローラー220により駆動されて、徐冷対象であるガラス片Pを搬送するメッシュコンベア210を搬送路に沿って搬送する。搬送用ローラー230は、搬送路にそって配設され、メッシュコンベア210を支持する。パネルヒーター240は、搬送路の上面側に配設され、図示しないコントローラにより独立して温度が制御される。筐体250は、搬送用ローラー230やパネルヒーター240等を収容する。
第1の徐冷炉200は、切断機構130により所望の長さに切断されたガラス片Pをメッシュコンベア210上に直接載置した状態で徐冷炉内を搬送してガラス片Pを徐冷する。この徐冷により、ガラス片Pは、自重により平坦化され、ガラス片Pの比較的大きな反りやうねりが取り除かれる。ガラス片Pをメッシュコンベア210上に直接載置するため、棚板等を用いる必要がなく、ガラス片Pの向きも適宜に決めることができる。このため、ガラス片Pをメッシュコンベア210上に効率よく配置することが可能である。
また、第1の徐冷炉200では、ガラス板の成形装置100にて成形されたガラス板Gを切断した後のガラス片Pを扱うので、ガラス板の成形装置100の成形速度やガラス板の幅に依存せずに効率的に徐冷を行うことができる。具体的には、ガラス板の成形速度とは別に徐冷速度を設定できるため、ガラス片Pの徐冷と平坦化に最適な熱処理条件を用いて生産性の良い徐冷が可能となる。なお、この第1の徐冷炉200では、ガラス片Pの反りやうねりが1000μm未満となるように、ガラス片Pが徐冷される。
また、第1の徐冷炉200内におけるガラス片Pの温度Tは、ガラス片Pの屈伏点(Tc)−70℃を超え、該屈伏点(Tc)以下の範囲内(Tc−70℃<T≦Tc)となるようにパネルヒーター240を制御することが好ましい。ガラス片Pの温度Tが、ガラス片Pの屈伏点(Tc)−70℃以下であると、ガラス片Pを平坦化することが難しい。また、ガラス片Pの温度Tが、ガラス片Pの屈伏点(Tc)を超えると、ガラス片Pが必要以上に軟化する。その結果、表面にメッシュコンベアの凹凸が転写される等の不具合が起こるためである。第1の徐冷炉200内におけるガラス片Pの冷却速度は、50℃/min以下とすることが好ましい。なお、ガラスの屈伏点(Tc)は、TMA(熱機械分析装置、JIS R 3103−3:2001)によって測定することができる。
端部切除機300は、第1の徐冷炉200で徐冷されたカラス片Pの両端を切除する。具体的には、端部切除機300は、ガラス片Pの(切断機構130での)切断面に対して垂直な方向に沿って、ガラス片Pの両端部を切除する。この実施形態では、第1の徐冷炉200にて、ガラス片Pの比較的大きな反りやうねりを取り除いている。このため、ガラス片Pの両端部を切除しやすくなっている。
ここで、ガラス片Pの両端部を切除する理由について説明する。図2は、ガラス片Pを積み重ねた断面図である。図2(a)は、両端部を切除する前のガラス片Pを積み重ねた断面図である。図2(b)は、両端部を切除した後のガラス片Pを積み重ねた断面図である。次の第2の徐冷炉400では、ガラス片Pを複数枚積み重ねた状態で、カラス片Pの反りやうねりを取り除く。しかし、ガラス片Pの両端部は、中央部に比べて板厚が厚くなっている。
このため、ガラス片Pの両端部を切除せずに、両端部の板厚が厚いままガラス片Pを積み重ねると、図2(a)に示すように板厚が相対的に薄い中央部に空間Sができてしまう。この結果、板厚が厚い両端部を切除せずに第2の徐冷炉400で徐冷を行っても、ガラス片Pの中央部の反りやうねりを取り除くことは難しい。そこで、この実施形態では、端部切除機300を用いて、板厚の厚い両端部を切除した後、ガラス片Pを積み重ねている。このようにすれば、板厚が相対的に薄い部分がなくなり、図2(b)に示すように、中央部に空間Sがほとんどできない。このため、徐冷後に平坦度の高いガラス片Pを得ることができる。
なお、ガラス片P同士の融着を防止するため、通常、各ガラス片P間に離型剤(カーボン紙、合紙、アルミナ粉末、BNスプレー(耐熱性ボロンナイトライドと特殊な無機バインダーを主成分とした離型剤))を介して、ガラス片Pを積み重ねる。しかし、離型剤を用いると、離型剤を各ガラス片P間に挿入する工程と、徐冷後に離型剤を除去する工程とが必要となり、ガラス片Pの製造に必要な時間が長くなる。また、工程数が増える分、ガラス片Pの製造コストが上昇してしまう。
そこで、この実施形態では、ガラス片P間に離型剤を介さずに、ガラス片P上に直接ガラス片Pを載置して、ガラス片Pを複数枚積み重ねている。このため、離型剤が不要となり、ガラス片Pの製造コストを抑制することができる。また、離型剤を各ガラス片P間に挿入する工程と、徐冷後に離型剤を除去する工程とが不要となるため、ガラス片Pの製造に必要な時間を短くすることができる。さらに、工程数が減る分、ガラス片Pの製造コストをさらに抑制することができる。
なお、ガラス片Pの両端部を切除した場合でも、ガラス片Pを数枚ではなく、何十枚も積み重ねると、上側に積み重ねられたガラス片Pは十分に平坦化できず、中央部に空間Sができてしまう可能性がある。このように、ガラス片Pを何十枚も積み重ねる場合には、数枚もしくは十枚程度ごとに、平坦な棚板(例えば、ステンレス鋼(SUS)、インコネル(登録商標)、ネオセラム(耐熱ガラス、登録商標)、アルミナ(Al)、ムライトコージライト、コージライト、SiC など)を挟むとよい。数枚もしくは十枚程度ごとに平坦な棚板を挟むことで、ガラス片Pを何十枚も積み重ねる場合でも、積み重ねた全てのガラス片Pを確実に平坦にすることが可能である。
積み重ねられたガラス片Pは、棚板I(例えば、ステンレス鋼(SUS)、インコネル、ネオセラム(耐熱ガラス、登録商標)、アルミナ(Al))上に載置され、最上部のガラス片Pの表面には、錘(おもり)Oが乗せられる。この状態で、ガラス片Pは、第2の徐冷炉400で徐冷される。
第2の徐冷炉400は、連続徐冷炉であり、第1の徐冷炉200と同様の構成を備える。第2の徐冷炉400は、積み重ねられたガラス片Pをメッシュコンベア上に載置した状態で徐冷炉内を搬送してガラス片Pを徐冷する。この徐冷により、ガラス片Pは、小さな反りやうねりが取り除かれて平坦なガラス片Pとなる。この第2の徐冷炉400では、ガラス片Pの反りやうねりが600μm以下となるように、ガラス片Pが徐冷される。平坦化されたガラス片Pは、ラップ加工及びポリッシュ加工を行う、もしくは、ポリッシュ加工のみに行うことによりガラス表面が鏡面となるようにしてもよい。
なお、第2の徐冷炉400内におけるガラス片Pの温度Tは、ガラスの屈伏点(Tc)から70℃低い温度を超え、ガラスの屈伏点(Tc)から40℃低い温度未満の範囲内(Tc−70℃<T<Tc−40℃)とすることが好ましい。ガラス片Pの温度Tが、ガラスの屈伏点(Tc)から70℃低い温度以下であると、ガラス片Pを十分に平坦化することができない。また、ガラス片Pの温度Tが、ガラスの屈伏点(Tc)から40℃低い温度以上であると、ガラス片Pが必要以上に軟化し、積み重ねたガラス片P同士が融着する恐れがある。
また、第2の徐冷炉400内におけるガラス片Pの冷却速度は、0.1〜10℃/minとすることが好ましい。すでに述べたように、ガラス板は、磁気ディスクのガラス基板や液晶ディスプレイのガラス基板、スマートフォンのカバーガラス等に用いられる。このような用途に使用される場合、ガラス板の強度向上を目的として化学強化処理を行う場合がある。
化学強化処理は、例えば、ナトリウム成分を含有するガラスを380℃程度に加熱した硝酸カリ溶融塩に浸漬することで、アルカリイオンのイオン交換(ガラスの成分であるナトリウムイオン(Na)をよりイオン半径の大きい溶融塩中のカリウムイオン(K)とイオン交換)を行い、ガラス表面に圧縮応力層を形成する方法であり、ガラスに高い強度を付与することができる。
化学強化処理は、上記のようにイオン交換を行うため、ガラスを構成する原子の網目構造の隙間がガラスの強化に大きな影響を与える。原子の網目構造の隙間が広すぎたり狭すぎたりすると、うまくイオン交換が行われず、圧縮応力層を効果的に形成することができない。このため、ガラス板を十分に強化することができない。
そして、徐冷の際の温度降下条件により、ガラス片Pのガラスを構成する原子の網目構造の隙間が変化することがわかっている。これは、徐冷の際の温度降下条件によっては、ガラス片Pを十分に化学強化することができないことを意味する。ガラス片Pを化学強化し、十分な強度を満たせるためには、第2の徐冷炉400内におけるガラス片Pの冷却速度は、0.1〜10℃/min(分)とすることが好ましい。
以上のように、この実施形態に係るガラス板の製造方法は、第1の徐冷炉200において、ガラス片Pを自重により平坦化している。このため、ガラス片Pの比較的大きな反りやうねりが取り除かれる。
また、板厚が相対的に厚い両端部を切除しているので、板厚が相対的に厚い部分がなくなり、中央部に空間がほとんどできずに済むため、第2の徐冷炉400で徐冷した後に平坦度の高いガラス片Pを得ることができる。
また、ガラス片P間に離型剤を介さずに、ガラス片P上に直接ガラス片Pを載置して、ガラス片Pを複数枚積み重ねている。このため、離型剤が不要となり、ガラス片Pの製造コストを抑制することができる。また、離型剤を各ガラス片P間に挿入する工程と、徐冷後に離型剤を除去する工程とが不要となるため、ガラス片Pの製造に必要な時間を短くすることができる。さらに、工程数が減る分、ガラス片Pの製造コストをさらに抑制することができる。
さらに、ガラス片Pを何十枚も積み重ねる場合、数枚もしくは十枚程度ごとに、平坦な棚板を挟むようにしているので、積み重ねた全てのガラス片Pを確実に平坦にすることができる。
また、第1の徐冷炉200で、比較的大きな反りやうねりを取り除いた後、第2の徐冷炉400で、ガラス片Pの小さな反りやうねりを取り除いているので平坦度の非常に高いガラス片Pを得ることができる。
さらに、第2の徐冷炉400内におけるガラス片Pの冷却速度は、0.1〜10℃/minとしているので、化学強化の際に、イオン交換が効果的に行われるため、ガラス板を十分に強化することができる。
また、第1の徐冷炉200におけるガラス片Pの冷却速度は、第2の徐冷炉400におけるガラス片Pの冷却速度よりも速いことが好ましい。上述のとおり、第1の徐冷炉200は、ガラス片Pをメッシュコンベア210上に直接載置した状態で徐冷炉内を搬送しガラス片Pを徐冷する。他方、第2の徐冷炉400は、積み重ねられたガラス片Pをメッシュコンベア210上に載置した状態で徐冷炉内を搬送しガラス片Pを徐冷する。
そのため、メッシュコンベア210の幅が同一の場合、メッシュコンベア210の単位長さ当たりの処理量は、ガラス片Pを積み重ねた枚数だけ、第2の徐冷炉400の方が第1の徐冷炉200より多くなる。そのため、冷却速度を第1の徐冷炉に比べて第2の徐冷炉を速くすることで、どちらかの徐冷炉の数を増やしたりすることなく、工程間の処理能力を均一化することが可能となる。また、第2の徐冷炉400は、ガラス片Pを積み重ねて処理しているため、ガラス片Pの積み重ね枚数を増減するだけで処理量の調整が可能である。
(その他の実施形態)
以上のように、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
次に、実施例を参照してより具体的に本発明のガラス板の製造方法について説明する。なお、表1,表2の加熱条件は、ガラス片の温度が、表1,表2に記載された加熱条件の温度となるように加熱したことを意味している。
(実施例1)
発明者らは、平坦度が低いメッシュコンベア上で徐冷を行っても、ガラス片を平坦化できるかについて調べた。具体的には、平坦度の高いインコネルの平板上にガラス片を置いて徐冷した場合と、平坦度の低いメッシュコンベア上にガラス片を置いて徐冷した場合とについて、自重によりガラス片の反り量がどの程度低下するかについて調べた。
徐冷前のガラス片の反り量は、3000μmであった。ガラス片の反り量の測定は、ガラス片を平坦な定盤上において、定盤表面とガラス片との隙間を、隙間ゲージを用いて測定した。
また、使用したガラス片の組成は、以下の通りである。
各実施例及び比較例で成形したガラス片の材料として用いたガラスの組成を以下に示す。ガラスは、酸化物基準におけるモル%表示で、SiO 61%、Al 8%、NaO 12%、KO 4%、MgO 10%、ZrO 0.5%、Fe 3%、Co 0.5%を含有する。
また、ガラス片の平均板厚は1000μmである。さらに、使用したガラス片の屈伏点Tcは、690℃であった。
以下の表1に、各ガラス片の徐冷の加熱条件、及び反り量を示す。各ガラス片は、加熱条件の温度で10分間加熱した後、室温にて自然冷却させた。徐冷前と徐冷後の反り量は、同一箇所を測定している。また、使用したガラス片の厚み(板厚)は、1mmである。
Figure 2014051404
表1の結果から、平坦度の高いインコネルの平板上にガラス片を置いて徐冷した場合と、平坦度の低いメッシュコンベア上にガラス片を置いて徐冷した場合とで、徐冷後のガラス片の平坦度にほとんど違いはなかった。このことから、自重による平坦化を行う場合、ガラス片を平坦度の高いインコネルの平板上に載せて徐冷しなくとも、メッシュコンベア上でガラス片を平坦化できることがわかった。
なお、表1の結果からは、620℃以下の温度では、ガラス片は、十分に平坦化することが難しいことがわかった。また、700℃を超える温度では、ガラス片は平坦化するものの、メッシュコンベア上で徐冷した場合、ガラス片が軟化して、表面にメッシュコンベアの凹凸が転写されることがわかった。したがって、自重によりガラス片を平坦化する場合、620℃を超え700℃以下の温度で熱処理すると好ましいことがわかった。
これは、この実施例1で使用したガラス片の屈伏点Tcが、690℃であることから、第1の徐冷炉200内におけるガラス片の温度Tは、ガラス片の屈伏点Tc−70℃を超え、ガラス片の屈伏点Tc以下とした条件(Tc−70℃<T≦Tc)にも合致する。なお、ガラス片の屈伏点Tcは、TMAを用いて測定した。
(実施例2)
次に、発明者らは、第2の徐冷炉400の徐冷条件と、ガラス片の反り量の変化との関係について調べた。具体的には、ガラス片を数枚重ねた状態で徐冷を行い、徐冷後のガラス片の反り量と、ガラス片の溶着の有無について調べた。なお、この実施例2で使用したガラス片の組成及び板厚は、実施例1で使用したガラス片の組成及び板厚と同じであるため、重複した説明を省略する。
以下の表2に、各ガラス片の加熱条件、反り量、融着の有無を示す。各ガラス片は、加熱条件の温度で60分間加熱した後、室温にて自然冷却させた。使用したガラス片の厚み(板厚)は、1mmである。徐冷前のガラス片は、熱処理で変形することで反り量が2000〜3000μmであるものを用いた。
Figure 2014051404
表2の結果から、徐冷時の温度条件が650℃以上になると、ガラス片同士が融着することがわかった。このため、第2の徐冷炉400におけるガラス片の温度Tは、650℃未満とすることが好ましいことがわかった。また、錘の重さが重いほど、徐冷後の反り量が小さくなり、平坦度が向上することがわかった。なお、実施例1の結果からは、620℃以下の温度では、ガラス片は、十分に平坦化することが難しいことがわかっている。
この実施例2で使用したガラス片の屈伏点Tcが、690℃であることから、第2の徐冷炉400内におけるガラス片の温度Tは、ガラス片の屈伏点Tc−70℃を超え、ガラス片の屈伏点Tc−40℃未満とした条件(Tc−70℃<T<Tc−40℃)にも合致する。なお、ガラス片の屈伏点Tcは、TMAを用いて測定した。
(実施例3)
次に、発明者らは、第2の徐冷炉400における徐冷条件(精密徐冷)と、化学強化後のガラス片のCS及びDOLとの関係について調べた。各ガラス片は、表3の加熱条件の温度で60分間加熱した後、徐冷条件に記載の速度で温度を降下させた。使用したガラス片の厚み(板厚)は、1mmである。
以下の表3に、各ガラス片の加熱条件、徐冷条件、CS及びDOLの関係を示す。
Figure 2014051404
表3の結果から、ガラス片の徐冷速度は、10℃/min を超える速度で急速に冷却すると化学強化処理後のCSが低くなることがわかる。そのため、ガラス片の徐冷速度は、0.1〜10℃/minの範囲内とすることが好ましいことがわかった。
本発明のガラス板の製造方法は、生産性が良好で、強化処理後に高い機械的強度が得られるガラス板を製造することができる。また、実施形態に係るガラス板の製造方法は、薄いガラス板、特に板厚が2mmの薄いガラス板を製造するのに適している。このため、化学強化処理が必要な薄いガラス板、例えば、磁気ディスクのガラス基板や液晶ディスプレイのガラス基板、携帯電話やスマートフォンのカバーガラス等の製造に好適である。
10…製造装置、100…成形装置、110A,110B…引出ローラー、120…搬送用ローラー、130…切断機構、130A…カッター、130B…ブレークローラー、200…徐冷炉、210…メッシュコンベア、220…駆動ローラー、230…搬送用ローラー、240…パネルヒーター、250…筐体、300…端部切除機、400…徐冷炉。

Claims (10)

  1. 溶融状態のガラスを板状に成形する工程と、
    板状に成形されたガラスを所望の長さに切断し、矩形状のガラス片とする工程と、
    前記ガラス片をメッシュコンベア上に直接載置した状態で、第1の連続徐冷炉にて徐冷し、前記ガラスの自重により平坦化する工程と、
    を有することを特徴とするガラス板の製造方法。
  2. 前記平坦化後に、
    前記ガラス片の切断面に対して垂直な方向に沿って、前記ガラス片の両端部を切除する工程をさらに有することを特徴とする請求項1に記載のガラス板の製造方法。
  3. 前記切除後に、
    前記ガラス片を2枚以上積み重ねた後、該積み重ねた前記ガラス片上に錘を載置した状態で、第2の連続徐冷炉にて徐冷する工程をさらに有することを特徴とする請求項2に記載のガラス板の製造方法。
  4. 前記ガラス片上に、離型剤を介さずに直接前記ガラス片を載置して前記ガラス片を2枚以上積み重ねることを特徴とする請求項3に記載のガラス板の製造方法。
  5. 複数枚ごとに前記ガラス片の間に平板を介在させて、前記ガラス片を積み重ねることを特徴とする請求項3又は4に記載のガラス板の製造方法。
  6. 前記第1の連続徐冷炉内における前記ガラス片の温度は、
    前記ガラスの屈伏点から70℃低い温度を超え、前記ガラスの屈伏点以下であることを特徴とする請求項1乃至5のいずれか1項に記載のガラス板の製造方法。
  7. 前記第2の連続徐冷炉内における前記ガラス片の温度は、
    前記ガラスの屈伏点から70℃低い温度を超え、前記ガラスの屈伏点から40℃低い温度未満であることを特徴とする請求項3乃至5のいずれか1項に記載のガラス板の製造方法。
  8. 前記第2の連続徐冷炉内における前記ガラス片の冷却速度は、0.1〜10℃/minであることを特徴とする請求項3乃至5及び7のいずれか1項に記載のガラス板の製造方法。
  9. 前記第1の連続徐冷炉内における前記ガラス片の冷却速度が、前記第2の連続徐冷炉内における前記ガラス片の冷却速度よりも速いことを特徴とする請求項3乃至5、7及び8のいずれか1項に記載のガラス板の製造方法。
  10. オーバーフロー法、フロート法、スリットダウンドロー法、又はロールアウト法のいずれかの方法で、前記溶融状態のガラスを板状に成形することを特徴とする請求項1乃至9のいずれか1項に記載のガラス板の製造方法。
JP2012195712A 2012-09-06 2012-09-06 ガラス板の製造方法 Pending JP2014051404A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195712A JP2014051404A (ja) 2012-09-06 2012-09-06 ガラス板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195712A JP2014051404A (ja) 2012-09-06 2012-09-06 ガラス板の製造方法

Publications (1)

Publication Number Publication Date
JP2014051404A true JP2014051404A (ja) 2014-03-20

Family

ID=50610253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195712A Pending JP2014051404A (ja) 2012-09-06 2012-09-06 ガラス板の製造方法

Country Status (1)

Country Link
JP (1) JP2014051404A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609360B2 (en) 2016-08-18 2023-03-21 AGC Inc. Laminate, method for manufacturing electronic device, and method for manufacturing laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609360B2 (en) 2016-08-18 2023-03-21 AGC Inc. Laminate, method for manufacturing electronic device, and method for manufacturing laminate

Similar Documents

Publication Publication Date Title
US20190002329A1 (en) Strengthened glass and related systems and methods
US7128250B2 (en) Method for cutting the edges of a continuous glass ribbon, a device for implementing said method, and a glass plate cut using said method
JP6451320B2 (ja) 板ガラスの成形方法
JP5595479B2 (ja) ガラスセラミック物品並びにガラスをセラミック化するための方法及び装置
CN107848859B (zh) 在分离线处加热移动的玻璃带和/或从玻璃带中分离玻璃片的设备和方法
JP2018529611A (ja) 熱強化された自動車用ガラス
JP2020517575A (ja) ガラスシートの差別的加熱を介した曲面ガラス形成処理およびシステム
JPWO2013001841A1 (ja) 磁気ディスク用ガラス基板及びその製造方法
US20110067450A1 (en) Method and apparatus for forming shaped articles from sheet material
JP2018090448A (ja) 板ガラスの製造方法
US20160280582A1 (en) Toughened glass cutting method and toughened glass cutting apparatus
JP2014051404A (ja) ガラス板の製造方法
JP2018526314A (ja) 強化ガラス並びに関連システムおよび方法
JP5449938B2 (ja) ガラスブランク、ガラスブランク製造方法、情報記録媒体用基板製造方法および情報記録媒体製造方法
JP6379678B2 (ja) ガラス基板の製造方法
JP2012214361A (ja) 電子機器用カバーガラスブランクの製造方法および電子機器用カバーガラスの製造方法
JP6454188B2 (ja) ガラス基板の製造方法
JP2002265229A (ja) ガラス板の製造方法、プレス成形用素材の製造方法、および光学部品の製造方法
JP6082434B2 (ja) ガラス基板の製造方法及びガラス基板
JP5330307B2 (ja) ガラスブランクの製造方法、磁気記録媒体基板の製造方法および磁気記録媒体の製造方法
WO2014024641A1 (ja) 薄板ガラスの製造方法
WO2013108572A1 (ja) 離型シート及びガラス成形品の成形方法
WO2022038976A1 (ja) ガラス板の製造方法
CN114644446A (zh) 浮法玻璃制造装置、浮法玻璃制造方法以及浮法玻璃
JP2016011235A (ja) ガラス基板の製造方法