JP2014046333A - Spinning method - Google Patents

Spinning method Download PDF

Info

Publication number
JP2014046333A
JP2014046333A JP2012190838A JP2012190838A JP2014046333A JP 2014046333 A JP2014046333 A JP 2014046333A JP 2012190838 A JP2012190838 A JP 2012190838A JP 2012190838 A JP2012190838 A JP 2012190838A JP 2014046333 A JP2014046333 A JP 2014046333A
Authority
JP
Japan
Prior art keywords
diameter reduction
diameter
roll
metal tube
pipe end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012190838A
Other languages
Japanese (ja)
Other versions
JP5934062B2 (en
Inventor
Yoshihiro Ozaki
芳宏 尾崎
Hirotaka Kano
裕隆 狩野
Akinobu Morikawa
彰信 森川
Hisashi Hayakawa
尚志 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Sango Co Ltd
Original Assignee
JFE Steel Corp
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50606555&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014046333(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp, Sango Co Ltd filed Critical JFE Steel Corp
Priority to JP2012190838A priority Critical patent/JP5934062B2/en
Publication of JP2014046333A publication Critical patent/JP2014046333A/en
Application granted granted Critical
Publication of JP5934062B2 publication Critical patent/JP5934062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spinning method that eliminates the port stretch of a pipe end actualized due to thinning of materials and high constriction rate, and shape defects such as the folds associated with the above.SOLUTION: A spinning method relating to the present invention is characterized by operating a roll shape tool 5 so that ΔR(in) is larger than ΔR(out), where the ΔR(out) is the total sum of a diameter reduction amount obtained by diameter reduction using an out-pass in which a roll shape tool 5 moves from a clamp 3 side of a metal pipe 1 toward a pipe end side, and the ΔR(in) is the total sum of a diameter reduction amount obtained by using an in-pass in which the roll shape tool 5 moves from the pipe end side to the clamp 3 side.

Description

本発明は、管の端部に縮径部を加工するスピニング加工方法に関する。   The present invention relates to a spinning method for processing a reduced diameter portion at an end portion of a pipe.

自動車の排気系部品ではマフラーや、コンバータのように気室の両端が狭くなったチャンバー状の部品が使われる。
従来これらの部品は板形状の素材をプレス加工したいくつかの部品を溶接で組上げて作られていたが、近年では図4(a)に示すように金属管の端部をスピニング加工で縮径するタイプが増えている。
スピニング加工はロール形状工具の動作パターンを変更することで異なる形状の部品を作り分けることができるため、部品ごとの金型が不要になりコスト面でのメリットがある。
Automobile exhaust parts use mufflers and chamber-like parts with narrowed air chambers, such as converters.
Conventionally, these parts have been made by assembling several parts made by pressing a plate-shaped material by welding, but in recent years, as shown in FIG. The type to do is increasing.
Spinning can create parts with different shapes by changing the operation pattern of a roll-shaped tool, which eliminates the need for a mold for each part and has an advantage in terms of cost.

金属管の端部をスピニング加工によって縮径加工する先行技術として、例えば特許文献1に開示された「触媒コンバータ容器の製造方法及びその製造装置」や、特許文献2に開示された「スピニング加工方法」がある。
特許文献1に開示されたものは、基材素管を保持してその軸回りに回転させながら、成形ローラを基材素管の軸方向及び径方向に移動させるというものである。
他方、特許文献2に開示された「スピニング加工方法」は、金属管の一端側を把持して、金属管の中心軸周りに公転しながらかつ金属管の軸方向に往復移動する複数のロール形状工具を金属管に押し付けることで金属管を縮径加工するというものである(以下、本明細書において「ワーク固定型スピニング加工」という)。
As a prior art for reducing the diameter of the end of a metal tube by spinning, for example, “a manufacturing method of a catalytic converter container and its manufacturing apparatus” disclosed in Patent Literature 1 and “a spinning processing method” disclosed in Patent Literature 2 There is.
In the technique disclosed in Patent Document 1, the forming roller is moved in the axial direction and the radial direction of the base material pipe while holding the base material pipe and rotating it around its axis.
On the other hand, the “spinning method” disclosed in Patent Document 2 includes a plurality of roll shapes that grip one end of a metal tube and reciprocate in the axial direction of the metal tube while revolving around the central axis of the metal tube. The diameter of the metal tube is reduced by pressing the tool against the metal tube (hereinafter referred to as “work fixing type spinning process” in this specification).

最近では、加工効率に優れることから、特許文献2に記載されたワーク固定型スピニング加工方法が広く行われるようになっており、本願発明もこのようなワーク固定型スピニング加工方法に関するものである。
スピンニング加工においては、金属素材(被加工管)の径や板厚、材質によっても成形性が変化するため、縮径加工部が局所的に減肉することがあり、製品の要求仕様によってはロール形状工具の動作パターンの設定に注意を要する。
そこで、特許文献2においては、加工ローラに与える加工条件として、被加工管の軸方向への送り速度、加工パス回数および回転数を、加工ローラと被加工管の接触が少なくなるようにし、これにより、加工ローラによって被加工管をしごき加工する回数が少なくなり、テーパ部への引張応力の作用回数も少なくなることから、テーパ部の局所的な板厚減少を抑えることができるとしている(特許文献2の段落[0007]参照)。
Recently, since it is excellent in processing efficiency, the workpiece fixing type spinning processing method described in Patent Document 2 has been widely performed, and the present invention also relates to such a workpiece fixing type spinning processing method.
In the spinning process, the formability changes depending on the diameter, thickness, and material of the metal material (tube to be processed), so the diameter-reduced part may be locally thinned, depending on the required specifications of the product. Care must be taken in setting the operation pattern of the roll-shaped tool.
Therefore, in Patent Document 2, as the processing conditions given to the processing roller, the feed rate in the axial direction of the processing tube, the number of processing passes, and the number of rotations are set so that the contact between the processing roller and the processing tube is reduced. This reduces the number of times the work tube is ironed by the processing roller and reduces the number of times the tensile stress acts on the tapered portion, so that local reduction in the thickness of the tapered portion can be suppressed (patent) (Refer to paragraph 2 of reference 2).

特開2000−179334号公報JP 2000-179334 A 特開2009−195942号公報JP 2009-195942 A

近年では自動車の軽量化のために排気系部品においても板厚の薄い金属管を用いることが増えてきている。その結果、相対的に大径・薄肉の金属管を縮径加工することになり、狙いどおりに縮径加工されない形状不良事象が顕在化してきた。
特に、金属管の端部における形状不良が問題となり、図4(b)、(C)はこのような管端部における形状不良事象の例を示している。図4(b)はロール形状工具の動作で狙った製品径に対して実績の径が大きく縮径加工が未達になるという形状不良事象である。管の先端部ほど縮径が未達になるため、端部がラッパ状に口広がりした形状になる。軽微な場合は口広がりを見込んでロール形状工具の動作パターンを修正したり、縮径加工後に先端部を切除することで製品得ることもできるが、特に素管から製品形状までの縮径率が大きいほど顕著に発生しやすく、ひどい場合には図4(C)に示すようにヒダ状に折込んだりして、所望の製品が成形不能になる場合もある。
In recent years, in order to reduce the weight of automobiles, the use of thin metal pipes in exhaust system parts has been increasing. As a result, a relatively large-diameter and thin-walled metal tube is reduced in diameter, and a shape defect phenomenon that has not been reduced as intended has become apparent.
In particular, the shape defect at the end of the metal tube is a problem, and FIGS. 4B and 4C show examples of such a shape defect event at the tube end. FIG. 4B shows a shape failure phenomenon in which the actual diameter is large with respect to the product diameter targeted by the operation of the roll-shaped tool, and the diameter reduction processing is not achieved. Since the diameter of the tube does not reach the tip of the tube, the end is shaped like a trumpet. In minor cases, it is possible to obtain a product by correcting the operation pattern of the roll-shaped tool in anticipation of the mouth opening, or by cutting the tip after diameter reduction processing, but the diameter reduction rate from the raw tube to the product shape is particularly high The larger the size, the more likely it is to occur. In severe cases, it may be folded into a pleat as shown in FIG.

上記のような、金属管の端部に生ずる上記形状不良に対する対策として、特許文献1では対応できず、対策が望まれていた。
すなわち、本発明は、金属管の薄肉化および高縮径率化により顕在化してきた管端部の口広がり、およびそれに伴う折れ込みシワなどの形状不良事象が生じないようなスピニング加工方法を提供することを目的としている。
As a countermeasure against the above-mentioned shape defect occurring at the end of the metal tube as described above, Patent Document 1 cannot cope with it, and a countermeasure has been desired.
That is, the present invention provides a spinning method that does not cause a shape failure phenomenon such as a widening of a pipe end that has become obvious due to a thin metal tube and a high diameter reduction rate, and a folding wrinkle associated therewith. The purpose is to do.

ワーク固定型スピニング加工は、前述したように、被加工材の金属管の一端側をクランプにより把持し、ロール形状工具を金属管に押し付けながら、金属管の中心軸周りに公転、かつ金属管の軸方向に往復移動させることで、金属管を縮径加工する。一連の加工工程はクランプ側から管端部側へ向かう動作(以下、「outパス」という)と、反転して管端部側からクランプ側へ向かう動作(以下、「inパス」という)を順次繰り返すことで、縮径加工が逐次進行し最終的に目標とする縮径半径に達する。   As described above, the workpiece fixing type spinning process is performed by revolving around the central axis of the metal tube while holding the one end side of the metal tube of the workpiece by the clamp and pressing the roll-shaped tool against the metal tube. The metal tube is reduced in diameter by reciprocating in the axial direction. A series of processing steps sequentially include an operation from the clamp side to the pipe end side (hereinafter referred to as “out path”) and a reverse operation from the pipe end side to the clamp side (hereinafter referred to as “in pass”). By repeating the process, the diameter reduction process sequentially proceeds to finally reach the target diameter reduction radius.

ワーク固定型スピニング加工において、管端部は拘束のない自由端のため、形状不良が生じやすいことは当業者にとって周知である。このため、管端部を加工開始点とすることは好ましくないとの考えから、outパスにおける縮径量が、inパスにおける縮径量より大きく設定されていることが一般的であった。   It is well known to those skilled in the art that, in the workpiece fixing type spinning process, the tube end portion is a free end without restraint, so that shape defects are likely to occur. For this reason, it is general that the diameter reduction amount in the out pass is set to be larger than the diameter reduction amount in the in pass because it is not preferable to use the pipe end as the processing start point.

発明者は、上記のような一般的な動作工程において、管端部に形状不良事象が生ずる原因について検討した。
ロール形状工具の動作の方向により、outパスでは素材が軸方向に引き伸ばされるため、inパスに比べて管端縮径部の増厚が小さい。このためoutパスでの縮径量が大きくなると管端部の形状はたわみ易く、この傾向は拘束の少ない管端部で顕著となる。このような状態で加工が進行するとロール形状工具が通過時に管がたわんで逃げるため、設定した縮径変形が未達になる。このような設定からの乖離量は、各パスにおいては僅かであるが、最終的には複数パスからなる全工程に亘って累積され管端部の口広がりとして顕在化すると考えられる。
The inventor examined the cause of the occurrence of a defective shape event at the pipe end in the general operation process as described above.
Since the material is stretched in the axial direction in the out pass depending on the direction of operation of the roll-shaped tool, the increase in the diameter of the pipe end reduced diameter portion is smaller than that in the in pass. For this reason, when the amount of diameter reduction in the out path increases, the shape of the tube end portion is easily bent, and this tendency becomes remarkable at the tube end portion with less restraint. When machining proceeds in such a state, the roll-shaped tool will bend and escape when the roll-shaped tool passes, and the set diameter reduction deformation will not be achieved. Although the amount of deviation from such a setting is slight in each pass, it is considered that the amount of deviation from the setting is accumulated over the entire process consisting of a plurality of passes, and becomes apparent as the mouth opening of the tube end.

発明者は、上記のような形状不良が、outパスでの縮径量が大きくなるようなパスによる乖離量の蓄積に起因するとの考えから、このような蓄積を排除することで形状不良の発生を効果的に防止できるとの知見を得た。
本発明はかかる知見に基づくものであり、具体的には以下の構成を備えるものである。
The inventor believes that the above-mentioned shape defects are caused by accumulation of divergence amounts due to paths that increase the diameter reduction amount in the out path. The knowledge that it can prevent effectively was acquired.
The present invention is based on such knowledge, and specifically has the following configuration.

(1)本発明に係るスピニング加工方法は、一端側をクランプした金属管を被加工材とし、前記金属管の中心軸周りに公転しながらかつ前記金属管の軸方向に往復移動するロール形状工具を前記金属管に押し付けることで金属管を縮径加工するスピニング加工であって、
ロール形状工具が金属管のクランプ側から管端部側に向かって移動するoutパスによって管端部が縮径加工される縮径加工量の総和をΔR(out)とし、ロール形状工具が管端部側からクランプ側へ移動するinパスによる管端部の縮径加工量の総和をΔR(in)としたときに、ΔR(in)がΔR(out)より大きくなるようにロール形状工具を動作させることを特徴とするものである。
なお、上記の関係を数式で表現すると、0.5≦ΔR(in)/{ΔR(in)+ΔR(out)}となる。
(1) A spinning method according to the present invention is a roll-shaped tool that uses a metal tube clamped at one end as a workpiece, revolves around the central axis of the metal tube, and reciprocates in the axial direction of the metal tube. A spinning process for reducing the diameter of the metal pipe by pressing the metal pipe against the metal pipe,
ΔR (out) is the total amount of diameter reduction processing that reduces the diameter of the pipe end by the out path where the roll shape tool moves from the clamp side to the pipe end side of the metal pipe. The roll-shaped tool operates so that ΔR (in) is greater than ΔR (out) when the sum of the diameter reduction processing of the pipe end due to the in-pass moving from the part side to the clamp side is ΔR (in) It is characterized by making it.
When the above relationship is expressed by a mathematical expression, 0.5 ≦ ΔR (in) / {ΔR (in) + ΔR (out)}.

(2)また、上記(1)に記載のものにおいて、ロール形状工具が金属管のクランプ側から管端部側に向かって移動する各outパスによって管端部が縮径加工される縮径加工量をΔr(out)とし、引き続き反転してロール形状工具が管端部側からクランプ側へ移動する各inパスによる管端部の縮径加工量をΔr(in)としたときに、各往復パスの縮径加工量{Δr(in)+Δr(out)}が、0.3≦Δr(in)/{Δr(in)+Δr(out)}を満たすようにロール形状工具を動作させることを特徴とするものである。 (2) Further, in the above described (1), the diameter reduction processing is performed in which the pipe end is reduced by each out path in which the roll-shaped tool moves from the clamp side to the pipe end side of the metal pipe. When the amount is Δr (out), and the roll shape tool is continuously reversed and the roll end tool moves from the tube end side to the clamp side, the diameter reduction processing amount of the pipe end by each in pass is Δr (in). The roll-shaped tool is operated so that the path diameter reduction amount {Δr (in) + Δr (out)} satisfies 0.3 ≦ Δr (in) / {Δr (in) + Δr (out)}. Is.

本発明においては、ロール形状工具が金属管のクランプ側から管端部側に向かって移動するoutパスによって縮径加工される縮径加工量の総和をΔR(out)とし、ロール形状工具が管端部側からクランプ側へ移動するinパスによる縮径加工量の総和をΔR(in)としたときに、ΔR(in)がΔR(out)より大きくなるようにロール形状工具を動作させることにより、素材の薄肉化および高縮径率化により顕在化してきた管端部の口広がり、およびそれに伴う折れ込みシワなどの形状不良事象が生じないようなスピニング加工方法を提供することができる。   In the present invention, ΔR (out) is the total amount of diameter reduction processed by the out path in which the roll-shaped tool moves from the clamp side of the metal tube toward the tube end side, and the roll-shaped tool is By operating the roll-shaped tool so that ΔR (in) is greater than ΔR (out), where ΔR (in) is the sum of the diameter reduction amount due to the in pass moving from the end side to the clamp side In addition, it is possible to provide a spinning method that prevents the occurrence of a defective shape phenomenon such as a mouth widening of the tube end that has become apparent due to the thinning of the material and the increase in the diameter reduction ratio, and the accompanying wrinkles.

本発明の一実施の形態に係るスピニング加工方法を説明するための説明図である。It is explanatory drawing for demonstrating the spinning processing method which concerns on one embodiment of this invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 本発明の一実施の形態に係るスピニング加工方法におけるロール形状工具の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the roll-shaped tool in the spinning processing method which concerns on one embodiment of this invention. スピニング加工後の金属管の端部を説明するための図である。It is a figure for demonstrating the edge part of the metal pipe after a spinning process.

図1は本発明の一実施の形態にかかるスピニング加工方法を説明するための説明図であり、クランプ3に金属管1を把持させた際における、金属管1の中心軸を通る立断面図である。
本実施の形態のスピニング加工方法は、被加工材となる金属管1の一端側をクランプ3により把持し、例えば3個のロール形状工具5を金属管1の中心軸周りに公転、かつ金属管1の軸方向に往復移動させながら金属管1に押し付けることで、金属管1を縮径加工するものである。
FIG. 1 is an explanatory view for explaining a spinning method according to an embodiment of the present invention, and is an elevational sectional view passing through the central axis of the metal tube 1 when the clamp 3 grips the metal tube 1. is there.
In the spinning method according to the present embodiment, one end side of a metal tube 1 to be processed is held by a clamp 3, and, for example, three roll-shaped tools 5 are revolved around the central axis of the metal tube 1, and the metal tube The metal tube 1 is reduced in diameter by being pressed against the metal tube 1 while reciprocating in the axial direction of 1.

クランプ3は、金属管1の一端側が挿入されて、金属管1を固定状態で把持する。
ロール形状工具5は、図1および図2に示す通り、外周部が丸みを有する形状をしており、その中央部には回転軸7が挿入されており、回転軸7を中心に回転自在となっている。
ロール形状工具5は、図2に示す通り、ロール形状工具5の回転軸7の中心が、金属管1と同心円上にかつ等間隔になるように例えば3個配置されている。
ロール形状工具5は、図示しない回転機構によって金属管1の中心軸周りに公転可能であり(図2中の矢印a参照)、かつ図示しない往復機構によって金属管1の軸方向に往復移動可能となっており(図1中の矢印c参照)、さらに図示しない縮径機構によって金属管1の径方向に移動可能となっている(図2中の矢印b参照)。ロール形状工具5は3個が一体となって上記の同一の動作を行う。
ロール形状工具5は、上記の3種類の動作を独立して行うことができる。そして、往復移動と径方向への移動の各動作を変化させて組み合わせることで、ロール形状工具5の軌道(パス)を種々のものにすることができる。
One end side of the metal tube 1 is inserted into the clamp 3 to hold the metal tube 1 in a fixed state.
As shown in FIGS. 1 and 2, the roll-shaped tool 5 has a rounded outer peripheral portion, and a rotation shaft 7 is inserted in the center thereof, so that the roll shape tool 5 is rotatable around the rotation shaft 7. It has become.
As shown in FIG. 2, for example, three roll-shaped tools 5 are arranged so that the centers of the rotation shafts 7 of the roll-shaped tool 5 are concentric with the metal tube 1 and at equal intervals.
The roll-shaped tool 5 can revolve around the central axis of the metal tube 1 by a rotation mechanism (not shown) (see arrow a in FIG. 2), and can reciprocate in the axial direction of the metal tube 1 by a reciprocation mechanism (not shown). It can be moved in the radial direction of the metal tube 1 by a diameter reducing mechanism (not shown) (see arrow b in FIG. 2). Three roll-shaped tools 5 are integrated to perform the same operation as described above.
The roll-shaped tool 5 can perform the above three types of operations independently. And by changing and combining each operation | movement of a reciprocating movement and a movement to radial direction, the track | orbit (path) of the roll-shaped tool 5 can be made into various things.

本実施の形態にかかるスピニング加工方法では、ロール形状工具5のパスは、図1中の矢印dで示す通り、往復動と径方向への移動の組合せになっている。図3は、図1中の矢印dのみを抜き出してより詳細に説明する説明図である。
以下、図3に基づいてロール形状工具5のパスについて詳細に説明する。
図3において左側がクランプ3側であり、右側が管端部側となっている。図3中の太線の矢印はクランプ3側から管端部側に向かう軌道であるoutパスを示し、点線の矢印は管端部側からクランプ3側に向かう軌道であるinパスを示している。
In the spinning method according to the present embodiment, the path of the roll-shaped tool 5 is a combination of reciprocation and movement in the radial direction, as indicated by an arrow d in FIG. FIG. 3 is an explanatory diagram for explaining in more detail by extracting only the arrow d in FIG.
Hereinafter, the path of the roll-shaped tool 5 will be described in detail with reference to FIG.
In FIG. 3, the left side is the clamp 3 side, and the right side is the tube end side. The thick arrow in FIG. 3 indicates an out path that is a trajectory from the clamp 3 side to the tube end side, and the dotted arrow indicates an in path that is a trajectory from the pipe end side to the clamp 3 side.

本実施の形態におけるoutパスは、図3に示すように、クランプ3側から管端部側に向かって軸方向に移動する軌道である。outパスにおける縮径加工量は、以下においてΔr(out)で表す。
ロール形状工具5は、outパスの最終段階では、管端部を超える位置まで移動し、その後、図3中に細線の矢印で示すように縮径方向に移動する。このときの移動量はinパスにおける縮径加工量に相当し、以下においてΔr(in)で表す。
ロール形状工具5は、縮径方向に移動した後、図3中に点線の矢印で示すように、管端部側からクランプ3側に向かって移動する(inパス)。
以上のように、outパスと、縮径方向への移動と、inパスで、ロール形状工具5の1回分の往復移動のパスを構成している。この1回分の移動を以下の説明において往復パスという。このような往復パスを複数回繰り返すことで、金属管1の縮径加工が逐次進行し最終的に目標とする縮径半径に達する。
As shown in FIG. 3, the out path in the present embodiment is a trajectory that moves in the axial direction from the clamp 3 side toward the tube end side. The diameter reduction processing amount in the out path is represented by Δr (out) below.
In the final stage of the out pass, the roll-shaped tool 5 moves to a position beyond the pipe end, and then moves in the diameter reducing direction as indicated by a thin line arrow in FIG. The amount of movement at this time corresponds to the amount of diameter reduction in the in-pass, and is represented by Δr (in) below.
After moving in the diameter reducing direction, the roll-shaped tool 5 moves from the tube end side toward the clamp 3 side (in-pass) as shown by a dotted arrow in FIG.
As described above, the out path, the movement in the diameter reducing direction, and the in path constitute a path for one reciprocating movement of the roll-shaped tool 5. This one-time movement is referred to as a round-trip path in the following description. By repeating such a reciprocating pass a plurality of times, the diameter reduction processing of the metal tube 1 proceeds sequentially and finally reaches the target diameter reduction radius.

なお、縮径加工量Δr(out)、Δr(in)は半径に対する量であり、直径で考えれば縮径加工量の倍の量(Δr(out)×2、Δr(in)×2)で縮径することになる。
なお、以下の説明では、n回目の往復パスにおいては、縮径加工量にnを添字として付して、Δrn(out)、Δrn(in)と表記する。例えば1回目の往復パスでは、Δr1(out)、Δr1(in)と表記する。
The diameter reduction amounts Δr (out) and Δr (in) are amounts relative to the radius, and in terms of diameter, they are double the amount of diameter reduction (Δr (out) × 2, Δr (in) × 2). The diameter will be reduced.
In the following description, in the n-th round-trip pass, n is added as a subscript to the diameter reduction processing amount and expressed as Δr n (out) and Δr n (in). For example, in the first round trip, they are expressed as Δr 1 (out) and Δr 1 (in).

次に、金属管1を縮径加工する方法の具体例を、ロール形状工具5の動作と共に説明する。
まず、金属管1をクランプ3によって把持し、回転機構によって公転するロール形状工具5(図2中の矢印a参照)を縮径加工開始位置Sに位置させることによって、ロール形状工具5が金属管1に接触する。このとき、ロール形状工具5は回転自在となっているため公転方向と同一方向に自転する(図2中の矢印e参照)。
Next, a specific example of the method for reducing the diameter of the metal tube 1 will be described together with the operation of the roll-shaped tool 5.
First, the roll-shaped tool 5 is held by the metal tube 1 by gripping the metal tube 1 with the clamp 3 and positioning the roll-shaped tool 5 (refer to arrow a in FIG. 2) revolved by the rotation mechanism at the diameter reduction processing start position S. 1 is contacted. At this time, since the roll-shaped tool 5 is rotatable, it rotates in the same direction as the revolution direction (see arrow e in FIG. 2).

次いで、図3に示すように、ロール形状工具5は、1回目の往復パスのoutパスが開始され金属管1はもとの径に対してΔr1(out)だけ縮径される。
その後、管端部側に向かって管軸に沿って管端部を少し超えた位置まで移動する。このoutパスによって、金属管1は管端部までΔr1(out)分だけ縮径加工される。
Next, as shown in FIG. 3, the roll-shaped tool 5 starts the out pass of the first reciprocating pass, and the metal tube 1 is reduced in diameter by Δr 1 (out) with respect to the original diameter.
Then, it moves to a position slightly beyond the tube end along the tube axis toward the tube end. By this out pass, the metal tube 1 is reduced in diameter by Δr 1 (out) to the end of the tube.

ロール形状工具5は管端部を超えた位置でΔr1(in)分だけ縮径方向に移動する。
次いで、ロール形状工具5は、管端部側からクランプ3側に向かって所定の距離だけ移動する。このとき金属管1はΔr1(in)分だけ縮径される。以上で、1回目の往復パスが完了する。
The roll-shaped tool 5 moves in the diameter reducing direction by Δr 1 (in) at a position beyond the pipe end.
Next, the roll-shaped tool 5 moves by a predetermined distance from the tube end side toward the clamp 3 side. At this time, the diameter of the metal tube 1 is reduced by Δr 1 (in). This completes the first round-trip pass.

その後は2回目の往復パス、3回目の往復パス・・・と、所定回数分だけ上記のような往復パスが繰り返され、縮径加工が逐次進行して最終的に目標とする縮径半径に達する。加工後の総縮径加工量(縮径加工前の半径と加工後の半径との差)は全往復パスの縮径加工量Δrn(out)、Δrn(in)の総和と等しくなることになる。
以下の説明において、outパスによって縮径加工される縮径加工量の総和をΔR(out)(=Δr1(out)+Δr2(out)+・・・)とし、ロール形状工具5が管端部側からクランプ3側へ移動するinパスによる縮径加工量の総和をΔR(in)(=Δr1(in)+Δr2(in)+・・・)とする。なお、総縮径加工量はΔR(out)とΔR(in)で表すと{ΔR(in)+ΔR(out)}となる。なお、縮径加工後の直径でいうと、縮径加工前の直径から総縮径加工量の2倍分、縮径していることになる。
After that, the second round-trip pass, the third round-trip pass, etc., and the round-trip pass as described above are repeated a predetermined number of times. Reach. The total diameter reduction after machining (the difference between the radius before diameter reduction and the radius after machining) must be equal to the sum of the diameter reduction quantities Δr n (out) and Δr n (in) of all reciprocating passes. become.
In the following description, the sum of the diameter reduction processed by the out path is ΔR (out) (= Δr 1 (out) + Δr 2 (out) +...), And the roll-shaped tool 5 is connected to the pipe end. The total amount of diameter reduction processing by the in pass moving from the part side to the clamp 3 side is assumed to be ΔR (in) (= Δr 1 (in) + Δr 2 (in) +...). The total diameter reduction amount is represented by {ΔR (in) + ΔR (out)} when expressed by ΔR (out) and ΔR (in). In terms of the diameter after the diameter reduction processing, the diameter is reduced by twice the total diameter reduction processing amount from the diameter before the diameter reduction processing.

本発明に係るスピニング加工法は、上記のΔR(in)が総縮径加工量の半分以上を占めるようにロール形状工具5を動作させることによって、加工性を向上させるものである。ΔR(in)が総縮径加工量の半分以上を占めるようにする根拠について、以下の実験1の結果に基づいて説明する。   The spinning method according to the present invention improves the workability by operating the roll-shaped tool 5 so that the above ΔR (in) accounts for more than half of the total diameter reduction processing amount. The basis for making ΔR (in) account for more than half of the total diameter reduction processing amount will be described based on the results of Experiment 1 below.

実験1は、管端部を所定の目標半径まで縮径させる場合において、ΔR(in)が総縮径加工量に占める割合(以下、「ΔR(in)総縮径比」という)の値を変化させて、加工後の半径(以下、「実績半径」という)を測定して比較するというものである。このとき、管端部の形状についても併せて観察した。
ΔR(in)総縮径比を規定する方法として、実験1では、各往復パスにおけるΔrn(in)が{Δrn(in)+Δrn(out)}に占める割合(以下、「Δr(in)縮径比」という)を、全往復パスでΔR(in)総縮径比と同一となるようにした。
Experiment 1 shows the ratio of ΔR (in) to the total diameter reduction amount (hereinafter referred to as “ΔR (in) total diameter reduction ratio”) when the pipe end is reduced to a predetermined target radius. The radius after processing (hereinafter referred to as “result radius”) is measured and compared. At this time, the shape of the tube end was also observed.
As a method for defining the ΔR (in) total diameter reduction ratio, in Experiment 1, the ratio of Δr n (in) to {Δr n (in) + Δr n (out)} in each round-trip path (hereinafter referred to as “Δr (in ) "Reduction ratio") is set to be the same as the total reduction ratio of ΔR (in) in all round-trip passes.

金属管1は、半径55mm(直径110mm)、板厚1.0mmのフェライト系ステンレス鋼管を用いた。目標半径は27.5mm(直径55mm、縮径率50%)とし、目標半径まで8往復で縮径加工させるものとした。ΔR(in)総縮径比は、条件Aが0.85、条件Bが0.80、条件Cが0.65、条件Dが0.55、条件Eが0.50、条件Fが0.45、条件Gが0.40とした。
上記の条件とその縮径加工後の結果についてまとめたものを表1に示す。
As the metal pipe 1, a ferritic stainless steel pipe having a radius of 55 mm (diameter: 110 mm) and a plate thickness of 1.0 mm was used. The target radius was 27.5 mm (diameter 55 mm, diameter reduction rate 50%), and the diameter was reduced by 8 reciprocations to the target radius. The ΔR (in) total diameter reduction ratio was 0.85 for condition A, 0.80 for condition B, 0.65 for condition C, 0.55 for condition D, 0.50 for condition E, 0.45 for condition F, and 0.40 for condition G.
Table 1 summarizes the above conditions and the results after the diameter reduction processing.

Figure 2014046333
Figure 2014046333

表1は、条件A〜条件G毎のn往復目におけるoutパスおよびinパスの設定半径(mm)、縮径量(mm)およびΔr(in)縮径比、さらに条件毎のΔR(in)総縮径比、実績半径(mm)、目標半径との乖離(%)を示している。
表1に示すとおり、ΔR(in)総縮径比が0.5以上である条件A〜Eまでは、目標半径との乖離が1%未満と良好であった。特に、ΔR(in)総縮径比が高い条件A〜Cまでは乖離がなく、非常に良好な加工ができた。
一方、ΔR(in)総縮径比が0.5未満の条件Fと条件Gにおいては、条件Fにあっては乖離が5.02%と急激に加工性が悪化しており、条件Gにあっては折れ込みシワが発生し問題であった。
Table 1 shows the set radius (mm), diameter reduction (mm) and Δr (in) reduction ratio of the out path and in path in the n-th round trip for each of conditions A to G, and ΔR (in) for each condition. The total diameter reduction ratio, actual radius (mm), and deviation (%) from the target radius are shown.
As shown in Table 1, the deviation from the target radius was as good as less than 1% up to conditions A to E where the ΔR (in) total diameter reduction ratio was 0.5 or more. In particular, the conditions A to C where the ΔR (in) total diameter reduction ratio is high were not deviated, and very good processing was possible.
On the other hand, in the condition F and the condition G where the ΔR (in) total diameter reduction ratio is less than 0.5, in the condition F, the divergence is 5.02%, and the workability is abruptly deteriorated. It was a problem with wrinkles.

上記のように、ΔR(in)総縮径比を0.5未満とすると、目標半径と実績半径の乖離が急激に大きくなり顕著な口広がりや、折れ込みシワ形状を呈するようになるため、本発明において、ΔR(in)総縮径比は0.5以上となるようにしている。   As described above, when the ΔR (in) total diameter reduction ratio is less than 0.5, the difference between the target radius and the actual radius increases rapidly, and a remarkable mouth spread or a wrinkle shape is formed. In FIG. 5, the ΔR (in) total diameter reduction ratio is set to 0.5 or more.

なお、上記では、各往復パスにおけるΔr(in)縮径比は一定としたが、上記のΔR(in)総縮径比が0.5以上とすること満たせば、ある往復パスにおいて、inパスがoutパスよりも小さくなるようにしてもよい。この理由について説明する。
上述したとおり、各outパスでの管端部における乖離量は僅かであり、あくまで全工程に亘って累積された結果、形状不良として顕在化するものであるため、ΔR(in)が{ΔR(in)+ΔR(out)}を占める割合が半分以上であれば形状不良は発生しない。
しかし、Δr(in)縮径比が制限なく小さくてもよいというわけではなく、0.3以上になるようにするのが好ましい。以下、この理由について、実験2の結果に基づいて説明する。
In the above, the Δr (in) reduction ratio in each round-trip path is fixed. However, if the above-mentioned ΔR (in) total reduction ratio is 0.5 or more, the in-path is out in a certain round-trip path. It may be made smaller than the path. The reason for this will be described.
As described above, the amount of divergence at the pipe end in each out pass is small, and as a result of accumulating all the processes to the last, it becomes manifest as a shape defect, so ΔR (in) becomes {ΔR ( If the ratio of in) + ΔR (out)} is more than half, the shape defect does not occur.
However, the Δr (in) diameter reduction ratio is not limited and may be small, and is preferably set to 0.3 or more. Hereinafter, this reason will be described based on the result of Experiment 2.

実験2は、実験1と同様に、管端部を所定の目標半径まで縮径させる場合において、ΔR(in)総縮径比の値を変化させた。加えて、各往復パスにおけるΔr(in)縮径比を様々な値に変化させた。そして加工後、実績半径を測定して比較を行った。管端部の形状についても併せて観察した。
実験2においては、金属管1は、半径63mm(直径126mm)、板厚1.2mmのフェライト系ステンレス鋼管を用いた。目標半径は30mm(直径60mm、縮径率52.4%)とし、目標半径まで8往復で縮径加工させるものとした。ΔR(in)総縮径比は全条件において0.5以上となるように、条件Hでは0.51、条件Iでは0.55、条件Jでは0.66、条件Kが0.68とした。さらに、Δr(in)縮径比は0.25〜0.88の間で変化させた。
上記の条件とその縮径加工後の結果についてまとめたものを表2に示す。
In Experiment 2, as in Experiment 1, the value of ΔR (in) total diameter reduction ratio was changed when the pipe end was reduced to a predetermined target radius. In addition, the Δr (in) diameter reduction ratio in each round-trip path was changed to various values. And after processing, the performance radius was measured and compared. The shape of the tube end was also observed.
In Experiment 2, the metal pipe 1 was a ferritic stainless steel pipe having a radius of 63 mm (diameter 126 mm) and a plate thickness of 1.2 mm. The target radius was 30 mm (diameter 60 mm, diameter reduction rate 52.4%), and the diameter reduction processing was performed in 8 reciprocations to the target radius. The ΔR (in) total diameter reduction ratio was set to 0.51 in the condition H, 0.55 in the condition I, 0.66 in the condition J, and 0.68 in the condition K so as to be 0.5 or more in all conditions. Further, the Δr (in) diameter reduction ratio was changed between 0.25 and 0.88.
Table 2 summarizes the above conditions and the results after the diameter reduction processing.

Figure 2014046333
Figure 2014046333

表2に示す通り、全条件においてΔR(in)総縮径比は0.5以上となっているので、乖離が1%未満で良好な結果となった。特に、すべてのΔr(in)縮径比が0.3以上となっている条件Jと条件Kは乖離がなく、非常に良好であった。
以上のように、ΔR(in)総縮径比0.5以上とした上で、Δr(in)縮径比0.3以上とすればさらに加工性が向上することが分かった。
なお、上記の実施形態はあくまで一例であって、本発明の構成を限定するものではない。
As shown in Table 2, since ΔR (in) total diameter reduction ratio was 0.5 or more under all conditions, the deviation was less than 1%, and good results were obtained. In particular, the condition J and the condition K in which all Δr (in) diameter reduction ratios were 0.3 or more were very good with no difference.
As described above, it was found that if the ΔR (in) total diameter reduction ratio is 0.5 or more and the Δr (in) diameter reduction ratio is 0.3 or more, the workability is further improved.
In addition, said embodiment is an example to the last, Comprising: The structure of this invention is not limited.

本発明のスピニング加工方法による作用効果を確認する実験3を行ったので、以下この実験3について説明する。表3は、表1および表2と同様であるので表の見方の説明を省略する。
実験3においては、金属管は、半径60mm(直径120mm)、板厚1.5mmのフェライト系ステンレス鋼管を用いた。目標半径は25mm(直径50mm、縮径率58.3%)とし、目標半径まで10往復で縮径加工させるものとした。
ΔR(in)総縮径比は、条件Mおよび条件Nともに0.51として、上記の実施の形態で説明したように0.5以上を満たすような値に設定した。Δr(in)縮径比は0.2〜0.7まで変化させ、条件Nでは上記の実施の形態で説明したように、加工性をさらに向上させる目的で全往復パスのΔr(in)縮径比が0.3以上になるようにした。また、条件Lを比較例として、ΔR(in)総縮径比を0.4に設定して加工を行った。
上記の条件とその縮径加工後の結果についてまとめたものを表3に示す。
Since Experiment 3 for confirming the effect of the spinning method of the present invention was performed, this Experiment 3 will be described below. Since Table 3 is the same as Table 1 and Table 2, description of how to read the table is omitted.
In Experiment 3, a ferritic stainless steel pipe having a radius of 60 mm (diameter 120 mm) and a plate thickness of 1.5 mm was used as the metal pipe. The target radius was 25 mm (diameter 50 mm, diameter reduction rate 58.3%), and the diameter was reduced by 10 reciprocations to the target radius.
The ΔR (in) total diameter reduction ratio was set to 0.51 for both the condition M and the condition N, and to a value satisfying 0.5 or more as described in the above embodiment. The Δr (in) diameter reduction ratio is changed from 0.2 to 0.7. Under the condition N, as described in the above embodiment, the Δr (in) diameter reduction ratio of all reciprocating passes is 0.3 for the purpose of further improving the workability. It was made to become above. Further, using the condition L as a comparative example, the processing was performed with the ΔR (in) total diameter reduction ratio set to 0.4.
Table 3 summarizes the above conditions and the results after the diameter reduction processing.

Figure 2014046333
Figure 2014046333

表3に示す通り、条件Lでは折れ込みシワが発生した。他方、ΔR(in)総縮径比が0.5以上とした条件Mでは目標半径との乖離が0.92%と僅かであり、良好な結果となった。さらに、Δr(in)縮径比を0.3以上とした条件Nでは乖離が0.24%となり、さらに良好な結果となった。   As shown in Table 3, under the condition L, folding wrinkles occurred. On the other hand, in the condition M in which the ΔR (in) total diameter reduction ratio was 0.5 or more, the deviation from the target radius was as small as 0.92%, which was a favorable result. Furthermore, the deviation was 0.24% under the condition N where the Δr (in) diameter reduction ratio was 0.3 or more, which was a better result.

以上のように、本発明のかかるスピニング加工方法によれば、素材の薄肉化および高縮径率化により顕在化してきた管端部の口広がり、およびそれに伴う折れ込みシワなどの形状不良事象が生じない。   As described above, according to the spinning processing method of the present invention, there is a problem of shape defects such as the mouth widening of the pipe end that has become apparent due to the thinning of the material and the increase in the diameter reduction rate, and the folding wrinkles associated therewith. Does not occur.

a〜e 矢印
S 縮径加工開始位置
1 金属管
3 クランプ
5 ロール形状工具
7 回転軸
a to e Arrow S Reduction diameter start position 1 Metal tube 3 Clamp 5 Roll-shaped tool 7 Rotating shaft

Claims (2)

一端側をクランプした金属管を被加工材とし、前記金属管の中心軸周りに公転しながらかつ前記金属管の軸方向に往復移動するロール形状工具を前記金属管に押し付けることで金属管を縮径加工するスピニング加工であって、
ロール形状工具が金属管のクランプ側から管端部側に向かって移動するoutパスによって管端部が縮径加工される縮径加工量の総和をΔR(out)とし、ロール形状工具が管端部側からクランプ側へ移動するinパスによる管端部の縮径加工量の総和をΔR(in)としたときに、ΔR(in)がΔR(out)より大きくなるようにロール形状工具を動作させることを特徴とするスピニング加工方法。
A metal tube clamped at one end is used as a workpiece, and the metal tube is compressed by pressing a roll-shaped tool that revolves around the central axis of the metal tube and reciprocates in the axial direction of the metal tube against the metal tube. A spinning process for diameter processing,
ΔR (out) is the total amount of diameter reduction processing that reduces the diameter of the pipe end by the out path where the roll shape tool moves from the clamp side to the pipe end side of the metal pipe. The roll-shaped tool operates so that ΔR (in) is greater than ΔR (out) when the sum of the diameter reduction processing of the pipe end due to the in-pass moving from the part side to the clamp side is ΔR (in) Spinning method characterized in that
ロール形状工具が金属管のクランプ側から管端部側に向かって移動する各outパスによって管端部が縮径加工される縮径加工量をΔr(out)とし、引き続き反転してロール形状工具が管端部側からクランプ側へ移動する各inパスによる管端部の縮径加工量をΔr(in)としたときに、各往復パスの縮径加工量{Δr(in)+Δr(out)}が、0.3≦Δr(in)/{Δr(in)+Δr(out)}を満たすようにロール形状工具を動作させることを特徴とする請求項1記載のスピニング加工方法。   The roll diameter tool is reduced by Δr (out), and the roll shape tool is continuously reversed by each out pass where the roll shape tool moves from the clamp side to the pipe end side of the metal pipe. Is the diameter reduction processing amount of each reciprocating path {Δr (in) + Δr (out) where Δr (in) is the diameter reduction processing amount of the pipe end by each in pass moving from the pipe end side to the clamp side 2. The spinning method according to claim 1, wherein the roll-shaped tool is operated so that} satisfies 0.3 ≦ Δr (in) / {Δr (in) + Δr (out)}.
JP2012190838A 2012-08-31 2012-08-31 Spinning method Active JP5934062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012190838A JP5934062B2 (en) 2012-08-31 2012-08-31 Spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012190838A JP5934062B2 (en) 2012-08-31 2012-08-31 Spinning method

Publications (2)

Publication Number Publication Date
JP2014046333A true JP2014046333A (en) 2014-03-17
JP5934062B2 JP5934062B2 (en) 2016-06-15

Family

ID=50606555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012190838A Active JP5934062B2 (en) 2012-08-31 2012-08-31 Spinning method

Country Status (1)

Country Link
JP (1) JP5934062B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105396927A (en) * 2015-12-08 2016-03-16 苏州三孚自动化科技有限公司 Spinning machine for manufacturing filter in compressor pipeline
CN105855413A (en) * 2016-03-08 2016-08-17 山东金潮新型建材有限公司 Pipe end locking device provided with end cap and locking method
CN109482755A (en) * 2018-11-23 2019-03-19 西安航天发动机有限公司 A kind of closing device
CN112371864A (en) * 2020-10-23 2021-02-19 江苏国富氢能技术装备股份有限公司 Core-free spinning closing method for aluminum liner of high-pressure hydrogen bottle
CN113351721A (en) * 2021-05-31 2021-09-07 西安交通大学 Double-roller clamping and expanding spinning and opposite-wheel strong spinning composite forming process for large-size flange

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254734A (en) * 1999-03-10 2000-09-19 Daito Spinning:Kk Tube forming device
JP2000263161A (en) * 1999-03-12 2000-09-26 Toyota Motor Corp Method and device for spinning
JP2001259764A (en) * 2000-03-13 2001-09-25 Calsonic Kansei Corp Tubular forming and its forming method
JP2009195913A (en) * 2008-02-19 2009-09-03 Nisshin Steel Co Ltd Spinning method
JP2009195922A (en) * 2008-02-19 2009-09-03 Sango Co Ltd Method and device for working end of cylindrical work

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254734A (en) * 1999-03-10 2000-09-19 Daito Spinning:Kk Tube forming device
JP2000263161A (en) * 1999-03-12 2000-09-26 Toyota Motor Corp Method and device for spinning
JP2001259764A (en) * 2000-03-13 2001-09-25 Calsonic Kansei Corp Tubular forming and its forming method
JP2009195913A (en) * 2008-02-19 2009-09-03 Nisshin Steel Co Ltd Spinning method
JP2009195922A (en) * 2008-02-19 2009-09-03 Sango Co Ltd Method and device for working end of cylindrical work

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105396927A (en) * 2015-12-08 2016-03-16 苏州三孚自动化科技有限公司 Spinning machine for manufacturing filter in compressor pipeline
CN105855413A (en) * 2016-03-08 2016-08-17 山东金潮新型建材有限公司 Pipe end locking device provided with end cap and locking method
CN109482755A (en) * 2018-11-23 2019-03-19 西安航天发动机有限公司 A kind of closing device
CN112371864A (en) * 2020-10-23 2021-02-19 江苏国富氢能技术装备股份有限公司 Core-free spinning closing method for aluminum liner of high-pressure hydrogen bottle
CN112371864B (en) * 2020-10-23 2021-07-02 江苏国富氢能技术装备股份有限公司 Core-free spinning closing method for aluminum liner of high-pressure hydrogen bottle
CN113351721A (en) * 2021-05-31 2021-09-07 西安交通大学 Double-roller clamping and expanding spinning and opposite-wheel strong spinning composite forming process for large-size flange

Also Published As

Publication number Publication date
JP5934062B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5934062B2 (en) Spinning method
US8528380B2 (en) Bending apparatus
CN109201834A (en) A kind of combined shaping method of flow forming and double roller clamping spinning
JP2005525937A5 (en)
JP2009195922A (en) Method and device for working end of cylindrical work
JP4031827B2 (en) Double pipe bending method
JP6061762B2 (en) Spinning processing method and spinning processing apparatus
JP2009195913A (en) Spinning method
WO2010084788A1 (en) Spinning method
JP6484038B2 (en) Pipe, mold, and pipe manufacturing method
JP5884810B2 (en) Spinning diameter reduction method with good workability
CN101412055B (en) Rotating and straightening method using metal pipe tension
JP2007283343A (en) Drawing method and its apparatus
JP2015030028A (en) Spinning method of automobile exhaust tube component
JP2007098420A (en) Spinning method
JP2013244523A (en) Method for reducing diameter by spinning which is good in workability
JP2002239657A (en) Spinning method for tube
JP2013233565A (en) Spinning method
CN210160205U (en) Configuration device for pressure guide pipe of field instrument
CN106064183A (en) A kind of slow cooling method containing Cr, Mo alloy large-size extruding heavy wall steps of manufacturing blanks
JP2004114147A (en) Method and device for reducing tube diameter
JP2004001023A (en) Method for shaping metal vessel
JP6133513B2 (en) Method for producing metal porous body and metal porous body
JP2005262308A (en) Method for forming bellows pipe
WO2022244449A1 (en) Spinning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5934062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250