JP2009195913A - Spinning method - Google Patents

Spinning method Download PDF

Info

Publication number
JP2009195913A
JP2009195913A JP2008037072A JP2008037072A JP2009195913A JP 2009195913 A JP2009195913 A JP 2009195913A JP 2008037072 A JP2008037072 A JP 2008037072A JP 2008037072 A JP2008037072 A JP 2008037072A JP 2009195913 A JP2009195913 A JP 2009195913A
Authority
JP
Japan
Prior art keywords
pipe
tube
path
processing
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008037072A
Other languages
Japanese (ja)
Inventor
Akihiro Ando
彰啓 安藤
Shinobu Kano
忍 狩野
Atsushi Kurobe
淳 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008037072A priority Critical patent/JP2009195913A/en
Publication of JP2009195913A publication Critical patent/JP2009195913A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spinning method capable of suppressing local thickness reduction of a taper part and generation of wrinkles at a tube end when working a diameter-reduction portion comprising the taper part and a small diameter part continuing to the taper part by spinning. <P>SOLUTION: In a forward path toward the tube end of a tube to be worked, a working roller is pushed in the radial direction of the tube so as to be linearly varied proportionally to the distance in an axial direction with which the working roller moves from the start point of the forward path toward the end point thereof. In a return path, the working roller is pushed in the radial direction of the tube so as to be curvedly varied from the start point of the return path to the end point thereof in such a way as to be projected in the central axis direction of the tube from a straight line which connects the start point of the return path with the end point thereof. Working is carried out to form a protrusion at the tube end by allowing the working roller to turn back immediately before reaching the tube end. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車のコンバーターケースやマフラーなどの排気系部品に用いられる端部に縮径部を有する管体の成形方法に関する。   The present invention relates to a method for forming a tubular body having a reduced diameter portion at an end portion used for exhaust system parts such as a converter case and a muffler of an automobile.

自動車の排気系に装備される排気ガス浄化用触媒(コンバーター)のケースや消音器(マフラー)のケース、あるいは尿素を利用した排気ガス浄化用触媒のケースには、大容量化の必要性や自動車の軽量化の観点から素材として板厚が薄くて大径の管が用いられている。そして、それらのケース部材端部には、前後の部材との接続のためにテーパ部と、さらに必要に応じてテーパ部に連続した小径部が備えられている。
図1には、このようなケース1が、素材である大径の管の部分(1c)、前後の部材と接続するために設けられるテーパ部(1b)およびテーパ部に連続した小径の直管部(1a)から構成されている例を示す。そして、その成形方法としては、スピニング加工方法が用いられる場合が多くなっている。
The case of exhaust gas purification catalyst (converter), silencer (muffler) case, or exhaust gas purification catalyst using urea, which is equipped in the exhaust system of automobiles, needs to be increased in capacity and automobiles. From the viewpoint of reducing the weight of the tube, a large-diameter pipe having a thin plate thickness is used as a material. The end portions of the case members are provided with a tapered portion for connection with the front and rear members, and a small diameter portion continuous with the tapered portion as necessary.
In FIG. 1, such a case 1 has a large-diameter pipe portion (1c) as a raw material, a tapered portion (1b) provided to connect to the front and rear members, and a small-diameter straight pipe continuous to the tapered portion. The example comprised from the part (1a) is shown. And as the forming method, a spinning method is often used.

スピニング加工方法は、成形工具である加工ローラを被加工管の表面に接触させ、加工ローラを被加工管の周りで相対的に公転させながら、加工ローラを被加工管の半径方向および軸方向に移動させて、被加工管の端部に向けて次第に縮径するテーパ部と、それに連続する小径部を形成する方法である。
例えば、特許文献1には、被加工管の外周に加工ローラを押し当ててスピニング加工することによりコンバーターケースを製造することが記載されている。
In the spinning method, the processing roller, which is a forming tool, is brought into contact with the surface of the processing tube, and the processing roller is revolved around the processing tube, while the processing roller is moved in the radial direction and the axial direction of the processing tube. This is a method of forming a tapered portion that gradually moves toward the end portion of the pipe to be processed and a small-diameter portion continuous therewith.
For example, Patent Document 1 describes that a converter case is manufactured by pressing a processing roller on the outer periphery of a pipe to be processed and performing a spinning process.

このような形状の部材を成形する方法としてスピニング加工法が多用される背景としては、板材をプレス成形した後に溶接接合する方法と比較すると、1)材料歩留が高い、2)生産効率が高い、3)一体成形であるために部材強度が高い、4)溶接を必要としないために溶接部による部材の信頼性低下がない、等の点が挙げられる。
しかしながら、プレス成形方法と比較して、スピニング加工法では加工ローラを被加工管の軸方向へ繰り返し往復動させて成形を進めるため、塑性変形により材料が被加工管の管端方向に移動しやすく、特にテーパ部の板厚が被加工管の素材板厚よりも局所的に減少する傾向がある。
As a background of the spin processing method being frequently used as a method for forming a member having such a shape, 1) the material yield is high and 2) the production efficiency is high compared with the method in which the plate material is press-molded and then welded. 3) The member strength is high because it is integrally formed, and 4) the reliability of the member is not lowered due to the welded portion because welding is not required.
However, compared with the press forming method, the spinning method reciprocates the processing roller in the axial direction of the tube to be processed to advance the forming, so that the material is easily moved in the tube end direction of the tube to be processed by plastic deformation. In particular, the thickness of the tapered portion tends to locally decrease than the material thickness of the material to be processed.

このような課題に対して特許文献2では、加工ローラで被加工管をスピニング加工中に、被加工管の縮径されている側を押圧する方法が提案されている。しかし、この方法では別途押圧する装置が必要であり、装置費用が高くなるという問題がある。また、特許文献3では、加工ローラの被加工管の軸方向への移動方法として、テーパ部に連続して小径の直管部がある形状を成形する場合において、初めにテーパ部を形成した後に、被加工管の縮管側の管端から中央部に加工ローラを移動させて直管部を成形する方法が提案されている。
特開平11−132038号 特開2000−179334号 特開2004−160536号
In order to solve such a problem, Patent Document 2 proposes a method of pressing a reduced diameter side of a work tube while the work tube is being spun by a processing roller. However, this method requires a separate pressing device, and there is a problem that the cost of the device becomes high. Further, in Patent Document 3, as a method of moving the processing roller in the axial direction of the tube to be processed, in the case of forming a shape having a small-diameter straight pipe portion continuous to the tapered portion, after the tapered portion is first formed, There has been proposed a method of forming a straight pipe portion by moving a processing roller from a pipe end of a pipe to be machined to a central portion.
JP-A-11-1332038 JP 2000-179334 A JP 2004-160536 A

しかし、特許文献3の方法では、最初の加工である所定角度へのテーパ部形成で被加工管が加工硬化するため、そのテーパ部の端部から直管部の成形工程では大きな加工力が必要であり、その加工力能力の維持によりスピニング加工機自体が高価になるという問題がある。
また、特許文献2,3ともに、スピニング加工での加工速度が速くなったり、被加工管の外径に対する板厚の比率が小さくなると端部にしわが発生しやすくなったりするという問題も抱えている。
本発明は、このような問題を解消すべく案出されたものであり、スピニング加工によりテーパ部とそれに連続する小径部を形成する際に、テーパ部での局所的な板厚減少を低減でき、さらに被加工管端部でのしわ発生を抑制できる縮径方法を提供することを目的とする。
However, in the method of Patent Document 3, since the tube to be processed is hardened by forming the tapered portion at a predetermined angle, which is the first processing, a large processing force is required in the forming process from the end of the tapered portion to the straight tube portion. However, there is a problem that the spinning machine itself is expensive due to the maintenance of the processing force capability.
Further, both Patent Documents 2 and 3 have problems that the processing speed in the spinning process is increased, and that the wrinkle is likely to occur at the end portion when the ratio of the plate thickness to the outer diameter of the pipe to be processed is reduced. .
The present invention has been devised to solve such a problem, and when forming a tapered portion and a small diameter portion continuous therewith by spinning, it is possible to reduce a local thickness reduction at the tapered portion. Furthermore, it aims at providing the diameter reducing method which can suppress wrinkle generation | occurrence | production at the pipe end part to be processed.

本発明のスピニング加工方法は、その目的を達成するため、被加工管の外側に配置されてその周りを相対的に公転する加工ローラを、前記被加工管の半径方向へ移動させつつ軸方向に往復動させる工程を複数パス行うことにより、前記被加工管の端部に向けて次第に縮径するテーパ部と、当該テーパ部に連続する小径部を成形する際、前記テーパ部の成形において、加工ローラの各パス毎の往復動を、前記被加工管の管端へ向う往路においては加工ローラの前記被加工管半径方向への押し込みを該パスの往路起点から該パスの往路終了点に向けて動いた軸方向の距離に比例して直線変化するように与え、かつ復路においては加工ローラの前記被加工管半径方向への押し込みを該パスの復路起点と復路終了点とを結んだ直線から、被加工管の中心軸方向に向けて凸となるように該パスの復路起点から該パスの復路終了点に渡って曲線変化するように与えることを特徴とする。
また、前記被加工管の外周に配置されてその周りを相対的に公転する加工ローラの軸方向の往復動において、前記被加工管の管端に達する直前で折り返させて前記被加工管の管端に突起部を形成してもよい。
In order to achieve the object of the spinning method of the present invention, a processing roller that is disposed outside the processing tube and relatively revolves around the processing tube is moved in the axial direction while moving in the radial direction of the processing tube. When forming a taper portion that gradually decreases in diameter toward the end portion of the pipe to be processed and a small diameter portion continuous with the taper portion by performing a plurality of reciprocating steps, processing is performed in forming the taper portion. The reciprocating movement of each path of the roller in the forward path toward the pipe end of the pipe to be processed is made so that the pushing of the processing roller in the radial direction of the pipe to be processed is directed from the forward path starting point of the path toward the forward path end point of the path. From the straight line connecting the return path start point and the return path end point of the path, the pushing of the processing roller in the radial direction of the pipe to be processed is given in a straight line in proportion to the moved axial distance. Inside the work tube So as to project toward the axial direction from the backward starting point of the path, characterized in that it gives to the curve vary over a return path end point of the path.
Further, in the axial reciprocation of the processing roller disposed on the outer periphery of the processing tube and relatively revolving around it, the processing tube is folded immediately before reaching the tube end of the processing tube. A protrusion may be formed at the end.

本発明のスピニング加工方法では、加工ローラが被加工管の端部へ向う往路においては加工ローラの前記被加工管半径方向への押し込みを該パスの往路起点から該パスの往路終了点に向けて動いた軸方向の距離に比例して直線変化するように与え、かつ復路においては加工ローラの前記被加工管半径方向への押し込みを該パスの復路起点と復路終了点とを結んだ直線から、被加工管の中心軸方向に向けて凸となるように該パスの復路起点から該パスの復路終了点に渡って曲線変化するように与えている。これにより、往路での被加工管の変形は縮管が主体となって板厚の変化が発生しにくいのでテーパ部の局所的な板厚減少を抑えることができる。また、復路では、前記被加工管の端部と反対の方向に材料を変形させているためテーパ部は板厚増加となる。
さらに、加工ローラを被加工管の端部に達する直前で折り返させているため、被加工管の外径に対する板厚の比率が小さいことによって管端に発生しやすくなるしわを抑制することができる。
In the spinning method of the present invention, in the forward path in which the processing roller is directed toward the end of the work tube, the process roller is pushed in the radial direction of the work pipe from the forward path start point of the path toward the forward path end point of the path. From the straight line connecting the return path start point and the return path end point of the path, the pushing of the processing roller in the radial direction of the pipe to be processed is given in a straight line in proportion to the moved axial distance. The curve is changed from the return path starting point of the path to the return path end point of the path so as to be convex toward the central axis direction of the pipe to be processed. As a result, the deformation of the pipe to be processed in the forward path is mainly caused by the contraction pipe, and the change in the plate thickness is less likely to occur, so that a local reduction in the plate thickness of the tapered portion can be suppressed. In the return path, since the material is deformed in the direction opposite to the end portion of the pipe to be processed, the taper portion increases in plate thickness.
Furthermore, since the processing roller is folded immediately before reaching the end of the tube to be processed, wrinkles that are likely to occur at the tube end due to a small ratio of the plate thickness to the outer diameter of the tube to be processed can be suppressed. .

本発明者等は、被加工管と、当該被加工管の外周に配置されてその周りを相対的に公転する加工ローラを用い、前記加工ローラを前記被加工管の半径方向へ移動させつつ軸方向に往復動させることにより被加工管の端部に向けて次第に縮径するテーパ部と、それに連続する小径部を形成する際に、テーパ部の局所的な板厚減少や、被加工管の端部でのしわの発生を抑制する方法について種々検討を行ってきた。   The inventors use a processing tube and a processing roller that is disposed on the outer periphery of the processing tube and relatively revolves around the processing tube, and moves the processing roller in the radial direction of the processing tube while rotating the shaft. When forming a tapered portion that gradually decreases in diameter toward the end of the tube to be processed by reciprocating in the direction and a small-diameter portion continuous therewith, it is possible to reduce the local plate thickness of the tapered portion, Various studies have been conducted on methods for suppressing the generation of wrinkles at the edges.

その結果、加工ローラの被加工管の軸方向への往復動において、加工ローラの各パス毎の往復動を、前記被加工管の管端へ向う往路においては加工ローラの前記被加工管半径方向への押し込みを該パスの往路起点から該パスの往路終了点に向けて動いた軸方向の距離に比例して直線変化するように与え、かつ復路においては加工ローラの前記被加工管半径方向への押し込みを該パスの復路起点と復路終了点とを結んだ直線から、被加工管の中心軸方向に向けて凸となるように該パスの復路起点から該パスの復路終了点に渡って曲線変化するように加工ローラを制御して加工することにより、テーパ部の局所的な板厚減少を抑制できることを見出した。   As a result, in the reciprocating motion of the processing roller in the axial direction of the tube to be processed, the reciprocating motion of each pass of the processing roller is performed in the radial direction of the processing tube of the processing roller in the outward path toward the tube end of the processing tube. Is pushed so as to change linearly in proportion to the axial distance moved from the forward path start point of the path to the forward path end point of the path, and in the return path toward the pipe to be processed in the radial direction of the workpiece. A curve extending from the return path start point of the path to the return path end point of the path so as to protrude from the straight line connecting the return path start point and the return path end point of the path toward the central axis direction of the pipe to be processed It has been found that local reduction in the thickness of the tapered portion can be suppressed by controlling the processing roller so as to change.

また、被加工管の端部でのしわの発生を抑制するためには、加工ローラを、前記被加工管の端部を超えて軸方向に往復させるのではなく、端部の直前までの往復にとどめ、端部が受ける縮径加工量を端部以外の加工部よりも小さくし、端部にいわゆるラッパ状の突起を形成するように加工することが有効であることを見出した。
加工ローラを、被加工管の半径方向に押し込んで軸方向に往復動することにより、テーパ部が局所的に板厚減少する原因としては次の点が考えられる。
In order to suppress the occurrence of wrinkles at the end of the tube to be processed, the processing roller is not reciprocated in the axial direction beyond the end of the tube to be processed. However, it has been found that it is effective to reduce the amount of diameter reduction processing received by the end portion to be smaller than that of the processed portion other than the end portion and to form a so-called trumpet-shaped protrusion at the end portion.
The following points can be considered as a cause of locally reducing the thickness of the tapered portion by pushing the processing roller in the radial direction of the tube to be processed and reciprocating in the axial direction.

すなわち、図2に示すようにスピニング加工により被加工管2の端部をテーパ部3に成形する際に、加工ローラ4を被加工管2の半径方向に押し込んでクランプ5側から管端6に向かって軸方向に移動させて被加工管2を加工するが、加工ローラ4の押し込みを加工が開始される往路起点7から往路の加工が終了する往路終了点8に渡って曲線的に与えるとテーパ部3の板厚が局所的に減少する位置が発生する。局所的に板厚減少する位置は、加工ローラ4の押し込み量が最も多い付近であり、この押し込み量の増大により加工ローラ4の往路において被加工管2が管端6側に引っ張られる加工力も部分的に高くなり、これによって被加工管2の板厚変形も部分的に大きくなるのである。   That is, as shown in FIG. 2, when the end of the tube 2 to be processed is formed into the tapered portion 3 by spinning, the processing roller 4 is pushed in the radial direction of the tube 2 to be moved from the clamp 5 side to the tube end 6. The processing pipe 2 is machined by moving it in the axial direction, but when the processing roller 4 is pushed in a curve from the forward path starting point 7 where the machining is started to the forward path end point 8 where the machining of the forward path is finished, The position where the plate | board thickness of the taper part 3 reduces locally generate | occur | produces. The position where the plate thickness is locally reduced is in the vicinity where the pressing amount of the processing roller 4 is the largest, and the processing force that pulls the tube 2 to be processed toward the tube end 6 in the forward path of the processing roller 4 due to the increase of the pressing amount is also a part. As a result, the plate thickness deformation of the tube 2 to be processed is partially increased.

なお、図2では加工ローラの動きと加工部の形状との関係を理解し易いように加工ローラの1パスの往復動で加工部が形成されるように模式的に示しているが、実際には加工ローラを複数パス往復動させることにより、被加工管の端部を徐々に縮径加工するものである。以下の図3、図4でも同様に1パス加工で模式的に示している。
そこで、テーパ部の局所的な板厚減少を抑制させるためには、塑性加工による被加工管の管端方向への材料の移動の原因となる加工ローラの往路での管端に向う引張力を低減させることが必要であり、それを実現するためには、往路でのテーパ部の成形を管端方向への伸びを抑制して縮管主体となるような加工ローラの押し込み量パターンとすることが有効である。
In FIG. 2, the processing portion is schematically illustrated so that the processing portion is formed by one-way reciprocation of the processing roller so that the relationship between the movement of the processing roller and the shape of the processing portion can be easily understood. In this method, the end of the pipe to be processed is gradually reduced in diameter by reciprocating the processing roller in a plurality of passes. The following FIG. 3 and FIG. 4 also schematically show the same one-pass processing.
Therefore, in order to suppress the local decrease in the thickness of the tapered portion, the tensile force toward the tube end in the forward path of the processing roller that causes the material to move toward the tube end of the tube to be processed by plastic working is applied. In order to realize this, it is necessary to form the tapered portion in the outward path so that the processing roller push-in pattern becomes the main component of the contraction tube while suppressing the elongation in the tube end direction. Is effective.

加工ローラの往路での押し込み量パターンを縮径主体とするためには、加工ローラの押し込み量パターンを曲線変化とするのではなく、図3に示すように加工ローラ4を被加工管2の往路起点7から往路終了点8に渡って直線変化となるような押し込み量パターンにすれば、部分的な押し込み量増加による管端6への引張力を抑えることができる。
加工ローラ4の復路では、板厚変形が発生したとしてもクランプ5側への材料の塑性流動であり、非加工部とテーパ部との境が角部であることからこの角部よりクランプ5側へ塑性流動することは難しくなる。つまりは、テーパ部3の板厚が増加する傾向となり、加工ローラ4の押し込み量パターンを曲線変化するようにしても板厚減少を抑制する効果が発揮される。
In order to make the indentation amount pattern in the outward path of the processing roller mainly the diameter reduction, the indentation amount pattern of the processing roller is not changed in a curve, but the processing roller 4 is in the outward path of the tube 2 as shown in FIG. If the pushing amount pattern is a linear change from the starting point 7 to the forward end point 8, the tensile force on the pipe end 6 due to a partial increase in pushing amount can be suppressed.
In the return path of the processing roller 4, even if the plate thickness deformation occurs, the plastic flow of the material to the clamp 5 side, and the boundary between the non-processed portion and the tapered portion is a corner portion. It becomes difficult to flow plastically. In other words, the plate thickness of the tapered portion 3 tends to increase, and the effect of suppressing the decrease in plate thickness is exhibited even if the pressing amount pattern of the processing roller 4 is changed in a curve.

なお、この加工により小径部の管端の外径が若干拡大する。したがって、終盤の加工パスで小径部が平行になるようにパス形状を調節してもよい。あるいはこの管端部分を切断・除去することにより所望形状にしてもよい。終盤の加工パスでのパス形状の調節法としては、終盤のパスではその復路において加工ローラの押し込みを所望の被加工形状に合わせて略直線変化するように与えることが挙げられる。また、最終のパスを、加工ローラの押し込みを所望の被加工形状に合わせて略直線変化するように与える往路のみの工程としてもよい。   Note that the outer diameter of the tube end of the small diameter portion is slightly enlarged by this processing. Therefore, the pass shape may be adjusted so that the small diameter portion becomes parallel in the final processing pass. Or you may make it a desired shape by cutting and removing this pipe end part. As a method of adjusting the path shape in the final machining pass, in the final pass, the pressing of the machining roller in the return path may be given so as to change substantially linearly in accordance with the desired machining shape. Further, the final pass may be a forward-only process in which the pressing of the processing roller is given so as to change substantially linearly in accordance with a desired shape to be processed.

また、被加工管の外径に対する板厚の比率が小さくなると管端にしわが発生しやすくなる原因としては、以下の点が考えられる。
被加工管の端部のテーパ部や小径部は縮径加工を受けるために管の周長が変化するが、管端では材料拘束が小さいために材料余りや不均一変形となりやすくなり、しわが発生しやすくなる。被加工管の外径に対する板厚の比率が小さい場合は、管端の剛性がより一層低くなるために、しわ発生が顕著となる状況になる。
Moreover, the following points can be considered as the cause of the wrinkle being easily generated at the pipe end when the ratio of the plate thickness to the outer diameter of the pipe to be processed becomes small.
The circumference of the pipe changes because the taper part and the small diameter part at the end of the pipe to be processed are subjected to diameter reduction processing. It tends to occur. When the ratio of the plate thickness with respect to the outer diameter of the pipe to be processed is small, the rigidity of the pipe end is further reduced, so that wrinkles are conspicuous.

そこで、管端のしわ発生を抑制するためには、管端部において管の周方向の材料拘束を増加させて不均一変形を抑制することが有効である。
管端において管の周方向の材料拘束を増加するためには、図4に示すように加工ローラ4を被加工管2の管端6を越えて往復させるのではなく、管端6の縁までの往復にとどめ、管端6が受ける縮径加工量を小径部10よりも小さくし、管端6がいわゆるラッパ状の突起部11となるように加工することが有効である。
Therefore, in order to suppress the occurrence of wrinkles at the tube end, it is effective to suppress uneven deformation by increasing the material constraint in the circumferential direction of the tube at the tube end.
In order to increase the material constraint in the circumferential direction of the pipe at the pipe end, as shown in FIG. 4, the processing roller 4 is not reciprocated beyond the pipe end 6 of the pipe 2 to be processed, but to the edge of the pipe end 6. It is effective to reduce the amount of diameter reduction processed by the tube end 6 to be smaller than that of the small diameter portion 10 so that the tube end 6 becomes a so-called trumpet-shaped protrusion 11.

これにより、管端の剛性が増加し、管の周長が変化する際の不均一変形であるしわの発生を抑制することができる。
なお、このラッパ状の突起部は、スピニング加工の終盤の加工パスで小径部が平行になるようにパス形状を調節するか、あるいはスピニング加工後にこの管端部分を切断・除去することにより所望形状にすることができる。
次に、加工ローラの押し込み量パターンを、往路、復路ともに曲線パターンにしたものと、本発明にしたがって往路は直線的に、復路は曲線的に変化させた場合の各部位の板厚変化を調べた事例を実施例として紹介する。
Thereby, the rigidity of a pipe end increases and generation | occurrence | production of the wrinkle which is a nonuniform deformation at the time of the circumference of a pipe | tube changing can be suppressed.
The trumpet-shaped projections can be formed in the desired shape by adjusting the path shape so that the small diameter part is parallel in the final machining pass of the spinning process, or by cutting and removing the tube end part after the spinning process. Can be.
Next, the processing roller push-in pattern is a curved pattern for both the forward path and the return path, and the thickness change of each part when the forward path is changed linearly and the return path is changed according to the present invention is examined. Examples are introduced as examples.

実施例1;
降伏応力251MPa、引張強さ428MPa、全伸び36%の機械的性質を有する板厚1.2mmのフェライト系ステンレス鋼板を素材として用い、プラズマ溶接により直径89.1mmとなるように造管した素管を被加工管とした。
図5に示すように、同軸型スピニング加工の目標形状は、テーパ角θを60°とし、縮径した小径部の直径dを40mm、小径部の長さL0を20mmとした。加工パス回数を13パス、加工ローラの被加工管の軸方向への送り速度を3000mm/minの一定とした。
Example 1;
A raw pipe made of ferritic stainless steel plate with a thickness of 1.2 mm having mechanical properties of yield stress 251 MPa, tensile strength 428 MPa, and total elongation 36%, and having a diameter of 89.1 mm by plasma welding. To be processed pipe.
As shown in FIG. 5, the target shape of the coaxial spinning process was such that the taper angle θ was 60 °, the diameter d 0 of the reduced diameter portion was 40 mm, and the length L 0 of the small diameter portion was 20 mm. The number of processing passes was 13 passes, and the feed rate of the processing roller in the axial direction of the tube to be processed was constant 3000 mm / min.

加工ローラの押し込み量パターンは、図6に示すように、各パスにおいて、往路では往路起点と往路終了点に渡って曲率半径300mmとし、復路では復路起点と復路終了点に渡って曲率半径350mmの場合(条件(a))と、往路で往路起点と往路終了点に渡って1.4mmの段差となる直線変化とし、復路では復路起点と復路終了点に渡って曲率半径100mmの場合(条件(b))の2種類とした。但し、条件(a)、条件(b)いずれの場合でも、最終の加工パスのみは、加工品の目標形状に沿った直線状のパス形状とした。なお、図6では分かりやすいように、実際の13パス加工を5パス加工に置換えて模式的に示した。
加工した結果を図7に示す。テーパ部で局所的な板厚減少が、両方の押し込み量パターンとも見られるが、条件(b)の往路を直線変化とし、復路を曲線変化とした押し込み量パターンでは、板厚減少量を抑制することが可能であった。
As shown in FIG. 6, the processing roller push-in pattern has a radius of curvature of 300 mm over the forward path start point and the forward path end point in the forward path, and a radius of curvature of 350 mm over the return path start point and the return path end point in the forward path. In the case (condition (a)), in the forward path, a linear change with a step of 1.4 mm between the forward path start point and the forward path end point is assumed, and in the return path, the curvature radius is 100 mm from the return path start point to the return path end point (condition ( b)). However, in either case of condition (a) or condition (b), only the final machining pass has a linear path shape along the target shape of the workpiece. In FIG. 6, for easy understanding, the actual 13-pass machining is schematically replaced with a 5-pass machining.
The processed result is shown in FIG. A local thickness decrease at the taper is seen in both indentation amount patterns, but in the indentation amount pattern in which the forward path of condition (b) is a linear change and the inward path is a curve change, the thickness reduction amount is suppressed. It was possible.

実施例2;
機械的性質と材質は実施例1と同じで、直径が89.1mmで板厚が0.8mmと1.0mmの2種類の素管を被加工管として用いた。直径Dに対する板厚tの比率は、板厚が0.8mmで0.9%、板厚が1.0mmで1.2%である。同軸型スピニング加工の最終目標形状は、テーパ角θを30°とし、縮径した小径部の直径dを40mm、小径部の長さL0を20mmとした。加工パス回数を11パスと13パス、加工ローラの被加工管の軸方向への送り速度を6000と7500mm/minとした。
Example 2;
The mechanical properties and materials were the same as those in Example 1, and two types of elementary pipes having a diameter of 89.1 mm and plate thicknesses of 0.8 mm and 1.0 mm were used as processed pipes. The ratio of the plate thickness t to the diameter D is 0.9% when the plate thickness is 0.8 mm, and 1.2% when the plate thickness is 1.0 mm. The final target shape of the coaxial spinning process was such that the taper angle θ was 30 °, the diameter d 0 of the reduced diameter portion was 40 mm, and the length L 0 of the small diameter portion was 20 mm. The number of machining passes was 11 and 13 and the feed speed of the machining roller in the axial direction of the work tube was 6000 and 7500 mm / min.

加工ローラの押し込み量パターンは、図6(b)に示した各パスの往路で往路起点と往路終了点に渡って1.4mmの段差となる直線変化とし、復路で復路起点と復路終了点に渡って曲率半径100mmの場合とした。また、加工ローラの軸方向の往復動を被加工管の管端に達する直前で折り返すことで管端部分に図8に示すd−d≧2t、L−L≧2tとなるラッパ状の突起部を形成した場合と、そうでない場合とで管端でのしわ発生を比較した。
結果を表1に示す。直径に対する板厚の比率が小さくなるとしわが発生する加工条件範囲が広くなるが、ラッパ状の突起部を管端に形成することにより、その範囲が狭くなることが判明した。
The pressing amount pattern of the processing roller is a linear change with a step of 1.4 mm between the forward path start point and the forward path end point in the forward path of each path shown in FIG. 6B, and on the return path to the return path start point and the return path end point. It was assumed that the radius of curvature was 100 mm. Further, horn-shaped as the axial direction of reciprocating the pipe end portion by folding immediately before reaching the pipe end of the work pipe shown in FIG. 8 d-d 0 ≧ 2t, L-L 0 ≧ 2t processing roller The generation of wrinkles at the end of the tube was compared between when the protrusion was formed and when it was not.
The results are shown in Table 1. When the ratio of the plate thickness to the diameter is reduced, the processing condition range in which wrinkles are generated is widened. However, it has been found that the range is narrowed by forming a trumpet-shaped protrusion at the pipe end.

Figure 2009195913
Figure 2009195913

触媒(コンバーター)のケースあるいは消音器(マフラー)の形状を示す図Diagram showing the shape of catalyst (converter) case or silencer (muffler) 加工ローラの従来の往復動パターンを示す模式図Schematic diagram showing a conventional reciprocating pattern of processing rollers 本発明の加工ローラの往復動パターンの一例を示す模式図The schematic diagram which shows an example of the reciprocating motion pattern of the processing roller of this invention 本発明の加工ローラの往復動パターンの他の一例を示す模式図The schematic diagram which shows another example of the reciprocation pattern of the processing roller of this invention. 実施例1のスピニング加工した被加工管の管端形状を示す図The figure which shows the pipe end shape of the processed pipe which carried out the spinning process of Example 1. 実施例1の加工ローラの往復動パターンの模式図Schematic diagram of reciprocating pattern of processing roller of Example 1 実施例1の板厚変化を示す図The figure which shows the plate | board thickness change of Example 1. 実施例2のスピニング加工した被加工管の管端形状を示す図The figure which shows the pipe end shape of the processed pipe which carried out the spinning process of Example 2.

符号の説明Explanation of symbols

1:ケース 1a:ケースの小径の直管部 1b:ケースのテーパ部
1c:ケースの大径部 2:被加工管 3:テーパ部 4:加工ローラ
5:クランプ 6:管端 7:往路起点 8:往路終了点、復路起点
9:復路終了点 10:小径部 11:突起部
1: Case 1a: Small diameter straight pipe portion of case 1b: Tapered portion of case 1c: Large diameter portion of case 2: Pipe to be processed 3: Tapered portion 4: Processing roller 5: Clamp 6: Pipe end 7: Outward starting point 8 : Outward end point, return path start point 9: Return path end point 10: Small diameter part 11: Projection part

Claims (2)

被加工管の外側に配置されてその周りを相対的に公転する加工ローラを、前記被加工管の半径方向へ移動させつつ軸方向に往復動させる工程を複数パス行うことにより、前記被加工管の端部に向けて次第に縮径するテーパ部と、当該テーパ部に連続する小径部を成形する際、前記テーパ部の成形において、加工ローラの各パス毎の往復動を、前記被加工管の管端へ向う往路においては加工ローラの前記被加工管半径方向への押し込みを該パスの往路起点から該パスの往路終了点に向けて動いた軸方向の距離に比例して直線変化するように与え、かつ復路においては加工ローラの前記被加工管半径方向への押し込みを該パスの復路起点と復路終了点とを結んだ直線から、被加工管の中心軸方向に向けて凸となるように該パスの復路起点から該パスの復路終了点に渡って曲線変化するように与えることを特徴とするスピニング加工方法。   By performing a plurality of passes of a step of reciprocating the processing roller, which is disposed outside the processing tube and revolves around the processing roller, in the radial direction while moving in the radial direction of the processing tube, the processing tube When forming a tapered portion that gradually decreases in diameter toward the end of the tape and a small-diameter portion that continues to the tapered portion, in forming the tapered portion, the reciprocating motion for each pass of the processing roller is performed on the pipe to be processed. In the outward path toward the pipe end, the pushing of the processing roller in the radial direction of the pipe to be processed changes linearly in proportion to the axial distance moved from the forward path start point of the path toward the forward path end point of the path. In the return path, the pressing of the processing roller in the radial direction of the processed pipe is made convex toward the central axis direction of the processed pipe from the straight line connecting the return path start point and the return path end point of the path. The path from the return point of the path Spinning method characterized by providing to the curve vary over a return path end point of. 被加工管の外側に配置されてその周りを相対的に公転する加工ローラの軸方向の往復動を、前記被加工管の管端に達する直前で折り返させて前記被加工管の管端に突起部を形成した加工を行う請求項1に記載のスピニング加工方法。   The reciprocating motion in the axial direction of the processing roller which is arranged outside the processed pipe and revolves around the pipe is folded back just before reaching the pipe end of the processed pipe, and protrudes from the pipe end of the processed pipe The spinning processing method according to claim 1, wherein the processing in which the portion is formed is performed.
JP2008037072A 2008-02-19 2008-02-19 Spinning method Pending JP2009195913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037072A JP2009195913A (en) 2008-02-19 2008-02-19 Spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037072A JP2009195913A (en) 2008-02-19 2008-02-19 Spinning method

Publications (1)

Publication Number Publication Date
JP2009195913A true JP2009195913A (en) 2009-09-03

Family

ID=41140036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037072A Pending JP2009195913A (en) 2008-02-19 2008-02-19 Spinning method

Country Status (1)

Country Link
JP (1) JP2009195913A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233565A (en) * 2012-05-09 2013-11-21 Nisshin Steel Co Ltd Spinning method
JP2014046333A (en) * 2012-08-31 2014-03-17 Jfe Steel Corp Spinning method
JP2015213950A (en) * 2014-05-12 2015-12-03 湯川王冠株式会社 Different-diameter pipe
CN105537856A (en) * 2015-08-31 2016-05-04 上海交通大学 Connecting method for thin-wall shells
CN110548797A (en) * 2019-09-16 2019-12-10 芜湖西诺普汽车零部件科技有限公司 Coreless spinning processing method for large-proportion multi-time reducing hollow shaft
CN110732580A (en) * 2019-09-30 2020-01-31 西北工业大学 Method for establishing general rotation flange wrinkling prediction model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132038A (en) * 1997-10-29 1999-05-18 Sango Co Ltd Catalyst converter and its manufacture
JP2003120275A (en) * 2001-10-11 2003-04-23 Toyota Motor Corp Spinning molding method and catalyst converter
JP2004160536A (en) * 2002-09-18 2004-06-10 Toyota Motor Corp Spinning forming method and catalytic converter case
JP2006181592A (en) * 2004-12-27 2006-07-13 Sango Co Ltd Method and device for forming different diameter part of workpiece
JP2007098420A (en) * 2005-10-03 2007-04-19 Nisshin Steel Co Ltd Spinning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132038A (en) * 1997-10-29 1999-05-18 Sango Co Ltd Catalyst converter and its manufacture
JP2003120275A (en) * 2001-10-11 2003-04-23 Toyota Motor Corp Spinning molding method and catalyst converter
JP2004160536A (en) * 2002-09-18 2004-06-10 Toyota Motor Corp Spinning forming method and catalytic converter case
JP2006181592A (en) * 2004-12-27 2006-07-13 Sango Co Ltd Method and device for forming different diameter part of workpiece
JP2007098420A (en) * 2005-10-03 2007-04-19 Nisshin Steel Co Ltd Spinning method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233565A (en) * 2012-05-09 2013-11-21 Nisshin Steel Co Ltd Spinning method
JP2014046333A (en) * 2012-08-31 2014-03-17 Jfe Steel Corp Spinning method
JP2015213950A (en) * 2014-05-12 2015-12-03 湯川王冠株式会社 Different-diameter pipe
CN105537856A (en) * 2015-08-31 2016-05-04 上海交通大学 Connecting method for thin-wall shells
CN110548797A (en) * 2019-09-16 2019-12-10 芜湖西诺普汽车零部件科技有限公司 Coreless spinning processing method for large-proportion multi-time reducing hollow shaft
CN110548797B (en) * 2019-09-16 2020-07-07 芜湖西诺普汽车零部件科技有限公司 Coreless spinning processing method for large-proportion multi-time reducing hollow shaft
CN110732580A (en) * 2019-09-30 2020-01-31 西北工业大学 Method for establishing general rotation flange wrinkling prediction model

Similar Documents

Publication Publication Date Title
JP2009195913A (en) Spinning method
JP6180597B2 (en) Bending member manufacturing method and manufacturing apparatus
CN1165392C (en) Tube shaping equipment using tube bending roll, its shaping method and tube
JP5009364B2 (en) Method for manufacturing hydroformed products
JP4544468B2 (en) Spinning method
JP7163854B2 (en) Method for manufacturing bent metal pipes
WO2010084788A1 (en) Spinning method
JP2010051990A (en) Method of manufacturing necked elbow
US8683843B2 (en) Spinning method for forming pipe end
JP2010051971A (en) Method of bending steel pipe
JP2005297041A (en) Method and apparatus for forming pipe
JP2007283315A (en) Method for spinning tube end
JP2013233566A (en) Method of manufacturing exhaust system part for automobile
JP2013233565A (en) Spinning method
JP2009195942A (en) Spinning method
US20150322842A1 (en) Sub-muffler and manufacturing method of sub-muffler
JP2019177395A (en) Bending method and device of end of steel plate, manufacturing method of steel pipe, and equipment
JP6566231B1 (en) Steel plate end bending method and apparatus, and steel pipe manufacturing method and equipment
CN1249368C (en) U-shaped seamless stainless steel pipe and its preocessing process
JP6665643B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
JP2009195941A (en) Spinning method
WO2019188001A1 (en) Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
JP2006272451A (en) Metal bend having sectional shape for component, and its manufacturing method
Wiens et al. Internal Flow-Turning–a new approach for the manufacture of tailored tubes with a constant external diameter
JP5884810B2 (en) Spinning diameter reduction method with good workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130530