JP2014039907A - 起振力振幅制御装置及び制御方法並びに杭の施工方法 - Google Patents

起振力振幅制御装置及び制御方法並びに杭の施工方法 Download PDF

Info

Publication number
JP2014039907A
JP2014039907A JP2012183023A JP2012183023A JP2014039907A JP 2014039907 A JP2014039907 A JP 2014039907A JP 2012183023 A JP2012183023 A JP 2012183023A JP 2012183023 A JP2012183023 A JP 2012183023A JP 2014039907 A JP2014039907 A JP 2014039907A
Authority
JP
Japan
Prior art keywords
relative angle
actuator
displacement member
port
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012183023A
Other languages
English (en)
Other versions
JP5643795B2 (ja
Inventor
Toshio Inoue
敏男 井上
Kei Mizotsugu
佳 溝次
Yukichi Suzuki
鈴木勇吉
Miyoshi Sato
三禄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chowa Kogyo Co Ltd
Original Assignee
Chowa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chowa Kogyo Co Ltd filed Critical Chowa Kogyo Co Ltd
Priority to JP2012183023A priority Critical patent/JP5643795B2/ja
Publication of JP2014039907A publication Critical patent/JP2014039907A/ja
Application granted granted Critical
Publication of JP5643795B2 publication Critical patent/JP5643795B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

【課題】回転機械における起振力振幅制御装置において起振力振幅を零と最大の間の中間値において確実に一定に保持可能とする。
【解決手段】固定偏心重錘51と可動偏心重錘52とが同期回転する回転機械50に取り付けられ、相対角度を制御する制御装置10であって、揺動アクチュエータ部20は、両偏心重錘51、52とそれぞれ一体のアクチュエータ軸25及びアクチュエータケーシング21と、給排油を行う第1及び第2ポート26、27と、を有し、制御部30は、相対角度の目標値に対応する入力信号Pcが入力され、目標値に対応する位置に変位する第1変位部材35と、相対角度の現在値に対応する位置に第1変位部材35と同じ向きに変位する第2変位部材34と、第1及び第2変位部材35、34の位置の差に対応した開度にて給排油を行う複数の制御ポート14,1715,16と、を有する。
【選択図】図2

Description

本発明は、バイブロハンマにおいて起振力振幅を発生する回転機械に関し、特に起振力振幅が所定の値に維持されるように、又は、起振力振幅が所定の変化を行うように制御するための起振力振幅制御装置及び制御方法並びに杭の施工方法に関する。
バイブロハンマにおいて起振力振幅を発生する回転機械(起振機)が知られている。このような回転機械には、駆動軸と1又は複数の従動軸とを有する多軸のものがある。例えば二軸、四軸の回転機械を備えたバイブロハンマは、それぞれ二軸バイブロハンマ、四軸バイブロハンマと称されている。
図16(a)は、二軸バイブロハンマにおける従来の回転機械を概略的に示した横断面図である。回転機械50は、駆動プーリ56により回転駆動される駆動軸54と、駆動軸54の回転を伝達される従動軸55とを有する。駆動軸54及び従動軸55にはそれぞれ、軸に固定された固定偏心重錘51と、軸に対して回転自在である可動偏心重錘52とが装着されている。駆動軸54の回転がギア53及び起振力振幅制御装置100を介して他の偏心重錘に伝達されることにより、全ての偏心重錘が同期回転する。
各軸の固定偏心重錘51と可動偏心重錘52は、互いに一定の位相差(相対角度)を保持して回転する。よって、1つの軸についての偏心モーメントは、固定偏心重錘51と可動偏心重錘52の各偏心モーメントを加算したものとなる。そして、回転機械50の総合偏心モーメントは、各軸の偏心モーメントを加算したものとなる。
固定偏心重錘51と可動偏心重錘52の相対角度を変化させると、当該軸についての偏心モーメントが変化する。これを利用して、回転機械50の総合偏心モーメントを零から最大までの範囲で変化させることが、原理的には可能である。回転機械の発生する起振力振幅は、総合偏心モーメントに比例するから、総合偏心モーメントを制御することは、起振力振幅を零から最大までの範囲で制御することを意味する。
従来、固定偏心重錘と可動偏心重錘(以下、まとめて「両偏心重錘」と称する場合がある)の相対角度を変化させるための制御装置が知られている(例えば特許文献1、2)。以下、この制御装置を「起振力振幅制御装置」と称する。図16(a)では、起振力振幅制御装置100は、回転機械50の従動軸55の一端に取り付けられている。
特許文献1、2には、両偏心重錘の回転を停止することなく、その相対角度を連続的に変更するための起振力振幅制御装置が開示されている。この従来の起振力振幅制御装置は、図16(b)に示すようなベーン揺動アクチュエータで構成される可逆回動機構を備えている。図16(b)では、一例としてダブルベーンのものを示している。
図16(b)の概略断面図に示すように、ベーン揺動アクチュエータは、アクチュエータケーシング101内に設けたアクチュエータ軸102と、アクチュエータ軸102から径方向外方に反対向きに延びる一対のベーン103と、ベーン103のストッパとしてアクチュエータケーシング101から径方向内方に対向して延びる一対のシュー104とを具備する。各ベーン103は、2つのシュー104間に形成される室を2つに区画する。A、A’ポートからA室、A’室に給油すると、ベーン103がアクチュエータ軸102とともにアクチュエータケーシング101に対して反時計回りに回動する。同時に、B室、B’室からB、B’ポートを介して排油される。給油をB、B’ポートに切り替えると、逆向きの動作となる。
アクチュエータ軸102は、固定偏心重錘51が装着された従動軸55と一体である。一方、アクチュエータケーシング101は、従動軸55の可動偏心重錘52と外管52aを介して一体に接続されている。図16(c)は、二軸の回転機械50の模式的な縦断面図を示す。アクチュエータ軸102のアクチュエータケーシング101に対する角度変化は、固定偏心重錘51と可動偏心重錘52の相対角度の変化となる。このように、ベーン揺動アクチュエータに供給する圧油を制御することにより、二軸の回転機械50を回転させたまま総合偏心モーメントを増減し、すなわち起振力振幅を増減することが、原理的には可能である。
特開2002−66458号公報 特開2002−177887号公報
しかしながら、上述した従来の起振力振幅制御装置には、以下のような問題点がある。
起振力振幅を零と最大の間の任意の中間値(すなわち総合偏心モーメントの中間値)とするためには、両偏心重錘の相対角度を零と最大の間の中間値とする必要がある。すなわち、ベーン103が2つのシュー104の間の任意の中間位置で停止するように各ポートに対する給油・排油を制御する必要がある。しかしながら、従来のアクチュエータ100は、油圧源の供給圧力の調節により相対角度を操作する方式であるため、ベーン103を中間位置に一旦停止させたとしても、その後なんら制御を行わなければ、ベーン103を一定の位置に停止し続け保持することができない。特に、地盤の固有振動とバイブロハンマの強制振動との共振現象等によって実際に発生する振幅に大きな変化が生ずるような場合には、相対角度の維持はできない。
従来は、ベーン103の位置を確実に保持できるのは、両端の位置すなわち両偏心重錘の相対角度が零又は最大の位置のみであった。このように、従来の起振力振幅制御装置では、起振力振幅を零又は最大値以外の中間値にて確実に保持することは、困難であった。
以上の現状に鑑み、本発明は、起振力振幅を発生する回転機械における起振力振幅制御装置において、零から最大までの全範囲で原理的に起振力振幅制御を可能にする構成を提供することを目的とする。さらに、本発明は、このような起振力振幅制御装置を備えた回転機械を用いて杭の打ち込み又は引き抜きを行う施工方法を提供することを目的とする。
上記の目的を達成するべく本発明は以下の構成を有する。なお、括弧内の数字は、後述する実施形態を示す図面中の符号であり、参考のために付する。
本発明の第1の態様は、回転軸(55)に固定された固定偏心重錘(51)と前記回転軸(55)に回動自在に装着された可動偏心重錘(52)とが同期回転を行うことにより前記固定偏心重錘(51)と前記可動偏心重錘(52)の相対角度に応じた起振力振幅を発生する回転機械(50)に取り付けられ、前記起振力振幅を決定するべく前記相対角度を制御するための制御装置(10)であって、揺動アクチュエータ部(20)と、制御部(30)と、を備える。
(a)前記揺動アクチュエータ部(20)は、
(a1)前記固定偏心重錘(51)と一体的に回転するアクチュエータ軸(25)と、
(a2)前記可動偏心重錘(52)と一体的に回転するアクチュエータケーシング(21)と、
(a3)前記アクチュエータ軸(25)と前記アクチュエータケーシング(21)の相対角度を変化させるべく一方が給油を行い他方が排油を行う第1ポート(26)及び第2ポート(27)と、を有する。
(b)前記制御部(30)は、
(b1)前記相対角度の目標値に対応する入力信号(Pc)が入力される入力機構(36)と、
(b2)前記入力信号(Pc)の入力に応じて前記目標値に対応する位置に変位する第1変位部材(35)と、
(b3)前記揺動アクチュエータ部(20)における前記相対角度の現在値に対応する位置に、前記第1変位部材(35)の変位の向きと同じ向きで変位する第2変位部材(34)と、
(b4)前記第1変位部材(35)の位置と前記第2変位部材(34)の位置の差に対応した開度にて開かれ、前記揺動アクチュエータ部(20)の前記第1ポート(26)及び前記第2ポート(27)に対する給油又は排油を行う複数の制御ポート(14,17)(15,16)と、を有する。
上記第1の態様において、前記目標値が一定である場合、前記入力信号(Pc)が入力されたとき、前記第1変位部材(35)は前記目標値に対応する位置に変位するとともに、前記第2変位部材(34)が前記第1の変位部材(35)と同じ向きに変位し、前記第1変位部材(35)の位置と前記第2変位部材(34)の位置の差が零となったときに、前記複数の制御ポート(14,17)(15,16)が全て閉じられることにより、前記相対角度が前記目標値に維持される。
上記第1の態様において、前記目標値が時間的に変化する場合、前記入力信号(Pc)が入力されたとき、前記第1変位部材(35)が前記目標値に対応して変位し続ける一方、前記第2変位部材(34)が前記第1変位部材(35)と同じ向きに変位し続け、前記第1変位部材(35)の位置と前記第2変位部材(34)の位置の差に対応した開度にて前記複数の制御ポート(14,17)(15,16)が開かれ続けることにより前記相対角度が時間的に変化し続ける。
上記第1の態様において、前記第2変位部材(34)の位置が外乱により変位したとき、前記複数の制御ポート(14,17)(15,16)の開度が、前記外乱による変位に対応した変化量だけ変化し、前記第1ポート(26)及び前記第2ポート(27)に対する給油又は排油が行われることにより、前記第2変位部材(34)の位置が回復される。
上記第1の態様において、好適には、直動形四方案内弁を備え、前記直動形四方案内弁は、前記第1変位部材(35)として、中心軸上を軸方向変位可能に配置された略円柱状のスプール(35)と、前記第2変位部材(34)として、前記スプール(35)を内側に嵌挿させて軸方向変位可能に配置された略円筒状のスリーブ(34)と、を具備し、前記スプール(35)に設けられた径方向に突出する複数のランド部(35a)の各々と、前記スリーブ(34)に設けられた径方向に貫通する複数の貫通路(34a)とが対向する境界部に前記複数の制御ポート(14,15,16,17)が形成される。
さらに、前記揺動アクチュエータ部(20)における相対角度の現在値が、前記アクチュエータ軸(25)と一体的に回転する斜板(39)と、前記スリーブ(34)から突出し前記斜板(39)に当接するスリーブ突起(40)を介して前記スリーブ(34)に伝達される。
上記第1の態様において、好適には、 回転形四方案内弁を備え、前記回転形四方案内弁は、前記第1変位部材(35)として、中心軸周りで回動可能に配置された略円筒状のスプール(35)と、前記第2変位部材(34)として、前記スプール(35)を内側に嵌挿させて中心軸周りで回動可能に配置された略円筒状のスリーブ(34)と、を具備し、前記スプール(35)に設けられた径方向に突出する複数のランド部(35a)の各々と、前記スリーブ(34)に設けられた径方向に貫通する複数の貫通路(34a)とが対向する境界部に前記複数の制御ポート(14,15,16,17)が形成される。
さらに、前記揺動アクチュエータ部(20)における相対角度の現在値が、前記スリーブ(34)が前記アクチュエータケーシング(21)に一体的に連結されていることにより、前記スリーブ(34)に伝達される。
本発明の第2の態様は、上記の起振力振幅制御装置(10)を取り付けた回転機械(50)を用いて杭の打ち込み又は引き抜きを行う施工方法であって、杭の打込み又は引抜きを行う工程中、回転機械(50)を回転させた状態にて、既知の土質情報等に基づいて演算装置により両偏心重錘(51,52)の相対角度の目標値を算出し、算出した目標値に対応する入力信号圧力(Pc)を前記起振力振幅制御装置(10)に入力することにより、両偏心重錘(51,52)の相対角度の現在値を目標値に追随させて、杭の打ち込み又は引き抜きを行うことを特徴とする。
本発明の第3の態様は、回転軸(55)に固定された固定偏心重錘(51)と前記回転軸(55)に回動自在に装着された可動偏心重錘(52)が同期回転を行うことにより前記固定偏心重錘(51)と前記可動偏心重錘(52)の相対角度に応じた起振力振幅を発生する回転機械(50)に対して揺動アクチュエータ(20)を取り付け、前記揺動アクチュエータ(20)は、前記固定偏心重錘(51)と一体的に回転するアクチュエータ軸(25)と、前記可動偏心重錘(52)と一体的に回転するアクチュエータケーシング(21)と、前記アクチュエータ軸(25)と前記アクチュエータケーシング(21)の相対角度を変化させるべく一方が給油を行い他方が排油を行う第1ポート(26)及び第2ポート(27)と、を有しており、前記起振力振幅を決定するべく前記揺動アクチュエータ(20)における前記相対角度を制御する制御方法であり、以下の各ステップを有する。
(b1)前記相対角度の目標値に対応する入力信号(Pc)を入力するステップと、
(b2)前記入力信号(Pc)の入力されたとき、第1変量(35)を前記目標値に対応するように変化させるステップと、
(b3)前記揺動アクチュエータ部(20)における前記相対角度の現在値に対応するように、前記第1変量(35)と同じ増減の方向で第2変量(34)を変化させるステップと、
(b4)前記第1変量(35)と前記第2変量(34)の差に対応した量にて、前記揺動アクチュエータ部(20)の前記第1ポート(26)及び前記第2ポート(27)に対する給油又は排油を行うステップと、を有する。
本発明の効果を、起振力振幅制御装置について説明する。起振力振幅制御方法及び杭の施工方法についても同様である。
本発明による起振力振幅制御装置は、回転機械の両偏心重錘の相対角度を直接変化させる揺動アクチュエータ部と、揺動アクチュエータ部を制御する制御部とを有する。揺動アクチュエータ部は、構成としては上述した従来の揺動アクチュエータと基本的に同じであるが、本発明独自の制御部により制御されることにより、従来とは異なる動作を行うことができる。
制御部は、揺動アクチュエータ部とともに油圧サーボ機構を構成しており、以下の(i)〜(iv)の構成要素及び作用効果を有する。
(i)相対角度の目標値に対応する入力信号が入力される入力機構:
相対角度の目標値は、相対角度の変化可能な範囲内において、外部の演算装置により既知の土質情報等に基づいて適切な値を演算し、入力することが可能である。これにより、相対角度の零と最大値の間の任意の中間値を目標値として設定できる。相対角度の目標値は、油圧サーボ機構の入力値に相当する。
(ii)入力信号の入力に応じて目標値に対応する位置に変位する第1変位部材:
第1変位部材は、相対角度の目標値すなわち油圧サーボ機構の入力値を具現化する構成要素であり、入力機構の構成要素である。
(iii)揺動アクチュエータ部における相対角度の現在値に対応する位置に、第1変位部材の変位の向きと同じ向きで変位する第2変位部材:
第2変位部材は、油圧サーボ機構の出力値である相対角度を具現化する構成要素である。この第2変位部材の位置は、次の構成要素(b4)に記載するように、上述した第1変位部材の位置と併せて出力値の制御に用いられる。第2変位部材は、出力値を入力値に戻すフィードバック機構の構成要素であり、第2変位部材の位置は、フィードバック値に相当する。
また、第2変位部材が第1変位部材と同じ向きに変位することは、負のフィードバックであることを意味している(よって、本明細書における「フィードバック」は負のフィードバックの意味である)。負のフィードバック機構により、出力値を入力値にフィードバックし、入力値と出力値の差に基づいて出力値を制御することにより、最終的に出力値を入力値と同じとすることができる。すなわち、相対角度の現在値を目標値に追随させることができる。
(iv)第1変位部材の位置と第2変位部材の位置の差に対応した開度にて開かれ、揺動アクチュエータ部の第1ポート及び第2ポートに対する給油又は排油を行う複数の制御ポート:
複数の制御ポートは、第1変位部材の位置と第2変位部材の位置の差に対応した開度で開かれる。すなわち、複数の制御ポートは、目標値(入力値)と現在値(出力値)の差を検出する検出機構に相当する。同時に、複数の制御ポートの開度は、揺動アクチュエータ部に対する供給流量と排出流量を決定することから、複数の制御ポートは、出力値を直接制御する制御機構でもある。
第1変位部材の位置と第2変位部材の位置は、一方又は双方が時間的に変化するので制御ポートの開度(供給流量と排出流量)も時間的に変化する。供給流量と排出流量の時間積分が相対角度の変化量に相当することになる。
上記の、フィードバック機構を備えた油圧サーボ機構により、以下のような両偏心重錘の相対角度すなわち起振力振幅の制御が可能となる。
・現在値とは異なる一定の目標値の入力に対して、両偏心重錘の相対角度が一定の目標値に対応する値に維持される(一定の目標値への追従)。
・時間的に変化する目標値の入力に対して、両偏心重錘の相対角度が目標値の変化に対応した時間的変化を行う(時間的に変化する目標値への追従)。
・両偏心重錘の相対角度が目標値に対して追従しているとき、外乱(回転機械の振動や地盤反力の急激な変動等)により、両偏心重錘の相対角度が目標値への追従状態からずれたとき、目標値に追従する状態を自動的に回復する。
ここで、回転機械を回転させた状態で両偏心重錘の相対角度を変化させ、回転機械の起振力振幅を増減制御する意義について、説明する。
これまでの研究から、対象地盤の固さと、回転機械における必要な起振力振幅との間に、ある程度の相関関係があることが解明されている。例えば、必要な起振力振幅は、固い地盤では比較的大きく、軟らかい地盤では比較的小さい。
回転機械の運転に必要な、起振力振幅をP、実際の振動の振幅をAとすると、これらの関係は、以下の通りとなる。
回転機械の計算上の起振力振幅Pは、
=K・ω×10−3/g
:起振力振幅(振動を継続させるための外力により回転機械が発生する遠心力)
K :偏心重錘の偏心モーメント量
ω:強制振動の角振動数
ω=2π・f
π:円周率
f:振動の周波数
g:重力の加速度
回転機械の計算上の振動の振幅Aは、
=K/W
:振動の振幅
:偏心重錘を有する回転機械の振動重量と杭の全重量
さらに、回転機械が発生する振幅をAとすると、回転機械の振動加速度αoは、
αo=A・ω
αo:回転機械の振動加速度
で表わされる。
上式から、偏心重錘を有する回転機械の発生する起振力振幅Pは偏心モーメントに比例するから、偏心モーメントを可変できれば、地盤の固さに応じた起振力Pを調整することが可能となる。具体的には、地盤が固い場合は偏心モーメントKと振動加速度αoを増大させ、地盤が軟らかい場合は偏心モーメントKと振動加速度αoを減少させればよい。
杭の打ち込み又は引き抜きにおいては、経験的に最低必要な振動の振幅量と振動加速度量の大きさが存在する。これらは、回転機械の振動の周波数fと地盤条件(土質とN値)により、経験的に一定の目安となる値が与えられる。
Figure 2014039907
杭の打ち込み又は引き抜きにおいては、地盤の固さに応じた最適な起振力振幅Pとするために、最適な起振力振幅に対応する偏心モーメント量を発生する両偏心重錘の相対角度を目標値として算出する。起振力振幅制御装置に対して目標値に相当する圧力入力信号を印加して制御する。
図1は、本発明の起振力振幅制御装置の一例を適用した二軸バイブロハンマの回転機械を概略的に示した平断面図である。 図2は、図1の起振力振幅制御装置における軸を含む断面を概略的に示した図である。 図3は、起振力振幅制御装置の中立状態における制御部の主要部を概略的かつ模式的に示した断面図である。 図4(a)(b)は、起振力振幅制御装置の相対角度の移行過程の一例における制御部の主要部を概略的かつ模式的に示した断面図である。 図5(a)(b)は、起振力振幅制御装置の相対角度の移行過程の別の例における制御部の主要部を概略的かつ模式的に示した断面図である。 図6は、本発明におけるフィードバック機構が平衡状態の回復・維持に寄与することを説明する図である。 図7は、相対角度の目標値と、相対角度の現在値との関係を模式的に示した図である。 図8は、本発明の起振力振幅制御装置の揺動アクチュエータ部の横断面(a1)(b1)(c1)と、それぞれに対応する回転機械の模式的な横断面(a2)(b2)(c2)を示した図である。 図9(a)(b)は、斜板と突起の当接点の関係を示した図である。 図10は、回転形四方案内弁を用いた起振力振幅制御装置における、軸を含む断面を概略的に示した図である。 図11は、回転形四方案内弁による制御部の動作原理を説明した図である。 図12は、図10のW断面を概略的に示した図である。 図13は、図10のX断面を概略的に示した図である。 図14は、図10のY断面を概略的に示した図である。 図15は、図10のZ断面を概略的に示した図である。 図16(a)は二軸バイブロハンマにおける従来の回転機械を概略的に示した図である。(b)はベーン揺動アクチュエータの断面図、(c)は偏心重錘の横断面図である。
以下、実施例を示す図面を参照して本発明の実施形態を説明する。
(1)回転機械の全体構成
図1は、本発明の起振力振幅制御装置の一例を適用した二軸バイブロハンマの回転機械を概略的に示した平断面図である。なお、本発明の起振力振幅制御装置は、二軸バイブロハンマに限らず、他の多軸バイブロハンマにも同様に適用できるものである。
図1に示す回転機械50は、上述した図9(a)と同じ構成である。駆動プーリ56にモータ出力が伝達され、駆動軸54が回転駆動される。駆動軸54及び従動軸55にはそれぞれ、軸に固定された固定偏心重錘51と、軸に対して回転自在である可動偏心重錘52とが装着されている。駆動軸54の回転力が複数のギア53と揺動アクチュエータ部20を介して他の偏心重錘54、55に伝達されることにより、全ての偏心重錘54、55が同期回転する。
通常、各軸の固定偏心重錘51と可動偏心重錘52は、互いに一定の位相差(相対角度)を保持して回転する。固定偏心重錘51と可動偏心重錘52の相対角度の制御は、起振力振幅制御装置10により行う。起振力振幅制御装置10は、回転機械50の従動軸55の一端に取り付けられている。なお、別の例として、駆動軸54における駆動プーリ56とは反対側の端部に起振力振幅制御装置10を取り付けてもよい。多軸の回転機械においては、いずれか1つの軸を取付軸として、その一端に起振力振幅制御装置10を取り付けることができる。全ての軸の両偏心重錘はギア53及び揺動アクチュエータ部20を介して連動するので、1つの起振力振幅制御装置10により、全ての軸の両偏心重錘の相対角度を同時に変更することができる。
本発明の起振力振幅制御装置10は、従動軸55の一端側に接続される揺動アクチュエータ部20と、従動軸55とは反対側にて揺動アクチュエータ部20に接続される制御部30とを備えている。制御部30は、揺動アクチュエータ部20における可逆回動動作を本発明独自の構成にて制御する。(なお、揺動アクチュエータ部20は、構成としては上述した従来の揺動アクチュエータ20と基本的に同じであるが、本発明独自の制御部30により制御されることにより、従来とは異なる動作を実現するので、起振力振幅制御装置10の一部とみなして「揺動アクチュエータ部」と称することとする。)
(2)起振力振幅制御装置の構成(直動形四方案内弁方式)
図2は、図1の起振力振幅制御装置10における、軸を含む断面を概略的に示した図である。図1も参照しつつ説明する。起振力振幅制御装置10は、揺動アクチュエータ部20と、制御部30とを備えている。制御部30は、一つの実施例であり、直動形四方案内弁を用いた方式である。なお、便宜上、揺動アクチュエータ部20側(図の左方側)を前方とし、反対側を後方として説明する。
(2−1)揺動アクチュエータ部の構成
揺動アクチュエータ部20は、アクチュエータケーシング21内に設けたアクチュエータ軸25と、アクチュエータ軸25から径方向外方に延びるベーン23と、アクチュエータ軸周りの圧油漏れを防ぎかつベーン23のストッパとしてアクチュエータケーシング21から径方向内方に延びるシュー22とを具備する。図2では現れていないが、後述する図8に示すように、ベーン23及びシュー22はそれぞれ一対が180°の角度で設けられており、ダブルベーン型の揺動アクチュエータである。但し、揺動アクチュエータ部20は、ダブルベーン型に限定されるものではなく、例えばシングルベーン型でもよい。シュー22には、ベーン23により区画される各室に給排油する2つのポート26、27が設けられている。2つのポート26、27のうちの一方は、A室に給排油するAポート26であり、他方は、B室に給排油するBポート27である。
アクチュエータ軸25は、固定偏心重錘が装着された従動軸55と同軸上に接続されている。一方、アクチュエータケーシング21は、従動軸55に装着された可動偏心重錘52に接続された外管52aに接続されている。図1を参照すると、外管52aは従動軸55と同軸であり回転機械ケーシング60に設けたベアリングにより支持されている。これにより、アクチュエータ軸25は固定偏心重錘51と一体に回転可能であり、一方、アクチュエータケーシング22は可動偏心重錘52と一体に回転可能である。従動軸55に装着された固定偏心重錘51と可動偏心重錘52の間の回転の伝達は、揺動アクチュエータ部20を介して行われる。回転機械が回転駆動されているとき、揺動アクチュエータ部20全体も、両偏心重錘51、52とともに回転している。
アクチュエータ軸25(すなわちベーン23)がアクチュエータケーシング21に対して相対的に静止しているとき、アクチュエータ軸25とアクチュエータケーシング21の相対角度は一定に保持される。アクチュエータ軸25とアクチュエータケーシング21の相対角度は、すなわち固定偏心重錘51と可動偏心重錘52の相対角度である。アクチュエータ軸25とアクチュエータケーシング21の相対角度が変化すると、固定偏心重錘51と可動偏心重錘52の相対角度も変化する。
(2−2)制御部の構成
制御部30は、ケーシング31、油路ロータ32、マニホールド33、スリーブ34及びスプール35の略円筒状又は略円柱状の部材を有し、これらの部材は、揺動アクチュエータ部20のアクチュエータ軸25と同軸に配置されている。
略円筒状のマニホールド33は、前端部33aがアクチュエータケーシング21の端部に接続され、アクチュエータケーシング21とともに回転する。マニホールド33の外側には、油路ロータ32及びベアリング44、45を介してケーシング31が配置されている。油路ロータ32は、回転しないケーシング31内の油路と、回転するマニホールド33内の油路とを連通させている。このような油路ロータ32は公知のものである。
ケーシング31には、外部から制御部30に対して給油又は排油を行うための複数のジョイント(図示せず)が設けられ、次の3種の油路にそれぞれ連通している。
・油圧源ポートPs:油圧源(図示せず)から一定圧力が常時供給される。
・戻りポートPd:油圧源タンク(図示せず)へ排油される。
・入力信号圧力ポートPc:入力信号圧力が外部の入力信号圧力操作器(図示せず)から印加される。入力信号圧力ポートPcは、油圧源ポートPsの油圧源とは全く独立した油圧機構である。
油圧源ポートPsに供給される圧力は、揺動アクチュエータ部20を介して、大きな慣性モーメントと偏心モーメントをもつ両偏心重錘の実際の相対角度変化を生じさせる駆動用圧力であるから、大パワーの油圧源によるものである。一方、入力信号圧力ポートPcに印加される入力信号圧力は、相対角度の目標値に対応した変位をスプール35に対して生じさせるための制御用圧力であるから、油圧源ポートPsの油圧源に比べて遙かに微小パワーの圧力である。微小パワーで大パワーの油圧機構を制御できることが、本発明の特徴の一つである。
入力信号圧力が外部の入力信号圧力操作器(図示せず)から印加されるが、これは、油圧源ポートPsの油圧源とは、全く独立した油圧機構である。このことは、入力信号圧力操作器が油圧機構に限られないことを意味する。例えば、電気油圧機構により入力信号圧力を発生させ、スプール35の変位を生じさせてもよい。
なお、入力信号圧力操作器を油圧機構とした場合は、次の利点がある。通常、杭打ち作業現場ではバイブロハンマ本体は運転地点から数十メートル以上離れている。そこで、制御装置10に対する入力信号圧力の印加には遠隔信号伝達が必要となる。その場合、作業現場での感電事故を避けるためには、電気的信号伝達手段よりも油圧による信号伝達の方が望ましいといえる。
マニホールド33の壁内には、油圧源ポートPs、戻りポートPd及び入力信号圧力ポートPcが径方向に貫通し、マニホールド33の円筒内面上にそれぞれ開口している。さらに、マニホールド33の壁内には、アクチュエータケーシング21内のAポート26へ連通する負荷ポート18、及び、Bポート27へ連通する負荷ポート19が形成されている。負荷ポート18、19の他端は、マニホールド33の円筒内面上にそれぞれ開口している。なお、負荷ポート18、19は、揺動アクチュエータ部20のAポート、Bポートが複数の場合には対応した数だけ設けられる。
マニホールド33の内側には、マニホールド33とともに回転しかつ軸方向変位可能であるスリーブ34が配置されている。かつ、マニホールド33には直動形のスプライン(メス)、スリーブ34には直動形のスプライン(オス)が具備されている。このためにスリーブ34は、スプライン軸41を介してマニホールド33と接続される。略円筒状のスリーブ34は、軸方向変位するとき、その円筒外面がマニホールド33の円筒内面に対して摺動する。スリーブ34の壁内には、複数の負荷ポート18、19、油圧源ポートPs及び戻りポートPdとそれぞれ常時連通する複数の径方向の貫通路34aが形成されている。
さらに、スリーブ34の前端面には、突起40が設けられている。突起40は、斜板39に当接している。斜板39におけるスリーブ34に対向する面は、軸に対して垂直ではなく所定の角度で傾斜した傾斜面39aとなっている。突起40は、傾斜面39a上を抵抗無く摺動できるように、球面又は曲面の頂点にて傾斜面39aに当接することが好適である。斜板39の前端面は、アクチュエータ軸25の端部に接続されている。従って、斜板39は、アクチュエータ軸25と一体的に回転する。スリーブ34の他方の端面とマニホールド端部壁33bとの間に設けられたスリーブバネ43により、スリーブ34及び突起40は、斜板39に対して常に押圧されている。
ここで、マニホールド33及びスリーブ34はアクチュエータケーシング21とともに回転し、一方、斜板39はアクチュエータ軸25とともに回転する。従って、アクチュエータケーシング21とアクチュエータ軸25の相対角度が維持され回転している間は、マニホールド33及びスリーブ34並びに斜板39は、一体に回転している。一方、アクチュエータケーシング21とアクチュエータ軸25の相対角度が変化すると、斜板39がスリーブ34に対して相対的に回動することになる。この結果、突起40の傾斜面39aに対する当接位置が変わることにより、スリーブ34が軸方向に変位することとなる。斜板39、突起40およびスリーブ34は、制御部30の動作により生じた揺動アクチュエータ部20における相対角度の変化を、制御部30にフィードバックするフィードバック機構である。
スリーブ34の内側には、軸方向変位可能に嵌挿されたスプール35が配置されている。略円柱状のスプール35には、径方向に突出する複数の環状のランド部35aが形成されている。隣り合う2つのランド部35aの間は、環状の溝となっている。スプール35が軸方向変位するとき、ランド部35aが、スリーブ34の円筒内面に対して摺動する。スプール35とスリーブ34の軸方向の相対的な変位により、スプール35のランド部35aが、スリーブ34の貫通路34aを閉鎖したり、開いたりする。この部分が、後述する複数の制御ポートとなる。スプール35は、前端面の平衡バネ38と、後端面の平衡バネ42により支持されている。
スプール35の後端面側には、圧力室36が設けられている。圧力室36に対しては、入力信号圧力ポートPcが連通している。外部の入力信号圧力操作器から入力信号圧力ポートPcを介して圧力を上昇させると、スプール35の後端面の油圧力が変わり、軸方向の力のバランスが崩れてスプール35が前方に軸方向変位する。一方、入力信号圧力ポートPcを介して圧力を降下させると、後方に変位する。入力信号圧力は相対角度の目標値に対応しているので、スプール35の軸方向の位置は、相対角度の目標値に対応することとなる。
図2におけるスリーブ34とスプール35の位置は、起振力振幅制御装置10の動作における、ある時点の状態を例示したものである。動作の詳細については後述するので、ここでは詳細な説明はしない。この例では、外部の入力信号圧力操作器から入力信号圧力ポートPcを介して圧力室36の圧力を降下させたことにより、スプール35が後方に変位している。油圧源ポートPsからの圧油(黒矢印)は、スリーブ34の貫通路34aを通過してスプール35の外周面に沿って流れ、Aポート26に連通する負荷ポート18内へ給油されている。一方、Bポート27に連通する負荷ポート19からの戻り油(白矢印)は、スリーブ34の貫通路34aを通過してスプール35の外周面に沿って流れた後、戻りポートPdから排出されている。
スリーブ34とスプール35は、いわゆる直動形四方案内弁を構成している。一般的な四方案内弁では、スリーブ又はスプールの一方が固定されているが、本発明の起振力振幅制御装置10においては、スリーブ34とスプール35の双方が軸方向変位する点が独自の構成である。
なお図2は、主として各油路の機能を説明するためのものであり、各油路の数及び位置については図示の例に限られない。揺動アクチュエータ部20のタイプ(ダブルベーンかシングルベーン)により、また制御部30の設計により、異なる数又は位置とすることが可能である。
(3)起振力振幅制御装置の動作
図3〜図5を参照して、本発明の起振力振幅制御装置10の動作を説明する。説明において図2中の符号を参照する場合がある。図3〜図5は、起振力振幅制御装置10の制御部30の主要部を概略的かつ模式的に示した断面図である。なお、図3〜図5のいずれの状態においても、回転機械の全ての偏心重錘が同期回転を持続しているものとする。同期回転は、両偏心重錘の相対角度が変化する速度に比べて遙かに高速回転である。
スプール35、平衡バネ42、38、入力信号圧力Pc及び圧力室36は、相対角度の目標値(入力値)を入力する入力機構を構成する。
斜板39、突起40及びスリーブ34は、揺動アクチュエータ部20における相対角度の現在値(出力値)をフィードバックするフィードバック機構を構成する。
スリーブ34及びスプール35は、相対角度の目標値(入力値)と現在値(出力値)の差を検出する検出機構及びこの差に応じて出力値を制御する制御機構を構成する。
(3−1)平衡状態の一例
図3は、相対角度の目標値が一定の場合の起振力振幅制御装置10の平衡状態の一例を示している。相対角度の目標値が一定の場合とは、入力信号圧力Pcが時間的に変化しない場合である。
スリーブ34の複数の貫通路34aの境界角部とスプール35の複数のランド部35aの境界角部は正確に向かい合い、複数の給油制御ポート14、15及び複数の排油制御ポート16、17が形成される。給油制御ポート14は、油圧源ポートPsをAポート用の負荷ポート18へ連通させる又は閉鎖するポートである。給油制御ポート15は、油圧源ポートPsをBポート用の負荷ポート19と連通させる又は閉鎖するポートである。排油制御ポート16は、戻りポートPdをAポート用の負荷ポート18と連通させる又は閉鎖するポートである。排油制御ポート17は、戻りポートPdをBポート用の負荷ポート19と連通させる又は閉鎖するポートである。
この平衡状態においては、複数の給油制御ポート14、15及び複数の排油制御ポート16、17の全てが閉じている。なお、スリーブ34及びスプール35の双方の、軸方向位置は、図示の位置に限らず、入力機構により決定されたスプール35の軸方向位置となる。スプール35の軸方向位置は、相対角度の目標値に対応する。斜板39の回動位置も、図示の位置に限らず、相対角度の目標値に相当する回動位置である。
この平衡状態では、全ての給油制御ポート14、15及び排油制御ポート16、17が閉じているため、揺動アクチュエータ部20への給排油は行われない。従って、揺動アクチュエータ部20の各室は密閉状態となり、ベーン23もアクチュエータケーシング21に対して相対的に回動できない。よって、この平衡状態では、両偏心重錘の相対角度が安定に維持される。
(3−2)相対角度の移行過程の第1の例
図4(a)(b)は、起振力振幅制御装置10の相対角度の移行過程の一例における制御部の主要部を概略的かつ模式的に示した断面図である。ここでの相対角度の移行過程とは、相対角度の1つの目標値に相当する平衡状態(例えば図3の状態)から別の目標値に相当する平衡状態へ移行するまでの過渡状態である。
図4(a)は移行中の状態を示す。例えば図3の平衡状態にある制御部30に対し、外部の入力信号圧力操作器により入力信号圧力Pcを現在値より小さい一定の圧力に降下させる。降下後の入力信号圧力Pcは、相対角度の新たな目標値に対応する。これにより、圧力室36の圧力が低下し、スプール35が現在位置から後方に変位する。この変位は、圧力室36の圧力と平衡バネ38が均衡することで停止する。変位後のスプール35の位置は、相対角度の新たな目標値に対応する。
スプール35の変位により、給油制御ポート14及び排油制御ポート17が開く。給油制御ポート15及び排油制御ポート16は閉状態のままである。(この場合を、制御ポート14〜17の「順方向開閉状態」とし、相対角度を増加させるものとする。)よって、油圧源ポートPsからの圧油は、給油制御ポート14を通過してAポート用の負荷ポート18に供給される。同時に、Bポート用の負荷ポート19からの排油は、排油制御ポート17を通過して戻りポートPdに排出される。この結果、図2の揺動アクチュエータ部20では、アクチュエータ軸25がアクチュエータケーシング21に対して、制御ポート14〜17の順方向開閉に応じた向きに、制御ポートの開度に応じた相対角速度(相対角度の変化速度の意味である)で回動する。その結果、回転機械の固定偏心重錘と可動偏心重錘の相対角度が変化する。
ここで、制御ポート14、17の開度は、スプール35の変位のみで決定されるのではなく、フィードバック機構によるスリーブ34の変位と併せて決定される。アクチュエータ軸25が回動する(相対角度が変化する)と、図4(b)に示すように斜板39も同じ角度だけ回動する。これにより、斜板39に対する突起40の当接点が変化し、スリーブ34が後方に変位する。スリーブ34の変位の向きは、必ずスプール35の変位の向きと同じになるように、斜板39の傾斜の向きが設定されている。この結果、スプール35が制御ポート14、17を開くように機能するのに対し、スリーブ34は制御ポート14、17を閉じるように機能する。これにより、負のフィードバックが実現される。そして、スプール35の位置とスリーブ34の位置の差が制御ポー14、17の開度となる。制御ポート14、17の開度は、スプール35とスリーブ34の変位に伴い時間的に変化するが、開度が零でない限り、相対角度は変化し続ける。開度が大きいときは相対角速度が大きく、開度が小さいときは相対角速度が小さい。
図4(b)は移行後の状態を示す。スリーブ34がスプール35に追いつき、スプール35の位置(目標値に対応した位置)に到達すると、給油制御ポート14及び排油制御ポート17は閉じる。これにより相対角度の変化が停止し、新たな相対角度すなわち目標値にて平衡状態となる。この移行過程による相対角度の変化量は、制御ポート14、17の開度の時間積分の量に比例する。
図示の関係上、図4(a)と図4(b)にスプール35とスリーブ34の変位を段階的に示しているが、これらの変位は段階的ではなく連続的に生じる。つまりスプール35の変位が完了してからスリーブ34の変位が始まるのではなく、スプール35が変位し始めるとスリーブ34が追従して変位し始め、スプール35が停止し、続いてスリーブ34も停止する。これが、油圧サーボ機構の追従制御機能である。(以下の図5においても同様)。
(3−3)相対角度の移行過程の第2の例
図5(a)(b)は、起振力振幅制御装置10の相対角度の移行過程の別の例における制御部の主要部を概略的かつ模式的に示した断面図である。
図5(a)は移行中の状態を示す。図4(a)とは逆に、外部の入力信号圧力操作器により入力信号圧力Pcを現在値より高い一定の値に上昇させる。上昇後の入力信号圧力Pcは、相対角度の新たな目標値に対応する。これにより、スプール35が現在位置から前方に変位する。このスプール35の変位により、給油制御ポート15及び排油制御ポート16が開く。給油制御ポート14及び排油制御ポート17は閉状態のままである。(この場合を、制御ポート14〜17の「逆方向開閉状態」とし、相対角度を減少させるものとする。)この結果、アクチュエータ軸25がアクチュエータケーシング21に対して、制御ポート14〜17の逆方向開閉に応じた向きに、制御ポート開度に応じた相対角速度で回動する。その結果、回転機械の固定偏心重錘と可動偏心重錘の相対角度が変化する。この変化は図4の例とは逆向きである。
この場合もフィードバック機構により、図5(b)に示すように、アクチュエータ軸25の回動とともに斜板39も同じ角度だけ回動し、斜板39に対する突起40の当接点が変化し、スリーブ34が前方に変位する。スプール35の位置とスリーブ34の位置の差が制御ポート15、16の開度となる。スリーブ34がスプール35の位置に到達すると、給油制御ポート15及び排油制御ポート16は閉じる。こうして、全ての制御ポート14〜17が閉状態となり、平衡状態となる。こうして、相対角度は目標値に到達し維持される。
(3−4)回復動作の一例
図6は、平衡状態における相対角度の回復動作を説明する図である。この回復動作も、上述したフィードバック機構により実現される。制御部30による平衡状態の安定性は高いが、極めて大きな外乱(振動や共振等の影響)により相対角度が平衡状態からずれてしまう場合があり得る。このような外乱は、瞬間的ないしは短時間だけ生じるものがほとんどである。
例えば、制御部30が平衡状態にあるとき、外乱によるアクチュエータ軸25の回動が生じたとする。つまり、外乱による相対角度の変動が生じたとする。アクチュエータ軸25が回動すると、それに伴って斜板39が回動する。それによりスリーブ34が白矢印の方向(変動方向)に変位する。この外乱に起因するスリーブ34の変位に対応した開度で、給油制御ポート15及び排油制御ポート16が開く。このときの油の流れは、図5(a)に示した状態と同じである。この結果、図5(b)と同様にスリーブ34は黒矢印の方向(回復方向)に移動し続ける。こうして、変動前と同じ相対角度に到達して平衡状態に戻る。フィードバック機構は、平衡状態からの変動に対して速やかに元の状態を回復するように機能する。図示しないが、スリーブ34の変位方向が逆の場合も、全く同様にフィードバック機構による回復動作が行われる。
図6の例は、全ての制御ポートが閉じている状態で外乱の影響を受けた場合であるが、制御装置の本来の機能により制御ポートが所定の開度で開いている間に外乱の影響を受けた場合にも同様に回復動作が行われる。この場合、制御ポートの所定の開度は、外乱による変化量だけ変化する。この外乱による開度の変化量の分に相当する給排油により、制御ポートは所定の開度を回復することができる。
(3−5)時間的に変化する目標値による動作
上記の例では、制御部30に入力される相対角度の目標値が一定値(時間的に変化しない)の場合について説明したが、相対角度の目標値が時間的に変化する場合について説明する。
わかりやすい例として、相対角度の目標値が、一定の傾きで増大するランプ入力の場合を説明する。なお、動作は異なるが、説明の便宜上、図5(a)を参照する。
<移行中>
入力信号圧力Pcが一定の傾きで上昇し始めると、スプール35は同時に同じ速度で前方に変位し始め、制御ポート15、16が開き始める(図5(a)参照)。負荷ポート18、19により揺動アクチュエータ部20に給排油が行われて相対角度が変化し始め、フィードバック機構を介してスリーブ34も前方に移動し始める。
<移行後>
続いて、スリーブ34もスプール35の変位速度と同じ変位速度に到達する。このとき、スプール35の位置とスリーブ34の位置は相対的に変化せず、スプール35の位置とスリーブ34の位置の差は一定に維持される。すなわち、制御ポート15、16の開度が一定に維持される(図5(b)と異なり最終的に制御ポート15、16が閉じない)。この結果、揺動アクチュエータ部20の相対角度は、一定の速度で減少し続ける。これにより、両偏心重錘の偏心モーメントは一定の速度で増大し続けることになる。広い意味で、この状態も「平衡状態」と称することとする。
なお、入力信号圧力Pcが一定の傾きで減少するランプ入力についても、同様である。さらに、入力信号圧力Pcの時間的変化が、一定の傾き以外の所定の変化を行う場合であっても、原理的には同じである。平衡状態に達した後は、制御ポートの開度が所定の変化を行うこととなり、その結果、相対角度も所定の変化を行うこととなる。
(4)相対角度の目標値と現在値の関係
図7は、入力される相対角度の目標値と相対角度の現在値との関係を模式的に示した図である。
実線は、相対角度の目標値θtであり、点線は、相対角度の現在値θaである。図7では、制御の一例として、相対角度の目標値θtを一定値で入力する期間と、一定の傾き(増加又は減少)で入力する期間を、適宜設けている。また、相対角度の目標値θtのパターンが変化したとき、相対角度の現在値θaが目標値θtに完全に追従するまでの移行期間を「移行中」として示している。相対角度の現在値θaが目標値θtに完全に追従した状態(一定値の場合と等速変化の場合がある)の期間を「平衡状態」として示している。
目標値θtが一定値の場合の平衡状態では、目標値θtと現在値θaは一致する(図7ではわかりやすいように実線と点線を若干ずらして示しているが実際は重なる)。目標値θtが時間的に変化する場合の平衡状態では、目標値θtから遅れて現在値θaが追随し同じように時間的に変化する。
(5)起振力振幅制御装置と偏心モーメント(起振力振幅)との関係
図8は、本発明の起振力振幅制御装置10の揺動アクチュエータ部20の横断面(a1)(b1)(c1)と、それぞれに対応する回転機械の概略的な横断面(a2)(b2)(c2)を示した図である。
図8(a1)では、ベーン23が可逆回動動作範囲の一端位置にある。このとき(a2)に示すように回転機械の総合偏心モーメントは最大となる。回転機械の起振力振幅は、総合偏心モーメントに比例する。このときの相対角度θを零とする。
図8(b1)では、ベーン23は可逆回動動作範囲の中間位置にある。中間位置は、任意の相対角度θとすることができる。このとき(b2)に示すように回転機械の総合偏心モーメントは中間値となる。
図8(c1)では、ベーン23が可逆回動動作範囲の他端位置にある。このとき(c2)に示すように回転機械の総合偏心モーメントは最小(零)となる。このときの相対角度θは最大である。
可逆回動動作範囲すなわち両偏心重錘の相対角度θの可変範囲は、目標値の設定範囲によって0〜45°、0〜90°、0〜180°等、任意の範囲を設定できる。
(6)斜板の最適使用範囲
図9(a)(b)は、斜板39と突起40の当接点の関係を示した図である。図9(a)は、横軸が、斜板39の回動角度β(両偏心重錘の相対角度に対応)を示し、縦軸は、斜板39の回動角度βに対する突起40の当接点のスリーブ軸方向変位yを示す。スリーブ軸方向変位yは、y=Rsinβtanαで表わされる。
図9(b)は、斜板39の平面図と側面図を示す。
相対角度と当接点の変位yの倍率は、相対角度のフィードバック作用の倍率であり、当接点半径Rと板角度αで調節できる。この倍率の調節は装置の設計段階で相対角度の応答時間の調整を可能にする。斜板39の傾斜面上の使用角度範囲は、sin曲線の極小点と極大点の近傍を避け、線形に近い変化となる範囲を選択することが好ましい。極小点よりマイナス側および極大点よりプラス側はsin曲線の傾きがマイナスになりフィードバック作用が逆になるため使用できない。このような範囲とすることで、適切なフィードバック制御が可能となる。図9(b)に示す斜板39と突起40の当接点(黒点で例示)は、斜板39の周縁に沿って移動する。使用角度範囲内の任意の中間位置で図3の平衡状態が得られるように取付けを設定する。
(7)起振力振幅制御装置の別の構成(回転形四方案内弁方式)
図10〜図15を参照して、上述した直動形四方案内弁に替えて回転形四方案内弁を起振力振幅制御装置の制御部に用いた構成の一例を示す。図10〜図15では、上述した直動形四方案内弁に対応する構成要素については同じ符号を用いている。
図10は、回転形四方案内弁を用いた起振力振幅制御装置10Aにおける、軸を含む断面を概略的に示した図である。図11は、回転形四方案内弁による制御部の動作原理を説明した図である。なお、図11では、説明の便宜上、実際は軸方向に離間している構成要素を同じ断面内に示している。図12〜図15は、それぞれ図10のW断面、X断面、Y断面、Z断面を概略的に示した図である。
略円筒状のマニホールド33は、アクチュエータケーシング21と一体に回転する。マニホールド33の内側に略円筒状のスリーブ34が固定されている。よって、スリーブ34は、アクチュエータケーシング21と一体に回転することとなる。図11に示すように、スリーブ34には、径方向に貫通する複数の貫通孔34aが、周方向に適宜の角度毎に設けられている。各貫通孔34aは、軸方向に適宜離間した位置に設けられている。これらの貫通孔34aは、油圧源ポートPs、戻りポートPd、負荷ポート18、19のいずれかと連通している。
スリーブ34の内側には略円筒状のスプール35が嵌挿されている。スリーブ34とスプール35は、それぞれ中心軸周りで回動可能であり、互いに摺動する。図11に示すように、スプール35は、周方向において適宜の角度毎に径方向に突出する複数のランド部35aが設けられている。各ランド部35aは、軸方向に延在し、スリーブ34の貫通孔のうち油圧源ポートPs又は戻りポートPdに連通する貫通孔と対向している。また、周方向において隣り合うランド部35a間の各間隙に対して、スリーブ34の貫通孔のうち負荷ポート18又は19に連通する貫通孔が開口している。
図示の例では、半径方向の油圧バランスのために、油圧源ポートPs、戻りポートPd、負荷ポート18、19を2個ずつ設けているが、機能的には1個でも足りる。補助負荷ポート18aは、2個の負荷ポート18を連通させている。補助負荷ポート19aは、2個の負荷ポート19を連通させている。
スプール35の内側には、スプラインナット61が固定されている。スプラインナット61は、スプール35とともに回転するが、軸方向には動かない。スプラインナット61の内側には、スプライン軸62が螺合している。スプライン軸62の前端部分には、直動スプライン(オス)62aが形成されている。直動スプライン(オス)62aは、アクチュエータ軸25の端部に設けられたスプライン(メス)63に組み込まれている。これにより、直動スプライン(オス)62a、スプライン軸62、スプラインナット61及びスプール35が、アクチュエータ軸25と一体に回転することとなる。
図11に示すように、スリーブ34の複数の貫通路34aの境界角部とスプール35の複数のランド部35aの境界角部は正確に向かい合い、給油制御ポート14、15及び排油制御ポート16、17を形成している。図11では、全ての制御ポートが閉じた状態となっているが、スリーブ34とスプール35の相対的な回動が生じると、制御ポート14〜17が、順方向開閉又は逆方向開閉を行い、揺動アクチュエータ部のAポート26及びBポート27に対して給油又は排油を行う。これは、上述した直動形四方案内弁と同様である。
直動形四方案内弁と異なる点は、フィードバック機構である。直動形四方案内弁では、揺動アクチュエータ部の相対角度の現在値を、アクチュエータ軸25から斜板及びスリーブ突起の変換機構を介してスリーブ34に伝達する必要があったが、回転形四方案内弁では、揺動アクチュエータ部20の相対角度の現在値が、アクチュエータケーシング21からスリーブ34に直接的に伝達されるので、変換機構が不要である。
回転形四方案内弁の動作は、次のようになる。
相対角度の目標値に対応する入力信号圧力Pcを外部から操作することにより、圧力室36の圧力が変化し、スプライン軸62及び直動スプライン(オス)62aの軸方向の平衡が崩れて軸方向に変位する。このとき、直動スプライン(オス)62aと(メス)63の拘束によりスプライン軸62は回動することなく、スプラインナット61がスプール35とともに回動することとなる。すなわち外部から入力信号圧力Pcを操作することにより、スプール35を、相対角度の目標値に対応する角度位置に変位させる。
このスプール35の角度変位(目標値の変位)は、直動スプライン軸62の作用により、高速回転しているアクチュエータ軸25を基準とした角度変位である。従って、揺動アクチュエータ部20の相対角度の現在値のフィードバックは、アクチュエータ軸25を基準としたアクチュエータケーシング21の相対角度を用いなければならない。回転形四方案内弁では、アクチュエータケーシング21とスリーブ34が一体であるので、アクチュエータケーシング21の角度位置は、直接的にスリーブ34に伝達される。そして、スプール35の角度位置とスリーブ34の角度位置の差に対応した開度で、所定の制御ポート14、17又は15、16が開かれる。これが、相対角度の目標値と現在値の差を検出する検出機構である。開かれた制御ポート14、17又は15、16からアクチュエータのAポート26、Bポート27に対する給油又は排油が行われ、相対角度の現在値が目標値に追従する。これにより、油圧サーボ機構が実現される。
(8)杭の施工方法
以上に述べた起振力振幅制御装置10を取り付けた回転機械50を用いて杭の打ち込み又は引き抜きを行う施工方法の一例は、次の通りである。
地盤に対して杭の打込み又は引抜きを行う工程中、回転機械50を回転させた状態にて、既知の土質情報等に基づいて演算装置により両偏心重錘51、52の相対角度の目標値を算出する。当該深度の目標値に応じて起振力振幅制御装置10により両偏心重錘51、52の相対角度を変更し、杭の打ち込み又は引き抜きを行う。回転機械50を停止することなく両偏心重錘51、52の相対角度を変更できるので、連続的に杭の打ち込み又は引き抜きを行うことができる。よって、機器の停止により余分な燃料や時間を費やすことなく、地盤に最適な起振力振幅で施工を行うことができる。さらに、本装置では相対角度を時間可変目標値に追従させることも可能である。
(9)補足
以上述べた直動形、回転形の四方案内弁による具体的構成は、本発明の原理を適用した制御装置の一例である。本発明の原理に沿った具体的構成は、これら以外であっても実施可能である。当業者に自明の変形構成も本発明の範囲に含まれるものとする。
例えば、入力機構は、相対角度の目標値に対応してスプールを変位させる機構であれば、油圧式でも電気式でもよい。スプールは、相対角度の目標値に対応する位置に変位する第1変位部材であればよい。スリーブは、揺動アクチュエータ部における相対角度の現在値に対応する位置に変位しかつ第1変位部材に追従変位する第2変位部材であればよい。
また、上述した例では、これらの第1及び第2の変位部材、並びに、フィードバック機構及び第1変位部材と第2変位部材の位置の差の検出機構は機械式であるが、電気式又は光学式でも実現できる。
さらに、相対角度の目標値及び現在値が、機械的要素以外の変量に置き換えられ、これらの変量をコンピュータ処理することにより、揺動アクチュエータを駆動制御してもよい。
10、10A 起振力振幅制御装置
14 (Aポート用)給油制御ポート
16 (Aポート用)排油制御ポート
15 (Bポート用)給油制御ポート
17 (Bポート用)排油制御ポート
18 (Aポート用)負荷ポート
19 (Bポート用)負荷ポート
20 揺動アクチュエータ部
21 アクチュエータケーシング
22 シュー
23 ベーン
25 アクチュエータ軸
26 Aポート
27 Bポート
30 制御部
31 制御部ケーシング
32 油路ロータ
33 マニホールド
34 スリーブ
34a 貫通路
35 スプール
35a ランド部
36 圧力室
38 平衡バネ
39 斜板
40 スリーブ突起
41 スプライン軸
42 スプール平衡バネ
43 スリーブバネ
44、45 ベアリング
50 回転機械
51 固定偏心重錘
52 可動偏心重錘
53 ギア
54 駆動軸
55 従動軸
56 駆動プーリ
59 従動軸ベアリング
60 回転機械ケーシング
61 スプラインナット
62 スプライン軸
62a 直動スプライン(オス)
63 スプライン(メス)
Ps 油圧源ポート
Pd 戻りポート
Pc 入力信号圧力ポート

Claims (10)

  1. 回転軸(55)に固定された固定偏心重錘(51)と前記回転軸(55)に回動自在に装着された可動偏心重錘(52)とが同期回転を行うことにより前記固定偏心重錘(51)と前記可動偏心重錘(52)の相対角度に応じた起振力振幅を発生する回転機械(50)に取り付けられ、前記起振力振幅を決定するべく前記相対角度を制御するための制御装置(10)であって、揺動アクチュエータ部(20)と、制御部(30)と、を備え、
    (a)前記揺動アクチュエータ部(20)は、
    (a1)前記固定偏心重錘(51)と一体的に回転するアクチュエータ軸(25)と、
    (a2)前記可動偏心重錘(52)と一体的に回転するアクチュエータケーシング(21)と、
    (a3)前記アクチュエータ軸(25)と前記アクチュエータケーシング(21)の相対角度を変化させるべく一方が給油を行い他方が排油を行う第1ポート(26)及び第2ポート(27)と、を有し、
    (b)前記制御部(30)は、
    (b1)前記相対角度の目標値に対応する入力信号(Pc)が入力される入力機構(36)と、
    (b2)前記入力信号(Pc)の入力に応じて前記目標値に対応する位置に変位する第1変位部材(35)と、
    (b3)前記揺動アクチュエータ部(20)における前記相対角度の現在値に対応する位置に、前記第1変位部材(35)の変位の向きと同じ向きで変位する第2変位部材(34)と、
    (b4)前記第1変位部材(35)の位置と前記第2変位部材(34)の位置の差に対応した開度にて開かれ、前記揺動アクチュエータ部(20)の前記第1ポート(26)及び前記第2ポート(27)に対する給油又は排油を行う複数の制御ポート(14,17)(15,16)と、を有することを特徴とする
    回転機械の起振力振幅制御装置。
  2. 前記目標値が一定である場合、前記入力信号(Pc)が入力されたとき、
    前記第1変位部材(35)は前記目標値に対応する位置に変位するとともに、前記第2変位部材(34)が前記第1の変位部材(35)と同じ向きに変位し、前記第1変位部材(35)の位置と前記第2変位部材(34)の位置の差が零となったときに、前記複数の制御ポート(14,17)(15,16)が全て閉じられることにより、前記相対角度が前記目標値に維持されることを特徴とする
    請求項1に記載の回転機械の起振力振幅制御装置。
  3. 前記目標値が時間的に変化する場合、前記入力信号(Pc)が入力されたとき、
    前記第1変位部材(35)が前記目標値に対応して変位し続ける一方、前記第2変位部材(34)が前記第1変位部材(35)と同じ向きに変位し続け、前記第1変位部材(35)の位置と前記第2変位部材(34)の位置の差に対応した開度にて前記複数の制御ポート(14,17)(15,16)が開かれ続けることにより前記相対角度が時間的に変化し続けることを特徴とする
    請求項1に記載の回転機械の起振力振幅制御装置。
  4. 前記第2変位部材(34)の位置が外乱により変位したとき、
    前記複数の制御ポート(14,17)(15,16)の開度が、前記外乱による変位に対応した変化量だけ変化し、前記第1ポート(26)及び前記第2ポート(27)に対する給油又は排油が行われることにより、前記第2変位部材(34)の位置が回復されることを特徴とする
    請求項1〜3のいずれかに記載の回転機械の起振力振幅制御装置。
  5. 直動形四方案内弁を備え、前記直動形四方案内弁は、
    前記第1変位部材(35)として、中心軸上を軸方向変位可能に配置された略円柱状のスプール(35)と、
    前記第2変位部材(34)として、前記スプール(35)を内側に嵌挿させて軸方向変位可能に配置された略円筒状のスリーブ(34)と、を具備し、
    前記スプール(35)に設けられた径方向に突出する複数のランド部(35a)の各々と、前記スリーブ(34)に設けられた径方向に貫通する複数の貫通路(34a)とが対向する境界部に前記複数の制御ポート(14,15,16,17)が形成されることを特徴とする請求項1〜4のいずれかに記載の回転機械の起振力振幅制御装置。
  6. 前記揺動アクチュエータ部(20)における相対角度の現在値が、前記アクチュエータ軸(25)と一体的に回転する斜板(39)と、前記スリーブ(34)から突出し前記斜板(39)に当接するスリーブ突起(40)を介して前記スリーブ(34)に伝達されることを特徴とする請求項5に記載の回転機械の起振力振幅制御装置。
  7. 回転形四方案内弁を備え、前記回転形四方案内弁は、
    前記第1変位部材(35)として、中心軸周りで回動可能に配置された略円筒状のスプール(35)と、
    前記第2変位部材(34)として、前記スプール(35)を内側に嵌挿させて中心軸周りで回動可能に配置された略円筒状のスリーブ(34)と、を具備し、
    前記スプール(35)に設けられた径方向に突出する複数のランド部(35a)の各々と、前記スリーブ(34)に設けられた径方向に貫通する複数の貫通路(34a)とが対向する境界部に前記複数の制御ポート(14,15,16,17)が形成されることを特徴とする請求項1〜4のいずれかに記載の回転機械の起振力振幅制御装置。
  8. 前記揺動アクチュエータ部(20)における相対角度の現在値が、前記スリーブ(34)が前記アクチュエータケーシング(21)に一体的に連結されていることにより、前記スリーブ(34)に伝達されることを特徴とする請求項7に記載の回転機械の起振力振幅制御装置。
  9. 請求項1〜8のいずれかに記載の起振力振幅制御装置(10)を取り付けた回転機械(50)を用いて杭の打ち込み又は引き抜きを行う施工方法であって、
    杭の打込み又は引抜きを行う工程中、回転機械(50)を回転させた状態にて、既知の土質情報等に基づいて演算装置により両偏心重錘(51,52)の相対角度の目標値を算出し、算出した目標値に対応する入力信号圧力(Pc)を前記起振力振幅制御装置(10)に入力することにより、両偏心重錘(51,52)の相対角度の現在値を目標値に追随させて、杭の打ち込み又は引き抜きを行うことを特徴とする杭の施工方法。
  10. 回転軸(55)に固定された固定偏心重錘(51)と前記回転軸(55)に回動自在に装着された可動偏心重錘(52)が同期回転を行うことにより前記固定偏心重錘(51)と前記可動偏心重錘(52)の相対角度に応じた起振力振幅を発生する回転機械(50)に対して揺動アクチュエータ(20)を取り付け、前記揺動アクチュエータ(20)は、前記固定偏心重錘(51)と一体的に回転するアクチュエータ軸(25)と、前記可動偏心重錘(52)と一体的に回転するアクチュエータケーシング(21)と、前記アクチュエータ軸(25)と前記アクチュエータケーシング(21)の相対角度を変化させるべく一方が給油を行い他方が排油を行う第1ポート(26)及び第2ポート(27)と、を有しており、前記起振力振幅を決定するべく前記揺動アクチュエータ(20)における前記相対角度を制御する制御方法であって、
    (b1)前記相対角度の目標値に対応する入力信号(Pc)を入力するステップと、
    (b2)前記入力信号(Pc)の入力されたとき、第1変量(35)を前記目標値に対応するように変化させるステップと、
    (b3)前記揺動アクチュエータ部(20)における前記相対角度の現在値に対応するように、前記第1変量(35)と同じ増減の方向で第2変量(34)を変化させるステップと、
    (b4)前記第1変量(35)と前記第2変量(34)の差に対応した量にて、前記揺動アクチュエータ部(20)の前記第1ポート(26)及び前記第2ポート(27)に対する給油又は排油を行うステップと、を有することを特徴とする
    回転機械の起振力振幅制御方法。
JP2012183023A 2012-08-22 2012-08-22 起振力振幅制御装置及び杭の施工方法 Active JP5643795B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183023A JP5643795B2 (ja) 2012-08-22 2012-08-22 起振力振幅制御装置及び杭の施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183023A JP5643795B2 (ja) 2012-08-22 2012-08-22 起振力振幅制御装置及び杭の施工方法

Publications (2)

Publication Number Publication Date
JP2014039907A true JP2014039907A (ja) 2014-03-06
JP5643795B2 JP5643795B2 (ja) 2014-12-17

Family

ID=50392644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183023A Active JP5643795B2 (ja) 2012-08-22 2012-08-22 起振力振幅制御装置及び杭の施工方法

Country Status (1)

Country Link
JP (1) JP5643795B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993602A (zh) * 2014-05-27 2014-08-20 浙江永安工程机械有限公司 振动锤可调偏心力矩驱动单元
CN103994177A (zh) * 2014-05-27 2014-08-20 浙江永安工程机械有限公司 振动锤可调偏心力矩驱动总成
JP2019007260A (ja) * 2017-06-27 2019-01-17 調和工業株式会社 杭打設管理システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106720B2 (ja) * 2015-07-28 2017-04-05 調和工業株式会社 起振力振幅制御装置及び制御方法並びに杭の施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111693U (ja) * 1973-01-26 1974-09-24
JPH11280703A (ja) * 1998-03-30 1999-10-15 Kayaba Ind Co Ltd 自動切換弁装置
JP2010058104A (ja) * 2008-09-03 2010-03-18 Chowa Kogyo Kk 偏心重錘式起振機の可逆回動機構
JP2012036963A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 油圧アクチュエーターの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111693U (ja) * 1973-01-26 1974-09-24
JPH11280703A (ja) * 1998-03-30 1999-10-15 Kayaba Ind Co Ltd 自動切換弁装置
JP2010058104A (ja) * 2008-09-03 2010-03-18 Chowa Kogyo Kk 偏心重錘式起振機の可逆回動機構
JP2012036963A (ja) * 2010-08-06 2012-02-23 Toyota Motor Corp 油圧アクチュエーターの制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993602A (zh) * 2014-05-27 2014-08-20 浙江永安工程机械有限公司 振动锤可调偏心力矩驱动单元
CN103994177A (zh) * 2014-05-27 2014-08-20 浙江永安工程机械有限公司 振动锤可调偏心力矩驱动总成
CN103993602B (zh) * 2014-05-27 2016-04-06 浙江永安工程机械有限公司 振动锤可调偏心力矩驱动单元
CN103994177B (zh) * 2014-05-27 2016-06-01 浙江永安工程机械有限公司 振动锤可调偏心力矩驱动总成
JP2019007260A (ja) * 2017-06-27 2019-01-17 調和工業株式会社 杭打設管理システム

Also Published As

Publication number Publication date
JP5643795B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5643795B2 (ja) 起振力振幅制御装置及び杭の施工方法
TWI712744B (zh) 泵送流體之系統及其控制
KR101769225B1 (ko) 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
US10519990B2 (en) Hydraulic apparatus
WO2012023231A1 (ja) 作業機械の電液駆動システム
JP2008249024A (ja) 流体圧アクチュエータ
CN104564863A (zh) 一种管片拼装机回转运动电液控制系统
JPWO2015137525A1 (ja) 建設機械の制御システム、建設機械、及び建設機械の制御方法
WO2012160770A1 (ja) 旋回式作業機械
KR102451430B1 (ko) 건설 기계의 선회 구동 장치
CN202578508U (zh) 一种钻井工具的导向机构
TW202111213A (zh) 泵送流體之系統及其控制
JP5918688B2 (ja) 可変容量型ポンプ用レギュレータ
JP2008522117A (ja) 油圧駆動システム
CN102606073A (zh) 一种指向式旋转导向钻井工具的导向机构
JP2019027410A (ja) 液圧駆動装置
WO2019106831A1 (ja) 作業機械および作業機械の制御方法
JP5918728B2 (ja) 作業機械の油圧制御装置
JP6363667B2 (ja) 起振機及び杭の施工方法
JP2019052520A (ja) シールド掘進機
JP3468672B2 (ja) 振動発生装置
CN113653787A (zh) 一种振动锤及工程机械
JP6106720B2 (ja) 起振力振幅制御装置及び制御方法並びに杭の施工方法
CN203866829U (zh) 振动锤可调偏心力矩驱动单元
JP5870334B2 (ja) ポンプシステム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250