JP2014029011A - Liquid composition for etching and method for producing multilayer printed board using the same - Google Patents

Liquid composition for etching and method for producing multilayer printed board using the same Download PDF

Info

Publication number
JP2014029011A
JP2014029011A JP2013055307A JP2013055307A JP2014029011A JP 2014029011 A JP2014029011 A JP 2014029011A JP 2013055307 A JP2013055307 A JP 2013055307A JP 2013055307 A JP2013055307 A JP 2013055307A JP 2014029011 A JP2014029011 A JP 2014029011A
Authority
JP
Japan
Prior art keywords
mass
copper
liquid composition
etching
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013055307A
Other languages
Japanese (ja)
Other versions
JP6120147B2 (en
Inventor
Kenichi Takahashi
橋 健 一 高
Kazuhiko Ikeda
田 和 彦 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2013055307A priority Critical patent/JP6120147B2/en
Priority to CN201310217858.9A priority patent/CN103510089B/en
Priority to TW102120126A priority patent/TWI575110B/en
Priority to KR1020130066148A priority patent/KR20140002495A/en
Publication of JP2014029011A publication Critical patent/JP2014029011A/en
Application granted granted Critical
Publication of JP6120147B2 publication Critical patent/JP6120147B2/en
Priority to KR1020200048026A priority patent/KR20200046001A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/067Etchants
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Abstract

PROBLEM TO BE SOLVED: To provide a liquid composition for etching, performing batch processing of densifying or roughening treatment of a wiring surface while efficiently eliminating a chemical copper plating which is a seed layer in a semiadditive process for producing a multilayer printed board, and to provide a method for producing the multilayer printed board by using the liquid composition for etching.SOLUTION: The liquid composition for etching used for producing a multilayer printed board contains 0.2 to 5 mass% of hydrogen peroxide, 0.5 to 8 mass% of sulfuric acid, 0.3 to 3 ppm of a halogen ion and 0.003 to 0.3 mass% of tetrazoles.

Description

本発明は、エッチング用液体組成物およびそれを用いた多層プリント配線板の製造方法に関し、より詳細には、電気、電子機器等に使用される多層プリント配線板の製造に用いられるエッチング用液体組成物、および基板上に施された化学銅メッキおよび電気銅メッキをエッチング処理して銅配線を形成することを含む多層プリント配線板の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to an etching liquid composition and a method for producing a multilayer printed wiring board using the same, and more specifically, an etching liquid composition used for producing a multilayer printed wiring board used in electrical and electronic equipment. The present invention relates to a method for manufacturing a multilayer printed wiring board, which includes etching a chemical copper plating and an electrolytic copper plating applied on a substrate and forming a copper wiring.

近年の電子機器の小型化、軽量化、高機能化に伴い、プリント配線板には銅配線の微細化かつ多層化が強く要求されてきている。   With recent downsizing, weight reduction, and higher functionality of electronic devices, printed wiring boards are strongly required to have finer and multilayered copper wiring.

微細な配線を形成する製造法の一つとしてセミアディティブ工法がある。この配線形成法は、絶縁材上にシード層と呼ばれる金属層を形成(金属層として一般的には化学銅メッキを使用)、その表面にメッキレジスト層を形成、その後に露光、現像してレジストパターンを形成する。その後、電気銅メッキを施して、レジストを剥離し、シード層をエッチング除去して銅配線を形成する。   One of the manufacturing methods for forming fine wiring is a semi-additive construction method. In this wiring formation method, a metal layer called a seed layer is formed on an insulating material (chemical copper plating is generally used as the metal layer), a plating resist layer is formed on the surface, and then exposed and developed to form a resist. Form a pattern. Thereafter, electrolytic copper plating is performed to remove the resist, and the seed layer is removed by etching to form a copper wiring.

更に、多層化するため上記載で形成された銅配線上に層間絶縁材を積層して、上記載と同様に配線を形成させる。最外層の配線の場合は、外部接続端子以外の銅配線を保護するため銅配線上にソルダーレジストやカバーレイと呼ばれる樹脂を塗布させる。   Further, an interlayer insulating material is laminated on the copper wiring formed as described above for multilayering, and wiring is formed in the same manner as described above. In the case of the outermost layer wiring, a resin called solder resist or coverlay is applied on the copper wiring in order to protect the copper wiring other than the external connection terminals.

銅配線と層間絶縁材やソルダーレジスト等の樹脂との密着性を良好とするため、バフ研磨、スクラブ研磨等の機械処理や粗化剤等の化学研磨処理により銅表面を粗化している。   In order to improve the adhesion between the copper wiring and a resin such as an interlayer insulating material or a solder resist, the copper surface is roughened by a mechanical treatment such as buffing or scrubbing or a chemical polishing treatment such as a roughening agent.

従来、セミアディティブ工法におけるシード層である化学銅メッキのエッチング除去処理(一般的にフラッシュエッチング処理と呼ばれている)と多層化のための銅配線表面粗化処理は別々の工程(薬剤)で行われる。   Conventionally, the chemical copper plating etching removal process (generally called flash etching process), which is the seed layer in the semi-additive method, and the copper wiring surface roughening process for multilayering are performed in separate steps (chemicals). Done.

化学銅メッキのエッチング用液体組成物として、過酸化水素、硫酸、アゾール類、臭素イオンを含有するエッチング用液体組成物(特許文献1)、硫酸、過酸化水素、ベンゾトリアゾール誘導体を含むことを特徴とするエッチング剤(特許文献2)、過酸化水素、硫酸を主成分としてアゾール類を添加剤として含むことを特徴とするエッチング用液体組成物(特許文献3)等が開示されている。従来の化学銅メッキのエッチング用液体組成物では、配線表面を粗化出来ないため層間絶縁材等の樹脂との密着性が良好ではなく、ゆえに化学銅メッキ除去と配線粗化処理は同時に出来ない。   Etching liquid composition containing hydrogen peroxide, sulfuric acid, azoles, bromine ions (Patent Document 1), sulfuric acid, hydrogen peroxide, benzotriazole derivatives as a chemical copper plating etching liquid composition And an etching liquid composition (Patent Document 3) characterized by containing hydrogen peroxide and sulfuric acid as main components and an azole as an additive. In conventional chemical copper plating etching liquid compositions, the wiring surface cannot be roughened, so the adhesion to the resin such as the interlayer insulating material is not good, and therefore chemical copper plating removal and wiring roughening treatment cannot be performed at the same time. .

また、銅配線粗化剤として、オキソ酸、過酸化物、アゾール類、ハロゲン化物50mg/L以下を含有するエッチング用液体組成物(特許文献4)、硫酸、過酸化水素、フェニルテトラゾール類及びニトロベンゾトリアゾール類、塩化物イオンを含むエッチング用液体組成物(特許文献5)、硫酸、過酸化水素、フェニルテトラゾール、塩素イオン源を含有するマイクロエッチング剤(特許文献6)、硫酸、過酸化水素、5−アミノテトラゾール、5−アミノテトラゾール以外のテトラゾール化合物、ホスホン酸系キレート剤を含有する表面粗化剤(特許文献7)、硫酸、過酸化物、テトラゾール化合物、銅よりも電位が貴である金属イオンを含有するマイクロエッチング用液体組成物(特許文献8)、過酸化水素、硫酸、ベンゾトリアゾール類、塩化物イオンを含有する表面粗化処理液(特許文献9)、無機酸及び銅の酸化剤からなる主剤とアゾール類及びエッチング抑制剤からなる助剤とを含む水溶液からなるマイクロエッチング剤(特許文献10)等が開示されている。従来液では、化学銅メッキの溶解速度が電気銅メッキの溶解速度より大きくないためセミアディティブ工法による微細配線形成が困難となる。   Further, as a copper wiring roughening agent, an oxo acid, a peroxide, an azole, an etching liquid composition containing a halide of 50 mg / L or less (Patent Document 4), sulfuric acid, hydrogen peroxide, phenyltetrazole and nitro Liquid composition for etching containing benzotriazoles, chloride ions (Patent Document 5), sulfuric acid, hydrogen peroxide, phenyltetrazole, microetching agent containing chlorine ion source (Patent Document 6), sulfuric acid, hydrogen peroxide, 5-aminotetrazole, tetrazole compounds other than 5-aminotetrazole, surface roughening agent containing phosphonic acid chelating agent (Patent Document 7), sulfuric acid, peroxide, tetrazole compound, metal having a higher potential than copper Liquid composition for microetching containing ions (Patent Document 8), hydrogen peroxide, sulfuric acid, benzotriazol A surface-roughening solution containing chloride ions (Patent Document 9), a microetching agent comprising an aqueous solution containing a main agent composed of an inorganic acid and an oxidizing agent of copper and an auxiliary comprising an azole and an etching inhibitor ( Patent Document 10) and the like are disclosed. With conventional solutions, the dissolution rate of chemical copper plating is not greater than the dissolution rate of electrolytic copper plating, making it difficult to form fine wiring by the semi-additive method.

従来の粗化剤(エッチング剤)では、銅表面を数μmエッチングして銅表面を粗面化して物理的(アンカー)効果で銅と層間絶縁材等の樹脂との密着を確保している。しかし、近年、銅配線幅が従来の30〜50μmから15μm以下へ最小では数μmまで微細化されてきており、従来の粗化剤(エッチング剤)では、銅配線幅細りが大きくなり配線の消失、また銅配線表面の粗さが大きい(深さ方向の凹凸が大きい)ため断線の発生、伝送損失の問題が懸念されている。   In a conventional roughening agent (etching agent), the copper surface is roughened by etching several μm to ensure adhesion between copper and a resin such as an interlayer insulating material by a physical (anchor) effect. However, in recent years, the copper wiring width has been reduced to a minimum of several μm from the conventional 30-50 μm to 15 μm or less, and with the conventional roughening agent (etching agent), the copper wiring width becomes narrower and the wiring disappears. Moreover, since the roughness of the copper wiring surface is large (the unevenness in the depth direction is large), there are concerns about the occurrence of disconnection and the problem of transmission loss.

特開2006−13340号公報JP 2006-13340 A 特開2009−149971号公報JP 2009-149971 A 特開2006−9122号公報Japanese Patent Laid-Open No. 2006-9122 特開2000−64067号公報JP 2000-64067 A 特開2009−191357号公報JP 2009-191357 A 特開2002−47583号公報JP 2002-47583 A 特開2009−19270号公報JP 2009-19270 A 特開2004−3020号公報JP 2004-3020 A 特開2005−213526号公報JP 2005-213526 A 特開2000−282265号公報JP 2000-282265 A

本発明は、多層プリント配線板製造におけるセミアディティブ工法でのシード層である化学銅メッキを効率良く除去すると同時に、多層化のための配線と層間絶縁材等の樹脂との密着性に優れる配線表面の緻密粗化処理を一括処理するエッチング用液体組成物およびそれを用いたプリント配線板の製造方法を提供することを目的とする。   The present invention efficiently removes chemical copper plating, which is a seed layer in the semi-additive method in the production of multilayer printed wiring boards, and at the same time has excellent adhesion between wiring for multilayering and resin such as interlayer insulating material It aims at providing the manufacturing method of the liquid composition for etching which processes the dense roughening process of lump, and the printed wiring board using the same.

本発明者らは、多層プリント配線板製造におけるセミアディティブ工法でのシード層である化学銅メッキを効率良く除去すると同時に、多層化のための配線と層間絶縁材等の樹脂との密着性に優れる配線表面の緻密粗化処理を一括処理するエッチング用液体組成物およびそれを用いたプリント配線板の製造方法を見出し、本発明を完成させるに至った。   The inventors of the present invention efficiently remove the chemical copper plating that is a seed layer in the semi-additive method for manufacturing a multilayer printed wiring board, and at the same time, have excellent adhesion between the wiring for multilayering and a resin such as an interlayer insulating material. The inventors have found a liquid composition for etching that collectively processes a dense roughening treatment on a wiring surface and a method for producing a printed wiring board using the same, and have completed the present invention.

即ち、本発明は以下の通りである。
1. 多層プリント配線板の製造に用いられるエッチング用液体組成物であって、
0.2〜5質量%の過酸化水素と、
0.5〜8質量%の硫酸と、
0.3〜3ppmのハロゲンイオンと、
0.003〜0.3質量%のテトラゾール類と、
を含んでなる、エッチング用液体組成物。
2. 前記テトラゾール類が、1H−テトラゾール、1−メチルテトラゾール、5−メチルテトラゾール、1,5−ジメチルテトラゾール、および1,5−ジエチルテトラゾールからなる群から選択される1種以上である、上記1に記載のエッチング用液体組成物。
3. 前記ハロゲンイオンが、フッ素イオン、塩化物イオン、臭素イオン、およびヨウ素イオンからなる群から選択される1種以上である、上記1または2に記載のエッチング用液体組成物。
4. 基板上に施された化学銅メッキおよび電気銅メッキをエッチング処理して、銅配線を形成することを含む多層プリント配線板の製造方法であって、
0.2〜5質量%の過酸化水素と、0.5〜8質量%の硫酸と、0.3〜3ppmのハロゲンイオンと、0.003〜0.3質量%のテトラゾール類とを含んでなるエッチング用液体組成物を用いてエッチング処理する、多層プリント配線板の製造方法。
5. セミアディティブ工法において前記化学銅メッキを除去すると共に前記電気銅メッキを粗化して、前記銅配線を形成する、上記4に記載の多層プリント配線板の製造方法。
6. 前記化学銅メッキの溶解速度と前記電気銅メッキの溶解速度の比が3以上でエッチング処理する、上記5に記載の多層プリント配線板の製造方法。
7. エッチング処理して、前記銅配線の比表面積を1.2〜2とする、上記4〜6のいずれかに記載の多層プリント配線板の製造方法。
(但し、銅配線の比表面積は、銅配線の縦1μm×横1μmの単位領域当たりの表面積であり、銅配線の比表面積は、前記銅配線の表面を走査型トンネル顕微鏡で観測したときに得られる値である)
8. 前記テトラゾール類が、1H−テトラゾール、1−メチルテトラゾール、5−メチルテトラゾール、1,5−ジメチルテトラゾール、および1,5−ジエチルテトラゾールからなる群から選択される1種以上である、上記4〜7のいずれかに記載の多層プリント配線板の製造方法。
9. 前記ハロゲンイオンが、フッ素イオン、塩化物イオン、臭素イオン、およびヨウ素イオンからなる群から選択される1種以上である、上記4〜8のいずれかに記載の多層プリント配線板の製造方法。
That is, the present invention is as follows.
1. A liquid composition for etching used for manufacturing a multilayer printed wiring board,
0.2-5 mass% hydrogen peroxide,
0.5-8 mass% sulfuric acid,
0.3 to 3 ppm of halogen ions;
0.003 to 0.3% by mass of tetrazole,
An etching liquid composition comprising:
2. 2. The tetrazole is one or more selected from the group consisting of 1H-tetrazole, 1-methyltetrazole, 5-methyltetrazole, 1,5-dimethyltetrazole, and 1,5-diethyltetrazole. Etching liquid composition.
3. 3. The etching liquid composition according to 1 or 2 above, wherein the halogen ions are one or more selected from the group consisting of fluorine ions, chloride ions, bromine ions, and iodine ions.
4). A method for producing a multilayer printed wiring board comprising etching chemical copper plating and electrolytic copper plating applied on a substrate to form a copper wiring,
0.2 to 5 mass% hydrogen peroxide, 0.5 to 8 mass% sulfuric acid, 0.3 to 3 ppm halogen ion, and 0.003 to 0.3 mass% tetrazole The manufacturing method of a multilayer printed wiring board which etches using the etching liquid composition which becomes.
5. 5. The method for producing a multilayer printed wiring board according to 4 above, wherein the chemical copper plating is removed and the electrolytic copper plating is roughened to form the copper wiring in a semi-additive construction method.
6). 6. The method for producing a multilayer printed wiring board according to 5 above, wherein etching is performed at a ratio of the dissolution rate of the chemical copper plating and the dissolution rate of the electrolytic copper plating of 3 or more.
7). The manufacturing method of the multilayer printed wiring board in any one of said 4-6 which etches and makes the specific surface area of the said copper wiring 1.2-2.
(However, the specific surface area of the copper wiring is the surface area per unit area of 1 μm long × 1 μm wide of the copper wiring, and the specific surface area of the copper wiring is obtained when the surface of the copper wiring is observed with a scanning tunneling microscope. Value)
8). 4-7 above, wherein the tetrazole is at least one selected from the group consisting of 1H-tetrazole, 1-methyltetrazole, 5-methyltetrazole, 1,5-dimethyltetrazole, and 1,5-diethyltetrazole. The manufacturing method of the multilayer printed wiring board in any one of.
9. The method for producing a multilayer printed wiring board according to any one of 4 to 8, wherein the halogen ion is at least one selected from the group consisting of fluorine ion, chloride ion, bromine ion, and iodine ion.

本発明のプリント配線板製造方法によって、従来困難であったセミアディティブ工法によるプリント配線板製造において、シード層である化学銅メッキを効率良く除去すると同時に、多層化のための配線と層間絶縁材等の樹脂との密着性に優れる配線表面の緻密粗化処理を一括処理(一工程で処理)することができるため、産業上の利用価値は極めて高い。このように、シード層である化学銅メッキを選択的に除去することによって、配線幅減少量を抑制し、断線や欠落を防止することができる。   With the printed wiring board manufacturing method of the present invention, in the printed wiring board manufacturing by the semi-additive method, which has been difficult in the past, the chemical copper plating as the seed layer is efficiently removed, and at the same time, the wiring and interlayer insulating material for multilayering, etc. Since the dense roughening treatment of the wiring surface, which has excellent adhesion to the resin, can be performed at once (processing in one step), the industrial utility value is extremely high. In this way, by selectively removing the chemical copper plating that is the seed layer, it is possible to suppress the amount of decrease in the wiring width and to prevent disconnection or omission.

実施例4の銅表面の3次元画像(×30000)。The three-dimensional image (x30000) of the copper surface of Example 4. FIG. 比較例8の銅表面の3次元画像(×30000)。The three-dimensional image (x30000) of the copper surface of the comparative example 8. 実施例6の配線断面電子顕微鏡写真(×3000)。The wiring cross-sectional electron micrograph of Example 6 (x3000). 比較例11の配線断面電子顕微鏡写真(×3000)。The wiring cross-sectional electron micrograph of the comparative example 11 (x3000).

本発明のエッチング用液体組成物は、過酸化水素と、硫酸と、ハロゲンイオンと、テトラゾール類とを含むものであり、水をさらに含むことが好ましい。過酸化水素の濃度は、0.2〜5.0質量%であり、好ましくは0.3〜3.0質量%であり、更に好ましくは0.4〜2.5質量%であり、特に好ましくは0.5〜2.0質量%である。過酸化水素の濃度が0.2〜5.0質量%であるとき、良好な銅の溶解速度が得られ、経済的にも優れる。   The etching liquid composition of the present invention contains hydrogen peroxide, sulfuric acid, halogen ions, and tetrazoles, and preferably further contains water. The concentration of hydrogen peroxide is 0.2 to 5.0% by mass, preferably 0.3 to 3.0% by mass, more preferably 0.4 to 2.5% by mass, and particularly preferably. Is 0.5-2.0 mass%. When the concentration of hydrogen peroxide is 0.2 to 5.0% by mass, a good copper dissolution rate is obtained, which is economically excellent.

硫酸の濃度は、0.5〜8.0質量%であり、好ましくは0.6〜7.0質量%であり、更に好ましくは0.8〜6.0質量%であり、特に好ましくは1.0〜5.0質量%である。硫酸の濃度が0.5〜8.0質量%であるとき、良好な銅の溶解速度が得られ、経済的にも優れる。   The concentration of sulfuric acid is 0.5 to 8.0% by mass, preferably 0.6 to 7.0% by mass, more preferably 0.8 to 6.0% by mass, and particularly preferably 1 0.0 to 5.0% by mass. When the concentration of sulfuric acid is 0.5 to 8.0% by mass, a good copper dissolution rate is obtained, which is economically excellent.

ハロゲンイオンは銅又は銅合金表面を粗化させる効果があり、銅又は銅合金と樹脂との密着性が良好となる。ハロゲンイオンはフッ素イオン、塩化物イオン、臭素イオン、ヨウ素イオンが挙げられるが、これらのうち好ましいものは、塩化物イオン、臭素イオンであり、特に好ましくは塩化物イオンである。ハロゲンイオンの濃度は、0.3〜3ppmであり、好ましくは0.5〜3ppmであり、特に好ましくは0.5〜2ppmである。   Halogen ions have the effect of roughening the copper or copper alloy surface, and the adhesion between the copper or copper alloy and the resin is good. Halogen ions include fluorine ions, chloride ions, bromine ions and iodine ions. Among these, preferred are chloride ions and bromine ions, and particularly preferred are chloride ions. The density | concentration of a halogen ion is 0.3-3 ppm, Preferably it is 0.5-3 ppm, Most preferably, it is 0.5-2 ppm.

テトラゾール類は、ハロゲンイオンと併用されることにより、銅又は銅合金表面を微小に緻密粗化させる効果があり、銅又は銅合金と層間絶縁材等の樹脂との密着性を向上させる。テトラゾール類の中でも、1H−テトラゾール、1−メチルテトラゾール、1−エチルテトラゾール、5−メチルテトラゾール、5−エチルテトラゾール、5−n−プロピルテトラゾール、5−メルカプトテトラゾール、5−メルカプト−1−メチルテトラゾール、1,5−ジメチルテトラゾール、1,5−ジエチルテトラゾール、1−メチル−5−エチルテトラゾール、1−エチル−5−メチルテトラゾール、1−イソプロピル−5−メチルテトラゾール、1−シクロヘキシル−5−メチルテトラゾールの少なくとも一種が好ましい。更に好ましくは、1H−テトラゾール、1−メチルテトラゾール、5−メチルテトラゾール、5−エチルテトラゾール、5−メルカプト−1−メチルテトラゾール、1,5−ジメチルテトラゾール、1,5−ジエチルテトラゾール、1−エチル−5−メチルテトラゾールであり、特に好ましくは、1H−テトラゾール、1−メチルテトラゾール、5−メチルテトラゾール、1,5−ジメチルテトラゾール、1,5−ジエチルテトラゾールである。テトラゾール類の濃度は、0.003〜0.3質量%であり、好ましくは0.005〜0.25質量%であり、特に好ましくは0.01〜0.2質量%である。   Tetrazoles, when used in combination with halogen ions, have the effect of minutely roughening the surface of copper or copper alloy, and improve the adhesion between copper or copper alloy and a resin such as an interlayer insulating material. Among tetrazoles, 1H-tetrazole, 1-methyltetrazole, 1-ethyltetrazole, 5-methyltetrazole, 5-ethyltetrazole, 5-n-propyltetrazole, 5-mercaptotetrazole, 5-mercapto-1-methyltetrazole, 1,5-dimethyltetrazole, 1,5-diethyltetrazole, 1-methyl-5-ethyltetrazole, 1-ethyl-5-methyltetrazole, 1-isopropyl-5-methyltetrazole, 1-cyclohexyl-5-methyltetrazole At least one is preferred. More preferably, 1H-tetrazole, 1-methyltetrazole, 5-methyltetrazole, 5-ethyltetrazole, 5-mercapto-1-methyltetrazole, 1,5-dimethyltetrazole, 1,5-diethyltetrazole, 1-ethyl- 5-Methyltetrazole, particularly preferably 1H-tetrazole, 1-methyltetrazole, 5-methyltetrazole, 1,5-dimethyltetrazole and 1,5-diethyltetrazole. The concentration of the tetrazole is 0.003 to 0.3% by mass, preferably 0.005 to 0.25% by mass, and particularly preferably 0.01 to 0.2% by mass.

銅配線の表面粗さ(Ra値)は、伝送損失の点から0.5μm以下が好ましく、より好ましくは0.4μm以下で、特に好ましくは0.3μm以下である。0.5μmを越えると伝送損失に問題が出る可能性が高い。   The surface roughness (Ra value) of the copper wiring is preferably 0.5 μm or less, more preferably 0.4 μm or less, and particularly preferably 0.3 μm or less from the viewpoint of transmission loss. If it exceeds 0.5 μm, there is a high possibility of problems in transmission loss.

化学銅メッキの溶解速度は、種々の条件下で変化するが、例えば30℃の処理条件下で、好ましくは0.4〜2μm/分であり、より好ましくは0.6〜2μm/分であり、特に好ましくは0.8〜1.5μm/分である。   The dissolution rate of chemical copper plating varies under various conditions. For example, it is preferably 0.4 to 2 μm / min, more preferably 0.6 to 2 μm / min under the processing condition of 30 ° C. Particularly preferred is 0.8 to 1.5 μm / min.

電気銅メッキの溶解速度は、種々の条件下で変化するが、例えば30℃の処理条件下で、好ましくは0.1〜0.5μm/分であり、より好ましくは0.15〜0.4μm/分であり、特に好ましくは0.2〜0.35μm/分である。   The dissolution rate of the electrolytic copper plating varies under various conditions. For example, it is preferably 0.1 to 0.5 μm / min, more preferably 0.15 to 0.4 μm under a processing condition of 30 ° C. / Min, particularly preferably 0.2 to 0.35 μm / min.

化学銅メッキの溶解速度と電気銅メッキの溶解速度の比(化学銅メッキの溶解速度/電気銅メッキの溶解速度)は、3以上が好ましく、より好ましくは3.5以上8以下であり、特に好ましくは4以上7.5以下である。化学銅メッキの溶解速度と電気銅メッキの溶解速度の比が上記範囲内にあれば、化学銅メッキを効率良く除去しながら、電気銅メッキの表面を粗化することができる。   The ratio between the dissolution rate of chemical copper plating and the dissolution rate of electrolytic copper plating (dissolution rate of chemical copper plating / dissolution rate of electrolytic copper plating) is preferably 3 or more, more preferably 3.5 or more and 8 or less, particularly Preferably they are 4 or more and 7.5 or less. If the ratio of the dissolution rate of chemical copper plating and the dissolution rate of electrolytic copper plating is within the above range, the surface of electrolytic copper plating can be roughened while efficiently removing chemical copper plating.

銅箔の引き剥がし強度(ピール強度)は、対象となる層間絶縁材等の樹脂材料にもよるが、好ましくは0.6kgf/cm以上であり、より好ましくは0.8kgf/cm以上であり、更に好ましくは0.9kgf/cm以上であり、特に好ましくは1.0kgf/cm以上である。   The peel strength (peel strength) of the copper foil is preferably 0.6 kgf / cm or more, more preferably 0.8 kgf / cm or more, although it depends on the target resin material such as an interlayer insulating material. More preferably, it is 0.9 kgf / cm or more, and particularly preferably 1.0 kgf / cm or more.

本発明のエッチング用液体組成物の使用温度に関しては特に制限はないが、好ましくは20〜50℃であり、より好ましくは25〜40℃であり、更に好ましくは25〜35℃である。使用温度が20℃以上であれば銅の溶解速度を早くすることができ、50℃以下であれば過酸化水素の分解を抑えることができる。   Although there is no restriction | limiting in particular regarding the operating temperature of the liquid composition for an etching of this invention, Preferably it is 20-50 degreeC, More preferably, it is 25-40 degreeC, More preferably, it is 25-35 degreeC. If the operating temperature is 20 ° C. or higher, the dissolution rate of copper can be increased, and if it is 50 ° C. or lower, the decomposition of hydrogen peroxide can be suppressed.

本発明のエッチング用液体組成物の処理時間に関しては特に制限はないが、1〜600秒が好ましく、5〜300秒がより好ましく、10〜180秒が更に好ましく、15〜120秒が特に好ましいが、金属表面の状態、エッチング用液体組成物の濃度、温度、処理方法等の種々の条件により適宜選択される。   Although there is no restriction | limiting in particular regarding the processing time of the etching liquid composition of this invention, 1 to 600 second is preferable, 5 to 300 second is more preferable, 10 to 180 second is still more preferable, 15 to 120 second is especially preferable. It is appropriately selected depending on various conditions such as the state of the metal surface, the concentration of the etching liquid composition, the temperature, and the treatment method.

本発明のエッチング用液体組成物による処理方法に関しては、特に制限はないが浸漬、噴霧等の手段による。又、処理時間に関しては溶解される銅又は銅合金の厚さにより適宜選択される。   Although there is no restriction | limiting in particular regarding the processing method by the etching liquid composition of this invention, By means, such as immersion and spraying. Further, the processing time is appropriately selected depending on the thickness of the copper or copper alloy to be dissolved.

銅の表面積[μm]は、銅の表面を走査型トンネル顕微鏡で観測することで算出できる。すなわち、銅の表面積[μm]は、銅の表面を走査型トンネル顕微鏡で観測して3次元形状データを得た後、この3次元形状データに基づいて算出できる。 The surface area [μm 2 ] of copper can be calculated by observing the surface of copper with a scanning tunneling microscope. That is, the surface area [μm 2 ] of copper can be calculated based on the three-dimensional shape data after obtaining the three-dimensional shape data by observing the copper surface with a scanning tunneling microscope.

銅の表面の走査型トンネル顕微鏡での観察倍率は、例えば30000倍である。   The observation magnification of the copper surface with a scanning tunneling microscope is, for example, 30000 times.

銅の比表面積は、銅表面の所定の領域内の凹凸を考慮した場合の表面積を、その領域が平坦であると仮定した場合の表面積で除した値に等しい。例えば、銅表面の縦5μm×横5μmの領域内の凹凸を考慮した場合の表面積を、その領域が平坦であると仮定した場合の表面積(つまり、5μm×5μm=25μm)で除した値に等しい。 The specific surface area of copper is equal to a value obtained by dividing the surface area in consideration of the irregularities in a predetermined area of the copper surface by the surface area when the area is assumed to be flat. For example, the surface area when the unevenness in the region of 5 μm length × 5 μm width of the copper surface is taken into consideration is divided by the surface area when the region is assumed to be flat (that is, 5 μm × 5 μm = 25 μm 2 ). equal.

銅の比表面積は、銅の表面の凹凸を考慮した値である。したがって、銅の表面が緻密であればあるほど、銅の比表面積は大きくなる傾向がある。ここでいう「緻密」とは、銅表面の凸部の一つ一つが微小であり、かつ、凸部が密集している状態のことをいう。   The specific surface area of copper is a value that takes into account the unevenness of the copper surface. Therefore, the specific surface area of copper tends to increase as the copper surface becomes denser. Here, “dense” means a state in which each of the convex portions on the copper surface is minute and the convex portions are densely packed.

走査型トンネル顕微鏡は、金属探針と試料の間に流れるトンネル電流を検出するタイプの顕微鏡である。先端の尖った白金やタングステンなどの金属探針を試料に近づけた後、それらの間に微小なバイアス電圧を印加すると、トンネル効果によってトンネル電流が流れる。このトンネル電流を一定に保つように探針を走査することにより、試料の表面形状を原子レベルで観測することができる。   The scanning tunnel microscope is a type of microscope that detects a tunnel current flowing between a metal probe and a sample. When a metal probe such as platinum or tungsten having a sharp tip is brought close to the sample and a minute bias voltage is applied between them, a tunnel current flows due to the tunnel effect. By scanning the probe so as to keep the tunnel current constant, the surface shape of the sample can be observed at the atomic level.

以下に実施例及び比較例により、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
・表面積測定
走査型トンネル顕微鏡:エスアイアイナノテクノロジー社製 L−traceII/
NanoNaviIIステーションを使用し、3万倍で観測した。
・銅溶解量測定方法;以下の式により質量法にて算出した。
溶解量=(処理前質量−処理後質量)/(処理面積×銅の密度)
(式中、銅の密度は、8.96g/cmである。)
・配線幅測定
金属顕微鏡 オリンパス製 MX61Lを使用した。
・銅箔の引き剥がし強さ(ピール強度)測定
引き剥がし強さは、JIS C 6481に規定された方法に従って測定した。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
-Surface area measurement Scanning tunneling microscope: L-trace II / manufactured by SII Nano Technology
Observation was performed at a magnification of 30,000 using a NanoNavi II station.
-Copper dissolution amount measuring method: It calculated by the mass method by the following formula | equation.
Dissolution amount = (mass before treatment−mass after treatment) / (treatment area × copper density)
(In the formula, the density of copper is 8.96 g / cm 3. )
-Wiring width measurement Metal microscope Olympus MX61L was used.
-Measurement of peel strength (peel strength) of copper foil The peel strength was measured according to the method defined in JIS C 6481.

実施例1
化学銅メッキ基板(寸法15cm×15cm、メッキ厚1μm)、電気銅メッキ基板(寸法15cm×15cm、メッキ厚10μm)を、過酸化水素1質量%、硫酸3質量%、5−メチルテトラゾール0.1質量%、塩化物イオン1ppmを含むエッチング用液体組成物で液温30℃、スプレー圧0.1MPaでスプレー処理した。処理前後の基板の質量差より銅溶解量を算出して、単位時間あたりの銅溶解速度を算出した。更に、化学銅メッキ溶解速度と電気銅メッキ溶解速度の比を算出した。
Example 1
Chemical copper plating substrate (dimensions 15 cm × 15 cm, plating thickness 1 μm), electrolytic copper plating substrate (dimensions 15 cm × 15 cm, plating thickness 10 μm), hydrogen peroxide 1 mass%, sulfuric acid 3 mass%, 5-methyltetrazole 0.1 Spray treatment was performed with a liquid composition for etching containing 1% by mass of chloride ions at a liquid temperature of 30 ° C. and a spray pressure of 0.1 MPa. The amount of copper dissolution was calculated from the difference in mass between the substrates before and after the treatment, and the copper dissolution rate per unit time was calculated. Furthermore, the ratio between the chemical copper plating dissolution rate and the electrolytic copper plating dissolution rate was calculated.

実施例2
過酸化水素0.5質量%、硫酸2.5質量%、5−メチルテトラゾール0.01質量%、1,5−ジメチルテトラゾール0.01質量%、塩化物イオン1ppmを含むエッチング用液体組成物を用いた以外は実施例1と同様に行った。
Example 2
An etching liquid composition comprising 0.5% by mass of hydrogen peroxide, 2.5% by mass of sulfuric acid, 0.01% by mass of 5-methyltetrazole, 0.01% by mass of 1,5-dimethyltetrazole, and 1 ppm of chloride ions. The same procedure as in Example 1 was performed except that it was used.

実施例3
過酸化水素1.5質量%、硫酸4.5質量%、1−メチルテトラゾール0.02質量%、1,5−ジメチルテトラゾール0.02質量%、臭素イオン3ppmを含むエッチング用液体組成物を用いた以外は実施例1と同様に行った。
Example 3
An etching liquid composition containing 1.5% by mass of hydrogen peroxide, 4.5% by mass of sulfuric acid, 0.02% by mass of 1-methyltetrazole, 0.02% by mass of 1,5-dimethyltetrazole, and 3 ppm of bromine ions is used. The procedure was the same as in Example 1 except that.

比較例1
過酸化水素4質量%、硫酸9質量%、5−アミノテトラゾール0.3質量%、塩化物イオン10ppmを含むエッチング用液体組成物(特許文献4の実施例7と同様の組成)を用いた以外は実施例1と同様に行った。
Comparative Example 1
Except for using an etching liquid composition containing 4% by mass of hydrogen peroxide, 9% by mass of sulfuric acid, 0.3% by mass of 5-aminotetrazole, and 10 ppm of chloride ions (the same composition as in Example 7 of Patent Document 4). Was carried out in the same manner as in Example 1.

比較例2
過酸化水素2.5質量%、硫酸13.7質量%、5−フェニルテトラゾール0.03質量%、4−ニトロベンゾトリアゾール0.07質量%、塩化物イオン8ppmを含むエッチング用液体組成物(特許文献5の実施例1と同様の組成)を用いた以外は実施例1と同様に行った。
Comparative Example 2
Etching liquid composition comprising hydrogen peroxide 2.5% by mass, sulfuric acid 13.7% by mass, 5-phenyltetrazole 0.03% by mass, 4-nitrobenzotriazole 0.07% by mass, chloride ion 8ppm (patent The same procedure as in Example 1 was performed except that the same composition as in Example 1 of Document 5 was used.

比較例3
過酸化水素3質量%、硫酸10質量%、5−フェニルテトラゾール0.02質量%、トルエンスルホン酸0.2質量%、塩化物イオン3ppmを含むエッチング用液体組成物(特許文献6の実施例1と同様の組成)を用いた以外は実施例1と同様に行った。
Comparative Example 3
Etching liquid composition containing 3% by mass of hydrogen peroxide, 10% by mass of sulfuric acid, 0.02% by mass of 5-phenyltetrazole, 0.2% by mass of toluenesulfonic acid, and 3 ppm of chloride ions (Example 1 of Patent Document 6) This was carried out in the same manner as in Example 1 except that the same composition was used.

比較例4
過酸化水素5.25質量%、硫酸12.5質量%、5−アミノテトラゾール0.06質量%、5−メチルテトラゾール0.02質量%、1−ヒドロキシエタン−1,1−ジホスホン酸0.4質量%を含むエッチング用液体組成物(特許文献7の実施例1と同様の組成)を用いた以外は実施例1と同様に行った。
Comparative Example 4
Hydrogen peroxide 5.25% by mass, sulfuric acid 12.5% by mass, 5-aminotetrazole 0.06% by mass, 5-methyltetrazole 0.02% by mass, 1-hydroxyethane-1,1-diphosphonic acid 0.4 This was performed in the same manner as in Example 1 except that an etching liquid composition containing mass% (the same composition as in Example 1 of Patent Document 7) was used.

比較例5
過酸化水素1.5質量%、硫酸9質量%、5−メチルテトラゾール0.1質量%、テトラゾール0.05質量%、パラジウム1ppmを含むエッチング用液体組成物(特許文献8の実施例8と同様の組成)を用いた以外は実施例1と同様に行った。
Comparative Example 5
Etching liquid composition containing 1.5% by mass of hydrogen peroxide, 9% by mass of sulfuric acid, 0.1% by mass of 5-methyltetrazole, 0.05% by mass of tetrazole, and 1 ppm of palladium (similar to Example 8 of Patent Document 8) This was carried out in the same manner as in Example 1 except that the above composition was used.

比較例6
過酸化水素1.5質量%、硫酸5質量%、ベンゾトリアゾール0.3質量%、塩化物イオン5ppmを含むエッチング用液体組成物(特許文献9の実施例1と同様の組成)を用いた以外は実施例1と同様に行った。
Comparative Example 6
Except for using an etching liquid composition containing 1.5% by mass of hydrogen peroxide, 5% by mass of sulfuric acid, 0.3% by mass of benzotriazole, and 5 ppm of chloride ions (the same composition as in Example 1 of Patent Document 9). Was carried out in the same manner as in Example 1.

比較例7
過酸化水素10質量%、硫酸16質量%、トリルトリアゾール0.2質量%、亜リン酸1質量%を含むエッチング用液体組成物(特許文献10の実施例1と同様の組成)を用いた以外は実施例1と同様に行った。
Comparative Example 7
Except for using an etching liquid composition containing 10% by mass of hydrogen peroxide, 16% by mass of sulfuric acid, 0.2% by mass of tolyltriazole and 1% by mass of phosphorous acid (same composition as Example 1 of Patent Document 10). Was carried out in the same manner as in Example 1.

実施例4
厚み35μm電気銅箔(寸法150mm×150mm)のシャイニー面を、過酸化水素1質量%、硫酸3質量%、5−メチルテトラゾール0.2質量%、塩化物イオン1ppmを含むエッチング用液体組成物で液温30℃、スプレー圧0.1MPaで1分間スプレー処理した。処理前後の銅箔の質量差より銅溶解量を算出した結果、0.3μmであった。次に、エッチング後の銅箔表面を、走査型トンネル顕微鏡で30000倍の倍率で観測した。図1は、このときに観測された銅箔表面の3次元画像である。
Example 4
A shiny liquid surface of 35 μm thick electric copper foil (size 150 mm × 150 mm) is an etching liquid composition containing 1% by mass of hydrogen peroxide, 3% by mass of sulfuric acid, 0.2% by mass of 5-methyltetrazole and 1 ppm of chloride ions. Spray treatment was performed at a liquid temperature of 30 ° C. and a spray pressure of 0.1 MPa for 1 minute. It was 0.3 micrometer as a result of computing copper dissolution amount from the mass difference of the copper foil before and behind a process. Next, the copper foil surface after the etching was observed with a scanning tunneling microscope at a magnification of 30000 times. FIG. 1 is a three-dimensional image of the copper foil surface observed at this time.

走査型トンネル顕微鏡を用いて、エッチング後の銅箔表面の縦5μm×横5μmの領域内の表面積を測定した。その結果、銅箔の表面積は、42.5[μm]であった。比表面積は、42.5[μm]/25[μm]=1.7であった。 Using a scanning tunneling microscope, the surface area of the etched copper foil surface in a region of 5 μm length × 5 μm width was measured. As a result, the surface area of the copper foil was 42.5 [μm 2 ]. The specific surface area was 42.5 [μm 2 ] / 25 [μm 2 ] = 1.7.

エッチング後の銅箔を、真空熱プレスによって層間絶縁樹脂(三菱ガス化学製商品名:HL832NS)に積層し、銅張積層板を作製した。この銅張積層板において、銅箔のエッチングされた側の表面は、層間絶縁樹脂に密着している。このようにして得られた銅張積層板を用いて、銅箔の引き剥がし強さ(ピール強度)を測定した。その結果、銅箔の引き剥がし強さは、1.00kgf/cmであった。   The copper foil after the etching was laminated on an interlayer insulating resin (trade name: HL832NS, manufactured by Mitsubishi Gas Chemical Co., Ltd.) by vacuum hot pressing to produce a copper clad laminate. In this copper clad laminate, the etched surface of the copper foil is in close contact with the interlayer insulating resin. Using the copper clad laminate thus obtained, the peel strength (peel strength) of the copper foil was measured. As a result, the peel strength of the copper foil was 1.00 kgf / cm.

実施例5
過酸化水素0.5質量%、硫酸2.5質量%、5−メチルテトラゾール0.01質量%、1,5−ジメチルテトラゾール0.01質量%、塩化物イオン1ppmを含むエッチング用液体組成物を用いた以外は実施例4と同様に行った。
Example 5
An etching liquid composition comprising 0.5% by mass of hydrogen peroxide, 2.5% by mass of sulfuric acid, 0.01% by mass of 5-methyltetrazole, 0.01% by mass of 1,5-dimethyltetrazole, and 1 ppm of chloride ions. The same procedure as in Example 4 was performed except that it was used.

比較例8
過酸化水素2質量%、硫酸10質量%、1−(1,2−ジカルボキシエチル)ベンゾトリアゾール0.05質量%を含むエッチング用液体組成物(特許文献2の実施例4と同様の組成)を用いた以外は実施例4と同様に行った。
Comparative Example 8
Etching liquid composition containing 2% by mass of hydrogen peroxide, 10% by mass of sulfuric acid, and 0.05% by mass of 1- (1,2-dicarboxyethyl) benzotriazole (composition similar to Example 4 of Patent Document 2) The same procedure as in Example 4 was performed except that was used.

比較例9
過酸化水素0.8質量%、硫酸4質量%、臭素イオン3ppmを含むエッチング用液体組成物(特許文献1の実施例1と同様の組成)を用いた以外は実施例4と同様に行った。
Comparative Example 9
This was carried out in the same manner as in Example 4 except that an etching liquid composition containing 0.8% by mass of hydrogen peroxide, 4% by mass of sulfuric acid and 3 ppm of bromine ions (the same composition as Example 1 of Patent Document 1) was used. .

比較例10
過酸化水素2質量%、硫酸9質量%、ベンゾトリアゾール0.025質量%、1,2,3−トリアゾール0.1質量%、フェノールスルホン酸ナトリウム一水和物0.1質量%を含むエッチング用液体組成物(特許文献3の実施例1と同様の組成)を用いた以外は実施例4と同様に行った。
Comparative Example 10
For etching containing 2% by mass of hydrogen peroxide, 9% by mass of sulfuric acid, 0.025% by mass of benzotriazole, 0.1% by mass of 1,2,3-triazole, 0.1% by mass of sodium phenolsulfonate monohydrate The same operation as in Example 4 was performed except that the liquid composition (the same composition as in Example 1 of Patent Document 3) was used.

実施例6
樹脂上に化学銅メッキ0.7μmを形成した基板(寸法510mm×340mm)にドライフィルムレジストを用いて導体部に厚み18μmの電気銅メッキを施した。次に、アミン系レジスト剥離液(三菱ガス化学製製品名:R−100S)にてレジストを剥離した。導体部の配線幅を金属顕微鏡(オリンパス株式会社製MX61L)にて測定した結果、配線幅は10μmであった。次に、シード層の化学銅メッキ(厚み0.7μm)を、過酸化水素1質量%、硫酸3質量%、5−メチルテトラゾール0.2質量%、塩化物イオン1ppmを含むエッチング用液体組成物(実施例4と同様の組成)で液温30℃、スプレー圧0.1MPaで1分間スプレー処理して化学銅メッキを完全に除去した。シード層(化学銅メッキ)を除去した後の配線幅の減少量を、金属顕微鏡(オリンパス株式会社製、MX61L)を用いて測定した結果、図3に見られるように線幅減少量は0.5μmで良好であった。
Example 6
Electrode copper plating with a thickness of 18 μm was applied to the conductor using a dry film resist on a substrate (size 510 mm × 340 mm) on which a chemical copper plating 0.7 μm was formed on the resin. Next, the resist was stripped with an amine-based resist stripping solution (product name: R-100S manufactured by Mitsubishi Gas Chemical). As a result of measuring the wiring width of the conductor portion with a metal microscope (MX61L manufactured by Olympus Corporation), the wiring width was 10 μm. Next, a chemical copper plating (thickness 0.7 μm) of the seed layer is applied to an etching liquid composition containing 1% by mass of hydrogen peroxide, 3% by mass of sulfuric acid, 0.2% by mass of 5-methyltetrazole, and 1 ppm of chloride ions. (The same composition as in Example 4) was sprayed for 1 minute at a liquid temperature of 30 ° C. and a spray pressure of 0.1 MPa to completely remove the chemical copper plating. As a result of measuring the reduction amount of the wiring width after removing the seed layer (chemical copper plating) using a metal microscope (manufactured by Olympus Corporation, MX61L), as shown in FIG. It was good at 5 μm.

比較例11
過酸化水素4質量%、硫酸9質量%、5−アミノテトラゾール0.3質量%、塩化物イオン10ppmを含むエッチング用液体組成物(比較例1と同様の組成)を用いた以外は実施例6と同様に行った。シード層(化学銅メッキ)を除去した後の配線幅の減少量を、金属顕微鏡(オリンパス株式会社製、MX61L)を用いて測定した結果、図4に見られるように線幅の減少がひどく、使用不可であった。
Comparative Example 11
Example 6 except that an etching liquid composition containing 4% by mass of hydrogen peroxide, 9% by mass of sulfuric acid, 0.3% by mass of 5-aminotetrazole, and 10 ppm of chloride ions (same composition as Comparative Example 1) was used. As well as. As a result of measuring the reduction amount of the wiring width after removing the seed layer (chemical copper plating) using a metal microscope (manufactured by Olympus Corporation, MX61L), the reduction in the line width is severe as seen in FIG. It was not usable.

表1、表2の結果から、本発明のエッチング用液体組成物で処理すると、化学銅メッキの溶解速度と電気銅メッキの溶解速度の比が3以上であることから、選択的に化学銅メッキが溶解できると同時に、電気銅表面を緻密に粗化出来るため層間絶縁樹脂との引き剥がし強さ(ピール強度)が強いことがわかる。   From the results of Tables 1 and 2, when treated with the etching liquid composition of the present invention, the ratio of the dissolution rate of chemical copper plating and the dissolution rate of electrolytic copper plating is 3 or more. It can be seen that at the same time that the electrolytic copper surface can be densely roughened, the peel strength from the interlayer insulating resin (peel strength) is strong.

Claims (9)

多層プリント配線板の製造に用いられるエッチング用液体組成物であって、
0.2〜5質量%の過酸化水素と、
0.5〜8質量%の硫酸と、
0.3〜3ppmのハロゲンイオンと、
0.003〜0.3質量%のテトラゾール類と、
を含んでなる、エッチング用液体組成物。
A liquid composition for etching used for manufacturing a multilayer printed wiring board,
0.2-5 mass% hydrogen peroxide,
0.5-8 mass% sulfuric acid,
0.3 to 3 ppm of halogen ions;
0.003 to 0.3% by mass of tetrazole,
An etching liquid composition comprising:
前記テトラゾール類が、1H−テトラゾール、1−メチルテトラゾール、5−メチルテトラゾール、1,5−ジメチルテトラゾール、および1,5−ジエチルテトラゾールからなる群から選択される1種以上である、請求項1に記載のエッチング用液体組成物。   The tetrazole is at least one selected from the group consisting of 1H-tetrazole, 1-methyltetrazole, 5-methyltetrazole, 1,5-dimethyltetrazole, and 1,5-diethyltetrazole. The liquid composition for etching as described. 前記ハロゲンイオンが、フッ素イオン、塩化物イオン、臭素イオン、およびヨウ素イオンからなる群から選択される1種以上である、請求項1または2に記載のエッチング用液体組成物。   The etching liquid composition according to claim 1 or 2, wherein the halogen ions are one or more selected from the group consisting of fluorine ions, chloride ions, bromine ions, and iodine ions. 基板上に施された化学銅メッキおよび電気銅メッキをエッチング処理して、銅配線を形成することを含む多層プリント配線板の製造方法であって、
0.2〜5質量%の過酸化水素と、0.5〜8質量%の硫酸と、0.3〜3ppmのハロゲンイオンと、0.003〜0.3質量%のテトラゾール類とを含んでなるエッチング用液体組成物を用いてエッチング処理する、多層プリント配線板の製造方法。
A method for producing a multilayer printed wiring board comprising etching chemical copper plating and electrolytic copper plating applied on a substrate to form a copper wiring,
0.2 to 5 mass% hydrogen peroxide, 0.5 to 8 mass% sulfuric acid, 0.3 to 3 ppm halogen ion, and 0.003 to 0.3 mass% tetrazole The manufacturing method of a multilayer printed wiring board which etches using the etching liquid composition which becomes.
セミアディティブ工法において前記化学銅メッキを除去すると共に前記電気銅メッキを粗化して、前記銅配線を形成する、請求項4に記載の多層プリント配線板の製造方法。   The manufacturing method of the multilayer printed wiring board of Claim 4 which forms the said copper wiring by removing the said chemical copper plating and roughening the said electrolytic copper plating in a semi-additive construction method. 前記化学銅メッキの溶解速度と前記電気銅メッキの溶解速度の比が3以上でエッチング処理する、請求項5に記載の多層プリント配線板の製造方法。   The manufacturing method of the multilayer printed wiring board of Claim 5 which etches by the ratio of the dissolution rate of the said chemical copper plating and the dissolution rate of the said electrolytic copper plating being 3 or more. エッチング処理して、前記銅配線の比表面積を1.2〜2とする、請求項4〜6のいずれか一項に記載の多層プリント配線板の製造方法。
(但し、銅配線の比表面積は、銅配線の縦1μm×横1μmの単位領域当たりの表面積であり、銅配線の比表面積は、前記銅配線の表面を走査型トンネル顕微鏡で観測したときに得られる値である)
The manufacturing method of the multilayer printed wiring board as described in any one of Claims 4-6 which carries out an etching process and sets the specific surface area of the said copper wiring to 1.2-2.
(However, the specific surface area of the copper wiring is the surface area per unit area of 1 μm long × 1 μm wide of the copper wiring, and the specific surface area of the copper wiring is obtained when the surface of the copper wiring is observed with a scanning tunneling microscope. Value)
前記テトラゾール類が、1H−テトラゾール、1−メチルテトラゾール、5−メチルテトラゾール、1,5−ジメチルテトラゾール、および1,5−ジエチルテトラゾールからなる群から選択される1種以上である、請求項4〜7のいずれか一項に記載の多層プリント配線板の製造方法。   The tetrazole is at least one selected from the group consisting of 1H-tetrazole, 1-methyltetrazole, 5-methyltetrazole, 1,5-dimethyltetrazole, and 1,5-diethyltetrazole. 8. The method for producing a multilayer printed wiring board according to any one of 7 above. 前記ハロゲンイオンが、フッ素イオン、塩化物イオン、臭素イオン、およびヨウ素イオンからなる群から選択される1種以上である、請求項4〜8のいずれか一項に記載の多層プリント配線板の製造方法。   The production of a multilayer printed wiring board according to any one of claims 4 to 8, wherein the halogen ions are one or more selected from the group consisting of fluorine ions, chloride ions, bromine ions, and iodine ions. Method.
JP2013055307A 2012-06-29 2013-03-18 Etching liquid composition and method for producing multilayer printed wiring board using the same Active JP6120147B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013055307A JP6120147B2 (en) 2012-06-29 2013-03-18 Etching liquid composition and method for producing multilayer printed wiring board using the same
CN201310217858.9A CN103510089B (en) 2012-06-29 2013-06-03 Liquid composition for etching and preparing method of multilayer printed wiring board using same
TW102120126A TWI575110B (en) 2012-06-29 2013-06-06 The liquid composition for etching and the manufacturing method of the multilayer printed circuit board using the liquid composition
KR1020130066148A KR20140002495A (en) 2012-06-29 2013-06-10 Liquid composition for etching and preparing method of multilayer printed wiring board by using the same
KR1020200048026A KR20200046001A (en) 2012-06-29 2020-04-21 Liquid composition for etching and preparing method of multilayer printed wiring board by using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012147081 2012-06-29
JP2012147081 2012-06-29
JP2013055307A JP6120147B2 (en) 2012-06-29 2013-03-18 Etching liquid composition and method for producing multilayer printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2014029011A true JP2014029011A (en) 2014-02-13
JP6120147B2 JP6120147B2 (en) 2017-04-26

Family

ID=50201749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055307A Active JP6120147B2 (en) 2012-06-29 2013-03-18 Etching liquid composition and method for producing multilayer printed wiring board using the same

Country Status (3)

Country Link
JP (1) JP6120147B2 (en)
KR (1) KR20200046001A (en)
TW (1) TWI575110B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224316A (en) * 2013-04-23 2014-12-04 三菱瓦斯化学株式会社 Processing method of wiring board, and wiring board produced using the method
CN106488658A (en) * 2016-12-28 2017-03-08 华进半导体封装先导技术研发中心有限公司 High-density base board half additive process Seed Layer fast-etching device and engraving method
CN113613413A (en) * 2021-07-30 2021-11-05 东莞市科佳电路有限公司 Processing method of silicon-wheat cavity circuit board
CN114032548A (en) * 2021-11-11 2022-02-11 河南慧泽生物工程有限公司 Copper foil etching solution for printed circuit board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102520371B1 (en) * 2019-10-18 2023-04-10 삼성에스디아이 주식회사 Etching composition for silicon nitride layer and etching process of silicon nitride layer using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064067A (en) * 1998-06-09 2000-02-29 Ebara Densan Ltd Etching solution and roughening treatment of copper surface
JP2000174421A (en) * 1998-12-03 2000-06-23 Ngk Spark Plug Co Ltd Manufacture of wiring board
JP2005005341A (en) * 2003-06-10 2005-01-06 Mitsubishi Gas Chem Co Inc Method for manufacturing printed circuit board
JP2006013340A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Etching solution for manufacturing printed wire board using a semi-additive method
JP2009019270A (en) * 2007-06-14 2009-01-29 Mec Kk Surface roughening agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687852B2 (en) * 2001-06-25 2011-05-25 三菱瓦斯化学株式会社 Surface treatment agent for copper and copper alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064067A (en) * 1998-06-09 2000-02-29 Ebara Densan Ltd Etching solution and roughening treatment of copper surface
JP2000174421A (en) * 1998-12-03 2000-06-23 Ngk Spark Plug Co Ltd Manufacture of wiring board
JP2005005341A (en) * 2003-06-10 2005-01-06 Mitsubishi Gas Chem Co Inc Method for manufacturing printed circuit board
JP2006013340A (en) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc Etching solution for manufacturing printed wire board using a semi-additive method
JP2009019270A (en) * 2007-06-14 2009-01-29 Mec Kk Surface roughening agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224316A (en) * 2013-04-23 2014-12-04 三菱瓦斯化学株式会社 Processing method of wiring board, and wiring board produced using the method
CN106488658A (en) * 2016-12-28 2017-03-08 华进半导体封装先导技术研发中心有限公司 High-density base board half additive process Seed Layer fast-etching device and engraving method
CN106488658B (en) * 2016-12-28 2023-05-23 华进半导体封装先导技术研发中心有限公司 Seed layer rapid etching method for high-density substrate semi-addition process
CN113613413A (en) * 2021-07-30 2021-11-05 东莞市科佳电路有限公司 Processing method of silicon-wheat cavity circuit board
CN114032548A (en) * 2021-11-11 2022-02-11 河南慧泽生物工程有限公司 Copper foil etching solution for printed circuit board

Also Published As

Publication number Publication date
TW201402866A (en) 2014-01-16
JP6120147B2 (en) 2017-04-26
TWI575110B (en) 2017-03-21
KR20200046001A (en) 2020-05-06

Similar Documents

Publication Publication Date Title
JP6590060B2 (en) Method for manufacturing printed wiring board
JP6424559B2 (en) Composition for etching and method of manufacturing printed wiring board using the same
KR20200046001A (en) Liquid composition for etching and preparing method of multilayer printed wiring board by using the same
JP5505847B2 (en) Etching agent
KR20140002495A (en) Liquid composition for etching and preparing method of multilayer printed wiring board by using the same
JP4881916B2 (en) Surface roughening agent
KR101162370B1 (en) Etching removing method and etching solution in manufacturing print wiring substrate using semi-additive process
JP2011038124A (en) Metal surface treatment agent
JP6278814B2 (en) Wiring board processing method and wiring board manufactured using the method
JP4632038B2 (en) Copper wiring board manufacturing method
JP2010196119A (en) Metal surface treating agent
JP2011080131A (en) Metal surface treatment method and method for manufacturing wiring board
CN104919087A (en) Copper etching solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R151 Written notification of patent or utility model registration

Ref document number: 6120147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151