JP2014028375A - Production method of high strength steel sheet superior in edge quality and gauge uniformity - Google Patents

Production method of high strength steel sheet superior in edge quality and gauge uniformity Download PDF

Info

Publication number
JP2014028375A
JP2014028375A JP2012169109A JP2012169109A JP2014028375A JP 2014028375 A JP2014028375 A JP 2014028375A JP 2012169109 A JP2012169109 A JP 2012169109A JP 2012169109 A JP2012169109 A JP 2012169109A JP 2014028375 A JP2014028375 A JP 2014028375A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
strength steel
edge quality
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169109A
Other languages
Japanese (ja)
Other versions
JP5928226B2 (en
Inventor
Yuya Ikehara
祐哉 池原
Shinjiro Kaneko
真次郎 金子
Yoshiyasu Kawasaki
由康 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012169109A priority Critical patent/JP5928226B2/en
Publication of JP2014028375A publication Critical patent/JP2014028375A/en
Application granted granted Critical
Publication of JP5928226B2 publication Critical patent/JP5928226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a high strength steel sheet superior in edge quality and gauge uniformity, the method enabling the high strength steel sheet having the excellent edge quality (without an edge crack) and the gauge uniformity to be stably produced.SOLUTION: The production method of the high strength steel sheet superior in the edge quality and the gauge uniformity, is provided in which a steel slab having a predetermined component composition is hot-rolled at a finish rolling finishing temperature of Arpoints or more, cooling is started within 2s after the hot rolling, the cooling is performed up to 600°C or less at an average cooling speed of 50°C/s or more, the slab is wound at a temperature of 400-550°C, cold rolling at a draft of 40% or more is performed, tension between respective rolling stands is set to 21.0 kgf/cmor more in the cold rolling, and a linear rolling load difference between the respective rolling stands except for the final rolling stand is also set to 0.25 tonf/mm or less.

Description

本発明は、自動車の構造部材に好適な高強度鋼板、特に780MPa以上の引張強度TSを有し、かつ、エッジ品質とゲージ均一性に優れた高強度鋼板の製造方法に関する。   The present invention relates to a method for producing a high-strength steel sheet suitable for automobile structural members, particularly a high-strength steel sheet having a tensile strength TS of 780 MPa or more and excellent edge quality and gauge uniformity.

近年、衝突時における乗員の安全性確保や車体軽量化による燃費改善を目的として、TSが780MPa以上で、板厚の薄い高強度鋼板の自動車構造部材への適用が積極的に進められている(例えば、特許文献1参照)。特に、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。   In recent years, for the purpose of ensuring the safety of passengers in the event of a collision and improving fuel efficiency by reducing the weight of the vehicle body, the application of high-strength steel sheets with a TS of 780 MPa or more and a thin plate thickness has been actively promoted ( For example, see Patent Document 1). In particular, recently, application of a high-strength steel sheet having an extremely high strength having TS of 980 MPa class and 1180 MPa class has been studied.

特開2010−209392号公報JP 2010-209392 A

鋼板の高強度化を図ると、冷間圧延時にエッジ亀裂やゲージ変動が生じやすくなる。特許文献1に記載の高強度鋼板においては、冷間圧延時にエッジ亀裂やゲージ変動については考慮されていない。   If the strength of the steel sheet is increased, edge cracks and gauge fluctuations are likely to occur during cold rolling. In the high-strength steel sheet described in Patent Document 1, no consideration is given to edge cracks and gauge fluctuations during cold rolling.

本発明は、上記のような事情に鑑みてなされたものであり、優れたエッジ品質(エッジ亀裂なし)とゲージ均一性を有する高強度鋼板を安定して製造することができる、エッジ品質とゲージ均一性に優れた高強度鋼板の製造方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and is capable of stably producing a high-strength steel sheet having excellent edge quality (without edge cracks) and gauge uniformity, and edge quality and gauge. It aims at providing the manufacturing method of the high strength steel plate excellent in uniformity.

本発明者らは、上記課題を解決するために、鋭意検討を行った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies.

鋼板の熱間圧延においては、鋼板のエッジ(幅端部)の冷却速度が幅センター(幅中央部)の冷却速度に比べて速くなり、熱間圧延後の鋼板(熱延鋼板)のエッジの硬度(強度)が幅センターの硬度(強度)に比べて大きくなり、特に高強度鋼板の場合、その硬度差(強度差)自体がかなり大きくなることから、その後の冷間圧延において、エッジが幅センターに比べて延伸し難くなり、エッジ亀裂が生じやすくなることがわかった。また、鋼板の長手方向にも同様の現象が生じて、高強度鋼板の場合、熱間圧延後の鋼板(熱延鋼板)の先後端部と長手方向中央部の硬度差(強度差)自体がかなり大きくなることから、その後の冷間圧延において、先後端部が長手方向中央部に比べて延伸し難くなり、長手方向でのゲージ変動(板厚変動)が生じやすくなることがわかった。   In hot rolling of steel plates, the cooling rate of the edge (width end) of the steel plate is faster than the cooling rate of the width center (width center portion), and the edge of the steel plate (hot rolled steel plate) after hot rolling The hardness (strength) is larger than the hardness (strength) at the width center. Especially in the case of high-strength steel sheets, the hardness difference (strength difference) itself becomes considerably large. It was found that it was difficult to stretch compared to the center and edge cracks were likely to occur. In addition, the same phenomenon occurs in the longitudinal direction of the steel sheet, and in the case of a high-strength steel sheet, there is a hardness difference (strength difference) between the front and rear ends of the hot-rolled steel sheet (hot rolled steel sheet) and the central portion in the longitudinal direction. From the fact that it becomes considerably large, it was found that in the subsequent cold rolling, the front and rear end portions are less likely to be stretched than the central portion in the longitudinal direction, and gauge fluctuation (sheet thickness fluctuation) is likely to occur in the longitudinal direction.

そこで、上記のような高強度鋼板に生じるエッジ亀裂やゲージ変動(板厚変動)を抑制するためには、熱間圧延後の鋼板(冷間圧延前の鋼板)において、幅方向および長手方向の硬度差(強度差)を小さくすることが必要であり、特に幅方向については、幅センター強度TScと幅エッジ強度TSeとの強度差(硬度差)ΔTSを以下のようにすればよいことを見出した。   Therefore, in order to suppress edge cracks and gauge fluctuations (thickness fluctuations) that occur in the high-strength steel sheets as described above, in the steel sheets after hot rolling (the steel sheets before cold rolling), in the width direction and the longitudinal direction. It is necessary to reduce the hardness difference (strength difference), and in particular in the width direction, it is found that the strength difference (hardness difference) ΔTS between the width center strength TSc and the width edge strength TSe may be set as follows. It was.

ΔTS<200MPa (好ましくは<150MPa)     ΔTS <200 MPa (preferably <150 MPa)

そして、そのために、熱間圧延後の鋼板のミクロ組織をベイナイト主体の組織として、幅方向および長手方向の硬度差(強度差)を緩和することを着想した。具体的には、ベイナイト面積率が90%以上、フェライト面積率が5%以下、パーライト面積率が5%以下にすることにより、前記強度差を小さくすることができることがわかった。   For that purpose, the idea was to reduce the hardness difference (strength difference) in the width direction and the longitudinal direction by using the microstructure of the steel sheet after hot rolling as a bainite-based structure. Specifically, it was found that the strength difference can be reduced by setting the bainite area ratio to 90% or more, the ferrite area ratio to 5% or less, and the pearlite area ratio to 5% or less.

また、エッジ品質を良好にするには、冷間圧延条件として各圧延スタンド間張力、最終圧延スタンドを除く各圧延スタンド間の圧延線荷重差を適正化する必要があることがわかった。   Moreover, in order to make edge quality favorable, it turned out that it is necessary to optimize the tension between each rolling stand as a cold rolling condition, and the rolling line load difference between each rolling stand except a final rolling stand.

このようにして、本発明者らは、鋼の成分組成と熱間圧延・冷間圧延の条件を適正化することによって、エッジ品質とゲージ均一性に優れた高強度鋼板を安定して製造することができることを見出して、本発明をなした。   In this way, the present inventors stably produce high-strength steel sheets with excellent edge quality and gauge uniformity by optimizing the steel composition and hot rolling / cold rolling conditions. It has been found that this is possible and the present invention has been made.

すなわち、本発明は以下のような特徴を有している。   That is, the present invention has the following features.

[1]質量%で、C:0.05〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.0%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを仕上圧延終了温度がAr点以上で熱間圧延し、熱間圧延後2s以内に冷却を開始し、50℃/s以上の平均冷却速度で600℃以下まで冷却を行い、400〜550℃の温度で巻取り、圧下率40%以上の冷間圧延を行うこととし、冷間圧延では各圧延スタンド間張力を21.0kgf/cm以上かつ最終圧延スタンドを除く各圧延スタンド間の圧延線荷重差を0.25tonf/mm以下にすることを特徴とするエッジ品質とゲージ均一性に優れた高強度鋼板の製造方法。 [1] By mass%, C: 0.05 to 0.2%, Si: 0.5 to 2.5%, Mn: 1.5 to 3.0%, P: 0.001 to 0.05% , S: 0.0001 to 0.01%, Al: 0.001 to 0.1%, N: 0.0005 to 0.01%, with the balance being composed of Fe and inevitable impurities The steel slab is hot-rolled at a finish rolling finish temperature of Ar 3 or higher, starts cooling within 2 s after hot rolling, and cools to 600 ° C. or lower at an average cooling rate of 50 ° C./s or higher. Winding is performed at a temperature of 550 ° C., and cold rolling with a reduction rate of 40% or more is performed. In cold rolling, the tension between rolling stands is 21.0 kgf / cm 2 or more and between each rolling stand excluding the final rolling stand. Edge quality, characterized in that the rolling line load difference is 0.25 ton / mm or less Method for producing a high strength steel sheet excellent in over-di uniformity.

[2]鋼スラブは、さらに、質量%で、Cr:0.01〜1.5%を含有することを特徴とする前記[1]に記載のエッジ品質とゲージ均一性に優れた高強度鋼板の製造方法。   [2] The steel slab further contains, by mass%, Cr: 0.01 to 1.5%. The high-strength steel plate excellent in edge quality and gauge uniformity according to the above [1] Manufacturing method.

[3]鋼スラブは、さらに、質量%で、Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%の少なくとも1種の元素を含有することを特徴とする前記[1]または[2]に記載のエッジ品質とゲージ均一性に優れた高強度鋼板の製造方法。   [3] The steel slab further includes at least one of Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, and Cu: 0.01 to 2.0% by mass. The method for producing a high-strength steel sheet excellent in edge quality and gauge uniformity according to the above [1] or [2], comprising an element.

本発明においては、優れたエッジ品質とゲージ均一性を有する高強度鋼板を安定して製造することができる。   In the present invention, a high-strength steel sheet having excellent edge quality and gauge uniformity can be stably produced.

以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. Note that “%” representing the content of component elements means “% by mass” unless otherwise specified.

(1)成分組成
C:0.05〜0.2%
Cは、鋼を強化するに当り重要な元素であり、高い固溶強化能を有すると共に、硬度を調整する為に不可欠な元素である。C量が0.05%未満では、十分な強度が得られない。一方、C量が0.2%を超えると、溶接性が劣化すると共に、偏析層の形成により成形性の低下を招く。従って、C量は0.05〜0.2%とする。
(1) Component composition C: 0.05 to 0.2%
C is an important element for strengthening steel, has a high solid solution strengthening ability, and is an indispensable element for adjusting the hardness. If the C content is less than 0.05%, sufficient strength cannot be obtained. On the other hand, if the amount of C exceeds 0.2%, weldability deteriorates, and the formation of a segregation layer causes a decrease in formability. Therefore, the C content is 0.05 to 0.2%.

Si:0.5〜2.5%
Siは、固溶強化して十分な強度を得るには、0.5%以上にする必要がある。また、熱延鋼板の組織をベイナイト主体の組織とするため、Si量を0.5%以上にする必要がある。一方、Si量が2.5%を超えると、溶接性が劣化する。従って、Si量は0.5〜2.5%とする。
Si: 0.5 to 2.5%
Si needs to be 0.5% or more to obtain a sufficient strength by solid solution strengthening. Moreover, since the structure of the hot-rolled steel sheet is a bainite-based structure, the Si amount needs to be 0.5% or more. On the other hand, if the amount of Si exceeds 2.5%, the weldability deteriorates. Therefore, the Si content is 0.5 to 2.5%.

Mn:1.5〜3.0%
Mnは、鋼の熱間脆化の防止ならびに固溶強化、組織強化による強度確保のために有効である。また、焼入れ性を向上させ、冷間圧延前の鋼板組織をベイナイト単相化することに有効である。ただし、これらの効果を得るためには、Mn量を1.5%以上にする必要がある。一方、Mn量が3.0%を超えると、鋼板組織をベイナイト単相化することができず、ゲージ変動が発生する。従って、Mn量は1.5〜3.0%とする。
Mn: 1.5 to 3.0%
Mn is effective for preventing hot embrittlement of steel and ensuring strength by solid solution strengthening and structure strengthening. Moreover, it is effective in improving hardenability and making the steel sheet structure before cold rolling into a bainite single phase. However, in order to obtain these effects, the amount of Mn needs to be 1.5% or more. On the other hand, if the amount of Mn exceeds 3.0%, the steel sheet structure cannot be converted into a bainite single phase, and gauge fluctuation occurs. Therefore, the Mn content is 1.5 to 3.0%.

P:0.001〜0.05%
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。こうした効果を得るためにはP量は0.001%以上にする必要がある。一方、P量が0.05%を超えると、溶接性の劣化を招く。従って、P量は0.001〜0.05%とする。
P: 0.001 to 0.05%
P is an element that has a solid solution strengthening action and can be added according to a desired strength. In order to obtain such an effect, the P amount needs to be 0.001% or more. On the other hand, if the amount of P exceeds 0.05%, weldability is deteriorated. Therefore, the P content is 0.001 to 0.05%.

S:0.0001〜0.01%
Sは、粒界に偏析して熱間加工時に鋼を脆化させると共に、硫化物として存在して局部変形能を低下させる。そのため、その量は0.01%以下、好ましくは0.003%以下、より好ましくは0.001%以下とする必要がある。しかし、生産技術上の制約から、S量は0.0001%以上にする必要がある。従って、S量は0.0001〜0.01%、好ましくは0.0001〜0.003%、より好ましくは0.0001〜0.001%とする。
S: 0.0001 to 0.01%
S segregates at the grain boundaries and embrittles the steel during hot working, and also exists as a sulfide and reduces local deformability. Therefore, the amount needs to be 0.01% or less, preferably 0.003% or less, more preferably 0.001% or less. However, the amount of S needs to be 0.0001% or more due to restrictions on production technology. Therefore, the S content is 0.0001 to 0.01%, preferably 0.0001 to 0.003%, more preferably 0.0001 to 0.001%.

Al:0.001〜0.1%
Alは、脱酸剤として作用し、鋼の清浄度に有効な元素であり、脱酸工程で0.001%以上添加することが必要である。一方、Al量が0.1%を超えると、表面性状の劣化を招く。従って、Al量は0.001〜0.1%とする。
Al: 0.001 to 0.1%
Al acts as a deoxidizer and is an effective element for the cleanliness of steel, and it is necessary to add 0.001% or more in the deoxidation step. On the other hand, when the Al content exceeds 0.1%, the surface properties are deteriorated. Therefore, the Al content is 0.001 to 0.1%.

N:0.0005〜0.01%
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.01%を超えると、耐時効性の劣化が顕著となる。その量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする必要がある。従って、N量は0.0005〜0.01%とする。
N: 0.0005 to 0.01%
N is an element that degrades the aging resistance of steel. In particular, when the N content exceeds 0.01%, the deterioration of aging resistance becomes remarkable. The smaller the amount, the better. However, the amount of N needs to be 0.0005% or more due to restrictions on production technology. Therefore, the N amount is set to 0.0005 to 0.01%.

残部はFeおよび不可避的不純物であるが、以下の理由で、Cr:0.01〜1.5%や、Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%から選ばれる少なくとも1種の元素が、単独で、あるいは組み合わせて含有されることが好ましい。   The balance is Fe and inevitable impurities, but for the following reasons, Cr: 0.01 to 1.5%, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: It is preferable that at least one element selected from 0.01 to 2.0% is contained alone or in combination.

Cr:0.01〜1.5%
Crは、組織強化により、鋼板の高強度化に寄与するため、適宜添加することができる。こうした効果を得るには、Cr量を0.01%以上にする必要がある。一方、Cr量が1.5%を超えると、第2相の割合が大きくなりすぎたり、Cr炭化物が過剰に生成するなどして、延性の低下を招く。したがって、Cr量は0.01〜1.5%とする。
Cr: 0.01 to 1.5%
Cr contributes to increasing the strength of the steel sheet by strengthening the structure, so it can be added as appropriate. In order to obtain such effects, the Cr amount needs to be 0.01% or more. On the other hand, if the amount of Cr exceeds 1.5%, the ratio of the second phase becomes too large, or Cr carbides are generated excessively, leading to a decrease in ductility. Therefore, the Cr content is 0.01 to 1.5%.

Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%の少なくとも1種
Mo、Ni、Cuは、固溶強化元素としての役割のみならず、焼鈍時の冷却過程において、オーステナイト相を安定化し、複合組織化により、鋼板の高強度化に寄与するため、適宜添加することができる。こうした効果を得るには、Mo量、Ni量、Cu量は、それぞれ0.01%以上にする必要がある。一方、Mo量が1.0%、Ni量が2.0%、Cu量が2.0%を超えると、成形性が劣化する。したがって、Mo量は0.01〜1.0%、Ni量は0.01〜2.0%、Cu量は0.01〜2.0%とする。
Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: 0.01 to 2.0%, at least one kind Mo, Ni, and Cu serve as solid solution strengthening elements In addition, in the cooling process during annealing, the austenite phase is stabilized and contributes to increasing the strength of the steel sheet by forming a composite structure. In order to obtain such effects, the Mo amount, Ni amount, and Cu amount must each be 0.01% or more. On the other hand, if the Mo amount is 1.0%, the Ni amount is 2.0%, and the Cu amount exceeds 2.0%, the formability deteriorates. Therefore, the Mo amount is 0.01 to 1.0%, the Ni amount is 0.01 to 2.0%, and the Cu amount is 0.01 to 2.0%.

(2)製造条件
(2.1)熱間圧延
仕上圧延終了温度:Ar点以上
熱間圧延後の鋼板のミクロ組織をベイナイト主体の組織とするため、仕上圧延はオーステナイト単相で終了する必要がある。このため、仕上圧延の終了温度をAr点以上とする。
(2) Manufacturing conditions (2.1) Hot rolling Finish rolling finishing temperature: Ar 3 points or more In order to make the microstructure of the steel sheet after hot rolling a bainite-based structure, it is necessary to finish the rolling in a single austenite phase. There is. For this reason, the finishing temperature of finish rolling is set to Ar 3 points or more.

熱間圧延後の冷却条件:2s以内に50℃/s以上の平均冷却速度で600℃以下まで冷却
熱間圧延後の冷却を開始するまでに2秒を超える時間が経過すると、ランナウトテーブル上でフェライト相が不均一に生成しやすく、本発明で好適なベイナイト相を主体とした均一な熱延鋼板のミクロ組織が得られない。また、平均冷却速度が50℃/sを下回る場合や600℃以下まで冷却しない場合も同様な問題が起こる。
Cooling conditions after hot rolling: cooling to 600 ° C. or less at an average cooling rate of 50 ° C./s or more within 2 s When a time exceeding 2 seconds elapses before starting cooling after hot rolling, on the run out table A ferrite phase is likely to be generated non-uniformly, and a uniform microstructure of a hot-rolled steel sheet mainly composed of a bainite phase suitable in the present invention cannot be obtained. The same problem also occurs when the average cooling rate is less than 50 ° C./s or when the average cooling rate is not cooled to 600 ° C. or lower.

熱間圧延後の巻取温度:400〜550℃
巻取温度を400〜550℃とすることで、本発明で好適なベイナイト相を主体とした熱延鋼板のミクロ組織とすることができる。
Winding temperature after hot rolling: 400-550 ° C
By setting the coiling temperature to 400 to 550 ° C., it is possible to obtain a microstructure of a hot rolled steel sheet mainly composed of a bainite phase suitable in the present invention.

そして、上記の成分組成と製造条件(熱間圧延)によって、熱間圧延後の鋼板(冷間圧延前の鋼板)のミクロ組織をベイナイト主体の組織にして、ベイナイト面積率が90%以上、フェライト面積率が5%以下、パーライト面積率が5%以下にすることができる。   And according to said component composition and manufacturing conditions (hot rolling), the microstructure of the steel plate after hot rolling (steel plate before cold rolling) is made a bainite-based structure, the bainite area ratio is 90% or more, ferrite The area ratio can be 5% or less, and the pearlite area ratio can be 5% or less.

なお、ベイナイト、フェライト、パーライト以外に、マルテンサイト、焼戻しマルテンサイト、セメンタイト等の炭化物が生成する場合があるが、上記のベイナイト、フェライト、パーライトの割合が満足されていれば、本発明の目的を達成することができる。   In addition to bainite, ferrite, and pearlite, carbides such as martensite, tempered martensite, and cementite may be produced.If the above bainite, ferrite, and pearlite ratios are satisfied, the object of the present invention is achieved. Can be achieved.

(2.2)冷間圧延
冷間圧延時の圧下率:40%以上
圧下率が40%に満たない場合には、引き続いて焼鈍を行った際に、オーステナイト相への逆変態の核となる粒界や転位の単位体積あたりの総数が減少し、最終製品での好ましいミクロ組織を得ることが困難になる。
(2.2) Cold rolling Rolling ratio during cold rolling: 40% or more When the rolling reduction ratio is less than 40%, it becomes the core of reverse transformation to the austenite phase when subsequently annealed. The total number of grain boundaries and dislocations per unit volume decreases, making it difficult to obtain a favorable microstructure in the final product.

冷間圧延時の各圧延スタンド間張力:21.0kgf/cm以上
冷間圧延時の各圧延スタンド間張力を21.0kgf/cm以上にすることによって、幅方向および長手方向における延伸量の差が抑制され、エッジ亀裂の発生を抑制することができる。なお、上限については、過張力による破断防止の観点から、23.0kgf/cm以下とすることが好ましい。各圧延スタンド間張力は、各圧延スタンドの圧下率などの圧延条件により、制御することができる。
Tension between each rolling stand at the time of cold rolling: 21.0 kgf / cm 2 or more By setting the tension between each rolling stand at the time of cold rolling to 21.0 kgf / cm 2 or more, the stretching amount in the width direction and the longitudinal direction can be increased. The difference is suppressed and the occurrence of edge cracks can be suppressed. The upper limit is preferably 23.0 kgf / cm 2 or less from the viewpoint of preventing breakage due to over tension. The tension between the rolling stands can be controlled by rolling conditions such as the rolling reduction of each rolling stand.

冷間圧延時の最終圧延スタンドを除く各圧延スタンド間の圧延線荷重差:0.25tonf/mm以下
冷間圧延時の最終圧延スタンドを除く各圧延スタンド間の圧延線荷重差を0.25tonf/mm以下にすることによって、各圧延スタンド間で急激な圧下変動がない冷間圧延を行うことができる。各圧延スタンド間の圧延線荷重差は、各圧延スタンドの圧下率などの圧延条件により、制御することができる。また、最終圧延スタンドを除く理由は、エッジ割れ亀裂やゲージ変動の発生は、最終圧延スタンドの前段側の圧延スタンドの圧延荷重差が問題となるからである。
Rolling line load difference between each rolling stand excluding the final rolling stand during cold rolling: 0.25 tonf / mm or less Rolling line load difference between each rolling stand excluding the final rolling stand during cold rolling is 0.25 tonf / By setting it to mm or less, it is possible to perform cold rolling without a rapid reduction fluctuation between the rolling stands. The rolling line load difference between the rolling stands can be controlled by rolling conditions such as the rolling reduction of each rolling stand. The reason for excluding the final rolling stand is that the occurrence of edge cracking cracks and gauge fluctuations causes a problem of the rolling load difference between the rolling stands on the front side of the final rolling stand.

上記のようにして、本発明においては、成分組成と製造条件(熱間圧延、冷間圧延)を適正化することによって、幅方向の引張強度の変動が軽減されるとともに、エッジ亀裂の発生がなく、板厚変動(ゲージ変動)も大幅に低減された高強度鋼板を製造することができる。   As described above, in the present invention, by optimizing the component composition and the manufacturing conditions (hot rolling, cold rolling), fluctuations in the tensile strength in the width direction are reduced and edge cracks are generated. In addition, it is possible to manufacture a high-strength steel sheet with greatly reduced plate thickness fluctuation (gauge fluctuation).

本発明の実施例として、980MPa級の高強度鋼板の製造を行った。   As an example of the present invention, a 980 MPa class high strength steel sheet was manufactured.

表1に示す成分組成の鋼No.A〜Gを転炉により溶製し、連続鋳造法でスラブとし、表2に示す熱延条件で熱間圧延した後、表2に示す冷延条件で冷間圧延を行った。   Steel No. 1 having the component composition shown in Table 1. A to G were melted by a converter, made into a slab by a continuous casting method, hot-rolled under the hot rolling conditions shown in Table 2, and then cold-rolled under the cold rolling conditions shown in Table 2.

熱間圧延は、仕上圧延終了後、2s以内に冷却を開始し、表2に示す平均冷却速度で600℃まで冷却したのち、巻き取った。冷間圧延の圧下率は40%とした。表1中のAr(℃)は下記式にて算出した。 In the hot rolling, cooling was started within 2 s after finishing the finish rolling, and after cooling to 600 ° C. at an average cooling rate shown in Table 2, winding was performed. The rolling reduction of cold rolling was 40%. Ar 3 (° C.) in Table 1 was calculated by the following formula.

Ar(℃)=868−396×[C]+25×[Si]−68×[Mn]−21×[Cu]−36×[Ni]−25×[Cr]−30×[Mo]
ここで、[M]は鋼中の元素Mの含有量(質量%)を表す。
Ar 3 (° C.) = 868−396 × [C] + 25 × [Si] −68 × [Mn] −21 × [Cu] −36 × [Ni] −25 × [Cr] −30 × [Mo]
Here, [M] represents the content (% by mass) of the element M in the steel.

また、表2中、スタンド間線荷重差は、#1〜#4圧延スタンドの圧延線荷重差の最大値を示す。   Moreover, in Table 2, the line load difference between stands shows the maximum value of the rolling line load difference of # 1- # 4 rolling stands.

Figure 2014028375
Figure 2014028375

Figure 2014028375
Figure 2014028375

そして、得られた熱延鋼板に対して、フェライトとパーライトとベイナイトの面積率は、鋼板の圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野観察し、得られた組織画像を用いて、Media Cybernetics社のImage−Proを用いて各組織(フェライト、パーライト、ベイナイト)の面積率を10視野分算出し、それらの値を平均して求めた。上記の組織画像において、フェライトは灰色の組織、パーライトはフェライトとセメンタイト(白色)の層状の組織、ベイナイトはフェライトより若干白い組織を呈している。   And the area ratio of ferrite, pearlite, and bainite with respect to the obtained hot-rolled steel sheet was corroded with 3% nital after polishing the plate thickness section parallel to the rolling direction of the steel plate, and the plate thickness 1/4 position ( 10 positions at a magnification of 2000 times using a SEM (scanning electron microscope) with respect to the steel sheet surface in a depth direction corresponding to ¼ of the plate thickness, and using the obtained tissue image, Media The area ratio of each structure (ferrite, pearlite, bainite) was calculated for 10 visual fields using Imagenet-Pro of Cybernetics, and the values were averaged. In the above structure image, ferrite has a gray structure, pearlite has a layered structure of ferrite and cementite (white), and bainite has a slightly white structure than ferrite.

また、引張試験は、引張方向が鋼板の圧延方向に沿うようにサンプルを採取したJIS5号試験片を用いて、JIS Z2241(1998年)に準拠して行い、TS(引張強度)を測定した。引張試験のサンプルは幅センター位置およびエッジから20mm位置から採取を行った。エッジ位置TS−幅センターTSをΔTSとした。   Moreover, the tensile test was performed based on JISZ2241 (1998) using the JIS5 test piece which sampled so that the tension direction might follow the rolling direction of a steel plate, and TS (tensile strength) was measured. The sample for the tensile test was taken from the position of the width center and 20 mm from the edge. Edge position TS−width center TS was set to ΔTS.

さらに、上記にて得られた冷間圧延後の鋼板に対して、エッジ亀裂については、作業者がコイル長手方向において両エッジ部を目視にて確認を行った。また、板厚計(X線)にて幅センター部の板厚をコイル全長測定し、冷間圧延目標板厚との偏差から、最大ゲージ変動量を算出した。   Furthermore, about the edge crack with respect to the steel plate after the cold rolling obtained above, the operator visually confirmed both edge portions in the coil longitudinal direction. Moreover, the plate | board thickness of the width | variety center part was measured with the plate | board thickness meter (X-ray), and the maximum gauge fluctuation | variation amount was computed from the deviation with the cold rolling target plate | board thickness.

結果を表3に表す。   The results are shown in Table 3.

Figure 2014028375
Figure 2014028375

本発明例における冷間圧延後の鋼板は、いずれもエッジ亀裂がなく、最大ゲージ変動量も50μm以下であり、エッジ品質とゲージ均一性に優れた高強度鋼板であることがわかる。また、焼鈍後において、本発明例の鋼板はいずれもTSが989〜1009MPaであり、980MPa級の高強度鋼板が得られている。   It can be seen that the steel sheets after cold rolling in the examples of the present invention are all high-strength steel sheets having no edge cracks and a maximum gauge fluctuation amount of 50 μm or less, and having excellent edge quality and gauge uniformity. In addition, after annealing, all the steel plates of the present invention examples have a TS of 989 to 1009 MPa, and a high strength steel plate of 980 MPa class is obtained.

これによって、本発明の有効性が確認された。   This confirmed the effectiveness of the present invention.

Claims (3)

質量%で、C:0.05〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.0%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを仕上圧延終了温度がAr点以上で熱間圧延し、熱間圧延後2s以内に冷却を開始し、50℃/s以上の平均冷却速度で600℃以下まで冷却を行い、400〜550℃の温度で巻取り、圧下率40%以上の冷間圧延を行うこととし、冷間圧延では各圧延スタンド間張力を21.0kgf/cm以上かつ最終圧延スタンドを除く各圧延スタンド間の圧延線荷重差を0.25tonf/mm以下にすることを特徴とするエッジ品質とゲージ均一性に優れた高強度鋼板の製造方法。 In mass%, C: 0.05 to 0.2%, Si: 0.5 to 2.5%, Mn: 1.5 to 3.0%, P: 0.001 to 0.05%, S: A steel slab containing 0.0001 to 0.01%, Al: 0.001 to 0.1%, N: 0.0005 to 0.01%, with the balance being composed of Fe and inevitable impurities The finish rolling finish temperature is hot-rolled at Ar 3 point or higher, starts cooling within 2 s after hot rolling, cools to 600 ° C. or lower at an average cooling rate of 50 ° C./s or higher, and 400 to 550 ° C. Winding is performed at a temperature, and cold rolling is performed at a rolling reduction of 40% or more. In cold rolling, the tension between rolling stands is 21.0 kgf / cm 2 or more, and the rolling line load between the rolling stands excluding the final rolling stand. Edge quality and gauge characterized by a difference of 0.25 tonf / mm or less Method for producing a high strength steel sheet excellent one property. 鋼スラブは、さらに、質量%で、Cr:0.01〜1.5%を含有することを特徴とする請求項1に記載のエッジ品質とゲージ均一性に優れた高強度鋼板の製造方法。   The method for producing a high-strength steel sheet excellent in edge quality and gauge uniformity according to claim 1, wherein the steel slab further contains Cr: 0.01 to 1.5% by mass. 鋼スラブは、さらに、質量%で、Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%の少なくとも1種の元素を含有することを特徴とする請求項1または2に記載のエッジ品質とゲージ均一性に優れた高強度鋼板の製造方法。   The steel slab further contains at least one element of Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, and Cu: 0.01 to 2.0% by mass%. The manufacturing method of the high strength steel plate excellent in edge quality and gauge uniformity of Claim 1 or 2 characterized by the above-mentioned.
JP2012169109A 2012-07-31 2012-07-31 Manufacturing method of high-strength steel sheets with excellent edge quality and gauge uniformity Active JP5928226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169109A JP5928226B2 (en) 2012-07-31 2012-07-31 Manufacturing method of high-strength steel sheets with excellent edge quality and gauge uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169109A JP5928226B2 (en) 2012-07-31 2012-07-31 Manufacturing method of high-strength steel sheets with excellent edge quality and gauge uniformity

Publications (2)

Publication Number Publication Date
JP2014028375A true JP2014028375A (en) 2014-02-13
JP5928226B2 JP5928226B2 (en) 2016-06-01

Family

ID=50201363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169109A Active JP5928226B2 (en) 2012-07-31 2012-07-31 Manufacturing method of high-strength steel sheets with excellent edge quality and gauge uniformity

Country Status (1)

Country Link
JP (1) JP5928226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110314941A (en) * 2019-08-07 2019-10-11 中铝瑞闽股份有限公司 A kind of production method of aluminum alloy hot rolling gradient tension force

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206943A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2007111708A (en) * 2005-10-18 2007-05-10 Nippon Steel Corp Hot-rolled steel strip for cold-rolled high-tensile strength steel sheet having reduced variation in sheet thickness after cold rolling and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206943A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2007111708A (en) * 2005-10-18 2007-05-10 Nippon Steel Corp Hot-rolled steel strip for cold-rolled high-tensile strength steel sheet having reduced variation in sheet thickness after cold rolling and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110314941A (en) * 2019-08-07 2019-10-11 中铝瑞闽股份有限公司 A kind of production method of aluminum alloy hot rolling gradient tension force

Also Published As

Publication number Publication date
JP5928226B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP6260087B2 (en) High-strength hot-rolled steel sheet with excellent workability and fatigue characteristics and method for producing the same
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
US9994941B2 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
EP2604715A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
WO2011122031A1 (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
JP5761080B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof
JP2010248565A (en) Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
WO2014171057A1 (en) High strength hot rolled steel sheet and method for producing same
JP6201571B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility, elongation and welding characteristics and method for producing the same
JP5533146B2 (en) Cold rolled steel sheet and method for producing the same
JP5423737B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
WO2011152328A1 (en) Hot-rolled high-strength steel sheet and process for production thereof
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP5533145B2 (en) Cold rolled steel sheet and method for producing the same
JP6201570B2 (en) High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof
JP5928226B2 (en) Manufacturing method of high-strength steel sheets with excellent edge quality and gauge uniformity
JP2014065975A (en) Cold rolled steel sheet and method of producing the same
JP2014095155A (en) Cold rolled steel sheet and its manufacturing method
JP5776764B2 (en) Cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250