JP2014022802A - Tuning-fork type crystal vibrator - Google Patents

Tuning-fork type crystal vibrator Download PDF

Info

Publication number
JP2014022802A
JP2014022802A JP2012157255A JP2012157255A JP2014022802A JP 2014022802 A JP2014022802 A JP 2014022802A JP 2012157255 A JP2012157255 A JP 2012157255A JP 2012157255 A JP2012157255 A JP 2012157255A JP 2014022802 A JP2014022802 A JP 2014022802A
Authority
JP
Japan
Prior art keywords
temperature
fork type
wall
type crystal
excitation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012157255A
Other languages
Japanese (ja)
Other versions
JP6087527B2 (en
Inventor
Hayato Endo
隼人 遠藤
Masaki Miyagawa
雅樹 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
River Eletec Corp
Original Assignee
River Eletec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by River Eletec Corp filed Critical River Eletec Corp
Priority to JP2012157255A priority Critical patent/JP6087527B2/en
Publication of JP2014022802A publication Critical patent/JP2014022802A/en
Application granted granted Critical
Publication of JP6087527B2 publication Critical patent/JP6087527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a tuning-fork type crystal vibrator in which reduction in electric field efficiency accompanying miniaturization or thinning is prevented and which is capable of having a peak temperature in the vicinity of a desired temperature.SOLUTION: A tuning-fork type crystal vibrator 11 comprises: a pair of vibrating arms 13, 14 extending from a base; grooves 15, 16 recessed in a length direction of the vibrating arms 13, 14; walls 17, 18 forming the grooves 15, 16; and exciting electrodes 19, 20 provided on surfaces of the walls 17, 18. When a linear function is used for approximating a first-order term temperature coefficient of a Young's modulus of the exciting electrodes 19, 20, a first-order term coefficient is denoted by A, a zero-order term coefficient is denoted by B, a room temperature is denoted by T and a Taylor expansion temperature is denoted by T, the temperature characteristics of the exciting electrodes 19, 20 are represented by E(T)=A(T-T)+B. When the minimum thickness of the walls 17, 18 is 6 μm or less and under the condition of A>-20 MPa/°C, a thickness of the exciting electrodes 19, 20 opposed to at least one of the walls 17, 18 is 1/50 or less as thick as the minimum thickness of the walls 17, 18.

Description

本発明は、小型の音叉型水晶振動子に関するものである。   The present invention relates to a small tuning fork type crystal resonator.

音叉型水晶振動子は、マウント用の電極部が設けられる基部及びこの基部から延びる一対の振動腕部を備え、この一対の振動腕部の表面に励振電極を形成して励振させることによって、所定の振動周波数を得ている。また、前記一対の振動腕部の長手方向に沿って凹状の溝部を形成し、この溝部の内側面に沿って励振電極を形成することで、電界効率の向上及び等価直列抵抗(R1)の改善を図るようにした構造の音叉型水晶振動子も知られている(特許文献1参照)。   The tuning fork type crystal resonator includes a base portion on which a mounting electrode portion is provided and a pair of vibrating arm portions extending from the base portion, and an excitation electrode is formed on the surface of the pair of vibrating arm portions to be excited. The vibration frequency is obtained. Further, by forming a concave groove along the longitudinal direction of the pair of vibrating arms and forming an excitation electrode along the inner surface of the groove, the electric field efficiency is improved and the equivalent series resistance (R1) is improved. There is also known a tuning-fork type crystal resonator having a structure for achieving the above (see Patent Document 1).

このような音叉型水晶振動子の周波数温度特性は2次関数あるいは3次関数で表され、常用温度域において最も周波数の高くなる頂点温度が25℃付近になるように設計される。   The frequency temperature characteristic of such a tuning fork type crystal resonator is expressed by a quadratic function or a cubic function, and is designed so that the peak temperature at which the frequency is highest in the normal temperature range is around 25 ° C.

特開2007−60729号公報JP 2007-60729 A

しかしながら、水晶振動子の小型化及び薄型化が進むと、頂点温度が25℃より低くなる傾向にある。これを改善するためには、水晶結晶体のZ板からのX軸回転カット角を大きくすることで頂点温度を25℃付近に設定することは可能であるが、カット角が6°を超えると逆に頂点温度が下がることが知られている。近年の水晶振動子の小型化および薄型化にあっては、カット角での調整には限界があり、頂点温度を25℃付近に維持するのが難しくなっている。   However, as the quartz crystal resonator becomes smaller and thinner, the vertex temperature tends to be lower than 25 ° C. In order to improve this, it is possible to set the apex temperature to around 25 ° C by increasing the X-axis rotation cut angle from the Z-plate of the crystal body, but if the cut angle exceeds 6 ° Conversely, it is known that the peak temperature decreases. In recent miniaturization and thinning of quartz resonators, there is a limit to the adjustment with the cut angle, and it is difficult to maintain the vertex temperature at around 25 ° C.

そこで、本発明の目的は、小型化や薄型化に伴う電界効率の低下を防止すると共に、所望の温度近辺に頂点温度を持たせることが可能な音叉型水晶振動子を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a tuning fork crystal resonator that can prevent a reduction in electric field efficiency associated with downsizing and thinning, and can have a vertex temperature near a desired temperature.

上記課題を解決するために、本発明の音叉型水晶振動子は、基部及び該基部から延びる一対の振動腕部と、該振動腕部の長手方向に凹設された溝部と、該溝部を形成する壁部と、該壁部の表面に設けられる励振電極とを備え、前記励振電極は、ヤング率の温度特性を1次関数に近似したときの1次温度係数をA、ゼロ次項をB、室温T、テイラー展開温度Tとした場合に、温度特性E(T)=A(T−T)+Bで表される音叉型水晶振動子であって、前記壁部の最小厚みを6μm以下、且つ、A>−20MPa/℃とした場合に、少なくとも一か所の壁部に対向する前記励振電極の厚みを該壁部の最小厚みの1/50以下とすることを特徴とする。 In order to solve the above problems, a tuning fork type crystal resonator according to the present invention includes a base, a pair of vibrating arms extending from the base, a groove recessed in the longitudinal direction of the vibrating arm, and the groove. And an excitation electrode provided on the surface of the wall. The excitation electrode has a first-order temperature coefficient A and a zero-order term B when the temperature characteristic of Young's modulus is approximated to a linear function. A tuning fork type crystal resonator represented by a temperature characteristic E (T) = A (T−T 0 ) + B, assuming a room temperature T and a Taylor development temperature T 0, and the minimum thickness of the wall portion is 6 μm or less. In addition, when A> −20 MPa / ° C., the thickness of the excitation electrode facing at least one wall portion is set to 1/50 or less of the minimum thickness of the wall portion.

本発明の音叉型水晶振動子によれば、振動腕部に溝部を設けることによって形成された壁部の厚みが6μm以下となった場合であっても、励振電極の厚みを前記壁部の厚みの1/50以下にすることによって、周波数温度特性における頂点温度が低下することなく、等価抵抗値を小さくすることができる。これによって、周波数温度特性が良好な小型の水晶振動子を得ることが可能となった。   According to the tuning fork type crystal resonator of the present invention, even when the wall portion formed by providing the groove portion on the vibrating arm portion has a thickness of 6 μm or less, the thickness of the excitation electrode is set to the thickness of the wall portion. By setting it to 1/50 or less, it is possible to reduce the equivalent resistance value without lowering the peak temperature in the frequency temperature characteristic. As a result, it has become possible to obtain a small crystal resonator having good frequency-temperature characteristics.

本発明の音叉型水晶振動子の斜視図である。It is a perspective view of the tuning fork type crystal resonator of the present invention. 上記音叉型水晶振動子の平面図である。FIG. 3 is a plan view of the tuning fork type crystal resonator. 上記音叉型水晶振動子のA−A断面図である。It is AA sectional drawing of the said tuning fork type crystal resonator. 上記音叉型水晶振動子の壁部の拡大断面図である。It is an expanded sectional view of the wall part of the said tuning fork type crystal resonator. 壁厚と頂点温度との関係を示すグラフである。It is a graph which shows the relationship between wall thickness and vertex temperature. 壁厚と電極膜厚の比に対する頂点温度の変化を示すグラフである。It is a graph which shows the change of the vertex temperature with respect to ratio of wall thickness and electrode film thickness. 壁厚、電極膜厚及び励振電極のヤング率を変化させたときの頂点温度を示す実験データである。It is an experimental data which shows vertex temperature when changing wall thickness, electrode film thickness, and Young's modulus of an excitation electrode. 励振電極のヤング率を考慮したときの壁厚と頂点温度との関係を示すグラフである。It is a graph which shows the relationship between wall thickness and vertex temperature when the Young's modulus of an excitation electrode is considered.

図1及び図2に示すように、本発明の音叉型水晶振動子(以下、水晶振動子という)11は、電気軸をX軸、機械軸をY軸、光軸をZ軸とした水晶原石の直交座標系においてカットされた水晶板を音叉型に加工して形成されている。また、前記水晶振動子では、XYZからなる三次元の直交座標系のX−Y平面(Z板)をX軸回転で−7〜+7度回転させたXY´Z´の座標系の水晶板が用いられ、中心の振動周波数が32.768KHzに設定されている。図3は前記水晶振動子11のA−A断面、図4は壁部の拡大断面を示したものである。   As shown in FIGS. 1 and 2, a tuning fork crystal resonator (hereinafter referred to as a crystal resonator) 11 according to the present invention is a quartz crystal having an electric axis as an X axis, a mechanical axis as a Y axis, and an optical axis as a Z axis. The crystal plate cut in the rectangular coordinate system is processed into a tuning fork shape. Further, in the crystal resonator, a crystal plate of an XY′Z ′ coordinate system obtained by rotating an XY plane (Z plate) of a three-dimensional orthogonal coordinate system made of XYZ by −7 to +7 degrees by X axis rotation. Used, the center vibration frequency is set to 32.768 KHz. 3 shows an AA cross section of the crystal unit 11, and FIG. 4 shows an enlarged cross section of the wall portion.

上記水晶振動子11は、図示しないパッケージのマウント部に導通支持される矩形状の基部12と、この基部12から平行に延びる一対の振動腕部13,14とを備えている。また、前記振動腕部13,14には、前記基部12から延びる極性の異なる励振電極19,20が形成されている。   The crystal unit 11 includes a rectangular base portion 12 that is conductively supported by a mount portion of a package (not shown), and a pair of vibrating arm portions 13 and 14 that extend in parallel from the base portion 12. Further, excitation electrodes 19 and 20 having different polarities extending from the base portion 12 are formed on the vibrating arm portions 13 and 14.

前記振動腕部13,14は、基部12の一端からY軸方向に延び、X軸方向に平行する一対の細長い四角柱体であり、表面側(+Z面)及び裏面側(−Z面)にそれぞれのY軸方向に沿って溝部15,16が設けられる。この溝部15,16は、振動腕部13,14の+Z面を長手(Y軸)方向と−Z面を長手(Y軸)方向に沿って設けられる。このような溝部15,16を設けたことによって、振動腕部13,14には表面側及び裏面側に対向する一対の壁部17,18が形成される。また、前記各壁部17,18の内側面及び溝部15,16の底面には、連続した励振電極19,20が形成される。   The vibrating arm portions 13 and 14 are a pair of elongated rectangular pillars extending from one end of the base portion 12 in the Y-axis direction and parallel to the X-axis direction, on the front surface side (+ Z surface) and the back surface side (−Z surface). Grooves 15 and 16 are provided along the respective Y-axis directions. The groove portions 15 and 16 are provided along the + Z plane of the vibrating arm portions 13 and 14 along the longitudinal (Y-axis) direction and the −Z plane along the longitudinal (Y-axis) direction. By providing the groove portions 15 and 16, the vibrating arm portions 13 and 14 are formed with a pair of wall portions 17 and 18 facing the front surface side and the back surface side. Further, continuous excitation electrodes 19 and 20 are formed on the inner side surfaces of the respective wall portions 17 and 18 and the bottom surfaces of the groove portions 15 and 16.

前記溝部15,16は、前記壁部17,18が数μm程度の厚みとなるように、各振動腕部13,14の表面側及び裏面側から凹設される。この凹設の深さd2は、表面側と裏面側が貫通しないように、振動腕部13,14の厚みd1の1/2未満に設定される。また、励振電極19,20は、前記溝部15,16を設けた領域全体をカバーすると共に、溝部15,16の凹み面に沿うように形成される。   The groove portions 15 and 16 are recessed from the front surface side and the back surface side of the vibrating arm portions 13 and 14 so that the wall portions 17 and 18 have a thickness of about several μm. The recessed depth d2 is set to be less than ½ of the thickness d1 of the vibrating arm portions 13 and 14 so that the front surface side and the back surface side do not penetrate. The excitation electrodes 19 and 20 cover the entire region where the groove portions 15 and 16 are provided, and are formed along the concave surfaces of the groove portions 15 and 16.

本発明では図3に示したように、振動腕部13,14の幅W1が60μm以下となる小型の水晶振動子11を対象としているため、溝部15,16を設けることによってできる各壁部17,18の厚み(壁厚)t1が6μm以下に規定される。   As shown in FIG. 3, the present invention is intended for a small crystal resonator 11 in which the width W <b> 1 of the vibrating arm portions 13 and 14 is 60 μm or less, and thus each wall portion 17 that can be provided by providing the groove portions 15 and 16. , 18 (wall thickness) t1 is defined to be 6 μm or less.

前記溝部15,16を設けることで、振動腕部13,14の結晶面の露出面積が広くなり、また、前記壁部17,18においては、6μm以下の近距離で極性の異なる励振電極19,20が対向していることから、最大限の電界効率が得られる。   By providing the groove portions 15 and 16, the exposed area of the crystal surface of the vibrating arm portions 13 and 14 is widened, and in the wall portions 17 and 18, the excitation electrodes 19 and 18 having different polarities at a short distance of 6 μm or less. Since 20 faces each other, the maximum electric field efficiency can be obtained.

図5は前記壁厚t1と頂点温度Tpとの関係をFEM解析したものである。これによると、壁厚t1と頂点温度Tpは曲線を描き、相対的に壁厚t1が厚い場合、頂点温度Tpの変化は小さい。逆に水晶振動子の小型化によって壁厚t1が薄くなると頂点温度Tpは低くなっていく傾向にある。なお、金のヤング率E(T)=A(T−T)+78.67702e3とし、水晶のヤング率は弾性スティフネス定数から計算した。解析タイプはモーダル解析によるものである。 FIG. 5 shows an FEM analysis of the relationship between the wall thickness t1 and the vertex temperature Tp. According to this, the wall thickness t1 and the vertex temperature Tp draw a curve, and when the wall thickness t1 is relatively thick, the change in the vertex temperature Tp is small. On the contrary, when the wall thickness t1 is reduced due to the miniaturization of the crystal unit, the vertex temperature Tp tends to decrease. Note that the Young's modulus of gold was E (T) = A (T−T 0 ) + 78.67702e3, and the Young's modulus of quartz was calculated from the elastic stiffness constant. The analysis type is based on modal analysis.

図6に示すように、前記壁厚t1と励振電極19,20の厚み(電極膜厚)t2との比で見ると、壁厚t1/電極膜厚t2の値が50以上のところに頂点温度Tpが25℃以上のものが分布している。このため、電極膜厚t2を壁厚t1の1/50以下となるように設計することで、頂点温度Tpが低くなるといった問題を解決できる。なお、Tpが25℃以上となる範囲では、水晶のX軸回転カット角を小さくすることで、頂点温度を調整することができる。壁厚t1を薄くしたことによって、壁部17,18を挟んで対向する励振電極19,20間の距離が近くなるため、その分、電界効率が高まる。これによって、等価抵抗値(R1)は小さくなる一方で、頂点温度Tpは低下してしまうこととなるが、前記電極膜厚t2を変えることで、頂点温度Tpの低下を抑えると同時に、R1も小さくすることができる。これによって、水晶振動子を小型化した場合であっても、良好な振動特性を得ることが可能となる。   As shown in FIG. 6, in terms of the ratio between the wall thickness t1 and the thickness (electrode film thickness) t2 of the excitation electrodes 19 and 20, the apex temperature is reached when the value of wall thickness t1 / electrode film thickness t2 is 50 or more. Those having a Tp of 25 ° C. or higher are distributed. For this reason, the problem that the apex temperature Tp becomes low can be solved by designing the electrode film thickness t2 to be 1/50 or less of the wall thickness t1. In the range where Tp is 25 ° C. or more, the vertex temperature can be adjusted by reducing the X-axis rotation cut angle of the crystal. Since the wall thickness t1 is reduced, the distance between the excitation electrodes 19 and 20 facing each other with the wall portions 17 and 18 therebetween is reduced, so that the electric field efficiency is increased accordingly. As a result, the equivalent resistance value (R1) decreases, but the apex temperature Tp decreases. However, by changing the electrode film thickness t2, the apex temperature Tp is suppressed from decreasing, and at the same time, R1 also increases. Can be small. This makes it possible to obtain good vibration characteristics even when the crystal resonator is downsized.

上記水晶振動子11の周波数温度特性は、3次温度係数γ、2次温度係数β、1次温度係数α、室温T、テイラー展開温度T、周波数F(f)とすると、以下の近似式によって表される。
近似式Δf(T)/F=γ(T−T+β(T−T+α(T−T
また、このときの頂点温度(Tp)は、次式で表される。
頂点温度Tp=((−2β±(4β−12γα)0.5)/(6γ))+T
The frequency temperature characteristic of the crystal unit 11 is expressed by the following approximate expression, assuming that the third-order temperature coefficient γ, the second-order temperature coefficient β, the first-order temperature coefficient α, the room temperature T, the Taylor development temperature T 0 , and the frequency F (f). Represented by
Approximate expression Δf (T) / F = γ (T−T 0 ) 3 + β (T−T 0 ) 2 + α (T−T 0 )
Further, the vertex temperature (Tp) at this time is expressed by the following equation.
Apex temperature Tp = ((− 2β ± (4β 2 −12γα) 0.5 ) / (6γ)) + T 0

上記近似式から励振電極19,20のヤング率との関係を以下に示す。
ここで、励振電極19,20のヤング率の温度特性を1次関数に近似したときの1次温度係数(ヤング率の温度係数)A、ゼロ次項B、室温T、テイラー展開温度をTとすると、周囲温度との関係式は次式によって表される。なお、テイラー展開温度T=25℃とする。
E(T)=A(T−T)+B
From the above approximate expression, the relationship with the Young's modulus of the excitation electrodes 19 and 20 is shown below.
Here, when the temperature characteristics of the Young's modulus of the excitation electrodes 19 and 20 are approximated to a linear function, the primary temperature coefficient (Young's modulus temperature coefficient) A, zero-order term B, room temperature T, and Taylor expansion temperature are T 0 . Then, the relational expression with the ambient temperature is expressed by the following expression. Note that the Taylor development temperature T 0 = 25 ° C.
E (T) = A (T−T 0 ) + B

図7は、上記関係式に基づき、壁厚t1に対して電極膜厚t2やAの値を変化させた実験1〜5における測定結果を示したものであり、図8は前記測定結果をグラフで表したものである。この実験1〜5は、壁厚t1を6μm、4μm、3μmに設定した場合に、電極膜厚t2を0.2〜0.06μmの範囲で変化させ、さらに、ヤング率の温度係数Aを−20MPa/℃、−10MPa/℃、−1MPa/℃とした場合における頂点温度TpについてFEM解析を行った。   FIG. 7 shows measurement results in Experiments 1 to 5 in which the values of the electrode film thickness t2 and A are changed with respect to the wall thickness t1, based on the above relational expression. FIG. 8 is a graph showing the measurement results. It is represented by. In Experiments 1 to 5, when the wall thickness t1 is set to 6 μm, 4 μm, and 3 μm, the electrode film thickness t2 is changed in the range of 0.2 to 0.06 μm, and the temperature coefficient A of Young's modulus is − FEM analysis was performed on the apex temperature Tp when the pressure was 20 MPa / ° C., −10 MPa / ° C., and −1 MPa / ° C.

実験1〜5において、頂点温度(Tp)が25℃以上となるケースは以下の通りとなる(図7の網掛部)。
実験1:壁厚t1が6μm、A=−20MPa/℃の場合、電極膜厚t2は0.12μm以下
実験2:壁厚t1が6μm、A=−10MPa/℃の場合、電極膜厚t2は0.20μm以下
実験3:壁厚t1が6μm、A=−1MPa/℃の場合、電極膜厚t2は0.20μm以下
実験4:壁厚t1が4μm、A=−20MPa/℃の場合、電極膜厚t2は0.08μm以下
実験5:壁厚t1が3μm、A=−20MPa/℃の場合、電極膜厚t2は0.06μm以下
In Experiments 1 to 5, cases where the vertex temperature (Tp) is 25 ° C. or higher are as follows (shaded portion in FIG. 7).
Experiment 1: When wall thickness t1 is 6 μm and A = −20 MPa / ° C., electrode film thickness t2 is 0.12 μm or less Experiment 2: When wall thickness t1 is 6 μm and A = −10 MPa / ° C., electrode film thickness t2 is 0.20 μm or less Experiment 3: When the wall thickness t1 is 6 μm and A = −1 MPa / ° C., the electrode film thickness t2 is 0.20 μm or less. Experiment 4: When the wall thickness t1 is 4 μm and A = −20 MPa / ° C. Film thickness t2 is 0.08 μm or less Experiment 5: When wall thickness t1 is 3 μm and A = −20 MPa / ° C., electrode film thickness t2 is 0.06 μm or less

上記の実験結果から、A=−20MPa/℃の場合では、電極膜厚t2が壁厚t1の1/50以下の厚みであれば、頂点温度Tpが25℃以上を満たすことが分かる。また、壁厚t1が6〜3μmの範囲、且つA=−10MPa/℃以上の条件であれば、電極膜厚19,20が0.2μm以下(電極膜厚t2が壁厚t1の1/30以下の厚み)としても頂点温度Tpが25℃以上を満たすことが確認された。   From the above experimental results, it can be seen that in the case of A = −20 MPa / ° C., the apex temperature Tp satisfies 25 ° C. or more when the electrode film thickness t2 is 1/50 or less of the wall thickness t1. Further, when the wall thickness t1 is in the range of 6 to 3 μm and A = −10 MPa / ° C. or more, the electrode film thicknesses 19 and 20 are 0.2 μm or less (the electrode film thickness t2 is 1/30 of the wall thickness t1). It was confirmed that the apex temperature Tp satisfies 25 ° C. or higher as the following thickness).

A>−20MPa/℃の条件を満たす励振電極19,20の材料としては、金の他に、銀、銅、ニッケル、白金、パラジウムなどが使用できる。また、A>−10MPa/℃の条件を満たす励振電極19,20の材料としては、金合金、銀合金、銅合金、ニッケル合金、白金合金、パラジウム合金などがある。   In addition to gold, silver, copper, nickel, platinum, palladium, or the like can be used as the material for the excitation electrodes 19 and 20 that satisfy the condition of A> −20 MPa / ° C. Examples of the material of the excitation electrodes 19 and 20 that satisfy the condition of A> −10 MPa / ° C. include gold alloy, silver alloy, copper alloy, nickel alloy, platinum alloy, and palladium alloy.

上記実験結果から、壁厚t1が薄いほど、頂点温度Tpに対する電極膜厚t2が大きく影響していることが分かる。つまり、壁厚t1に対して電極膜厚t2を変えることで、頂点温度Tpを最適な範囲にシフトさせることができる。また、前記振動腕部13,14の外側に位置している壁部17と内側に位置している壁部18とに形成される励振電極19,20は、電極膜厚t2が略同じとなるように設定したが、実際に形成する際には多少のバラツキが生じる。同様に、溝内部壁面と振動腕側壁面でも電極膜厚の差が生じることがある。このような場合にあっては、最も厚みを有する励振電極が基準となる。なお、使用環境や製造上のバラツキ等を考慮して、Tpは15℃〜35℃の範囲で設計される。   From the above experimental results, it can be seen that as the wall thickness t1 is thinner, the electrode film thickness t2 has a greater influence on the vertex temperature Tp. That is, the vertex temperature Tp can be shifted to the optimum range by changing the electrode film thickness t2 with respect to the wall thickness t1. In addition, the excitation electrodes 19 and 20 formed on the wall portion 17 located outside the vibrating arm portions 13 and 14 and the wall portion 18 located inside are substantially the same in electrode film thickness t2. However, there is some variation in the actual formation. Similarly, a difference in electrode film thickness may occur between the groove inner wall surface and the vibrating arm side wall surface. In such a case, the excitation electrode having the largest thickness is the reference. Note that Tp is designed in the range of 15 ° C. to 35 ° C. in consideration of usage environment and manufacturing variations.

前記壁部17,18は、振動腕部13,14に溝部15,16を設けることによって形成されるが、この溝部15,16はエッチングによって形成されるため、開口側が広く、底部側が狭くなるような断面略V字状又は略U字状となる。このように、実際には壁厚t1は均等ではないため、電極膜厚t2を設定する際、前記壁部17,18の中でも溝部15,16の開口側に近い部分を基準として設定するのが好ましい。   The wall portions 17 and 18 are formed by providing the groove portions 15 and 16 in the vibrating arm portions 13 and 14, but since the groove portions 15 and 16 are formed by etching, the opening side is wide and the bottom side is narrow. The cross section is substantially V-shaped or substantially U-shaped. Thus, since the wall thickness t1 is actually not uniform, when setting the electrode film thickness t2, the wall portions 17 and 18 are set with reference to a portion near the opening side of the groove portions 15 and 16 as a reference. preferable.

本実施形態では、各振動腕部13,14の表面側及び裏面側に溝部15,16をそれぞれ設けたが、各振動腕部13,14の同一面に対して2本以上の溝部を平行して設けることもできる。同一面に2本以上の溝がある場合においても、腕測壁面と対抗する溝壁面との間で上記関係が成立することでTpを25℃付近に設定することができる。   In this embodiment, the groove portions 15 and 16 are provided on the front surface side and the back surface side of the vibrating arm portions 13 and 14, respectively, but two or more groove portions are parallel to the same surface of the vibrating arm portions 13 and 14. It can also be provided. Even when there are two or more grooves on the same surface, Tp can be set to around 25 ° C. by establishing the above relationship between the arm wall surface and the opposite groove wall surface.

11 水晶振動子
12 基部
13,14 振動腕部
15,16 溝部
17,18 壁部
19,20 励振電極
DESCRIPTION OF SYMBOLS 11 Crystal oscillator 12 Base 13, 14 Vibrating arm part 15, 16 Groove part 17, 18 Wall part 19, 20 Excitation electrode

Claims (5)

基部及び該基部から延びる一対の振動腕部と、該振動腕部の長手方向に凹設された溝部と、該溝部を形成する壁部と、該壁部の表面に設けられる励振電極とを備え、
前記励振電極は、ヤング率の温度特性を1次関数に近似したときの1次温度係数をA、ゼロ次項をB、室温T、テイラー展開温度Tとした場合に、
温度特性E(T)=A(T−T)+Bで表される音叉型水晶振動子であって、
前記壁部の最小厚みを6μm以下、且つ、A>−20MPa/℃とした場合に、少なくとも一か所の壁部に対向する前記励振電極の厚みを該壁部の最小厚みの1/50以下とすることを特徴とする音叉型水晶振動子。
A base and a pair of vibrating arms extending from the base; a groove recessed in the longitudinal direction of the vibrating arm; a wall forming the groove; and an excitation electrode provided on a surface of the wall. ,
When the temperature characteristic of Young's modulus is approximated to a linear function, the excitation electrode has a primary temperature coefficient of A, a zero-order term of B, room temperature T, and Taylor expansion temperature T 0 .
A tuning fork type crystal resonator represented by a temperature characteristic E (T) = A (T−T 0 ) + B,
When the minimum thickness of the wall portion is 6 μm or less and A> −20 MPa / ° C., the thickness of the excitation electrode facing at least one wall portion is 1/50 or less of the minimum thickness of the wall portion. A tuning fork type crystal resonator.
基部及び該基部から延びる一対の振動腕部と、該振動腕部の長手方向に凹設された溝部と、該溝部を形成する壁部と、該壁部の表面に設けられる励振電極とを備え、
前記励振電極は、ヤング率の温度特性を1次関数に近似したときの1次温度係数をA、ゼロ次項をB、室温T、テイラー展開温度Tとした場合に、
温度特性E(T)=A(T−T)+Bで表される音叉型水晶振動子であって、
前記壁部の最小厚みを6μm以下、且つ、A>−10MPa/℃とした場合に、少なくとも一か所の壁部に対向する前記励振電極の厚みを該壁部の最小厚みの1/30以下とすることを特徴とする音叉型水晶振動子。
A base and a pair of vibrating arms extending from the base; a groove recessed in the longitudinal direction of the vibrating arm; a wall forming the groove; and an excitation electrode provided on a surface of the wall. ,
When the temperature characteristic of Young's modulus is approximated to a linear function, the excitation electrode has a primary temperature coefficient of A, a zero-order term of B, room temperature T, and Taylor expansion temperature T 0 .
A tuning fork type crystal resonator represented by a temperature characteristic E (T) = A (T−T 0 ) + B,
When the minimum thickness of the wall portion is 6 μm or less and A> −10 MPa / ° C., the thickness of the excitation electrode facing at least one wall portion is 1/30 or less of the minimum thickness of the wall portion. A tuning fork type crystal resonator.
前記振動腕部の長手方向に凹設された溝部が各振動腕部に複数設けられ、それぞれの溝部を形成する壁部の表面に励振電極が設けられる請求項1又は2に記載の音叉型水晶振動子。   The tuning-fork type crystal according to claim 1 or 2, wherein a plurality of groove portions recessed in the longitudinal direction of the vibrating arm portion are provided in each vibrating arm portion, and excitation electrodes are provided on the surfaces of the wall portions forming the respective groove portions. Vibrator. 前記励振電極は、金、銀、銅、ニッケル、白金、パラジウム、クロム、チタン、モリブデン、タングステンのいずれかから選択、あるいは、これらの金属の積層構造からなる請求項1乃至3のいずれかに記載の音叉型水晶振動子。   The excitation electrode is selected from gold, silver, copper, nickel, platinum, palladium, chromium, titanium, molybdenum, and tungsten, or has a laminated structure of these metals. Tuning fork type quartz crystal. 前記励振電極は、金合金、銀合金、銅合金、ニッケル合金、白金合金、パラジウム合金のいずれかから選択、あるいは、これらの金属と金、銀、銅、ニッケル、白金、パラジウム、クロム、チタン、モリブデン、タングステンの積層構造からなる請求項1乃至3のいずれかに記載の音叉型水晶振動子。   The excitation electrode is selected from gold alloy, silver alloy, copper alloy, nickel alloy, platinum alloy, palladium alloy, or these metals and gold, silver, copper, nickel, platinum, palladium, chromium, titanium, 4. The tuning fork type crystal resonator according to claim 1, wherein the tuning fork crystal resonator has a laminated structure of molybdenum and tungsten.
JP2012157255A 2012-07-13 2012-07-13 Tuning fork crystal unit Active JP6087527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157255A JP6087527B2 (en) 2012-07-13 2012-07-13 Tuning fork crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157255A JP6087527B2 (en) 2012-07-13 2012-07-13 Tuning fork crystal unit

Publications (2)

Publication Number Publication Date
JP2014022802A true JP2014022802A (en) 2014-02-03
JP6087527B2 JP6087527B2 (en) 2017-03-01

Family

ID=50197275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157255A Active JP6087527B2 (en) 2012-07-13 2012-07-13 Tuning fork crystal unit

Country Status (1)

Country Link
JP (1) JP6087527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149591A (en) * 2014-02-06 2015-08-20 セイコーエプソン株式会社 Oscillation element, transducer, oscillator, electronic apparatus, sensor and mobile object

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990088A (en) * 1972-12-27 1974-08-28
JP2000307164A (en) * 1999-04-21 2000-11-02 Matsushita Electric Ind Co Ltd Thin-plate piezoelectric element, piezoelectric acoustic element formed using the same, piezoelectric vibrator, piezoelectric actuator, piezoelectric transformer, and cold-cathode fluorescent lamp provided therewith
JP2008042873A (en) * 2006-08-01 2008-02-21 Txc Corp Electrode structure and piezoelectric crystal oscillator
JP2008048275A (en) * 2006-08-18 2008-02-28 Epson Toyocom Corp Piezoelectric vibrating piece and piezoelectric device
JP2010220193A (en) * 2009-02-17 2010-09-30 Seiko Epson Corp Vibrating reed and vibrator
WO2011077766A1 (en) * 2009-12-25 2011-06-30 日本電波工業株式会社 Oscillator electrode material having excellent aging characteristics, piezoelectric oscillator using the material and sputtering target comprising the material
JP2011223489A (en) * 2010-04-14 2011-11-04 Seiko Epson Corp Vibration chip, vibration device and electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990088A (en) * 1972-12-27 1974-08-28
JP2000307164A (en) * 1999-04-21 2000-11-02 Matsushita Electric Ind Co Ltd Thin-plate piezoelectric element, piezoelectric acoustic element formed using the same, piezoelectric vibrator, piezoelectric actuator, piezoelectric transformer, and cold-cathode fluorescent lamp provided therewith
JP2008042873A (en) * 2006-08-01 2008-02-21 Txc Corp Electrode structure and piezoelectric crystal oscillator
JP2008048275A (en) * 2006-08-18 2008-02-28 Epson Toyocom Corp Piezoelectric vibrating piece and piezoelectric device
JP2010220193A (en) * 2009-02-17 2010-09-30 Seiko Epson Corp Vibrating reed and vibrator
WO2011077766A1 (en) * 2009-12-25 2011-06-30 日本電波工業株式会社 Oscillator electrode material having excellent aging characteristics, piezoelectric oscillator using the material and sputtering target comprising the material
JP2011223489A (en) * 2010-04-14 2011-11-04 Seiko Epson Corp Vibration chip, vibration device and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149591A (en) * 2014-02-06 2015-08-20 セイコーエプソン株式会社 Oscillation element, transducer, oscillator, electronic apparatus, sensor and mobile object

Also Published As

Publication number Publication date
JP6087527B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP4578499B2 (en) Tuning fork-type bending crystal resonator, crystal resonator and crystal oscillator having the same
JP5625432B2 (en) Piezoelectric vibration element and piezoelectric vibrator
US10263597B2 (en) Crystal unit
JP2001244778A (en) High-frequency piezoelectric vibrator
JP5835765B2 (en) Elastic wave element
JP4879963B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator
JP6338367B2 (en) Crystal oscillator
JP2018074267A (en) Piezoelectric vibration piece and piezoelectric device
JPWO2005008887A1 (en) SC cut crystal unit
JP6087527B2 (en) Tuning fork crystal unit
WO2012127685A1 (en) Tuning-fork-type oscillator
JP2003060482A (en) Tuning fork crystal oscillating piece
JP5988125B1 (en) Quartz crystal resonator and crystal oscillation device
JP6525821B2 (en) Tuning fork type crystal element
JP2010187307A (en) At cut quartz resonator and manufacturing method thereof
JP2009232447A (en) At cut crystal vibrator and method for manufacturing the same
JP2013258452A5 (en)
JP2006311303A (en) Mode combined piezoelectric vibrator
JP5751278B2 (en) Piezoelectric bulk wave resonator
JP5494994B2 (en) Method for manufacturing vibrator
JP5661506B2 (en) Crystal oscillator
JP6689684B2 (en) Tuning fork crystal unit
US20170257077A1 (en) Crystal resonator
JP2008193660A (en) Contour resonator
TW201924102A (en) Piezoelectric vibrating piece and piezoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6087527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250