JP2014022207A - Method of manufacturing dye-sensitized solar cell - Google Patents

Method of manufacturing dye-sensitized solar cell Download PDF

Info

Publication number
JP2014022207A
JP2014022207A JP2012160142A JP2012160142A JP2014022207A JP 2014022207 A JP2014022207 A JP 2014022207A JP 2012160142 A JP2012160142 A JP 2012160142A JP 2012160142 A JP2012160142 A JP 2012160142A JP 2014022207 A JP2014022207 A JP 2014022207A
Authority
JP
Japan
Prior art keywords
dye
porous semiconductor
solar cell
semiconductor layer
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012160142A
Other languages
Japanese (ja)
Inventor
Shinji Okashiwa
伸次 大栢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2012160142A priority Critical patent/JP2014022207A/en
Publication of JP2014022207A publication Critical patent/JP2014022207A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a dye-sensitized solar cell having a high photoelectric conversion efficiency.SOLUTION: A method of manufacturing a dye-sensitized solar cell includes: a first step of forming a porous semiconductor layer 2 on a transparent conductive substrate 1; a second step of pressing a fine rugged sheet 3 having fine ruggedness against the porous semiconductor layer 2 to unify the porous semiconductor 2 and the fine rugged sheet 3, and thereby, produce a transparent electrode precursor α; and a third step of baking the transparent electrode precursor α to sinter the porous semiconductor layer 2, and ashing the fine rugged sheet 3 to remove the fine rugged sheet 3 from the transparent electrode precursor α.

Description

本発明は色素増感型太陽電池の製造方法に関し、特に発電効率の高い色素増感型太陽電池の製造方法に関する。   The present invention relates to a method for producing a dye-sensitized solar cell, and more particularly to a method for producing a dye-sensitized solar cell with high power generation efficiency.

環境問題・資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。しかしながら、従来のシリコン系太陽電池は、製造コストが高い、原料供給が不十分などの課題が残されており、大幅普及には至っていない。また、CIS系などの化合物系太陽電池は、極めて高い光電変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題がやはり大幅普及への障害となっている。   Against the backdrop of environmental issues and resource issues, solar cells as clean energy are attracting attention. However, conventional silicon-based solar cells still have problems such as high manufacturing costs and insufficient raw material supply, and have not yet been widely spread. In addition, although compound solar cells such as CIS have excellent characteristics such as extremely high photoelectric conversion efficiency, problems such as cost and environmental load are still an obstacle to widespread use.

一方、色素増感型太陽電池は、安価で高い光電変換効率を得られる太陽電池として着目されている。この色素増感型太陽電池の一般的な構造としては、透明導電性基板の上に、二酸化チタンなどの酸化物半導体ナノ粒子を用いた多孔質半導体層を形成し、これに増感色素を担持させたものを白金スパッタした導電性ガラスなどの対極とを組み合わせ、両極間にヨウ素・ヨウ化物イオンなどの酸化・還元種を含む有機電解液を電荷移送層として充填したものなどを挙げることができる。   On the other hand, dye-sensitized solar cells are attracting attention as solar cells that are inexpensive and can obtain high photoelectric conversion efficiency. As a general structure of this dye-sensitized solar cell, a porous semiconductor layer using oxide semiconductor nanoparticles such as titanium dioxide is formed on a transparent conductive substrate, and a sensitizing dye is supported on this layer. In combination with a counter electrode such as a conductive glass obtained by sputtering with platinum, an organic electrolyte containing an oxidizing / reducing species such as iodine / iodide ions between the electrodes can be used as a charge transfer layer. .

なお、さらに色素増感型太陽電池の光電変換効率をより高めるためには、多孔質半導体層の表面に微細凹凸を形成し、多孔質半導体層の表面積を大きくすればよいことが知られている(例えば、特許文献1)。特許文献1には、ナノインプリント技術を用いて多孔質性半導体層の表面に微細凹凸を形成する方法が開示されている。しかし、上記方法では焼成したあと、多孔質半導体層から金型を引き抜くときに、多孔質半導体層の一部も上記金型と一緒に引き抜かれてしまう。そのため、多孔質半導体層の表面に微細凹凸を形成するのが困難となり、表面積の大きい多孔質半導体層を作成できない。その結果、高い光電変換効率を有する色素増感型太陽電池を作成するのが困難であるという問題があった。   In order to further increase the photoelectric conversion efficiency of the dye-sensitized solar cell, it is known that fine irregularities are formed on the surface of the porous semiconductor layer to increase the surface area of the porous semiconductor layer. (For example, patent document 1). Patent Document 1 discloses a method of forming fine irregularities on the surface of a porous semiconductor layer using nanoimprint technology. However, in the above method, when the mold is pulled out from the porous semiconductor layer after firing, a part of the porous semiconductor layer is also pulled out together with the mold. Therefore, it becomes difficult to form fine irregularities on the surface of the porous semiconductor layer, and a porous semiconductor layer having a large surface area cannot be created. As a result, there has been a problem that it is difficult to produce a dye-sensitized solar cell having high photoelectric conversion efficiency.

特開2009−193854JP 2009-193854 A

従って、本発明の目的は高い光電変換効率を有する色素増感型太陽電池の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a dye-sensitized solar cell having high photoelectric conversion efficiency.

上記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

本発明によれば、透明導電性基板上に形成された多孔質半導体層が微細凹凸を有する色素増感型太陽電池の製造方法であって、前記透明導電性基板上に多孔質半導体層を形成する第一工程と、前記多孔質半導体層の上に微細凹凸を有する微細凹凸シートを押し当て、前記多孔質半導体と前記微細凹凸シートを一体化し、透明電極前駆体を作成する第二工程と、前記透明電極前駆体を焼成して、前記多孔質半導体層を焼き締めるとともに、前記微細凹凸シートを灰化して前記透明電極前駆体から前記微細凹凸シートを除去する第三工程と、を少なくとも備える色素増感型太陽電池の製造方法を提供する。   According to the present invention, the porous semiconductor layer formed on the transparent conductive substrate is a method for producing a dye-sensitized solar cell having fine irregularities, and the porous semiconductor layer is formed on the transparent conductive substrate. A second step of pressing the fine uneven sheet having fine unevenness on the porous semiconductor layer, integrating the porous semiconductor and the fine uneven sheet, and creating a transparent electrode precursor; A dye comprising at least a third step of firing the transparent electrode precursor, baking the porous semiconductor layer, and ashing the fine uneven sheet to remove the fine uneven sheet from the transparent electrode precursor A method for producing a sensitized solar cell is provided.

本発明の第2態様によれば、前記第三工程終了後、前記多孔質半導体層に増感色素を吸着する第四工程を含む色素増感型太陽電池の製造方法を提供する。   According to a second aspect of the present invention, there is provided a method for producing a dye-sensitized solar cell, comprising a fourth step of adsorbing a sensitizing dye to the porous semiconductor layer after completion of the third step.

本発明の第3態様によれば、前記微細凹凸シートの微細凹凸の凹部の深さが、0.5μm〜5μm である色素増感型太陽電池の製造方法を提供する。   According to the 3rd aspect of this invention, the manufacturing method of the dye-sensitized solar cell whose depth of the recessed part of the fine unevenness | corrugation of the said fine uneven | corrugated sheet is 0.5 micrometer-5 micrometers is provided.

本発明の第4態様によれば、前記微細凹凸シートの微細凹凸のアスペクト比が1:1〜1:5である色素増感型太陽電池の製造方法を提供する。   According to the 4th aspect of this invention, the manufacturing method of the dye-sensitized solar cell whose aspect-ratio of the fine unevenness | corrugation of the said fine uneven | corrugated sheet is 1: 1-1: 5 is provided.

本発明の第5態様によれば、前記微細凹凸シートの厚みが50μm〜250μmである色素増感型太陽電池の製造方法を提供する。   According to the 5th aspect of this invention, the manufacturing method of the dye-sensitized solar cell whose thickness of the said fine uneven | corrugated sheet is 50 micrometers-250 micrometers is provided.

本発明の第6態様によれば、前記微細凹凸シートの材質が、PETフィルム、若しくはPENフィルムである色素増感型太陽電池の製造方法を提供する。   According to the 6th aspect of this invention, the manufacturing method of the dye-sensitized solar cell whose material of the said fine uneven | corrugated sheet is a PET film or a PEN film is provided.

本発明の第7態様によれば、前記多孔質半導体層の厚みが、1μm〜20μmである色素増感型太陽電池の製造方法を提供する。   According to a seventh aspect of the present invention, there is provided a method for producing a dye-sensitized solar cell, wherein the porous semiconductor layer has a thickness of 1 μm to 20 μm.

本発明によれば、高い光電変換効率を有する色素増感型太陽電池の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the dye-sensitized solar cell which has high photoelectric conversion efficiency can be provided.

本発明の色素増感型太陽電池の製造工程に係る断面図である。It is sectional drawing which concerns on the manufacturing process of the dye-sensitized solar cell of this invention. 微細凹凸シートの製造工程に係る断面図である。It is sectional drawing which concerns on the manufacturing process of a fine uneven | corrugated sheet.

下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。   Hereinafter, embodiments according to the present invention will be described in more detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative positions, etc. of the parts and portions described in the embodiments of the present invention are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an illustrative example.

<色素増感型太陽電池の製造方法>
以下で、本発明の色素増感型太陽電池の製造方法について説明する。色素増感型太陽電池を得る方法としては、以下の各工程を含む。
<Method for producing dye-sensitized solar cell>
Below, the manufacturing method of the dye-sensitized solar cell of this invention is demonstrated. The method for obtaining a dye-sensitized solar cell includes the following steps.

図1は、色素増感型太陽電池の製造工程の断面図である。図1(a)に示すように、本発明の第一工程では、透明導電性基板1の上に多孔質半導体層2を形成する。   FIG. 1 is a cross-sectional view of a process for producing a dye-sensitized solar cell. As shown in FIG. 1A, in the first step of the present invention, a porous semiconductor layer 2 is formed on a transparent conductive substrate 1.

<透明導電性基板>
透明導電性基板は、透明基板の上に透明導電膜層を形成した構成からなる。
<Transparent conductive substrate>
The transparent conductive substrate has a configuration in which a transparent conductive film layer is formed on a transparent substrate.

透明基板は、透明なガラス板やプラスチック板等から成る。透明基板の厚みは0.1〜5mm程度である。   The transparent substrate is made of a transparent glass plate or plastic plate. The thickness of the transparent substrate is about 0.1 to 5 mm.

なお、透明導電膜層は、有機材料や無機材料から構成される。有機材料としては、導電性高分子材料を使用できる。上記導電性高分子材料の中でも、ポリスチレンスルホン酸(PSS)と3,4−エチレンジオキシチオフェン(EDOT)を用いて作成される水分散ポリチオフェン誘導体(PEDOT:PSS)を用いることが好ましい。水分散ポリチオフェン誘導体(PEDOT:PSS)は透明性が高く、導電性も高い。そのため、水分散ポリチオフェン誘導体(PEDOT:PSS)を透明導電膜層に用いることによって、色素増感型太陽電池内に外部からの光を効率的に取り込むことができるとともに、色素増感から発生した電子を効率的に電極取出部に輸送することができる。その結果、エネルギー効率の高い色素増感型太陽電池となるためである。また上記に加え、水分散ポリチオフェン誘導体(PEDOT:PSS)は水溶性であるので、上記透光性基板の上に容易に透明導電膜層を形成できるといった長所も有する。この場合、透明導電膜層はグラビア印刷などの印刷法によって形成される。   Note that the transparent conductive film layer is made of an organic material or an inorganic material. As the organic material, a conductive polymer material can be used. Among the conductive polymer materials, it is preferable to use a water-dispersed polythiophene derivative (PEDOT: PSS) prepared using polystyrene sulfonic acid (PSS) and 3,4-ethylenedioxythiophene (EDOT). The water-dispersed polythiophene derivative (PEDOT: PSS) has high transparency and high conductivity. Therefore, by using a water-dispersed polythiophene derivative (PEDOT: PSS) for the transparent conductive film layer, it is possible to efficiently incorporate external light into the dye-sensitized solar cell and to generate electrons generated from the dye sensitization. Can be efficiently transported to the electrode extraction portion. As a result, a dye-sensitized solar cell with high energy efficiency is obtained. In addition to the above, since the water-dispersed polythiophene derivative (PEDOT: PSS) is water-soluble, it has an advantage that a transparent conductive film layer can be easily formed on the translucent substrate. In this case, the transparent conductive film layer is formed by a printing method such as gravure printing.

無機材料としては、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物などの無機酸化物を使用することができる。なお、透明導電膜層の厚みは0.3〜2μm程度が好ましい。0.3μm未満では、シート抵抗が高くなり、色素増感型太陽電池の直列抵抗が高くなるため、フィルファクター特性が悪くなる傾向がある。この場合、透明導電膜層は、CVD法、スパッタリング法、スプレー法等によって形成される。   As the inorganic material, an inorganic oxide such as fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide can be used. In addition, as for the thickness of a transparent conductive film layer, about 0.3-2 micrometers is preferable. When the thickness is less than 0.3 μm, the sheet resistance increases, and the series resistance of the dye-sensitized solar cell increases, so that the fill factor characteristic tends to be deteriorated. In this case, the transparent conductive film layer is formed by a CVD method, a sputtering method, a spray method, or the like.

さらに、透明導電膜層はアクリル、ポリエステル、ポリウレタン、ポリ塩化ビニルなどのバインダー樹脂と、導電性ナノファイバーとから構成されていてもよい。この場合、透明導電膜層は、塗装やインクジェットなどの方法で設けることができ、透明導電膜層の厚みは数十nmから数百nmの範囲で適宜設定可能である。なお、厚みが数十nmより薄いと層としての強度が不足し、厚みが数百nmより厚いと層としての柔軟性がなくなり加工が困難となる。導電性ナノファイバーを構成する材料としては、カーボンナノファイバーのほか、金、銀、白金、銅、パラジウムなどの金属イオンを担持した前駆体表面にプローブの先端部から印加電圧又は電流を作用させ連続的にひき出して作製した金属ナノワイヤや、透明基板上に原料ガスを導入しCVD法により作製したグラファイトナノファイバー、ペプチド又はその誘導体が自己組織化的に形成したナノファイバーに金粒子を付加してなるペプチドナノファイバーなどが挙げられる。この場合、透明導電膜層はグラビア印刷などの印刷法によって形成される。   Furthermore, the transparent conductive film layer may be composed of a binder resin such as acrylic, polyester, polyurethane, and polyvinyl chloride, and conductive nanofibers. In this case, the transparent conductive film layer can be provided by a method such as painting or inkjet, and the thickness of the transparent conductive film layer can be appropriately set in the range of several tens of nm to several hundreds of nm. When the thickness is less than several tens of nm, the strength as a layer is insufficient, and when the thickness is greater than several hundred nm, the flexibility as the layer is lost and processing becomes difficult. In addition to carbon nanofibers, conductive nanofibers can be made continuously by applying an applied voltage or current from the tip of the probe to the surface of a precursor carrying metal ions such as gold, silver, platinum, copper, and palladium. Gold particles are added to metal nanowires that are created by pulling them out, or nanofibers that are formed by self-organizing graphite nanofibers, peptides, or their derivatives, which are produced by introducing a source gas onto a transparent substrate and using the CVD method. And peptide nanofibers. In this case, the transparent conductive film layer is formed by a printing method such as gravure printing.

<多孔質半導体層>
多孔質半導体層を構成する材料としては、酸化チタン(TiO2)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),錫(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の金属酸化物半導体がよく、例えば、TiO2、WO3、ZnO、Nb2O5、Ta2O5、またはSrTiO3のうち少なくとも1つから成る。また窒素(N),炭素(C),フッ素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有していてもよい。酸化チタン等はいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。
<Porous semiconductor layer>
As a material constituting the porous semiconductor layer, titanium oxide (TiO2) is optimal, and as other materials, titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), indium (In ), Yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), vanadium (V), tungsten (W) And at least one metal oxide semiconductor of a metal element such as TiO2, WO3, ZnO, Nb2O5, Ta2O5, or SrTiO3. Moreover, you may contain 1 or more types of nonmetallic elements, such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), phosphorus (P). Titanium oxide or the like is preferable because it has an electron energy band gap in the range of 2 to 5 eV, which is larger than the energy of visible light.

多孔質半導体層の厚みとしては、1μm〜20μmであることが好ましい。多孔質半導体層の厚みが、1μm未満であれば、増感色素の吸着工程で色素が吸着できないという問題が生じる。反対に20μmを越えると、多孔質半導体に亀裂、剥離が生じるので製膜できないという問題が生じる。   The thickness of the porous semiconductor layer is preferably 1 μm to 20 μm. If the thickness of the porous semiconductor layer is less than 1 μm, there arises a problem that the dye cannot be adsorbed in the sensitizing dye adsorption process. On the other hand, if the thickness exceeds 20 μm, the porous semiconductor is cracked and peeled off, causing a problem that the film cannot be formed.

多孔質半導体層を透明導電性基板上に形成する方法としては、酸化物半導体を高分子および溶剤に分散させたペーストを印刷し、焼結させる方法が挙げられる。例えば、多孔質半導体層が酸化チタンからなる場合、以下のようにして形成する。まず、TiO2のアナターゼ粉末に酢酸を添加した後、脱イオン水とエタノールともに混練し、溶媒と高分子で安定化させた酸化チタンのペーストを調製する。調製したペーストをスクリーン印刷法やドクターブレード法などの印刷法によって透明導電膜層上に一定速度で塗布し、大気中で400〜600℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質半導体層を得る。   Examples of the method for forming the porous semiconductor layer on the transparent conductive substrate include a method of printing and sintering a paste in which an oxide semiconductor is dispersed in a polymer and a solvent. For example, when the porous semiconductor layer is made of titanium oxide, it is formed as follows. First, acetic acid is added to a TiO 2 anatase powder, and then kneaded with deionized water and ethanol to prepare a titanium oxide paste stabilized with a solvent and a polymer. The prepared paste is applied onto the transparent conductive film layer at a constant speed by a printing method such as a screen printing method or a doctor blade method, and heated in the atmosphere at 400 to 600 ° C. for 10 to 60 minutes, preferably 20 to 40 minutes. By processing, a porous semiconductor layer is obtained.

図1(b)に示すように、本発明の第2工程では、多孔質半導体層2の上に微細凹凸シート3を設置する。微細凹凸シート3の設置は、未硬化の多孔質半導体層2の上に微細凹凸シート3の微細凹凸面を押し当てることにより行う。   As shown in FIG. 1 (b), in the second step of the present invention, a fine uneven sheet 3 is installed on the porous semiconductor layer 2. The fine uneven sheet 3 is installed by pressing the fine uneven surface of the fine uneven sheet 3 on the uncured porous semiconductor layer 2.

<微細凹凸シート>
微細凹凸シートの凹凸の形状は、特に限定されないが、特にスリット状、ドット状の形状であることが好ましい。微細凹凸の長軸方向の長さは、0.5μm〜5μmであることが好ましい。長軸方向の長さが、0.5μm未満であれば、微細凹凸シートの加工が簡易にできないという問題が生じる。反対に5μmを越えると、多孔質半導体の膜厚が減るので、 増感色素の吸着量が減り、発電量が確保できないという問題が生じる。微細凹凸の短軸方向の長さは、0.5μm〜5μmであることが好ましい。短軸方向の長さが、0.5μm未満であれば、微細凹凸シートへの加工が簡易にできないという問題が生じる。反対に5μmを越えると、多孔質半導体の膜厚が減るので、増感色素の吸着量が減り、発電量が確保できないという問題が生じる。
<Fine uneven sheet>
The shape of the unevenness of the fine unevenness sheet is not particularly limited, but is preferably a slit shape or a dot shape. The length of the fine irregularities in the major axis direction is preferably 0.5 μm to 5 μm. If the length in the major axis direction is less than 0.5 μm, there arises a problem that the fine uneven sheet cannot be easily processed. On the other hand, if the thickness exceeds 5 μm, the film thickness of the porous semiconductor is reduced, so that the amount of adsorption of the sensitizing dye is reduced, resulting in a problem that the power generation amount cannot be secured. The length of the fine irregularities in the minor axis direction is preferably 0.5 μm to 5 μm. If the length in the minor axis direction is less than 0.5 μm, there arises a problem that processing into a fine uneven sheet cannot be easily performed. On the other hand, when the thickness exceeds 5 μm, the film thickness of the porous semiconductor is reduced, so that the amount of adsorption of the sensitizing dye is reduced, resulting in a problem that the power generation amount cannot be secured.

微細凹凸のアスペクト比(微細凹凸の短軸方向と高さ方向の比)は、1:1〜1:5であることが好ましい。微細凹凸のアスペクト比が1:1未満であれば、多孔質半導体への微細加工が不十分なので、 高い光電変換効率を有することができないという問題が生じる。反対に、1:5を越えると、多孔質半導体へ微細凹凸シートを押し当てる際に微細凹凸シートの凸部が破損し、凹凸を形成できないという問題が生じる。   The aspect ratio of the fine irregularities (ratio between the minor axis direction and the height direction of the fine irregularities) is preferably 1: 1 to 1: 5. If the aspect ratio of the fine irregularities is less than 1: 1, the fine processing into the porous semiconductor is insufficient, so that there is a problem that high photoelectric conversion efficiency cannot be achieved. On the contrary, when exceeding 1: 5, when pressing a fine uneven | corrugated sheet to a porous semiconductor, the convex part of a fine uneven | corrugated sheet breaks and the problem that an unevenness | corrugation cannot be formed arises.

図2は、微細凹凸シートの製造工程に係る断面図である。図2(a)〜(c)に示すように、微細凹凸シート3は、スタンパSを用いて基体シート20の表面に微細凹凸を形成することで得られる。そのような、基体シート20としては、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂などの樹脂シートなどが挙げられる。     FIG. 2 is a cross-sectional view according to the manufacturing process of the fine uneven sheet. As shown in FIGS. 2A to 2C, the fine uneven sheet 3 is obtained by forming fine uneven parts on the surface of the base sheet 20 using a stamper S. Examples of the base sheet 20 include resin sheets such as polypropylene resin, polyethylene resin, polyamide resin, polyester resin, acrylic resin, and polyvinyl chloride resin.

なお、基体シートは、PETフィルム、若しくはPENフィルムから構成されることが好ましい。低コストであり、また高強度、寸法安定があるので、加工性に優れているためである。   In addition, it is preferable that a base sheet is comprised from a PET film or a PEN film. This is because it is low in cost, and has high strength and dimensional stability, and is excellent in workability.

さらに、基体シートの厚みは、50μm〜250μmの範囲にするのが好ましい。厚みが、50μm未満であると、基体シートの表面に微細凹凸を形成するとき、基体シートにしわが入り加工しづらくなり、反対に、250μmを超えると焼成時の灰化で、綺麗に灰化できなくなる。   Further, the thickness of the base sheet is preferably in the range of 50 μm to 250 μm. When the thickness is less than 50 μm, when forming fine irregularities on the surface of the base sheet, it becomes difficult to process wrinkles on the base sheet. Disappear.

図1(c)に示すように、本発明の第三工程では、透明導電性基板1、多孔質半導体層2、微細凹凸シート3が一体化した透明電極前駆体αを焼成炉の中に入れた後、多孔質半導体層2を焼成するとともに、微細凹凸シート3を灰化し、微細凹凸シート3を多孔質半導体層上2から除去する。   As shown in FIG. 1 (c), in the third step of the present invention, a transparent electrode precursor α in which the transparent conductive substrate 1, the porous semiconductor layer 2, and the fine uneven sheet 3 are integrated is placed in a firing furnace. After that, the porous semiconductor layer 2 is fired, the fine uneven sheet 3 is ashed, and the fine uneven sheet 3 is removed from the porous semiconductor layer 2.

このように構成すると、多孔質半導体層2の焼成が完了したときには、微細凹凸シート3は灰化しているので、焼成した多孔質半導体層2から微細凹凸シート3を引き抜かずとも多孔質半導体層2から除去できる。その結果、微細凹凸シート3を多孔質半導体層2から除去するときに多孔質半導体層2の一部が除去されるという問題は生じない。よって、表面に微細凹凸を有する多孔質半導体層3を有する色素増感型太陽電池20を作成できるので、上記第1工程から第3工程を経ることにより、光電変換効率の高い色素増感太陽電池20を製造できる。   If comprised in this way, when the baking of the porous semiconductor layer 2 is completed, since the fine uneven | corrugated sheet 3 is incinerated, even if it does not pull out the fine uneven | corrugated sheet 3 from the baked porous semiconductor layer 2, the porous semiconductor layer 2 Can be removed. As a result, there is no problem that a part of the porous semiconductor layer 2 is removed when the fine uneven sheet 3 is removed from the porous semiconductor layer 2. Therefore, since the dye-sensitized solar cell 20 having the porous semiconductor layer 3 having fine irregularities on the surface can be produced, the dye-sensitized solar cell having high photoelectric conversion efficiency is obtained through the first to third steps. 20 can be manufactured.

なお、多孔質半導体を焼成し、微細凹凸シートを灰化するためには、450℃〜550℃の温度で30分〜60分間、透明電極前駆体を加熱することが好ましい。   In addition, in order to bake a porous semiconductor and incinerate a fine uneven | corrugated sheet, it is preferable to heat a transparent electrode precursor for 30 minutes-60 minutes at the temperature of 450 to 550 degreeC.

図1(d)、(e)に示すように、本発明の第四工程では、多孔質半導体層2に増感色素2aを吸着させたのち、導電性基板5と触媒層6とからなる対向電極4を透明導電性基板1と対峙させ、透明導電性基板1と対向電極4の周縁部を封止材7で接着する。なお、多孔質半導体層2には第三工程で微細凹凸が形成されているため、多孔質半導体層2には増感色素2aが吸着しやすくなっている。よって、第四工程で多孔質半導体層2に増感色素2aを十分吸着させることにより、光電変換効率の高い色素増感型太陽電池20を得ることができる。   As shown in FIGS. 1D and 1E, in the fourth step of the present invention, after the sensitizing dye 2a is adsorbed to the porous semiconductor layer 2, the opposing substrate made of the conductive substrate 5 and the catalyst layer 6 is used. The electrode 4 is opposed to the transparent conductive substrate 1, and the periphery of the transparent conductive substrate 1 and the counter electrode 4 is bonded with a sealing material 7. In addition, since the fine unevenness | corrugation is formed in the porous semiconductor layer 2 at the 3rd process, the sensitizing dye 2a is easy to adsorb | suck to the porous semiconductor layer 2. FIG. Therefore, the dye-sensitized solar cell 20 having high photoelectric conversion efficiency can be obtained by sufficiently adsorbing the sensitizing dye 2a to the porous semiconductor layer 2 in the fourth step.

<増感色素>
増感色素としては、有機色素または金属錯体色素を使用することができ、有機色素としては、アクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系の色素が挙げられ、金属錯体色素では、ルテニウム系色素が好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素が好ましい。例えば、酸化物半導体膜だけでは、可視光(400〜800nm程度の波長)を殆ど吸収できないが、ルテニウム錯体を担持させることにより、大幅に可視光まで取り込んで光電変換できるようになる。
<Sensitizing dye>
As the sensitizing dye, an organic dye or a metal complex dye can be used. Examples of the organic dye include an acridine dye, an azo dye, an indigo dye, a quinone dye, a coumarin dye, a merocyanine dye, and a phenylxanthene dye. As the metal complex dye, a ruthenium dye is preferable, and a ruthenium bipyridine dye and a ruthenium terpyridine dye, which are ruthenium complexes, are particularly preferable. For example, visible light (wavelength of about 400 to 800 nm) can hardly be absorbed with only an oxide semiconductor film, but by supporting a ruthenium complex, visible light can be significantly taken in and photoelectrically converted.

また、多孔質半導体層に増感色素を効率的に吸着させるためには、増感色素に少なくとも1個以上のカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基等を置換基として有することが有効である。これら置換基は第一増感色素自体を多孔質半導体層に強固に化学吸着させることができ、励起状態の増感色素から多孔質の半導体層へ容易に電荷移動できるものであるためである。   In order to efficiently adsorb the sensitizing dye to the porous semiconductor layer, at least one carboxyl group, sulfonyl group, hydroxamic acid group, alkoxy group, aryl group, phosphoryl group, etc. are substituted on the sensitizing dye. It is effective to have it as a group. This is because these substituents can firmly chemisorb the first sensitizing dye itself to the porous semiconductor layer and can easily transfer charges from the excited sensitizing dye to the porous semiconductor layer.

増感色素の吸着方法は、増感色素を溶かした溶液に多孔質半導体層を含浸させる方法が好ましい。多孔質半導体層に増感色素を吸着させる際の増感色素を溶解させる溶液の溶媒としては、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。溶液中の増感色素の濃度は5×10−5〜2×10−3mol/l(l(リットル):1000cm3)程度が好ましい。   As a method for adsorbing a sensitizing dye, a method in which a porous semiconductor layer is impregnated with a solution in which a sensitizing dye is dissolved is preferable. Solvents for dissolving the sensitizing dye when adsorbing the sensitizing dye to the porous semiconductor layer include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, etc. May be one or a mixture of two or more. The concentration of the sensitizing dye in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (l (liter): 1000 cm 3).

多孔質半導体層に増感色素を吸着させる際、溶液及び雰囲気の温度の条件は特に限定するものではなく、例えば、大気圧下もしくは真空中、室温もしくは基板加熱の条件が挙げられる。第一増感色素の吸着にかける時間は、増感色素及び溶液の種類、溶液の濃度、増感色素の溶液の循環量等により適宜調整することができる。これにより、増感色素を多孔質半導体層に吸着させることができる。   When adsorbing the sensitizing dye to the porous semiconductor layer, the temperature conditions of the solution and the atmosphere are not particularly limited, and examples thereof include conditions under atmospheric pressure or in vacuum, room temperature, or substrate heating. The time required for adsorption of the first sensitizing dye can be appropriately adjusted depending on the kind of the sensitizing dye and the solution, the concentration of the solution, the circulation amount of the solution of the sensitizing dye, and the like. Thereby, a sensitizing dye can be made to adsorb | suck to a porous semiconductor layer.

<対向電極>
図1(d)に示すように、対向電極4は導電性基板5の上に触媒層6が形成された構成からなり、導電性基板5は基板の上に導電層が形成された構成からなる。
<導電性基板>
<Counter electrode>
As shown in FIG. 1D, the counter electrode 4 has a configuration in which a catalyst layer 6 is formed on a conductive substrate 5, and the conductive substrate 5 has a configuration in which a conductive layer is formed on the substrate. .
<Conductive substrate>

基板は、ガラス板やプラスチック板等から成り、厚みは0.5〜20mm程度である。   A board | substrate consists of a glass plate, a plastic plate, etc., and thickness is about 0.5-20 mm.

導電層の材質としては、フッ素ドープ酸化スズ(FTO)、スズドープインジウム(ITO)アルミドープ亜鉛(AZO)、ガリウムドープ亜鉛(GZO)、ニオブドープ酸化チタン(NTO)などが挙げられる。上記の中でも、フッ素ドープ酸化スズ(FTO)を用いることが好ましい。フッ素ドープ酸化スズ(FTO)を用いることによって、色素増感型太陽電池の変換効率が向上する。   Examples of the material for the conductive layer include fluorine-doped tin oxide (FTO), tin-doped indium (ITO), aluminum-doped zinc (AZO), gallium-doped zinc (GZO), and niobium-doped titanium oxide (NTO). Among the above, it is preferable to use fluorine-doped tin oxide (FTO). By using fluorine-doped tin oxide (FTO), the conversion efficiency of the dye-sensitized solar cell is improved.

導電層の厚みは、0.1〜10μmであることが好ましい。0.1μm未満では、高い導電度を得ることができない。10μmを超えると、色素増感型太陽電池が光を透過することができない。なお導電層はケミカルベーパーディポジション(CVD)、スプレー熱分解法(SPD)、スパッタリングなどの方法によって、上記基板の上に形成される。   The thickness of the conductive layer is preferably 0.1 to 10 μm. If it is less than 0.1 μm, high conductivity cannot be obtained. If it exceeds 10 μm, the dye-sensitized solar cell cannot transmit light. The conductive layer is formed on the substrate by a method such as chemical vapor deposition (CVD), spray pyrolysis (SPD), or sputtering.

<触媒層>
触媒層の材質としては、白金、炭素、ポリチオフェン誘導体などが挙げられる。上記の中でも、白金を用いることが好ましい。白金を用いることによって、変換効率と透明性が向上する。触媒層の厚みは0.1〜100 nmであることが好ましい。0.1μm未満では、電荷輸送層を構成する材料を還元できない。100μmを超えると、コストがかかりすぎる。さらには、光を透過する色素増感型太陽電池を作成することができない。なお、触媒層はドクターブレード、スクリーン印刷、スプレー塗布、インクジェットなどの方法によって、導電層の上に形成される。
<Catalyst layer>
Examples of the material for the catalyst layer include platinum, carbon, and polythiophene derivatives. Among the above, it is preferable to use platinum. By using platinum, conversion efficiency and transparency are improved. The thickness of the catalyst layer is preferably 0.1 to 100 nm. If the thickness is less than 0.1 μm, the material constituting the charge transport layer cannot be reduced. If it exceeds 100 μm, the cost is too high. Furthermore, a dye-sensitized solar cell that transmits light cannot be produced. The catalyst layer is formed on the conductive layer by a method such as doctor blade, screen printing, spray coating, or ink jet.

<封止材>
封止材の材質としては、ポリエチレン,ポリプロピレン,エポキシ樹脂,フッ素樹脂またはシリコーン樹脂等の樹脂接着剤、アクリル系UV樹脂、もしくはガラスフリット,セラミックス等の無機接着剤を挙げることができる。
<Encapsulant>
Examples of the material for the sealing material include resin adhesives such as polyethylene, polypropylene, epoxy resin, fluororesin or silicone resin, acrylic UV resins, or inorganic adhesives such as glass frit and ceramics.

封止材の高さは、0.5〜500μmであることが好ましい。0.5μm未満では、多孔質半導体層の厚さが0.5μm以下となり、色素が光を十分吸収できなくなってしまう。なお、500μmを超えると、電荷輸送層が500μm近くになり、内部抵抗が大きくなる。なお、封止材はホットプレス、UV硬化などの方法によって形成される。   The height of the sealing material is preferably 0.5 to 500 μm. If the thickness is less than 0.5 μm, the thickness of the porous semiconductor layer becomes 0.5 μm or less, and the dye cannot sufficiently absorb light. When the thickness exceeds 500 μm, the charge transport layer becomes close to 500 μm and the internal resistance increases. The sealing material is formed by a method such as hot pressing or UV curing.

図1(f)に示すように、本発明の第五工程では、透明導電性基板1、導電性基板5および封止材7により形成された空間内に電荷輸送層8を形成する。   As shown in FIG. 1 (f), in the fifth step of the present invention, the charge transport layer 8 is formed in the space formed by the transparent conductive substrate 1, the conductive substrate 5 and the sealing material 7.

<電荷輸送層>
電荷輸送層の材質としては、液状電解質もしくはゲル状電解質を用いることが好ましい。電荷の輸送特性に優れる液状電解質もしくはゲル状電解質を用いることによって、光電変換効率が向上する。また、電荷輸送層はポリマー電解質等の固体電解質、ポリチオフェン・ポリピロール,ポリフェニレンビニレン等の導電性ポリマー、またはフラーレン誘導体,ペンタセン誘導体,ペリレン誘導体,トリフェニルジアミン誘導体等の有機分子電子輸送剤から成るものであってもよい。
<Charge transport layer>
As a material for the charge transport layer, a liquid electrolyte or a gel electrolyte is preferably used. Photoelectric conversion efficiency is improved by using a liquid electrolyte or a gel electrolyte excellent in charge transport characteristics. The charge transport layer is composed of a solid electrolyte such as a polymer electrolyte, a conductive polymer such as polythiophene / polypyrrole or polyphenylene vinylene, or an organic molecular electron transport agent such as a fullerene derivative, a pentacene derivative, a perylene derivative, or a triphenyldiamine derivative. There may be.

なお、電荷輸送層はヨウ素/ヨウ化物塩,臭素/臭化物塩,コバルト錯体およびフェロシアン化カリウム等を含む。   The charge transport layer contains iodine / iodide salt, bromine / bromide salt, cobalt complex, potassium ferrocyanide and the like.

電荷輸送層の厚みは1〜500μmであることが好ましい。500μmを超えると電荷輸送時に抵抗が大きくなり、色素増感型太陽電池の高効率化ができない。   The thickness of the charge transport layer is preferably 1 to 500 μm. If it exceeds 500 μm, the resistance increases during charge transport, and the efficiency of the dye-sensitized solar cell cannot be increased.

なお、電荷輸送層の形成は、透明導電性基板または導電性基板に孔を設け、その孔から電荷輸送層を構成する電解液などを太陽電池内に注入することにより行う。   The charge transport layer is formed by forming a hole in the transparent conductive substrate or the conductive substrate and injecting an electrolyte solution constituting the charge transport layer into the solar cell from the hole.

1:透明導電性基板
2:多孔質半導体層
2a:増感色素
3:微細凹凸シート
4:対向電極
5: 導電性基板
6:触媒層
7:封止材
8:電荷輸送層
10:色素増感型太陽電池
20:基体シート
α:透明電極前駆体
S:スタンパ
1: Transparent conductive substrate 2: Porous semiconductor layer 2a: Sensitizing dye 3: Fine uneven sheet 4: Counter electrode 5: Conductive substrate 6: Catalyst layer 7: Sealing material 8: Charge transport layer 10: Dye sensitized Type solar cell 20: base sheet α: transparent electrode precursor S: stamper

Claims (7)

透明導電性基板上に形成された多孔質半導体層が微細凹凸を有する色素増感型太陽電池の製造方法であって、
前記透明導電性基板上に多孔質半導体層を形成する第一工程と、
前記多孔質半導体層の上に微細凹凸面を有する微細凹凸シートの前記微細凹凸面を押し当て、前記多孔質半導体と前記微細凹凸シートを一体化して透明電極前駆体を作成する第二工程と、
前記透明電極前駆体を焼成して、前記多孔質半導体層を焼き締めるとともに、前記微細凹凸シートを灰化して前記透明電極前駆体から前記微細凹凸シートを除去する第三工程と、
を少なくとも備える色素増感型太陽電池の製造方法。
A method for producing a dye-sensitized solar cell in which a porous semiconductor layer formed on a transparent conductive substrate has fine irregularities,
A first step of forming a porous semiconductor layer on the transparent conductive substrate;
Pressing the fine uneven surface of the fine uneven surface having a fine uneven surface on the porous semiconductor layer, and integrating the porous semiconductor and the fine uneven sheet to create a transparent electrode precursor;
A third step of firing the transparent electrode precursor, baking the porous semiconductor layer, ashing the fine uneven sheet, and removing the fine uneven sheet from the transparent electrode precursor;
A method for producing a dye-sensitized solar cell comprising at least
前記第三工程終了後、前記多孔質半導体層に増感色素を吸着する第四工程を含む請求項1の色素増感型太陽電池の製造方法。   The manufacturing method of the dye-sensitized solar cell of Claim 1 including the 4th process of adsorb | sucking a sensitizing dye to the said porous semiconductor layer after completion | finish of said 3rd process. 前記微細凹凸シートの微細凹凸の凹部の深さが、0.5μm〜5μmである請求項1〜2の色素増感型太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 1 or 2, wherein the depth of the concave portion of the fine unevenness of the fine unevenness sheet is 0.5 µm to 5 µm. 前記微細凹凸シートの微細凹凸のアスペクト比が、1:1〜1:5である請求項1〜3の色素増感型太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 1, wherein an aspect ratio of the fine unevenness of the fine unevenness sheet is 1: 1 to 1: 5. 前記微細凹凸シートの厚みが50μm〜250μmである請求項1〜4の色素増感型太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 1, wherein the fine uneven sheet has a thickness of 50 μm to 250 μm. 前記微細凹凸シートの材質が、PETフィルム、若しくはPENフィルムである請求項1〜5の色素増感型太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 1, wherein a material of the fine uneven sheet is a PET film or a PEN film. 前記多孔質半導体層の厚みが、1μm〜20μmである請求項1〜6の色素増感型太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 1, wherein the porous semiconductor layer has a thickness of 1 μm to 20 μm.
JP2012160142A 2012-07-19 2012-07-19 Method of manufacturing dye-sensitized solar cell Pending JP2014022207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160142A JP2014022207A (en) 2012-07-19 2012-07-19 Method of manufacturing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160142A JP2014022207A (en) 2012-07-19 2012-07-19 Method of manufacturing dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2014022207A true JP2014022207A (en) 2014-02-03

Family

ID=50196860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160142A Pending JP2014022207A (en) 2012-07-19 2012-07-19 Method of manufacturing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2014022207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058717A (en) * 2014-09-05 2016-04-21 パナソニック株式会社 Photoelectric conversion element, manufacturing method for the same and dispersion liquid for forming porous electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058717A (en) * 2014-09-05 2016-04-21 パナソニック株式会社 Photoelectric conversion element, manufacturing method for the same and dispersion liquid for forming porous electrode

Similar Documents

Publication Publication Date Title
Hu et al. Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air
KR20120084529A (en) Flexible electrodes and preparation method thereof, and flexible dye-sensitized solar cells using the same
JP2007134328A (en) Solar cell and its manufacturing method
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
CN104900672A (en) Perovskite solar cell-super capacitor combined integrated device
JP4868782B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
Singh et al. Recent development and future prospects of rigid and flexible dye-sensitized solar cell: a review
Ito et al. Porous carbon layers for counter electrodes in dye-sensitized solar cells: Recent advances and a new screen-printing method
KR101694803B1 (en) Perovskite solar cells comprising metal nanowire as photoelectrode, and the preparation method thereof
JP2004228449A (en) Photoelectric transducer
Kim et al. Dye-sensitized solar cells based on trench structured TiO2 nanotubes in Ti substrate
JP2011165580A (en) Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
JP2014013716A (en) Dye-sensitized solar cell and method for manufacturing the same
JP2014022207A (en) Method of manufacturing dye-sensitized solar cell
JP2004228537A (en) Photoelectric, manufacturing method thereof, and electronic equipment
TWI536591B (en) Dye-sensitized solar cell and fabrication method thereof
TWI589051B (en) Manufacturing apparatus and method for production of dye-sensitized solar cell
JP2014013715A (en) Method for manufacturing dye-sensitized solar cell and dye-sensitized solar cell
Calisir et al. Polymer nanocomposites for dye-sensitized solar cells
KR101156585B1 (en) Dye-sensitized sollar cell and its fabrication method
JP2014017165A (en) Method of manufacturing dye-sensitized solar cell
Kim et al. Flexible Dye‐Sensitized Solar Cells
TWI559598B (en) Manufacturing apparatus and method for production of dye-sensitized solar cell
KR20120073514A (en) Solar cell and method of the manufacturing of the same