TWI536591B - Dye-sensitized solar cell and fabrication method thereof - Google Patents

Dye-sensitized solar cell and fabrication method thereof Download PDF

Info

Publication number
TWI536591B
TWI536591B TW102127620A TW102127620A TWI536591B TW I536591 B TWI536591 B TW I536591B TW 102127620 A TW102127620 A TW 102127620A TW 102127620 A TW102127620 A TW 102127620A TW I536591 B TWI536591 B TW I536591B
Authority
TW
Taiwan
Prior art keywords
dye
semiconductor layer
oxide
porous semiconductor
current collecting
Prior art date
Application number
TW102127620A
Other languages
Chinese (zh)
Other versions
TW201507179A (en
Inventor
姜泰錫
Original Assignee
Lg化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg化學股份有限公司 filed Critical Lg化學股份有限公司
Priority to TW102127620A priority Critical patent/TWI536591B/en
Publication of TW201507179A publication Critical patent/TW201507179A/en
Application granted granted Critical
Publication of TWI536591B publication Critical patent/TWI536591B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

經染料敏化之太陽能電池及其製造方法 Dye-sensitized solar cell and method of manufacturing same

本說明書關於經染料敏化之太陽能電池及其製造方法。 This specification relates to a dye-sensitized solar cell and a method of manufacturing the same.

結晶矽太陽能電池已廣為人知係將光能直接轉換成電能之裝置。該等結晶矽太陽能電池係用作獨立電源,及作為用於運輸工具中之電源。該等結晶矽太陽能電池經常由單晶矽或非晶矽製成。然而,產生單晶矽或非晶矽需要極大量能源,以及為了回收製造太陽能電池所消耗之能源,該等太陽能電池需要在長達十年的期間連續產生電力。 Crystalline germanium solar cells are widely known as devices that convert light energy directly into electrical energy. These crystallization solar cells are used as independent power sources and as power sources for use in transportation vehicles. These crystalline germanium solar cells are often made of single crystal germanium or amorphous germanium. However, the production of single crystal germanium or amorphous germanium requires a very large amount of energy, and in order to recover the energy consumed for manufacturing solar cells, such solar cells need to continuously generate electricity for a period of up to ten years.

另一方面,已提出經染料敏化之太陽能電池作為獨立太陽能電池。因簡單製造方法及降低材料成本之故,已預期該等經染料敏化之太陽能電池用作下一代太陽能電池。例如,如下圖16中所圖示,相關技術中的經染料敏化之太陽能電池包含透明傳導電極503、包含支撐於其中之染料敏化劑102a的多孔半導體層102、相對電極505及提供在該透明傳導電極503與該相對電極505之間的電解質 材料107。 On the other hand, dye-sensitized solar cells have been proposed as independent solar cells. These dye-sensitized solar cells have been expected to be used as next-generation solar cells due to simple manufacturing methods and reduced material costs. For example, as illustrated in FIG. 16 below, the dye-sensitized solar cell of the related art includes a transparent conductive electrode 503, a porous semiconductor layer 102 including a dye sensitizer 102a supported therein, an opposite electrode 505, and is provided therein. Electrolyte between the transparent conductive electrode 503 and the opposite electrode 505 Material 107.

已努力完成本發明以提供具有優異電力轉換效率之經染料敏化之太陽能電池及其製造方法。 Efforts have been made to complete the present invention to provide a dye-sensitized solar cell having excellent power conversion efficiency and a method of manufacturing the same.

本發明提供一種經染料敏化之太陽能電池,其包含:透明基板;設置在該透明基板上且包含染料敏化劑之多孔半導體層;設置在該多孔半導體層上並且被沉積出來以使得在該多孔半導體層上形成具有至少一個穿孔之結構的電流收集電極;觸媒電極;及設置在該透明基板與該觸媒電極之間的電解質材料。 The present invention provides a dye-sensitized solar cell comprising: a transparent substrate; a porous semiconductor layer provided on the transparent substrate and containing a dye sensitizer; disposed on the porous semiconductor layer and deposited to enable A current collecting electrode having a structure of at least one perforation is formed on the porous semiconductor layer; a catalyst electrode; and an electrolyte material disposed between the transparent substrate and the catalyst electrode.

此外,本發明提供一種經染料敏化之太陽能電池,其包含:透明基板;設置在該透明基板上且包含第一染料敏化劑之第一多孔半導體層;設置在該第一多孔半導體層上之電流收集電極;設置在該電流收集電極上並且包含第二染料敏化劑之 第二多孔半導體層;觸媒電極;及設置在該透明基板與該觸媒電極之間的電解質材料。 Furthermore, the present invention provides a dye-sensitized solar cell comprising: a transparent substrate; a first porous semiconductor layer disposed on the transparent substrate and comprising a first dye sensitizer; and a first porous semiconductor disposed on the first porous semiconductor a current collecting electrode on the layer; disposed on the current collecting electrode and containing a second dye sensitizer a second porous semiconductor layer; a catalyst electrode; and an electrolyte material disposed between the transparent substrate and the catalyst electrode.

另外,本發明提供一種經染料敏化之太陽能電池之製造方法,該方法包括:製備透明基板;在該透明基板上形成多孔半導體層;在該多孔半導體層上沉積出電流收集電極以使得在該多孔半導體層上形成具有至少一個穿孔之結構;將染料敏化劑導入該多孔半導體層;形成觸媒電極;及在該透明基板與該觸媒電極之間導入電解質材料。 Further, the present invention provides a method of manufacturing a dye-sensitized solar cell, the method comprising: preparing a transparent substrate; forming a porous semiconductor layer on the transparent substrate; depositing a current collecting electrode on the porous semiconductor layer to enable A structure having at least one perforation is formed on the porous semiconductor layer; a dye sensitizer is introduced into the porous semiconductor layer; a catalyst electrode is formed; and an electrolyte material is introduced between the transparent substrate and the catalyst electrode.

另外,本發明提供一種經染料敏化之太陽能電池之製造方法,該方法包括:製備透明基板;在該透明基板上形成第一多孔半導體層;在該第一多孔半導體層上沉積出第一電流收集電極;將染料敏化劑導入該多孔半導體層;在該第一電流收集電極上形成第二多孔半導體層;將第二染料敏化劑導入該第二多孔半導體層;形成觸媒電極;及在該透明基板與該觸媒電極之間導入電解質材料。 In addition, the present invention provides a method of manufacturing a dye-sensitized solar cell, the method comprising: preparing a transparent substrate; forming a first porous semiconductor layer on the transparent substrate; depositing a first layer on the first porous semiconductor layer a current collecting electrode; introducing a dye sensitizer into the porous semiconductor layer; forming a second porous semiconductor layer on the first current collecting electrode; introducing a second dye sensitizing agent into the second porous semiconductor layer; forming a touch a dielectric electrode; and an electrolyte material is introduced between the transparent substrate and the catalyst electrode.

本發明之經染料敏化之太陽能電池可藉由改善該多孔半導體層與電流收集電極之接觸而加強從該多孔半導體層之光產生的電子之收集,從而改善其電力轉換效率。此外,製造本發明之經染料敏化之太陽能電池的方法可輕易應用於包含複數個半導體層之經染料敏化之太陽能電池。 The dye-sensitized solar cell of the present invention can enhance the collection of electrons generated from the light of the porous semiconductor layer by improving the contact of the porous semiconductor layer with the current collecting electrode, thereby improving the power conversion efficiency thereof. Further, the method of producing the dye-sensitized solar cell of the present invention can be easily applied to a dye-sensitized solar cell comprising a plurality of semiconductor layers.

003‧‧‧透明電流收集電極 003‧‧‧Transparent current collecting electrode

101‧‧‧透明基板 101‧‧‧Transparent substrate

102‧‧‧多孔半導體層 102‧‧‧Porous semiconductor layer

202‧‧‧第二多孔半導體層 202‧‧‧Second porous semiconductor layer

302‧‧‧第三多孔半導體層 302‧‧‧ Third porous semiconductor layer

102a,202a,302a‧‧‧染料敏化劑 102a, 202a, 302a‧‧‧Dye sensitizer

103‧‧‧電流收集電極 103‧‧‧ Current collecting electrode

203‧‧‧第二電流收集電極 203‧‧‧Second current collecting electrode

303‧‧‧第三電流收集電極 303‧‧‧ Third current collecting electrode

103b,203b,303b‧‧‧穿孔 103b, 203b, 303b‧‧‧ perforation

104‧‧‧密封間隔件 104‧‧‧ Sealing spacers

104‧‧‧內部間隔件 104‧‧‧Internal spacers

105‧‧‧觸媒電極 105‧‧‧catalyst electrode

106‧‧‧第二基板 106‧‧‧second substrate

107‧‧‧電解質材料 107‧‧‧Electrolyte materials

503‧‧‧透明傳導電極 503‧‧‧Transparent Conductive Electrode

505‧‧‧相對電極 505‧‧‧relative electrode

圖1係示意圖示根據本發明第一範例具體實例之經染料敏化之太陽能電池的圖。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing a dye-sensitized solar cell according to a first exemplary embodiment of the present invention.

圖2係圖示多孔半導體層(TiO2)之上部分的SEM照片之圖。 Fig. 2 is a view showing an SEM photograph of a portion above the porous semiconductor layer (TiO 2 ).

圖3係圖示從該多孔半導體層部分剝離之電流收集電極的傾斜側之SEM照片的圖。 Fig. 3 is a view showing an SEM photograph of the inclined side of the current collecting electrode partially peeled off from the porous semiconductor layer.

圖4係圖示電流收集電極之上部分的SEM照片之圖。 4 is a view showing an SEM photograph of a portion above the current collecting electrode.

圖4係意意圖示在該多孔半導體層上形成之電流收集電極的圖。 Fig. 4 is a view schematically illustrating a current collecting electrode formed on the porous semiconductor layer.

圖6係示意圖示根據本發明第二範例具體實例之經染料敏化之太陽能電池的圖。 Figure 6 is a schematic view showing a dye-sensitized solar cell according to a second exemplary embodiment of the present invention.

圖7係示意圖示根據本發明第三範例具體實例之經染料敏化之太陽能電池的圖。 Fig. 7 is a view schematically showing a dye-sensitized solar cell according to a third exemplary embodiment of the present invention.

圖8係示意圖示根據本發明第四範例具體實例之經染料敏化之太陽能電池的圖。 Figure 8 is a schematic view showing a dye-sensitized solar cell according to a fourth exemplary embodiment of the present invention.

圖9係示意圖示根據本發明第五範例具體實例之經染 料敏化之太陽能電池的圖。 Figure 9 is a schematic view showing the dyeing according to the fifth exemplary embodiment of the present invention. A picture of a sensitized solar cell.

圖10係示意圖示根據本發明第六範例具體實例之經染料敏化之太陽能電池的圖。 Figure 10 is a schematic view showing a dye-sensitized solar cell according to a sixth exemplary embodiment of the present invention.

圖11係示意圖示根據本發明第七範例具體實例之經染料敏化之太陽能電池的圖。 Figure 11 is a schematic view showing a dye-sensitized solar cell according to a seventh exemplary embodiment of the present invention.

圖12係示意圖示根據本發明第八範例具體實例之經染料敏化之太陽能電池的圖。 Figure 12 is a view schematically showing a dye-sensitized solar cell according to an eighth exemplary embodiment of the present invention.

圖13係示意圖示根據本發明第九範例具體實例之經染料敏化之太陽能電池的圖。 Figure 13 is a view schematically showing a dye-sensitized solar cell according to a ninth exemplary embodiment of the present invention.

圖14係示意圖示根據本發明第十範例具體實例之經染料敏化之太陽能電池的圖。 Figure 14 is a view schematically showing a dye-sensitized solar cell according to a tenth exemplary embodiment of the present invention.

圖15係示意圖示根據本發明第十一範例具體實例之經染料敏化之太陽能電池的圖。 Figure 15 is a view schematically showing a dye-sensitized solar cell according to an eleventh exemplary embodiment of the present invention.

圖16為示意圖示相關技術中之經染料敏化之太陽能電池的圖。 Fig. 16 is a view schematically showing a dye-sensitized solar cell in the related art.

下文茲參考附圖詳細說明本發明之較佳範例具體實例。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

圖1係示意圖示根據本發明第一範例具體實例之經染料敏化之太陽能電池的圖。根據本發明第一範例具體實例之經染料敏化之太陽能電池包含透明基板101、包含染料敏化劑102a之多孔半導體層102、設置在該多孔半導體層102上並且被沉積出來以使得在該多孔半導體層102上 形成具有至少一個穿孔103b之結構的電流收集電極103、密封間隔件104、觸媒電極105、第二基板106及在該透明基板101與該觸媒電極105之間的電解質材料107。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing a dye-sensitized solar cell according to a first exemplary embodiment of the present invention. A dye-sensitized solar cell according to a first exemplary embodiment of the present invention comprises a transparent substrate 101, a porous semiconductor layer 102 containing a dye sensitizer 102a, is disposed on the porous semiconductor layer 102, and is deposited so as to be porous On the semiconductor layer 102 A current collecting electrode 103 having a structure of at least one through hole 103b, a sealing spacer 104, a catalyst electrode 105, a second substrate 106, and an electrolyte material 107 between the transparent substrate 101 and the catalyst electrode 105 are formed.

該透明基板101可為玻璃基板、塑膠基板、陶瓷基板等。較佳地,該透明基板101之透光率為至少10%或更高。只要透明基板具有可用於太陽能電池之適當強度及透明度,該透明基板的厚度無特別限制。該玻璃之實例包含鈉玻璃、硼矽玻璃、鋁矽玻璃、鋁硼矽玻璃、矽石玻璃、鈉鈣玻璃等。該塑膠基板之實例包含聚酯薄片,諸如聚對苯二甲酸乙二酯及聚萘二甲酸乙二酯,及諸如聚苯硫醚、聚碳酸酯、聚碸及聚亞乙基降莰烯(polyethylidene norbornene)。該陶瓷之實例包含高純度氧化鋁等。在透明基板之實例中,因安定性及操作性之故,以玻璃基板為佳。 The transparent substrate 101 may be a glass substrate, a plastic substrate, a ceramic substrate or the like. Preferably, the transparent substrate 101 has a light transmittance of at least 10% or more. The thickness of the transparent substrate is not particularly limited as long as the transparent substrate has appropriate strength and transparency usable for the solar cell. Examples of the glass include soda glass, borosilicate glass, aluminum bismuth glass, aluminum borosilicate glass, vermiculite glass, soda lime glass, and the like. Examples of the plastic substrate include polyester flakes such as polyethylene terephthalate and polyethylene naphthalate, and such as polyphenylene sulfide, polycarbonate, polyfluorene, and polyethylene decene ( Polyethylidene norbornene). Examples of the ceramic include high purity alumina and the like. In the example of the transparent substrate, a glass substrate is preferred because of stability and workability.

在該透明基板101上形成多孔半導體層102之前,可能進行強化結合強度之預處理,諸如使用半導體材料前驅物溶液之半導體層材料預處理、電漿處理、臭氧處理及化學處理。由於該半導體材料預處理的結果,在該透明基板101上形成預處理層(半導體薄膜)。例如,較佳係該預處理層之厚度為0.1nm至50nm,尤其是0.2nm至25nm。 Before the porous semiconductor layer 102 is formed on the transparent substrate 101, pretreatment for strengthening the bonding strength may be performed, such as semiconductor layer material pretreatment, plasma treatment, ozone treatment, and chemical treatment using a semiconductor material precursor solution. A pretreatment layer (semiconductor film) is formed on the transparent substrate 101 as a result of the pretreatment of the semiconductor material. For example, it is preferred that the pretreatment layer has a thickness of from 0.1 nm to 50 nm, especially from 0.2 nm to 25 nm.

多孔半導體層102係在透明基板101或該預處理層上形成。該多孔半導體層可包含通常用於光電轉換之半導體 材料。用於該預處理及該多孔半導體層102之半導體材料的實例包含氧化鈦、氧化鋅、氧化錫、氧化鈮、氧化鋯、氧化鈰、氧化鎢、氧化矽、氧化鋁、氧化鎳、氧化鉭、鈦酸鋇、鈦酸鍶、鈦酸鈣、硫化鋅、硫化鉛、硫化鉍、硫化鎘、CuAlO2、SrCu2O2等。該等材料可單獨或組合使用。該多孔半導體層具有粒子、棒、管、線、針、膜或其組合之形式。 The porous semiconductor layer 102 is formed on the transparent substrate 101 or the pretreatment layer. The porous semiconductor layer may comprise a semiconductor material commonly used for photoelectric conversion. Examples of the semiconductor material used for the pretreatment and the porous semiconductor layer 102 include titanium oxide, zinc oxide, tin oxide, antimony oxide, zirconium oxide, hafnium oxide, tungsten oxide, hafnium oxide, aluminum oxide, nickel oxide, antimony oxide, Barium titanate, barium titanate, calcium titanate, zinc sulfide, lead sulfide, barium sulfide, cadmium sulfide, CuAlO 2 , SrCu 2 O 2 and the like. These materials may be used singly or in combination. The porous semiconductor layer is in the form of particles, rods, tubes, wires, needles, films, or a combination thereof.

在該半導體材料之上述實例當中,因安定性及安全性之故,以氧化鈦為佳。該氧化鈦之實例包含銳鈦礦型氧化鈦、金紅石型氧化鈦、非晶形氧化鈦、偏鈦酸、鄰鈦酸、氫氧化鈦、含水氧化鈦等。 Among the above examples of the semiconductor material, titanium oxide is preferred because of stability and safety. Examples of the titanium oxide include anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, hydrous titanium oxide, and the like.

該多孔半導體層102之製造方法不受特別限制。例如,該多孔半導體層102可藉由將包含具有粒子、棒、管、線或針形式之半導體材料的糊劑施加在該透明基板101上,然後燒結該糊劑來製造。該糊劑之施加方法亦不受特別限制,且可應用網版印刷法、刮刀法、刮漿法(squeegee process)、旋塗法、噴塗法、噴墨印刷法、凹版塗覆法、化學氣相沉積(CVD)法、金屬有機化學氣相沉積(MOCVD)法、物理氣相沉積(PVD)法、沉積法、濺鍍法、溶膠-凝膠法等。該多孔半導體層102亦可藉由使用具有棒、管、線或針形式之半導體材料將一對準層轉移該透明基板101來形成。 The method of manufacturing the porous semiconductor layer 102 is not particularly limited. For example, the porous semiconductor layer 102 can be fabricated by applying a paste containing a semiconductor material in the form of particles, rods, tubes, wires or pins to the transparent substrate 101 and then sintering the paste. The method of applying the paste is also not particularly limited, and a screen printing method, a doctor blade method, a squeegee process, a spin coating method, a spray coating method, an inkjet printing method, a gravure coating method, a chemical gas can be applied. Phase deposition (CVD) method, metal organic chemical vapor deposition (MOCVD) method, physical vapor deposition (PVD) method, deposition method, sputtering method, sol-gel method, and the like. The porous semiconductor layer 102 can also be formed by transferring an alignment layer to the transparent substrate 101 using a semiconductor material in the form of a rod, tube, wire or needle.

較佳係用於形成該多孔半導體層102之半導體粒子的平均粒徑從例如1nm至400nm,尤其是從5nm至100 nm。此處,該粒徑係在該多孔半導體層102於透明基板101上形成之後藉由SEM照片測定,如圖2所示。 Preferably, the average particle diameter of the semiconductor particles for forming the porous semiconductor layer 102 is, for example, from 1 nm to 400 nm, particularly from 5 nm to 100. Nm. Here, the particle diameter is measured by SEM photograph after the porous semiconductor layer 102 is formed on the transparent substrate 101, as shown in FIG.

該多孔半導體層102之厚度不受特別限制,且可控制在0.1μm至100μm,尤其是1μm至75μm。此外較佳係對該多孔半導體層102進行熱處理以移除溶劑及有機材料,並提高多孔半導體層102之強度及該多孔半導體層102與該透明基板101之間的黏著。該熱處理之溫度及時間不受特別限制。較佳係該熱處理係控制在30℃至700℃,尤其是70℃至600℃,且該熱處理時間係控制在5分鐘至10小時,尤其是10分鐘至6小時。 The thickness of the porous semiconductor layer 102 is not particularly limited, and can be controlled from 0.1 μm to 100 μm, particularly from 1 μm to 75 μm. Further, it is preferable to heat-treat the porous semiconductor layer 102 to remove the solvent and the organic material, and to increase the strength of the porous semiconductor layer 102 and the adhesion between the porous semiconductor layer 102 and the transparent substrate 101. The temperature and time of the heat treatment are not particularly limited. Preferably, the heat treatment is controlled at 30 ° C to 700 ° C, especially 70 ° C to 600 ° C, and the heat treatment time is controlled from 5 minutes to 10 hours, especially from 10 minutes to 6 hours.

電流收集電極103係塗覆在該多孔半導體層102上以從該多孔半導體層102收集電子並釋放電子至該太陽能電池外部。用於電流收集電極103之材料不受特別限制,及可應用金屬、傳導性氧化物、碳材料、傳導性聚合物等。該金屬之實例包含鈦、鎳、鉑、金、銀、銅、鋁、鎢、銠、銦等。該傳導性氧化物之實例包含氧化錫、摻雜氟之氧化錫(FTO)、氧化銦、摻雜錫之氧化銦(ITO)、氧化鋅等。該碳材料之實例包含奈米碳管、石墨烯、碳黑等。該傳導性聚合物之實例包含聚3,4-伸乙二氧基噻吩/聚苯乙烯磺酸酯(PEDOT/PSS)、聚吡咯、聚苯胺、聚-3,4-伸乙二氧基噻吩(聚-EDT)等。該等材料可單獨或組合使用。該材料更佳為傳導性材料。 A current collecting electrode 103 is coated on the porous semiconductor layer 102 to collect electrons from the porous semiconductor layer 102 and release electrons to the outside of the solar cell. The material for the current collecting electrode 103 is not particularly limited, and a metal, a conductive oxide, a carbon material, a conductive polymer, or the like can be applied. Examples of the metal include titanium, nickel, platinum, gold, silver, copper, aluminum, tungsten, rhenium, indium, and the like. Examples of the conductive oxide include tin oxide, fluorine-doped tin oxide (FTO), indium oxide, tin-doped indium oxide (ITO), zinc oxide, and the like. Examples of the carbon material include a carbon nanotube, graphene, carbon black, and the like. Examples of the conductive polymer include poly 3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT/PSS), polypyrrole, polyaniline, poly-3,4-ethylenedioxythiophene. (poly-EDT) and so on. These materials may be used singly or in combination. The material is more preferably a conductive material.

藉由沉積法將該電流收集電極103塗覆在該多孔半導體層102上。如下圖3所示,一部分或全部該電流收集電 極103可埋入該多孔半導體層102中。該電流收集電極103可藉由物理氣相沉積(諸如熱金屬蒸鍍、電子束蒸鍍、RF濺鍍、磁控管濺鍍、原子層沉積、電弧氣相沉積及離子束輔助沉積),或化學氣相沉積法(諸如CVD、MOCVD及電漿強化之化學氣相沉積(PECVD))將傳導性材料(諸如金屬、傳導性氧化物、碳材料及傳導性聚合物)沉積在該多孔半導體層102上來形成。該沉積法係受控制以使得在該多孔半導體層上形成具有至少一個穿孔之多孔結構。為了在遍及電流收集電極之整體表面上獲得良好傳導性,該電流收集電極可具有包含薄片形式及穿孔的多孔結構。較佳係該電流收集電極103之多孔結構藉由沉積法代替其他材料(諸如孔形成助劑)而簡單地形成。 The current collecting electrode 103 is coated on the porous semiconductor layer 102 by a deposition method. As shown in Figure 3 below, some or all of the current collecting electricity The pole 103 can be buried in the porous semiconductor layer 102. The current collecting electrode 103 can be deposited by physical vapor deposition (such as hot metal evaporation, electron beam evaporation, RF sputtering, magnetron sputtering, atomic layer deposition, arc vapor deposition, and ion beam assisted deposition), or Chemical vapor deposition methods such as CVD, MOCVD, and plasma enhanced chemical vapor deposition (PECVD) deposit conductive materials such as metals, conductive oxides, carbon materials, and conductive polymers on the porous semiconductor layer. 102 came up to form. The deposition method is controlled such that a porous structure having at least one perforation is formed on the porous semiconductor layer. In order to obtain good conductivity over the entire surface of the current collecting electrode, the current collecting electrode may have a porous structure including a sheet form and a perforation. Preferably, the porous structure of the current collecting electrode 103 is simply formed by a deposition method instead of other materials such as a pore forming aid.

當沉積傳導性材料以形成電流收集電極103時,形貌形式(topographical form)可視多孔半導體層102之表面形貌形式而定。例如,具有許多穿孔之粗糙表面可形成於粗糙表面(諸如多孔半導體層102)上。如下圖4所示,當將傳導性材料(諸如鋁)沉積在多孔半導體層(TiO2)上時,該鋁層之表面可為與該多孔半導體層實質上相似地非常粗糙,同時具有許多穿孔。然而,如圖4所示,當將該鋁層沉積在玻璃基板上時,該鋁層之表面可非常平滑緻密而不具有穿孔。此處,當電流收集電極103係塗覆在粗糙多孔半導體層102之表面上時,該電流收集電極之表面亦可具有與該多孔半導體層102之表面形貌形式實質上類似的粗糙表面,如下圖5所示。因此,該電流收集電極與 該多孔半導體層之間的接觸面積可最大化,且可提高該太陽能電池之電力轉換效率。此外,藉由形成與該多孔半導體層之表面的形貌形式實質上相同的電流收集電極之表面,在無額外處理(諸如圖案化或孔形成助劑)的情況下,該電流收集電極可包含至少一個穿孔。 When a conductive material is deposited to form the current collecting electrode 103, the topographical form may depend on the surface topography of the porous semiconductor layer 102. For example, a rough surface having a plurality of perforations may be formed on a rough surface such as the porous semiconductor layer 102. As shown in FIG. 4 below, when a conductive material such as aluminum is deposited on the porous semiconductor layer (TiO 2 ), the surface of the aluminum layer may be substantially rough similar to the porous semiconductor layer while having many perforations. . However, as shown in FIG. 4, when the aluminum layer is deposited on a glass substrate, the surface of the aluminum layer can be very smooth and dense without perforations. Here, when the current collecting electrode 103 is coated on the surface of the rough porous semiconductor layer 102, the surface of the current collecting electrode may have a rough surface substantially similar to the surface topography of the porous semiconductor layer 102, as follows Figure 5 shows. Therefore, the contact area between the current collecting electrode and the porous semiconductor layer can be maximized, and the power conversion efficiency of the solar cell can be improved. Further, by forming a surface of the current collecting electrode substantially the same as the topography of the surface of the porous semiconductor layer, the current collecting electrode may include without additional processing such as patterning or hole forming aids. At least one perforation.

為了獲得具有與該多孔半導體層102之表面實質上相同形貌形式的電流收集電極103,較佳係使用上述製造方法將該電流收集電極之厚度控制在5nm至1,000nm之範圍。 In order to obtain the current collecting electrode 103 having substantially the same morphology as the surface of the porous semiconductor layer 102, it is preferable to control the thickness of the current collecting electrode to a range of 5 nm to 1,000 nm using the above-described manufacturing method.

根據本發明,為了形成具有至少一個穿孔之電流收集電極103,較佳係應用金屬或傳導性氧化物之物理氣相沉積。為了沉積金屬,較佳係應用鋁、鈦、鎳、鉑及/或鎢。為了沉積傳導性氧化物,較佳係應用摻雜氟之氧化錫(FTO)及摻雜錫之氧化銦(ITO)。 In accordance with the present invention, in order to form the current collecting electrode 103 having at least one perforation, physical vapor deposition using a metal or a conductive oxide is preferred. For the deposition of metals, aluminum, titanium, nickel, platinum and/or tungsten are preferably used. In order to deposit a conductive oxide, fluorine-doped tin oxide (FTO) and tin-doped indium oxide (ITO) are preferably used.

在金屬或傳導性氧化物之物理氣相沉積的情況下,該電流收集電極103之穿孔數可藉由改變沉積速率予以控制,且該沉積速率係控制為0.01nm/sec至50nm/sec。該電流收集電極103之沉積速率較佳為0.05nm/sec至25nm/sec。當該電流收集電極103之沉積速率為0.01nm/sec至50nm/sec時,可製造具有至少一個穿孔之電流收集電極103。 In the case of physical vapor deposition of a metal or a conductive oxide, the number of perforations of the current collecting electrode 103 can be controlled by changing the deposition rate, and the deposition rate is controlled to be 0.01 nm/sec to 50 nm/sec. The deposition rate of the current collecting electrode 103 is preferably from 0.05 nm/sec to 25 nm/sec. When the deposition rate of the current collecting electrode 103 is from 0.01 nm/sec to 50 nm/sec, the current collecting electrode 103 having at least one perforation can be manufactured.

在金屬或傳導性氧化物之物理氣相沉積的情況下,只要穿孔數使得光敏性染料溶液及電解質材料可滲透,電流收集電極103之穿孔數不受特別限制。電流收集電極103 之穿孔數可為0.01孔/mm2至109孔/mm2,較佳為0.1孔/mm2至108孔/mm2,及更佳為1孔/mm2至107孔/mm2In the case of physical vapor deposition of a metal or a conductive oxide, the number of perforations of the current collecting electrode 103 is not particularly limited as long as the number of perforations makes the photosensitive dye solution and the electrolyte material permeable. The number of perforations of the current collecting electrode 103 may be from 0.01 hole/mm 2 to 10 9 holes/mm 2 , preferably from 0.1 hole/mm 2 to 10 8 hole/mm 2 , and more preferably from 1 hole/mm 2 to 10 7 Hole / mm 2 .

在物理氣相沉積金屬或傳導性氧化物的情況下,該電流收集電極103中之穿孔的直徑不受特別限制。該電流收集電極103中之穿孔的直徑可為1nm至105nm,較佳為3nm至104nm,及更佳為5nm至103nm。 In the case of physical vapor deposition of a metal or a conductive oxide, the diameter of the perforations in the current collecting electrode 103 is not particularly limited. The diameter of the perforations in the current collecting electrode 103 may be from 1 nm to 10 5 nm, preferably from 3 nm to 10 4 nm, and more preferably from 5 nm to 10 3 nm.

在物理氣相沉積金屬或傳導性氧化物的情況下,該電流收集電極103之厚度係重要因素。厚膜不會形成穿孔,而薄膜不具有充分用於收集來自多孔半導體層102之電子的傳導性。該電流收集電極103之膜厚度可為5nm至1,000nm,較佳為8nm至500nm,及更佳為12nm至300nm。當電流收集電極103之膜厚度小於5nm時,該電流收集電極之傳導性可能太低而無法用作電流收集電極。反之,當該電流收集電極103之膜厚度超過1,000nm時,可發生穿孔太小而無法使染料溶液及電解質溶液經由該等穿孔滲透的問題。 In the case of physical vapor deposition of a metal or a conductive oxide, the thickness of the current collecting electrode 103 is an important factor. The thick film does not form perforations, and the film does not have sufficient conductivity for collecting electrons from the porous semiconductor layer 102. The film thickness of the current collecting electrode 103 may be 5 nm to 1,000 nm, preferably 8 nm to 500 nm, and more preferably 12 nm to 300 nm. When the film thickness of the current collecting electrode 103 is less than 5 nm, the conductivity of the current collecting electrode may be too low to be used as a current collecting electrode. On the other hand, when the film thickness of the current collecting electrode 103 exceeds 1,000 nm, the problem that the perforation is too small to allow the dye solution and the electrolyte solution to permeate through the perforations can occur.

該電流收集電極可為或可不為透明。當在電流收集電極上提供額外多孔半導體層202或302時,較佳係該電流收集電極103或203為透明,以使得照射光通過該透明電流收集電極到達該額外多孔半導體層(圖6至9)。當電流收集電極為透明時,該電流收集電極103可形成由金屬、傳導性氧化物或碳材料所製成的薄膜形式。 The current collecting electrode may or may not be transparent. When an additional porous semiconductor layer 202 or 302 is provided on the current collecting electrode, it is preferred that the current collecting electrode 103 or 203 be transparent such that the irradiated light passes through the transparent current collecting electrode to the additional porous semiconductor layer (Figs. 6 to 9). ). When the current collecting electrode is transparent, the current collecting electrode 103 may be formed in the form of a thin film made of a metal, a conductive oxide or a carbon material.

當該電流收集電極103為透明時,該第二多孔半導體層202可在該電流收集電極103上形成,如下圖6所示。 在該結構中,因電流收集電極103與這兩個多孔半導體層102及202之間的接觸面積增加導致可從這兩個多孔半導體層102及202收集更多電子,從而獲得高電力轉換效率。此時,該第二多孔半導體層202可物理性分離該電流收集電極103與該觸媒電極105,從而使得該電流收集電極103與該觸媒電極105之不必有間隔件。 When the current collecting electrode 103 is transparent, the second porous semiconductor layer 202 may be formed on the current collecting electrode 103 as shown in FIG. In this structure, since the contact area between the current collecting electrode 103 and the two porous semiconductor layers 102 and 202 is increased, more electrons can be collected from the two porous semiconductor layers 102 and 202, thereby obtaining high power conversion efficiency. At this time, the second porous semiconductor layer 202 can physically separate the current collecting electrode 103 from the catalyst electrode 105, so that the current collecting electrode 103 and the catalyst electrode 105 do not have to have a spacer.

為了利用來自照射光之不同波長,可能在多孔半導體層102及202上分別使用不同染料敏化劑102a及202a。如下圖7所示,為了另外增加該電流收集電極與該多孔半導體層之間的接觸面積,該第二電流收集電極203可在該第二多孔半導體層202上形成。該第二電流收集電極203可大致為透明,但可不為透明。同樣地,為了提高電力轉換效率,如下圖8所示,該第三多孔半導體層302可在該第二電流收集電極203上形成,及如下圖9所示,該第三電流收集電極303可在該第三多孔半導體層302上形成。在下圖8及9之結構中,為了利用來自照射光之不同波長範圍,可在多孔半導體層102、202及302上分別使用不同染料敏化劑102a、202a及302a。 In order to utilize different wavelengths from the illumination light, different dye sensitizers 102a and 202a may be used on the porous semiconductor layers 102 and 202, respectively. As shown in FIG. 7 below, in order to additionally increase the contact area between the current collecting electrode and the porous semiconductor layer, the second current collecting electrode 203 may be formed on the second porous semiconductor layer 202. The second current collecting electrode 203 may be substantially transparent, but may not be transparent. Similarly, in order to improve power conversion efficiency, as shown in FIG. 8 below, the third porous semiconductor layer 302 can be formed on the second current collecting electrode 203, and as shown in FIG. 9 below, the third current collecting electrode 303 can be Formed on the third porous semiconductor layer 302. In the structures of Figs. 8 and 9 below, in order to utilize different wavelength ranges from the illumination light, different dye sensitizers 102a, 202a and 302a may be used on the porous semiconductor layers 102, 202 and 302, respectively.

在沉積傳導性材料之後,可進行熱處理。如上述,可藉由簡單物理氣相沉積或化學沉積傳導性材料,且在該沉積之後使用無遮罩或光蝕刻法,在多孔半導體層102、202及302上形成具有至少一個穿孔103b、203b或303b之電流收集電極103、203及303。 After the deposition of the conductive material, heat treatment can be performed. As described above, at least one of the perforations 103b, 203b may be formed on the porous semiconductor layers 102, 202, and 302 by simple physical vapor deposition or chemical deposition of a conductive material, and after the deposition using a maskless or photolithographic method. Or 303b current collecting electrodes 103, 203 and 303.

染料敏化劑102a、202a及302a可為在可見光區及/或 IR區之廣範圍中具有吸光率的染料敏化劑,且可為例如有機染料、金屬錯合物染料等。有機染料之實例包含偶氮型染料、醌型染料、醌-亞胺型染料、喹吖酮型染料、方酸鎓(squarylium)型染料、花青型染料、部花青型染料、三苯甲烷型染料、二苯并哌喃型染料、卟啉型染料、苝型染料、靛型染料及萘花青型染料。金屬錯合物染料之實例包含酞花青型染料及釕型染料,其包含諸如下列金屬作為優勢金屬:Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te及Rh。 The dye sensitizers 102a, 202a, and 302a may be in the visible region and/or A dye sensitizer having an absorbance in a wide range of the IR region, and may be, for example, an organic dye, a metal complex dye, or the like. Examples of the organic dye include an azo type dye, an anthraquinone type dye, a quinone type imine type dye, a quinophthalone type dye, a squarylium type dye, a cyanine type dye, a merocyanine type dye, and a triphenylmethane. Type dyes, dibenzopyrazine type dyes, porphyrin type dyes, anthraquinone type dyes, anthraquinone type dyes, and naphthalocyanine type dyes. Examples of metal complex dyes include phthalocyanine type dyes and anthraquinone type dyes containing, for example, the following metals as dominant metals: Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru , Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc , Ag, Cd, Hf, Re, Au, Ac, Tc, Te, and Rh.

此外,較佳係染料敏化劑102a、202a及302a包含用於結合至多孔半導體層102、202及302之官能基。官能基之實例包含羧基、烷氧基、羥基、磺酸基、酯基、巰基或膦基。其中,釕錯合物染料更佳。在經染料敏化之太陽能電池中,染料敏化劑102a、202a及302a可相同或彼此不同。為了擴展該染料敏化劑之光電轉換波長從而改善光電轉換效率,可組合使用二或更多種具有不同光電轉換波長範圍的敏化染料化合物。在此情況下,可根據照射光之波長範圍及強度分布來選擇且應用染料敏化劑化合物的類型及數量。 Further, it is preferred that the dye sensitizers 102a, 202a and 302a contain functional groups for bonding to the porous semiconductor layers 102, 202 and 302. Examples of the functional group include a carboxyl group, an alkoxy group, a hydroxyl group, a sulfonic acid group, an ester group, a decyl group or a phosphino group. Among them, the ruthenium complex dye is better. In the dye-sensitized solar cell, the dye sensitizers 102a, 202a, and 302a may be the same or different from each other. In order to expand the photoelectric conversion wavelength of the dye sensitizer to improve photoelectric conversion efficiency, two or more sensitizing dye compounds having different photoelectric conversion wavelength ranges may be used in combination. In this case, the type and amount of the dye sensitizer compound can be selected and applied depending on the wavelength range and intensity distribution of the irradiation light.

在該染料敏化劑102a被吸附於該多孔半導體層102之前,為了活化該多孔半導體層之表面及/或增加其表面 積,可進行後處理,諸如使用半導體材料前驅物溶液之半導體材料後處理、熱處理、電漿處理、臭氧處理及化學處理。用於該後處理之半導體材料的實例包含氧化鈦、氧化鋅、氧化錫、氧化鈮、氧化鋯、氧化鈰、氧化鎢、氧化矽、氧化鋁、氧化鎳、氧化鉭、鈦酸鋇、鈦酸鍶、鈦酸鈣、硫化鋅、硫化鉛、硫化鉍、硫化鎘、CuAlO2、SrCu2O2等。由於該半導體材料後處理的結果,在該多孔半導體層102上形成後處理層(半導體薄膜)。例如,較佳係該後處理層之厚度為0.1nm至50nm,尤其是0.2nm至25nm。 Before the dye sensitizer 102a is adsorbed to the porous semiconductor layer 102, in order to activate the surface of the porous semiconductor layer and/or increase its surface area, post-treatment may be performed, such as post-processing of a semiconductor material using a semiconductor material precursor solution, Heat treatment, plasma treatment, ozone treatment and chemical treatment. Examples of the semiconductor material used for the post-treatment include titanium oxide, zinc oxide, tin oxide, antimony oxide, zirconium oxide, hafnium oxide, tungsten oxide, antimony oxide, aluminum oxide, nickel oxide, antimony oxide, barium titanate, and titanic acid. Barium, calcium titanate, zinc sulfide, lead sulfide, barium sulfide, cadmium sulfide, CuAlO 2 , SrCu 2 O 2 and the like. A post-treatment layer (semiconductor film) is formed on the porous semiconductor layer 102 as a result of post-processing of the semiconductor material. For example, it is preferred that the post-treatment layer has a thickness of from 0.1 nm to 50 nm, especially from 0.2 nm to 25 nm.

染料敏化劑102a可藉由將塗覆有電流收集電極103之多孔半導體層102浸漬於包含該染料敏化劑之溶液中而吸附於該多孔半導體層102。包含該染料敏化劑之溶液可經由電流收集電極103之穿孔103b滲透至該多孔半導體層102中。只要染料敏化劑可溶解於其中,該溶液不受特別限制。該溶液之實例包含有機溶劑,諸如醇、甲苯、乙腈、氯仿及二甲基甲醯胺。通常,該等溶劑較佳為經純化溶劑。該溶劑中之染料敏化劑的濃度可視所使用之染料及溶劑以及吸附該染料敏化劑之步驟的條件而予以控制,且較佳為1×10-5mol/l或更高。 The dye sensitizer 102a can be adsorbed to the porous semiconductor layer 102 by immersing the porous semiconductor layer 102 coated with the current collecting electrode 103 in a solution containing the dye sensitizer. A solution containing the dye sensitizer can be infiltrated into the porous semiconductor layer 102 via the perforations 103b of the current collecting electrode 103. The solution is not particularly limited as long as the dye sensitizer is soluble therein. Examples of the solution include organic solvents such as alcohol, toluene, acetonitrile, chloroform and dimethylformamide. Generally, the solvents are preferably purified solvents. The concentration of the dye sensitizer in the solvent can be controlled depending on the dye and solvent to be used and the conditions of the step of adsorbing the dye sensitizer, and is preferably 1 × 10 -5 mol/l or more.

在多孔半導體層102於包含染料敏化劑之溶液中的浸漬程序中,可視需要改變溫度、壓力及時間。該浸漬程序可進行一次或複數次,且在該浸漬程序之後,可適當地進行乾燥程序。 In the impregnation procedure of the porous semiconductor layer 102 in a solution containing a dye sensitizer, the temperature, pressure, and time may be changed as needed. The impregnation procedure can be carried out once or in multiple times, and after the impregnation procedure, the drying procedure can be suitably carried out.

在本發明之經染料敏化之太陽能電池中,為了防止電解質材料107流失及維持該電流收集電極103與該觸媒電極105之間的適當空間,可在該透明基板101或該電流收集電極103與該第二基板106或該觸媒電極105之間使用密封間隔件104。該密封間隔件104可由熱塑性膜、樹脂、玻璃等形成。熱塑性膜之實例包含市售Surlyn®樹脂、Bynel®樹脂等。該樹脂之實例包含可光固化樹脂,諸如熱固性樹脂、環氧樹脂、胺基甲酸酯樹脂及聚酯樹脂。尤其是,可輕易地控制之熱熔融Surlyn®樹脂為佳。當該太陽能電池需要長期耐久性,較佳係該密封間隔件104係由玻璃形成。當然,當多孔半導體層202及302係提供在電流收集電極103及203與觸媒電極105之間時,即使無間隔件亦可防止電接觸。 In the dye-sensitized solar cell of the present invention, in order to prevent the electrolyte material 107 from escaping and maintain an appropriate space between the current collecting electrode 103 and the catalyst electrode 105, the transparent substrate 101 or the current collecting electrode 103 may be A sealing spacer 104 is used between the second substrate 106 or the catalyst electrode 105. The sealing spacer 104 may be formed of a thermoplastic film, a resin, glass, or the like. Examples of the thermoplastic film include commercially available Surlyn® resin, Bynel® resin, and the like. Examples of the resin include photocurable resins such as thermosetting resins, epoxy resins, urethane resins, and polyester resins. In particular, hot melted Surlyn® resin is easily controlled. When the solar cell requires long-term durability, it is preferred that the sealing spacer 104 be formed of glass. Of course, when the porous semiconductor layers 202 and 302 are provided between the current collecting electrodes 103 and 203 and the catalyst electrode 105, electrical contact can be prevented even without a spacer.

只要可防止電流收集電極103與觸媒電極105之間的電接觸,該密封間隔件104之厚度不受特別限制。在施加密封間隔件104,該電流收集電極103與該觸媒電極105之間的間隙之厚度可為0.1mm至1,000mm,較佳為1mm至500mm,及更佳為5mm至100mm。 The thickness of the sealing spacer 104 is not particularly limited as long as electrical contact between the current collecting electrode 103 and the catalyst electrode 105 can be prevented. In applying the sealing spacer 104, the gap between the current collecting electrode 103 and the catalyst electrode 105 may have a thickness of 0.1 mm to 1,000 mm, preferably 1 mm to 500 mm, and more preferably 5 mm to 100 mm.

如下圖10所示,視需要,在該電流收集電極103與觸媒電極105之間可使用一或多個內部間隔件104'。該內部間隔件104'之數量及形式不受特別限制。多孔半導體層102之面積愈大,則可能需要更多內部間隔件104'。內部間隔件104'可以球體、圓柱形、稜形、線(例如條型或桿型)之形狀提供。該密封間隔件104可由熱塑性膜、樹 脂、玻璃等製成。 As shown in FIG. 10 below, one or more internal spacers 104' may be used between the current collecting electrode 103 and the catalyst electrode 105 as needed. The number and form of the inner spacers 104' are not particularly limited. The larger the area of the porous semiconductor layer 102, the more internal spacers 104' may be required. The inner spacer 104' can be provided in the shape of a sphere, a cylinder, a prism, a wire (e.g., a strip or a rod). The sealing spacer 104 can be made of a thermoplastic film, a tree Made of grease, glass, etc.

觸媒電極105可由催化活性材料或包含催化活性材料之金屬、傳導性氧化物及樹脂其中至少一者製成。該催化活性材料包含貴金屬(諸如鉑及銠)及碳黑。該等材料亦具有傳導性。較佳係觸媒電極105係由具有催化活性及電化學安定性之貴金屬形成。尤其是,可較佳應用具有催化活性且較不可能溶解於電解質溶液中的鉑。 The catalyst electrode 105 may be made of at least one of a catalytically active material or a metal including a catalytically active material, a conductive oxide, and a resin. The catalytically active material comprises precious metals such as platinum and rhodium and carbon black. These materials are also conductive. Preferably, the catalyst electrode 105 is formed of a noble metal having catalytic activity and electrochemical stability. In particular, platinum which is catalytically active and less likely to be dissolved in the electrolyte solution can be preferably used.

當使用未展現催化活性之金屬、傳導性氧化物或傳導性樹脂時,較佳係催化活性材料係包含在該等材料中。金屬之實例包含鋁、銅、鉻、鎳、鎢等,傳導性樹脂之實例包含聚苯胺、聚吡咯、聚乙炔、PEDOT-PSS、聚-EDT等。該等傳導性材料可單獨或組合使用。 When a metal, a conductive oxide or a conductive resin which does not exhibit catalytic activity is used, it is preferred that the catalytically active material is contained in the materials. Examples of the metal include aluminum, copper, chromium, nickel, tungsten, etc., and examples of the conductive resin include polyaniline, polypyrrole, polyacetylene, PEDOT-PSS, poly-EDT, and the like. These conductive materials can be used singly or in combination.

觸媒電極105可藉由將具有催化活性及導電性之材料沉積在第二基板106上來形成。另外,可在第二基板106上形成未展現催化活性之金屬層、傳導性氧化物層或傳導性樹脂層,然後可接著在其上沉積催化活性材料。 The catalyst electrode 105 can be formed by depositing a material having catalytic activity and conductivity on the second substrate 106. In addition, a metal layer, a conductive oxide layer, or a conductive resin layer that does not exhibit catalytic activity may be formed on the second substrate 106, and then the catalytically active material may be deposited thereon.

該第二基板106可為或可不為透明。只要該第二基板106堅韌到足以提供支撐基板且具有高耐久性之經染料敏化之太陽能電池,該第二基板106不受特別限制。該第二基板106可為玻璃、塑膠、金屬、陶瓷等。塑膠基板之實例包含聚酯、聚苯硫醚、聚碳酸酯、聚碸、聚亞乙基降莰烯等。金屬基板之實例包含鎢、鈦、鎳、鉑、金、銅等。陶瓷基板之實例包含氧化鋁、富鋁紅柱石、氧化鋯、氮化矽、矽鋁氮氧化物(sialon)、氮化鈦、氮化鋁、碳化 矽、碳化鈦、碳化鋁等。 The second substrate 106 may or may not be transparent. The second substrate 106 is not particularly limited as long as the second substrate 106 is tough enough to provide a supporting substrate and has high durability of the dye-sensitized solar cell. The second substrate 106 can be glass, plastic, metal, ceramic, or the like. Examples of the plastic substrate include polyester, polyphenylene sulfide, polycarbonate, polyfluorene, polyethylene decene, and the like. Examples of the metal substrate include tungsten, titanium, nickel, platinum, gold, copper, and the like. Examples of the ceramic substrate include alumina, mullite, zirconia, tantalum nitride, sialon, titanium nitride, aluminum nitride, carbonization Niobium, titanium carbide, aluminum carbide, etc.

電解質材料107可提供在多孔半導體層102及觸媒電極105之間,使該多孔半導體層102與觸媒電極105之間可進行離子傳導。電解質材料107可從電解質溶液製備。通常,除了電解質材料107之外,電解質溶液包含溶劑及各種添加劑。電解質材料107之實例包含:(1)I2及碘化物;(2)Br2及溴化物;(3)金屬錯合物,諸如亞鐵氰化物-鐵氰化物錯合物、二茂鐵-二茂鐵離子錯合物,或鈷氧化還原錯合物;(4)硫化合物,諸如多硫化鈉或烷基硫醇-烷基二硫化物;(5)紫原色素染料;及(6)氫醌-醌。關於電解質(1)之碘化物,可使用金屬碘化物,諸如LiI、NaI、KI、CsI及CaI2、碘化四級銨,諸如碘化四烷基銨、碘化吡啶鎓,及碘化咪唑鎓等。關於電解質(2)之溴化物,可使用金屬溴化物,諸如LiBr、NaBr、KBr、CsBr及CaBr2、溴化四級銨,諸如溴化四烷基銨及溴化吡啶鎓等。在該等電解質材料當中,以I2及LiI或碘化四級銨,諸如碘化吡啶鎓或碘化咪唑鎓之組合更佳。該等電解質材料可單獨或組合使用。 The electrolyte material 107 may be provided between the porous semiconductor layer 102 and the catalyst electrode 105 such that ion conduction between the porous semiconductor layer 102 and the catalyst electrode 105 is possible. The electrolyte material 107 can be prepared from an electrolyte solution. Generally, the electrolyte solution contains a solvent and various additives in addition to the electrolyte material 107. Examples of the electrolyte material 107 include: (1) I 2 and iodide; (2) Br 2 and bromide; (3) metal complex such as ferrocyanide-ferricyanide complex, ferrocene- a ferrocene ion complex, or a cobalt redox complex; (4) a sulfur compound such as sodium polysulfide or an alkylthiol-alkyl disulfide; (5) a violet pigment dye; and (6) hydrogen醌-醌. As the iodide of the electrolyte (1), metal iodides such as LiI, NaI, KI, CsI and CaI 2 , quaternary ammonium iodide such as tetraalkylammonium iodide, pyridinium iodide, and imidazolium iodide can be used. Hey. As the bromide of the electrolyte (2), a metal bromide such as LiBr, NaBr, KBr, CsBr, and CaBr 2 , a quaternary ammonium bromide such as a tetraalkylammonium bromide or a pyridinium bromide can be used. Among these electrolyte materials, a combination of I 2 and LiI or quaternary ammonium iodide such as pyridinium iodide or imidazolium iodide is more preferable. These electrolyte materials may be used singly or in combination.

較佳係電解質溶液之溶劑為具有低黏度、高離子移動性及充足離子傳導性之溶劑。該溶劑之實例包含:(1)碳酸酯,諸如碳酸乙二酯及碳酸丙二酯;(2)雜環化合物,諸如3-甲基-2-唑啶酮(3-methyl-2-oxazolidinone);(3)醚類,諸如二烷及二乙醚;(4)鏈醚,諸如乙二醇二烷基醚、丙二醇二烷基醚、聚乙二醇二烷基醚及聚 丙二醇二烷基醚;(5)單醇,諸如甲醇、乙醇、乙二醇單烷基醚及丙二醇單烷基醚;(6)多元醇,諸如乙二醇、丙二醇、聚乙二醇、聚丙二醇及甘油;(7)腈,諸如乙腈、戊二腈(glutarodinitrile)、甲氧基乙腈、丙腈及苯甲腈;及(8)非質子極性溶劑,諸如二甲亞碸及環丁碸。 The solvent which is preferably an electrolyte solution is a solvent having low viscosity, high ion mobility, and sufficient ion conductivity. Examples of the solvent include: (1) a carbonate such as ethylene carbonate and propylene carbonate; (2) a heterocyclic compound such as 3-methyl-2- 3-methyl-2-oxazolidinone; (3) ethers, such as two Alkane and diethyl ether; (4) chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether; (5) monoalcohol such as methanol , ethanol, ethylene glycol monoalkyl ether and propylene glycol monoalkyl ether; (6) polyols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol and glycerin; (7) nitriles such as acetonitrile, pentane Nitros (glutarodinitrile), methoxyacetonitrile, propionitrile and benzonitrile; and (8) aprotic polar solvents such as dimethyl hydrazine and cyclobutyl hydrazine.

在下圖16所示之相關技術的經染料敏化之太陽能電池中,已知多孔半導體層的最佳厚度為12μm至15μm。當該多孔半導體層之厚度小於12μm時,吸附至該多孔半導體層之染料敏化劑的量減少且該染料敏化劑吸附較少入射光,從而降低整體效率。另一方面,當該多孔半導體層之厚度超過15μm時,吸附至該多孔半導體層之染料敏化劑的量足夠吸收大部分該入射光。然而,大部分被注射至配置在與該第一電流收集電極503隔開之上表面的半導體部分之傳導帶的電子可在被收集至該第一電流收集電極503之前因其重組而流失。因此,當該厚度超過15μm時,整體效率未隨著半導體層之厚度增加而改善。 In the dye-sensitized solar cell of the related art shown in Fig. 16, the optimum thickness of the porous semiconductor layer is known to be 12 μm to 15 μm. When the thickness of the porous semiconductor layer is less than 12 μm, the amount of the dye sensitizer adsorbed to the porous semiconductor layer is reduced and the dye sensitizer adsorbs less incident light, thereby lowering the overall efficiency. On the other hand, when the thickness of the porous semiconductor layer exceeds 15 μm, the amount of the dye sensitizer adsorbed to the porous semiconductor layer is sufficient to absorb most of the incident light. However, most of the electrons injected into the conduction band of the semiconductor portion disposed on the upper surface of the first current collecting electrode 503 may be lost due to recombination before being collected to the first current collecting electrode 503. Therefore, when the thickness exceeds 15 μm, the overall efficiency does not improve as the thickness of the semiconductor layer increases.

為了克服多孔半導體層之厚度限制,可在透明基板101與多孔半導體層102之間包含額外透明電流收集電極003(圖11至15)。該額外透明電流收集電極003增加該半導體層與該電流收集電極之間的電接觸面積。根據該結構,即使多孔半導體層之厚度超過15μm,整體效率亦可進一步改善。因此,經染料敏化之太陽能電池結構之最大效率可比如下圖16所示之相關技術中的結構更為加 強。 In order to overcome the thickness limitation of the porous semiconductor layer, an additional transparent current collecting electrode 003 (FIGS. 11 to 15) may be included between the transparent substrate 101 and the porous semiconductor layer 102. The additional transparent current collecting electrode 003 increases the electrical contact area between the semiconductor layer and the current collecting electrode. According to this configuration, even if the thickness of the porous semiconductor layer exceeds 15 μm, the overall efficiency can be further improved. Therefore, the maximum efficiency of the dye-sensitized solar cell structure can be increased as in the related art shown in FIG. 16 below. Strong.

下文茲實施例更詳細描述本發明,但本發明範圍不受下列實施例限制。 The invention is described in more detail below, but the scope of the invention is not limited by the following examples.

<實施例> <Example> <實施例1> <Example 1>

藉由下列方法製造經染料敏化之太陽能電池。 A dye-sensitized solar cell was fabricated by the following method.

(1)製造透明基板101 (1) Manufacturing a transparent substrate 101

作為如下圖1所示之根據本發明第一範例具體實例的經染料敏化之太陽能電池的透明基板,使用尺寸為0.5英吋×1英吋之顯微鏡載玻片(Ted Pella,Inc.,USA)。首先,使用超音波浴以清洗溶液清洗該顯微鏡載玻片10分鐘,然後以水及異丙醇清洗。為了移除剩餘有機污染材料,該顯微鏡載玻片係在400℃於空氣中熱處理15分鐘。 As a transparent substrate of the dye-sensitized solar cell according to the first exemplary embodiment of the present invention as shown in Fig. 1, a microscope slide having a size of 0.5 inch × 1 inch (Ted Pella, Inc., USA) was used. ). First, the microscope slide was washed with a washing solution for 10 minutes using an ultrasonic bath, and then washed with water and isopropyl alcohol. To remove the remaining organic contaminating material, the microscope slides were heat treated in air at 400 ° C for 15 minutes.

(2)製造多孔半導體層102 (2) Manufacturing the porous semiconductor layer 102

將包含直徑為20nm之奈米粒子的糊劑(Ti-Nanoxide T20,Solaronix,瑞士)刮刀塗布在該顯微鏡載玻片上以形成多孔TiO2半導體層102。藉由一次刮刀塗布該糊劑且其在500℃燒結30分鐘而形成厚度為9.3 +/- 0.2nm之均勻膜。該膜厚度係使用KLA Tencor P-10輪廓儀測量。 A paste (Ti-Nanoxide T20, Solaronix, Switzerland) containing nanoparticle having a diameter of 20 nm was blade coated on the microscope slide to form a porous TiO 2 semiconductor layer 102. The paste was coated by a single blade and sintered at 500 ° C for 30 minutes to form a uniform film having a thickness of 9.3 +/- 0.2 nm. The film thickness was measured using a KLA Tencor P-10 profilometer.

(3)製造電流收集電極103 (3) Manufacturing current collecting electrode 103

藉由在2×10-6mbar下以1.7nm/sec之沉積速率進行熱沉積(The BOC Edwards Auto 500電阻蒸鍍系統)而將作為電流收集電極103之鋁膜沉積在多孔TiO2半導體層102上。藉由SEM所量得該膜之厚度為5nm。 An aluminum film as the current collecting electrode 103 is deposited on the porous TiO 2 semiconductor layer 102 by thermal deposition (The BOC Edwards Auto 500 resistance evaporation system) at a deposition rate of 1.7 nm/sec at 2 × 10 -6 mbar. on. The thickness of the film was measured by SEM to be 5 nm.

(4)染料敏化劑102a吸附在多孔半導體層102中 (4) The dye sensitizer 102a is adsorbed in the porous semiconductor layer 102

將包含電流收集電極103之多孔TiO2半導體層102浸漬在於乙腈及三級丁醇(體積比1:1)之0.3mM中的順式-二(氰硫基)-N,N'-雙(2,2-聯吡啶-4-甲酸-4-羧酸四丁銨)釕(II)(N-719染料)溶液,並在常溫下維持20小時至24小時以完成敏化劑之吸附。 The porous TiO 2 semiconductor layer 102 including the current collecting electrode 103 was immersed in cis-bis(cyanothio)-N,N'-double (0.3 mM in acetonitrile and tertiary butanol (1:1 by volume). A solution of 2,2-bipyridyl-4-carboxylic acid-4-carboxylic acid tetrabutylammonium) ruthenium (II) (N-719 dye) is maintained at normal temperature for 20 hours to 24 hours to complete the adsorption of the sensitizer.

(5)第二基板106 (5) Second substrate 106

使用厚度為1mm且尺寸為0.5英吋×1英吋之顯微鏡載玻片作為第二基板106。在第二基板106上使用注射器穿孔(直徑為0.1mm至1mm)。 As the second substrate 106, a microscope slide having a thickness of 1 mm and a size of 0.5 inch x 1 inch was used. A syringe perforation (0.1 mm to 1 mm in diameter) is used on the second substrate 106.

(6)在第二基板106上製造觸媒電極105 (6) manufacturing a catalyst electrode 105 on the second substrate 106

在常溫下使用DC磁控管濺鍍(Denton DV 502A)在尺寸為0.5英吋×1英吋之顯微鏡載玻片106上沉積鉑膜(厚度為100nm)。 A platinum film (thickness: 100 nm) was deposited on a microscope slide 106 having a size of 0.5 inch x 1 inch using DC magnetron sputtering (Denton DV 502A) at normal temperature.

(7)製造電解質材料107 (7) Manufacturing electrolyte material 107

電解質材料107係以0.6M BMII、0.03M I2、0.10M硫氰酸胍鎓及0.5M 4-三級丁基吡啶於乙腈及戊腈(體積比85:15)之混合物中的溶液製備。 The electrolyte material 107 was prepared as a solution of 0.6 M BMII, 0.03 MI 2 , 0.10 M guanidinium thiocyanate, and 0.5 M 4-tributyl pyridine in a mixture of acetonitrile and valeronitrile (85:15 by volume).

(8)經染料敏化之太陽能電池裝配件 (8) Dye-sensitized solar cell assembly

包含多孔TiO2半導體層及觸媒電極之透明基板係裝配成夾心型電池並經具有60μm厚度之熱熔融Surlyn®間隔件(SX1170-60,Solaronix,瑞士)密封。然後,在真空下將電解質材料經由在第二基板106上之孔引入。最後,以60μm熱熔融Bynel®(SX1162-60,Solaronix,瑞士)及蓋玻片(厚度為0.1mm)密封該孔。 The transparent substrate comprising the porous TiO 2 semiconductor layer and the catalyst electrode was assembled into a sandwich type battery and sealed with a hot melt Surlyn® spacer (SX1170-60, Solaronix, Switzerland) having a thickness of 60 μm. The electrolyte material is then introduced via a hole in the second substrate 106 under vacuum. Finally, the wells were sealed with a 60 μm hot melted Bynel® (SX1162-60, Solaronix, Switzerland) and a coverslip (thickness 0.1 mm).

(9)評估經染料敏化之太陽能電池之特徵 (9) Evaluation of characteristics of dye-sensitized solar cells

該裝置係使用配備有AM 1.5之總體濾波器的A級450W Oriel® Solar Simulator(型號91195-A)評估。使用Newport輻射計控制電力以獲得100mW/cm2之強度。 The unit was evaluated using a Class A 450W Oriel® Solar Simulator (Model 91195-A) equipped with an AM 1.5 overall filter. The power was controlled using a Newport radiometer to obtain an intensity of 100 mW/cm 2 .

<實施例2至5> <Examples 2 to 5>

在實施例2至5中,以與實施例1相同方式製造具有不同厚度之電流收集電極的經染料敏化之太陽能電池。如實施例1,使用具有9.3μm +/- 0.2μm厚度之多孔TiO2半導體層作為如實施例1中之多孔半導體層102。電力轉換效率係示於下表1。 In Examples 2 to 5, dye-sensitized solar cells having current collecting electrodes of different thicknesses were produced in the same manner as in Example 1. As in Example 1, a porous TiO 2 semiconductor layer having a thickness of 9.3 μm +/- 0.2 μm was used as the porous semiconductor layer 102 as in Example 1. The power conversion efficiency is shown in Table 1 below.

<對照實例1及2> <Control Examples 1 and 2>

以與實施例1相同方式製造經染料敏化之太陽能電池,但在TiO2層上製造分別具有2nm及2,000nm厚度之電流收集電極。電力轉換效率係示於下表1。 A dye-sensitized solar cell was fabricated in the same manner as in Example 1, except that current collecting electrodes each having a thickness of 2 nm and 2,000 nm were fabricated on the TiO 2 layer. The power conversion efficiency is shown in Table 1 below.

在每1之結構中可看出,包含具有5nm至1,000nm厚度之電流收集電極的經染料敏化之太陽能電池(實施例1至5)展現比對照實例1及2之經染料敏化之太陽能電池更高的電力轉換效率。此外,根據下圖3及4中所示之SEM照片,可看出根據實施例1至5之經染料敏化之太陽能電池的電流收集電極具有穿孔及與該多孔半導體層之表面實質上相同的形貌形態。 As can be seen in each structure, dye-sensitized solar cells (Examples 1 to 5) comprising current collecting electrodes having a thickness of 5 nm to 1,000 nm exhibited dye-sensitized solar energy than Comparative Examples 1 and 2. Higher power conversion efficiency of the battery. Further, according to the SEM photographs shown in FIGS. 3 and 4 below, it can be seen that the current collecting electrodes of the dye-sensitized solar cells according to Examples 1 to 5 have perforations and substantially the same as the surface of the porous semiconductor layer. Morphology.

<實施例6> <Example 6>

以與實施例1相同方式製造經染料敏化之太陽能電池,但顯微鏡載玻片係經TiCl4預處理以改善黏著力。此時,使用半導體材料前驅物溶液之半導體材料預處理方法在透明基板101與多孔半導體層102之間進行預處理,且使用50nm鋁膜作為電流收集電極103。使用TiCl4前驅物溶液之預處理係如下進行。將該顯微鏡載玻片浸入70℃之40mM TiCl4水溶液中30分鐘,以水及乙醇清洗,以高壓N2氣體乾燥。根據實施例6之太陽能電池的電力轉換效率為7.3%,類似實施例3。然而,當與實施例3比較時,在透明基板101上之多孔半導體層102非常安定而無任何剝離。 A dye-sensitized solar cell was fabricated in the same manner as in Example 1, except that the microscope slide was pretreated with TiCl 4 to improve the adhesion. At this time, pretreatment was performed between the transparent substrate 101 and the porous semiconductor layer 102 using a semiconductor material pretreatment method using a semiconductor material precursor solution, and a 50 nm aluminum film was used as the current collecting electrode 103. The pretreatment using the TiCl 4 precursor solution was carried out as follows. The microscope slide was immersed in a 40 mM aqueous solution of 40 ml of TiCl 4 at 70 ° C for 30 minutes, washed with water and ethanol, and dried with a high pressure N 2 gas. The solar cell according to Example 6 had a power conversion efficiency of 7.3%, similar to that of Example 3. However, when compared with Example 3, the porous semiconductor layer 102 on the transparent substrate 101 is very stable without any peeling.

<實施例7> <Example 7>

以與實施例1相同方式製造經染料敏化之太陽能電池,但使用50nm之鎳膜作為電流收集電極103。在常溫下使用磁控管濺鍍在TiO2半導體層上沉積具有9.3μm +/- 0.2μm厚度之鎳代替使用鋁。電力轉換效率係示於下表2。 A dye-sensitized solar cell was fabricated in the same manner as in Example 1, except that a 50 nm nickel film was used as the current collecting electrode 103. Nickel having a thickness of 9.3 μm +/- 0.2 μm was deposited on the TiO 2 semiconductor layer at room temperature using magnetron sputtering instead of using aluminum. The power conversion efficiency is shown in Table 2 below.

<實施例8> <Example 8>

以與實施例1相同方式製造經染料敏化之太陽能電池,但使用50nm之鈦膜作為電流收集電極103。在常溫 下使用磁控管濺鍍在TiO2半導體層上沉積具有9.3μm +/- 0.2μm厚度之鈦代替使用鋁。電力轉換效率係示於下表2。 A dye-sensitized solar cell was fabricated in the same manner as in Example 1, except that a 50 nm titanium film was used as the current collecting electrode 103. Titanium having a thickness of 9.3 μm +/- 0.2 μm was deposited on the TiO 2 semiconductor layer at room temperature using magnetron sputtering instead of using aluminum. The power conversion efficiency is shown in Table 2 below.

<實施例9> <Example 9>

以與實施例9相同方式製造經染料敏化之太陽能電池,但使用7nm之鈦膜作為第一電流收集電極103,在該第一電流收集電極上形成額外第二多孔TiO2半導體層(厚度為7μm),且在該第二多孔TiO2半導體層上形成額外第二電流收集電極203。此處,該第二多孔TiO2半導體層之材料及製造方法係與實施例1中所述之多孔半導體層的材料及製造方法相同。電力轉換效率係示於下表2。 A dye-sensitized solar cell was fabricated in the same manner as in Example 9, except that a 7 nm titanium film was used as the first current collecting electrode 103, and an additional second porous TiO 2 semiconductor layer was formed on the first current collecting electrode (thickness It is 7 μm), and an additional second current collecting electrode 203 is formed on the second porous TiO 2 semiconductor layer. Here, the material and manufacturing method of the second porous TiO 2 semiconductor layer are the same as those of the porous semiconductor layer described in Example 1. The power conversion efficiency is shown in Table 2 below.

<實施例10> <Example 10>

以與實施例8相同方式製造經染料敏化之太陽能電池,但在沉積50nm鈦膜作為電流收集電極103之後,多孔半導體層102係藉由使用半導體材料前驅物溶液之半導 體材料預處理方法而經TiCl4預處理,以改善染料之吸附及增加該多孔半導體層102之表面積。使用TiCl4前驅物溶液之後處理係如下進行。將包含沉積有50nm鈦膜之多孔半導體層102的顯微鏡載玻片浸入70℃之40mM TiCl4水溶液中30分鐘,水及乙醇清洗,以高壓N2氣體乾燥。在後處理之後,以奈米尺寸之TiO2粒子覆蓋該多孔半導體層102之表面,並展現較廣表面積。根據實施例10之太陽能電池的電力轉換效率為7.2%,其與實施例8相較時相當大幅改善。 A dye-sensitized solar cell was fabricated in the same manner as in Example 8, but after depositing a 50 nm titanium film as the current collecting electrode 103, the porous semiconductor layer 102 was subjected to a semiconductor material pretreatment method using a semiconductor material precursor solution. The TiCl 4 is pretreated to improve the adsorption of the dye and increase the surface area of the porous semiconductor layer 102. The treatment was carried out as follows using a TiCl 4 precursor solution. A microscope slide containing a porous semiconductor layer 102 on which a 50 nm titanium film was deposited was immersed in a 40 mM aqueous solution of 40 mM TiCl 4 at 70 ° C for 30 minutes, washed with water and ethanol, and dried with a high pressure N 2 gas. After the post-treatment, the surface of the porous semiconductor layer 102 is covered with nano-sized TiO 2 particles and exhibits a wider surface area. The power conversion efficiency of the solar cell according to Example 10 was 7.2%, which was considerably improved as compared with Example 8.

<對照實例3> <Control Example 3>

如圖16所示之經染料敏化之太陽能電池係以與實施例3相同方式製造,但在透明基板101與多孔TiO2半導體層102之間提供FTO玻璃,同時使用透明傳導電極503代替第一電流收集電極103。相較於實施例3之電力轉換效率係顯示於下表3。對照實例3展現5.1%之效率。 The dye-sensitized solar cell shown in Fig. 16 was fabricated in the same manner as in Example 3, but provided FTO glass between the transparent substrate 101 and the porous TiO 2 semiconductor layer 102 while using the transparent conductive electrode 503 instead of the first Current collecting electrode 103. The power conversion efficiency compared to Example 3 is shown in Table 3 below. Comparative Example 3 exhibited an efficiency of 5.1%.

在表3之結果中可看出,如實施例3中包含沉積在多孔半導體層上之電流收集電極的經染料敏化之太陽能電池 展現之效率遠優於如對照實例3中包含在透明基板與多孔半導體層之間的電流收集電極之經染料敏化之太陽能電池。 As can be seen from the results of Table 3, the dye-sensitized solar cell including the current collecting electrode deposited on the porous semiconductor layer as in Example 3 The efficiency exhibited was much better than that of the dye-sensitized solar cell such as the current collecting electrode included in the transparent substrate and the porous semiconductor layer in Comparative Example 3.

本發明中,已描述最實際及較佳範例具體實例,但本發明不應闡釋為受該等實施例及圖式限制。本發明中,在申請專利範圍中所述的精神及範疇內可進行各種不同修改。 In the present invention, the most practical and preferred exemplary embodiments have been described, but the invention should not be construed as being limited by the embodiments and the drawings. In the present invention, various modifications may be made within the spirit and scope of the invention as claimed.

101‧‧‧透明基板 101‧‧‧Transparent substrate

102(102a)‧‧‧多孔半導體層(染料敏化劑) 102(102a)‧‧‧Porous semiconductor layer (dye sensitizer)

103(103b)‧‧‧電流收集電極(穿孔) 103(103b)‧‧‧ Current collecting electrode (perforation)

104‧‧‧密封間隔件 104‧‧‧ Sealing spacers

105‧‧‧觸媒電極 105‧‧‧catalyst electrode

106‧‧‧第二基板 106‧‧‧second substrate

107‧‧‧電解質材料 107‧‧‧Electrolyte materials

Claims (36)

一種經染料敏化之太陽能電池,其包含:透明基板;設置在該透明基板上且包含染料敏化劑之多孔半導體層;設置在該多孔半導體層上並且被沉積出來以使得在該多孔半導體層上形成具有至少一個穿孔之結構的電流收集電極;觸媒電極;及設置在該透明基板與該觸媒電極之間的電解質材料。 A dye-sensitized solar cell comprising: a transparent substrate; a porous semiconductor layer provided on the transparent substrate and containing a dye sensitizer; disposed on the porous semiconductor layer and deposited to be in the porous semiconductor layer Forming a current collecting electrode having a structure of at least one perforation; a catalyst electrode; and an electrolyte material disposed between the transparent substrate and the catalyst electrode. 如申請專利範圍第1項之經染料敏化之太陽能電池,其中該電流收集電極具有5nm至1,000nm之厚度,且該電流收集電極之表面具有與該多孔半導體層之表面相同的形貌形態(topographical morphology)。 The dye-sensitized solar cell of claim 1, wherein the current collecting electrode has a thickness of 5 nm to 1,000 nm, and a surface of the current collecting electrode has the same morphology as that of the surface of the porous semiconductor layer ( Topographical morphology). 如申請專利範圍第1項之經染料敏化之太陽能電池,其進一步包含:設置於該透明基板或該電流收集電極與該觸媒電極之間的密封間隔件。 The dye-sensitized solar cell of claim 1, further comprising: a sealing spacer disposed between the transparent substrate or the current collecting electrode and the catalyst electrode. 如申請專利範圍第1項之經染料敏化之太陽能電池,其進一步包含:設置於該電流收集電極與該觸媒電極之間的至少一個內部間隔件。 The dye-sensitized solar cell of claim 1, further comprising: at least one internal spacer disposed between the current collecting electrode and the catalyst electrode. 如申請專利範圍第1項之經染料敏化之太陽能電池,其中該電流收集電極包含鈦、鎳、鉑、金、銀、銅、 鋁、鎢、銠、銦、氧化錫、摻雜氟之氧化錫(FTO)、氧化銦、摻雜錫之氧化銦(ITO)、氧化鋅、奈米碳管、石墨烯、碳黑、PEDOT-PSS、聚吡咯、聚苯胺、聚EDT或其組合。 The dye-sensitized solar cell of claim 1, wherein the current collecting electrode comprises titanium, nickel, platinum, gold, silver, copper, Aluminum, tungsten, tantalum, indium, tin oxide, fluorine-doped tin oxide (FTO), indium oxide, tin-doped indium oxide (ITO), zinc oxide, carbon nanotubes, graphene, carbon black, PEDOT- PSS, polypyrrole, polyaniline, polyEDT, or a combination thereof. 如申請專利範圍第1項之經染料敏化之太陽能電池,其中該多孔半導體層包含氧化鈦、氧化鋅、氧化錫、氧化鈮、氧化鋯、氧化鈰、氧化鎢、氧化矽、氧化鋁、氧化鎳、氧化鉭、鈦酸鋇、鈦酸鍶、鈦酸鈣、硫化鋅、硫化鉛、硫化鉍、硫化鎘、CuAlO2、SrCu2O2或其組合。 The dye-sensitized solar cell of claim 1, wherein the porous semiconductor layer comprises titanium oxide, zinc oxide, tin oxide, antimony oxide, zirconium oxide, hafnium oxide, tungsten oxide, antimony oxide, aluminum oxide, and oxidation. Nickel, cerium oxide, barium titanate, barium titanate, calcium titanate, zinc sulfide, lead sulfide, barium sulfide, cadmium sulfide, CuAlO 2 , SrCu 2 O 2 or a combination thereof. 如申請專利範圍第1項之經染料敏化之太陽能電池,其進一步包含:藉由半導體材料預處理而在該透明基板與該多孔半導體層之間形成的預處理層。 The dye-sensitized solar cell of claim 1, further comprising: a pretreatment layer formed between the transparent substrate and the porous semiconductor layer by pretreatment of a semiconductor material. 如申請專利範圍第7項之經染料敏化之太陽能電池,其中該預處理層包含氧化鈦、氧化鋅、氧化錫、氧化鈮、氧化鋯、氧化鈰、氧化鎢、氧化矽、氧化鋁、氧化鎳、氧化鉭、鈦酸鋇、鈦酸鍶、鈦酸鈣、硫化鋅、硫化鉛、硫化鉍、硫化鎘、CuAlO2、SrCu2O2或其組合。 The dye-sensitized solar cell of claim 7, wherein the pretreatment layer comprises titanium oxide, zinc oxide, tin oxide, antimony oxide, zirconium oxide, hafnium oxide, tungsten oxide, antimony oxide, aluminum oxide, and oxidation. Nickel, cerium oxide, barium titanate, barium titanate, calcium titanate, zinc sulfide, lead sulfide, barium sulfide, cadmium sulfide, CuAlO 2 , SrCu 2 O 2 or a combination thereof. 如申請專利範圍第1項之經染料敏化之太陽能電池,其進一步包含:藉由半導體材料後處理而在該多孔半導體層之表面上形成的後處理層。 The dye-sensitized solar cell of claim 1, further comprising: an after-treatment layer formed on the surface of the porous semiconductor layer by post-processing of the semiconductor material. 如申請專利範圍第9項之經染料敏化之太陽能電池,其中該後處理層包含氧化鈦、氧化鋅、氧化錫、氧化 鈮、氧化鋯、氧化鈰、氧化鎢、氧化矽、氧化鋁、氧化鎳、氧化鉭、鈦酸鋇、鈦酸鍶、鈦酸鈣、硫化鋅、硫化鉛、硫化鉍、硫化鎘、CuAlO2、SrCu2O2或其組合。 The dye-sensitized solar cell of claim 9, wherein the post-treatment layer comprises titanium oxide, zinc oxide, tin oxide, antimony oxide, zirconium oxide, hafnium oxide, tungsten oxide, antimony oxide, aluminum oxide, and oxidation. Nickel, cerium oxide, barium titanate, barium titanate, calcium titanate, zinc sulfide, lead sulfide, barium sulfide, cadmium sulfide, CuAlO 2 , SrCu 2 O 2 or a combination thereof. 如申請專利範圍第1項之經染料敏化之太陽能電池,其中該多孔半導體層係由平均直徑為1nm至400nm之粒子形成。 A dye-sensitized solar cell according to claim 1, wherein the porous semiconductor layer is formed of particles having an average diameter of from 1 nm to 400 nm. 如申請專利範圍第1項之經染料敏化之太陽能電池,其進一步包含:設置在該透明基板與該多孔半導體層之間的透明電流收集電極。 The dye-sensitized solar cell of claim 1, further comprising: a transparent current collecting electrode disposed between the transparent substrate and the porous semiconductor layer. 一種經染料敏化之太陽能電池,其包含:透明基板;設置在該透明基板上且包含第一染料敏化劑之第一多孔半導體層;設置在該第一多孔半導體層上之電流收集電極;設置在該電流收集電極上並且包含第二染料敏化劑之第二多孔半導體層;觸媒電極;及設置在該透明基板與該觸媒電極之間的電解質材料。 A dye-sensitized solar cell comprising: a transparent substrate; a first porous semiconductor layer disposed on the transparent substrate and comprising a first dye sensitizer; and current collection disposed on the first porous semiconductor layer An electrode; a second porous semiconductor layer disposed on the current collecting electrode and including a second dye sensitizer; a catalyst electrode; and an electrolyte material disposed between the transparent substrate and the catalyst electrode. 如申請專利範圍第13項之經染料敏化之太陽能電池,其中該第一染料敏化劑及該第二染料敏化劑為相同染料敏化劑。 The dye-sensitized solar cell of claim 13, wherein the first dye sensitizer and the second dye sensitizer are the same dye sensitizer. 如申請專利範圍第13項之經染料敏化之太陽能電池,其中該第一染料敏化劑及該第二染料敏化劑吸收彼 此不同之波長範圍。 The dye-sensitized solar cell of claim 13, wherein the first dye sensitizer and the second dye sensitizer absorb This different wavelength range. 如申請專利範圍第13項之經染料敏化之太陽能電池,其進一步包含:設置在該第二多孔半導體層上之第二電流收集電極。 The dye-sensitized solar cell of claim 13, further comprising: a second current collecting electrode disposed on the second porous semiconductor layer. 如申請專利範圍第16項之經染料敏化之太陽能電池,其進一步包含:設置在該第二電流收集電極上並且包含第三染料敏化劑之第三多孔半導體層。 The dye-sensitized solar cell of claim 16, further comprising: a third porous semiconductor layer disposed on the second current collecting electrode and comprising a third dye sensitizer. 如申請專利範圍第17項之經染料敏化之太陽能電池,其中該第一染料敏化劑、該第二染料敏化劑及該第三染料敏化劑為相同染料敏化劑。 The dye-sensitized solar cell of claim 17, wherein the first dye sensitizer, the second dye sensitizer, and the third dye sensitizer are the same dye sensitizer. 如申請專利範圍第17項之經染料敏化之太陽能電池,其中該第一染料敏化劑、該第二染料敏化劑及該第三染料敏化劑中至少兩種染料敏化劑吸收彼此不同之波長範圍。 The dye-sensitized solar cell of claim 17, wherein at least two of the first dye sensitizer, the second dye sensitizer, and the third dye sensitizer absorb each other Different wavelength ranges. 如申請專利範圍第17項之經染料敏化之太陽能電池,其進一步包含:設置在該第三多孔半導體層上之第三電流收集電極。 The dye-sensitized solar cell of claim 17, further comprising: a third current collecting electrode disposed on the third porous semiconductor layer. 如申請專利範圍第13項之經染料敏化之太陽能電池,其進一步包含:設置在該透明基板與該第一多孔半導體層之間的電流收集電極。 The dye-sensitized solar cell of claim 13, further comprising: a current collecting electrode disposed between the transparent substrate and the first porous semiconductor layer. 一種經染料敏化之太陽能電池之製造方法,該方法包括: 製備透明基板;在該透明基板上形成多孔半導體層;在該多孔半導體層上沉積出電流收集電極以使得在該多孔半導體層上形成具有至少一個穿孔之結構;將染料敏化劑導入該多孔半導體層;形成觸媒電極;及在該透明基板與該觸媒電極之間導入電解質材料。 A method for manufacturing a dye-sensitized solar cell, the method comprising: Forming a transparent substrate; forming a porous semiconductor layer on the transparent substrate; depositing a current collecting electrode on the porous semiconductor layer to form a structure having at least one perforation on the porous semiconductor layer; and introducing a dye sensitizer into the porous semiconductor a layer; forming a catalyst electrode; and introducing an electrolyte material between the transparent substrate and the catalyst electrode. 如申請專利範圍第22項之方法,其中該電流收集電極具有5nm至1,000nm之厚度,且該電流收集電極之表面具有與該多孔半導體層之表面相同的形貌形態。 The method of claim 22, wherein the current collecting electrode has a thickness of 5 nm to 1,000 nm, and a surface of the current collecting electrode has the same topography as that of the surface of the porous semiconductor layer. 如申請專利範圍第22項之方法,其進一步包括:在該電流收集電極與該觸媒電極之間形成至少一個內部間隔件。 The method of claim 22, further comprising: forming at least one internal spacer between the current collecting electrode and the catalyst electrode. 如申請專利範圍第22項之方法,其中該電流收集電極包含鈦、鎳、鉑、金、銀、銅、鋁、鎢、銠、銦、氧化錫、摻雜氟之氧化錫(FTO)、氧化銦、摻雜錫之氧化銦(ITO)、氧化鋅、奈米碳管、石墨烯、碳黑、PEDOT-PSS、聚吡咯、聚苯胺、聚EDT或其組合。 The method of claim 22, wherein the current collecting electrode comprises titanium, nickel, platinum, gold, silver, copper, aluminum, tungsten, germanium, indium, tin oxide, fluorine-doped tin oxide (FTO), and oxidation. Indium, tin-doped indium oxide (ITO), zinc oxide, carbon nanotubes, graphene, carbon black, PEDOT-PSS, polypyrrole, polyaniline, polyEDT, or a combination thereof. 如申請專利範圍第22項之方法,其中該多孔半導體層包含氧化鈦、氧化鋅、氧化錫、氧化鈮、氧化鋯、氧化鈰、氧化鎢、氧化矽、氧化鋁、氧化鎳、氧化鉭、鈦酸鋇、鈦酸鍶、鈦酸鈣、硫化鋅、硫化鉛、硫化鉍、硫化鎘、CuAlO2、SrCu2O2或其組合。 The method of claim 22, wherein the porous semiconductor layer comprises titanium oxide, zinc oxide, tin oxide, antimony oxide, zirconium oxide, hafnium oxide, tungsten oxide, hafnium oxide, aluminum oxide, nickel oxide, antimony oxide, titanium. Barium acid, barium titanate, calcium titanate, zinc sulfide, lead sulfide, barium sulfide, cadmium sulfide, CuAlO 2 , SrCu 2 O 2 or a combination thereof. 如申請專利範圍第22項之方法,其中該多孔半導體層係由平均直徑為1nm至400nm之粒子形成。 The method of claim 22, wherein the porous semiconductor layer is formed of particles having an average diameter of from 1 nm to 400 nm. 如申請專利範圍第22項之方法,其進一步包括:在該透明基板與該多孔半導體層之間形成額外的電流收集電極。 The method of claim 22, further comprising: forming an additional current collecting electrode between the transparent substrate and the porous semiconductor layer. 如申請專利範圍第22項之方法,其進一步包括:藉由選自以下組成之群組的方法來預處理該透明基板:使用半導體材料前驅物溶液之半導體層材料預處理、電漿處理、臭氧處理及化學處理。 The method of claim 22, further comprising: pretreating the transparent substrate by a method selected from the group consisting of semiconductor layer material pretreatment, plasma treatment, ozone using a semiconductor material precursor solution Treatment and chemical treatment. 如申請專利範圍第22項之方法,其進一步包括:藉由選自以下組成之群組的方法來後處理該透明基板:使用半導體材料前驅物溶液之半導體層材料後處理、熱處理、電漿處理、臭氧處理及化學處理。 The method of claim 22, further comprising: post-treating the transparent substrate by a method selected from the group consisting of semiconductor layer material post-treatment, heat treatment, plasma treatment using a semiconductor material precursor solution , ozone treatment and chemical treatment. 一種經染料敏化之太陽能電池之製造方法,該方法包括:製備透明基板;在該透明基板上形成第一多孔半導體層;在該第一多孔半導體層上沉積出第一電流收集電極;將染料敏化劑導入該多孔半導體層;在該第一電流收集電極上形成第二多孔半導體層;將第二染料敏化劑導入該第二多孔半導體層; 形成觸媒電極;及在該透明基板與該觸媒電極之間導入電解質材料。 A method for manufacturing a dye-sensitized solar cell, the method comprising: preparing a transparent substrate; forming a first porous semiconductor layer on the transparent substrate; depositing a first current collecting electrode on the first porous semiconductor layer; Introducing a dye sensitizer into the porous semiconductor layer; forming a second porous semiconductor layer on the first current collecting electrode; and introducing a second dye sensitizing agent into the second porous semiconductor layer; Forming a catalyst electrode; and introducing an electrolyte material between the transparent substrate and the catalyst electrode. 如申請專利範圍第31項之方法,其進一步包括:在該第二多孔半導體層上沉積出第二電流收集電極。 The method of claim 31, further comprising: depositing a second current collecting electrode on the second porous semiconductor layer. 如申請專利範圍第32項之方法,其進一步包括:在該第二電流收集電極上形成第三多孔半導體層;及將第三染料敏化劑導入該第三多孔半導體層。 The method of claim 32, further comprising: forming a third porous semiconductor layer on the second current collecting electrode; and introducing a third dye sensitizer into the third porous semiconductor layer. 如申請專利範圍第31項之方法,其進一步包括:在該透明基板與該第一多孔半導體層之間形成額外的電流收集電極。 The method of claim 31, further comprising: forming an additional current collecting electrode between the transparent substrate and the first porous semiconductor layer. 如申請專利範圍第31項之方法,其進一步包括:藉由選自以下組成之群組的方法來預處理該透明基板:使用半導體材料前驅物溶液之半導體層材料預處理、電漿處理、臭氧處理及化學處理。 The method of claim 31, further comprising: pretreating the transparent substrate by a method selected from the group consisting of semiconductor layer material pretreatment, plasma treatment, ozone using a semiconductor material precursor solution Treatment and chemical treatment. 如申請專利範圍第31項之方法,其進一步包括:藉由選自以下組成之群組的方法來後處理該透明基板:使用半導體材料前驅物溶液之半導體層材料後處理、熱處理、電漿處理、臭氧處理及化學處理。 The method of claim 31, further comprising: post-treating the transparent substrate by a method selected from the group consisting of semiconductor layer material post-treatment, heat treatment, plasma treatment using a semiconductor material precursor solution , ozone treatment and chemical treatment.
TW102127620A 2013-08-01 2013-08-01 Dye-sensitized solar cell and fabrication method thereof TWI536591B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102127620A TWI536591B (en) 2013-08-01 2013-08-01 Dye-sensitized solar cell and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102127620A TWI536591B (en) 2013-08-01 2013-08-01 Dye-sensitized solar cell and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201507179A TW201507179A (en) 2015-02-16
TWI536591B true TWI536591B (en) 2016-06-01

Family

ID=53019504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102127620A TWI536591B (en) 2013-08-01 2013-08-01 Dye-sensitized solar cell and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI536591B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702620A (en) * 2019-09-16 2020-01-17 深圳市裕展精密科技有限公司 Method and equipment for detecting dye aging
TWI721625B (en) * 2019-10-30 2021-03-11 國立雲林科技大學 Composite nanofiber, its preparation method and its application

Also Published As

Publication number Publication date
TW201507179A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
KR101061970B1 (en) Photoelectrode using conductive nonmetallic film and dye-sensitized solar cell comprising same
JP5285062B2 (en) Photosensitizer and solar cell using the same
JP3717506B2 (en) Dye-sensitized solar cell module
WO2008004553A1 (en) Dye-sensitized solar cell module and method for fabricating same
JP6094839B2 (en) Dye-sensitized solar cell and method for producing the same
WO2012169514A1 (en) Photoelectric conversion element and photoelectric conversion element module
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP4627427B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
US20150302996A1 (en) Photoelectrode for dye-sensitized solar cells, and dye-sensitized solar cell
JP4307701B2 (en) Photoelectric conversion element and photovoltaic cell
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
TWI536591B (en) Dye-sensitized solar cell and fabrication method thereof
JP2004247104A (en) Titanium oxide fine particles, manufacturing method for photoelectric conversion element, and photoelectric conversion element
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP2005011609A (en) Conductive support and photoelectric transfer element using this
JP5401832B2 (en) Photoelectric conversion device having nanostructured hollow carbon material
EP3473752A1 (en) Carbon nanotube-based membrane for solar cells
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP5956929B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4590070B2 (en) Method for manufacturing photoelectric conversion element
JP5480234B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP2013251229A (en) Photoelectric conversion element and dye-sensitized solar cell
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
Rokesh et al. and Kandasamy Jothivenkatachalam
WO2013161557A1 (en) Photoelectric conversion element module and method for manufacturing same