JP2014013716A - Dye-sensitized solar cell and method for manufacturing the same - Google Patents

Dye-sensitized solar cell and method for manufacturing the same Download PDF

Info

Publication number
JP2014013716A
JP2014013716A JP2012151195A JP2012151195A JP2014013716A JP 2014013716 A JP2014013716 A JP 2014013716A JP 2012151195 A JP2012151195 A JP 2012151195A JP 2012151195 A JP2012151195 A JP 2012151195A JP 2014013716 A JP2014013716 A JP 2014013716A
Authority
JP
Japan
Prior art keywords
porous semiconductor
semiconductor layer
transparent conductive
dye
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012151195A
Other languages
Japanese (ja)
Inventor
Hayato Tsuda
早登 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2012151195A priority Critical patent/JP2014013716A/en
Publication of JP2014013716A publication Critical patent/JP2014013716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell having excellent generation efficiency and designability.SOLUTION: A dye-sensitized solar cell 1 comprises: a transparent conductive substrate 10; a partition wall part 30 composed of a collection wire 31 arranged on the transparent conductive substrate 10 and a protective layer 32 covering the collection wire 31 and constituting a contour part of a design pattern drawn on the transparent conductive substrate 10; porous semiconductor layers 20 arranged between partition walls of the partition wall part 30; a first sensitizing dye 50 absorbed into at least one porous semiconductor layer 20 formed between the partition walls among the porous semiconductor layers 20 formed between the partition walls; a second sensitizing dye 51 absorbed into a porous semiconductor layer 20 other than the porous semiconductor layer 20 into which the first sensitizing dye 50 was absorbed; and an electrode extraction unit 40 formed on at least one side on the transparent conductive substrate 10 and connected to the collection wire 31.

Description

本発明は色素増感型太陽電池に関し、特に意匠性に優れた色素増感型太陽電池、及びその製造方法に関する。   The present invention relates to a dye-sensitized solar cell, and more particularly to a dye-sensitized solar cell excellent in design and a manufacturing method thereof.

環境問題・資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。しかしながら、従来のシリコン系太陽電池は、製造コストが高い、原料供給が不十分などの課題が残されており、大幅普及には至っていない。また、CIS系などの化合物系太陽電池は、極めて高い光電変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題がやはり大幅普及への障害となっている。   Against the backdrop of environmental issues and resource issues, solar cells as clean energy are attracting attention. However, conventional silicon-based solar cells still have problems such as high manufacturing costs and insufficient raw material supply, and have not yet been widely spread. In addition, although compound solar cells such as CIS have excellent characteristics such as extremely high photoelectric conversion efficiency, problems such as cost and environmental load are still an obstacle to widespread use.

一方、色素増感型太陽電池は、安価で高い光電変換効率を得られる太陽電池として着目されている。この色素増感型太陽電池の一般的な構造としては、透明な導電性基板の上に、二酸化チタンなどの酸化物半導体ナノ粒子を用いた多孔膜を形成し、これに増感色素を担持させた半導体電極と、白金スパッタした導電性ガラスなどの対極とを組み合わせ、両極間にヨウ素・ヨウ化物イオンなどの酸化・還元種を含む有機電解液を電荷移送層として充填したものなどを挙げることができる。   On the other hand, dye-sensitized solar cells are attracting attention as solar cells that are inexpensive and can obtain high photoelectric conversion efficiency. As a general structure of this dye-sensitized solar cell, a porous film using oxide semiconductor nanoparticles such as titanium dioxide is formed on a transparent conductive substrate, and the sensitizing dye is supported thereon. A semiconductor electrode and a counter electrode such as platinum-sputtered conductive glass, and an organic electrolyte containing an oxidizing / reducing species such as iodine / iodide ions between both electrodes as a charge transport layer. it can.

なお、上記色素増感型太陽電池については、複数の増感色素を使用して、文字や記号、あるいは図形や絵柄などを色彩豊かに表現したものが知られている(例えば、特許文献1、2)。特許文献1には、色彩豊かな色素増感型太陽電池を作成するために、1)透明導電膜上に多孔質性半導体層を形成したのち、2)多孔質性半導体層を所定のパターンに除去して、3)除去した部分に隔壁を形成して2種類以上の増感色素を多孔質性半導体層に吸着させる方法が開示されていている。しかし、特許文献1の方法では、製造工程が多段階に及んでしまうという問題があった。また、発電効率の観点から太陽電池と使用する場合には、別途太陽電池に集電線を設けなければならず、かかる場合集電線によって、透明導電性基板上に形成したデザインが損なわれるという問題もあった。   In addition, about the said dye-sensitized solar cell, what expressed a character, a symbol, a figure, a picture, etc. colorfully using several sensitizing dyes is known (for example, patent document 1, 2). In Patent Document 1, in order to create a dye-sensitized solar cell rich in color, after 1) forming a porous semiconductor layer on a transparent conductive film, 2) forming the porous semiconductor layer into a predetermined pattern 3) A method is disclosed in which partition walls are formed in the removed portion and two or more kinds of sensitizing dyes are adsorbed on the porous semiconductor layer. However, the method of Patent Document 1 has a problem that the manufacturing process is multistage. In addition, when used with a solar cell from the viewpoint of power generation efficiency, a separate current collector must be provided for the solar cell. In such a case, the design formed on the transparent conductive substrate is impaired by the current collector. there were.

また、特許文献2には、上記色素増感型太陽電池を作成するために、透明導電性基板の上にバンク構造を形成する方法が開示されている。しかし、上記バンク構造はフォトリソ法によって作成されるため、特許文献1の方法と同様に製造工程が他段階に及んでしまうという問題や、多孔質性半導体層を焼結する過程でバンク構造が焼け飛んでしまうという問題があった。また、バンク構造は発電に寄与しないので、バンク構造を有する色素増感型太陽電池は発電面積が小さくなるという問題があった。さらに、太陽電池と使用する場合には、特許文献1の場合と同様に、別途太陽電池に集電線を設けなければならず、透明導電性基板上に形成したデザインが損なわれるという問題もあった。   Patent Document 2 discloses a method of forming a bank structure on a transparent conductive substrate in order to produce the dye-sensitized solar cell. However, since the bank structure is created by a photolithographic method, the bank structure is burned during the process of sintering the porous semiconductor layer, as well as the problem that the manufacturing process reaches other stages as in the method of Patent Document 1. There was a problem of flying. Further, since the bank structure does not contribute to power generation, the dye-sensitized solar cell having the bank structure has a problem that the power generation area is reduced. Furthermore, when using with a solar cell, like the case of patent document 1, you had to provide a collector wire in a solar cell separately, and there also existed a problem that the design formed on the transparent conductive substrate was impaired. .

特開2002−75472JP 2002-75472 A 特開2007−149675JP2007-149675

従って、本発明の目的は、発電効率と意匠性に優れた色素増感型太陽電池、および色素増感型太陽電池を簡便に作成できる製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a dye-sensitized solar cell excellent in power generation efficiency and designability, and a production method capable of easily producing a dye-sensitized solar cell.

上記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

以下に、本発明にかかる実施の形態に基づいて詳細に説明する。   Below, it demonstrates in detail based on embodiment concerning this invention.

本発明の第1態様によれば、透明導電性基板上に配された多孔質半導体層に複数の色素を染め分ける色素増感型太陽電池の製造方法であって、前記透明導電性基板上に間隔を空けて前記多孔質半導体層を印刷法によって複数形成する第一工程と、前記間隔を空けた箇所に集電線を形成する第二工程と、前記集電線を保護層で被覆して、前記多孔質半導体層の高さよりも高い隔壁部を形成し、前記複数形成された多孔質半導体層をそれぞれ隔離する第三工程と、前記隔離された多孔質半導体層のうち隣接する多孔質半導体層に異なる色素増感剤を含浸させる第三工程と、を少なくとも備える色素増感型太陽電池の製造方法を提供する。   According to a first aspect of the present invention, there is provided a method for producing a dye-sensitized solar cell in which a plurality of dyes are dyed on a porous semiconductor layer disposed on a transparent conductive substrate, the method comprising: A first step of forming a plurality of the porous semiconductor layers by a printing method at intervals, a second step of forming a current collector at a location spaced from the space, and covering the current collector with a protective layer, Forming a partition wall higher than the height of the porous semiconductor layer, and isolating the plurality of formed porous semiconductor layers, respectively, and adjacent porous semiconductor layers among the isolated porous semiconductor layers; There is provided a method for producing a dye-sensitized solar cell comprising at least a third step of impregnating with a different dye-sensitizer.

本発明の第2態様によれば、透明導電性基板上に配された多孔質半導体層に複数の色素が染め分けられ、前記透明導電性基板上にデザインパターンが描かれた色素増感型太陽電池であって、前記透明導電性基板と、前記透明導電性基板上に配された集電線と前記集電線を被覆する保護層とからなり前記透明導電性基板上に描かれたデザインパターンの輪郭部分を構成する隔壁部と、前記隔壁部の各隔壁間に配される多孔質半導体層と、前記各隔壁間に形成された前記多孔質半導体層のうち、少なくとも一の隔壁間に形成された前記多孔質半導体層に吸着される第一増感色素と、前記第一増感色素が吸着された前記多孔質半導体層以外の多孔質半導体層に吸着される第二増感色素と、前記透明導電性基板上の少なくとも一方辺に形成され、前記集電線と接続し前記第一増感色素および第二増感色素から放出された電子を外部に取り出す電極取出し部と、前記透明導電性基板と対向するように、前記多孔質半導体層上に前記多孔質半導体層とは離間して形成される対向電極と、前記多孔質半導体層と前記対向電極との間に形成される電荷輸送層と、前記電荷輸送層が系外に出ないよう前記透明導電性基板と前記対向電極とを封止する封止材とを備える色素増感型太陽電池を提供する。   According to the second aspect of the present invention, a dye-sensitized solar cell in which a plurality of dyes are dyed separately on a porous semiconductor layer disposed on a transparent conductive substrate, and a design pattern is drawn on the transparent conductive substrate. An outline portion of a design pattern drawn on the transparent conductive substrate, comprising the transparent conductive substrate, a current collector disposed on the transparent conductive substrate, and a protective layer covering the current collector. Of the partition walls, the porous semiconductor layer disposed between the partition walls, and the porous semiconductor layer formed between the partition walls. A first sensitizing dye adsorbed on the porous semiconductor layer; a second sensitizing dye adsorbed on a porous semiconductor layer other than the porous semiconductor layer on which the first sensitizing dye is adsorbed; and the transparent conductive material. Formed on at least one side of the conductive substrate, An electrode extraction part for connecting the electric wire and extracting the electrons emitted from the first sensitizing dye and the second sensitizing dye to the outside, and the porous semiconductor layer on the porous semiconductor layer so as to face the transparent conductive substrate A counter electrode formed apart from the porous semiconductor layer, a charge transport layer formed between the porous semiconductor layer and the counter electrode, and the transparent conductive material so that the charge transport layer does not come out of the system. Provided is a dye-sensitized solar cell comprising a sealing substrate and a sealing material for sealing the counter electrode.

本発明の第3態様によれば、透明導電性基板上に配された多孔質半導体層に複数の色素が染め分けられ、前記透明導電性基板上にデザインパターンが描かれた色素増感型太陽電池であって、前記透明導電性基板と、前記透明導電性基板上に配された集電線と前記集電線を被覆する保護層とからなり前記透明導電性基板上に描かれたデザインパターンの輪郭部分を構成する隔壁部と、前記隔壁部の各隔壁間に配される多孔質半導体層と、前記各隔壁間に形成された前記多孔質半導体層のうち、少なくとも一の隔壁間に形成された前記多孔質半導体層に吸着される第一増感色素と、前記第一増感色素が吸着された前記多孔質半導体層以外の多孔質半導体層に吸着される第二増感色素と、前記透明導電性基板上の少なくとも一方辺に形成される電極取出部と、前記隔壁部と前記電極取出部と接続し前記第一増感色素および第二増感色素から放出された電子を前記電極取出部まで導くと補助隔壁部と、前記透明導電性基板と対向するように、前記多孔質半導体層上に前記多孔質半導体層とは離間して形成される対向電極と、前記多孔質半導体層と前記対向電極との間に形成される電荷輸送層と、前記電荷輸送層が系外に出ないよう前記透明導電性基板と前記対向電極とを封止する封止材とを備える色素増感型太陽電池を提供する。   According to the third aspect of the present invention, a dye-sensitized solar cell in which a plurality of dyes are dyed separately on a porous semiconductor layer disposed on a transparent conductive substrate, and a design pattern is drawn on the transparent conductive substrate. An outline portion of a design pattern drawn on the transparent conductive substrate, comprising the transparent conductive substrate, a current collector disposed on the transparent conductive substrate, and a protective layer covering the current collector. Of the partition walls, the porous semiconductor layer disposed between the partition walls, and the porous semiconductor layer formed between the partition walls. A first sensitizing dye adsorbed on the porous semiconductor layer; a second sensitizing dye adsorbed on a porous semiconductor layer other than the porous semiconductor layer on which the first sensitizing dye is adsorbed; and the transparent conductive material. Electrode formed on at least one side of the conductive substrate An auxiliary partition part, and the transparent conductive substrate, which are connected to the output part, the partition part, and the electrode extraction part and guide electrons emitted from the first sensitizing dye and the second sensitizing dye to the electrode extraction part A counter electrode formed on the porous semiconductor layer so as to be separated from the porous semiconductor layer, and a charge transport layer formed between the porous semiconductor layer and the counter electrode, Provided is a dye-sensitized solar cell comprising a sealing material that seals the transparent conductive substrate and the counter electrode so that the charge transport layer does not go out of the system.

本発明の第4態様によれば、前記隔壁部を被覆し、隔壁部と前記対向電極を接続する隔壁保護層を備えた色素増感型太陽電池を提供する。   According to the 4th aspect of this invention, the dye-sensitized solar cell provided with the partition protective layer which coat | covers the said partition part and connects a partition part and the said counter electrode is provided.

本発明の第5態様によれば、前記隔壁部の断面形状は四角形状の色素増感型太陽電池を提供する。   According to the 5th aspect of this invention, the cross-sectional shape of the said partition part provides a square-shaped dye-sensitized solar cell.

本発明によれば、発電効率と意匠性に優れた色素増感型太陽電池、および色素増感型太陽電池を簡便に作成できる。   ADVANTAGE OF THE INVENTION According to this invention, the dye-sensitized solar cell excellent in electric power generation efficiency and the designability, and a dye-sensitized solar cell can be produced simply.

本発明の色素増感型太陽電池の平面図である。It is a top view of the dye-sensitized solar cell of this invention. 図1のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図1のB−B’断面図である。It is B-B 'sectional drawing of FIG. 本発明の色素増感型太陽電池の断面図である。It is sectional drawing of the dye-sensitized solar cell of this invention. 本発明の色素増感型太陽電池の平面図である。It is a top view of the dye-sensitized solar cell of this invention. 本発明の色素増感型太陽電池の製造工程に係る断面図である。It is sectional drawing which concerns on the manufacturing process of the dye-sensitized solar cell of this invention.

下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。   Hereinafter, embodiments according to the present invention will be described in more detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative positions, etc. of the parts and portions described in the embodiments of the present invention are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an illustrative example.

(実施の形態1)
図1は、実施の形態1に係る色素増感型太陽電池の平面図である。図2は、図1の色素増感型太陽電池をA−A’断面で切断したときの図である。図3は、図1の色素増感型太陽電池をB−B’断面で切断したときの図である。
(Embodiment 1)
FIG. 1 is a plan view of the dye-sensitized solar cell according to Embodiment 1. FIG. FIG. 2 is a diagram of the dye-sensitized solar cell of FIG. 1 cut along the AA ′ cross section. FIG. 3 is a view of the dye-sensitized solar cell of FIG. 1 cut along the BB ′ section.

<色素増感型太陽電池>
図1、2に示すように、色素増感型太陽電池1は、透明導電性基板10上に隔壁部30を備えている。隔壁部30は、多孔質半導体層20をパターン状に間仕切るものである。図1では、多孔質半導体層20が、隔壁部30によって第一領域100から第五領域104に間仕切られている。そして、図2に示すように、第一領域100の多孔質半導体層20には第一増感色素50が吸着され、それ以外の領域の多孔質半導体層20には第一増感色素50とは色彩が異なる第二増感色素51が吸着されている。その結果、第一領域のパターン形状(「N」の形状)が表面に浮かび上がり、デザイン性の高い色素増感型太陽電池1となっている。
<Dye-sensitized solar cell>
As shown in FIGS. 1 and 2, the dye-sensitized solar cell 1 includes a partition wall 30 on a transparent conductive substrate 10. The partition wall 30 partitions the porous semiconductor layer 20 in a pattern. In FIG. 1, the porous semiconductor layer 20 is partitioned from a first region 100 to a fifth region 104 by a partition wall 30. As shown in FIG. 2, the first sensitizing dye 50 is adsorbed to the porous semiconductor layer 20 in the first region 100, and the first sensitizing dye 50 and the porous semiconductor layer 20 in other regions are combined. The second sensitizing dye 51 having a different color is adsorbed. As a result, the pattern shape of the first region (“N” shape) appears on the surface, and the dye-sensitized solar cell 1 with high design properties is obtained.

また、図1、図3に示すように、上記隔壁部30は、集電線31と保護層32から構成され、上記集電線31は、透明導電性基板10の周縁部に形成された電極取出部40と接続されている。このように構成することで、上記色素増感型太陽電池1は、第一領域100から第五領域104に形成された増感色素から電子を効率的に取り出すことができる。よって、別途色素増感型太陽電池1に集電線31を設ける必要がなくなる。その結果、実施の形態1の色素増感型太陽電池1は、高い意匠性と、高い発電効率を兼ね備えた色素増感型太陽電池1となっている。   Moreover, as shown in FIGS. 1 and 3, the partition wall portion 30 includes a current collecting wire 31 and a protective layer 32, and the current collecting wire 31 is an electrode lead-out portion formed at the peripheral edge of the transparent conductive substrate 10. 40. With this configuration, the dye-sensitized solar cell 1 can efficiently extract electrons from the sensitizing dye formed in the first region 100 to the fifth region 104. Therefore, it is not necessary to separately provide the collector line 31 in the dye-sensitized solar cell 1. As a result, the dye-sensitized solar cell 1 of the first embodiment is a dye-sensitized solar cell 1 that has both high designability and high power generation efficiency.

すなわち、実施の形態1において、隔壁部は、多孔質半導体層をパターン状に仕切る機能と、上記で仕切った多孔質半導体層から電子を取り出す機能を備えている。その結果、実施の形態1の色素増感型太陽電池は、隔壁部の他に集電線を設ける必要がないので、高い意匠性と、高い発電効率を兼ね備えた色素増感型太陽電池となっている。   That is, in Embodiment 1, the partition wall portion has a function of partitioning the porous semiconductor layer into a pattern and a function of taking out electrons from the porous semiconductor layer partitioned as described above. As a result, since the dye-sensitized solar cell of Embodiment 1 does not need to provide a current collector in addition to the partition wall portion, the dye-sensitized solar cell has both high designability and high power generation efficiency. Yes.

<透明導電性基板>
図2に示すように、透明導電性基板10は、基板11の上に透明導電膜12を形成した構成からなっている。
<Transparent conductive substrate>
As shown in FIG. 2, the transparent conductive substrate 10 has a configuration in which a transparent conductive film 12 is formed on a substrate 11.

基板は、透明なガラス板やプラスチック板等から成る。基板の厚みは0.1〜5mm程度である。   The substrate is made of a transparent glass plate or plastic plate. The thickness of the substrate is about 0.1 to 5 mm.

透明導電膜は、有機材料や無機材料からなる。有機材料としては、導電性高分子材料を使用できる。上記導電性高分子材料の中でも、ポリスチレンスルホン酸(PSS)と3,4−エチレンジオキシチオフェン(EDOT)を用いて作成される水分散ポリチオフェン誘導体(PEDOT:PSS)を用いることが好ましい。水分散ポリチオフェン誘導体(PEDOT:PSS)は透明性が高く、導電性も高い。そのため、水分散ポリチオフェン誘導体(PEDOT:PSS)を透明導電膜に用いることによって、色素増感型太陽電池内に外部からの光を効率的に取り込むことができるとともに、色素増感から発生した電子を効率的に電極取出部に輸送することができる。その結果、エネルギー効率の高い色素増感型太陽電池となるためである。また上記に加え、水分散ポリチオフェン誘導体(PEDOT:PSS)は水溶性であるので、上記透光性基板の上に容易に透明導電膜を形成できるといった長所も有する。   The transparent conductive film is made of an organic material or an inorganic material. As the organic material, a conductive polymer material can be used. Among the conductive polymer materials, it is preferable to use a water-dispersed polythiophene derivative (PEDOT: PSS) prepared using polystyrene sulfonic acid (PSS) and 3,4-ethylenedioxythiophene (EDOT). The water-dispersed polythiophene derivative (PEDOT: PSS) has high transparency and high conductivity. For this reason, by using a water-dispersed polythiophene derivative (PEDOT: PSS) as a transparent conductive film, it is possible to efficiently incorporate light from the outside into the dye-sensitized solar cell and to generate electrons generated from the dye sensitization. It can be efficiently transported to the electrode extraction part. As a result, a dye-sensitized solar cell with high energy efficiency is obtained. In addition to the above, since the water-dispersed polythiophene derivative (PEDOT: PSS) is water-soluble, it has an advantage that a transparent conductive film can be easily formed on the translucent substrate.

無機材料としては、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物などの無機酸化物を使用することができる。なお、透明導電膜の厚みは0.3〜2μm程度が好ましい。0.3μm未満では、シート抵抗が高くなり、色素増感型太陽電池の直列抵抗が高くなるため、フィルファクター特性が悪くなる傾向がある。この場合、透明導電膜は、CVD法、スパッタリング法、スプレー法等によって形成される。   As the inorganic material, an inorganic oxide such as fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide can be used. The thickness of the transparent conductive film is preferably about 0.3 to 2 μm. When the thickness is less than 0.3 μm, the sheet resistance increases, and the series resistance of the dye-sensitized solar cell increases, so that the fill factor characteristic tends to be deteriorated. In this case, the transparent conductive film is formed by a CVD method, a sputtering method, a spray method, or the like.

さらに、透明導電膜はアクリル、ポリエステル、ポリウレタン、ポリ塩化ビニルなどのバインダー樹脂と、導電性ナノファイバーとから構成されていてもよい。この場合、透明導電膜は、塗装やインクジェットなどの方法で設けることができ、透明導電膜の厚みは数十nmから数百nmの範囲で適宜設定可能である。なお、厚みが数十nmより薄いと層としての強度が不足し、厚みが数百nmより厚いと層としての柔軟性がなくなり加工が困難となる。導電性ナノファイバーを構成する材料としては、カーボンナノファイバーのほか、金、銀、白金、銅、パラジウムなどの金属イオンを担持した前駆体表面にプローブの先端部から印加電圧又は電流を作用させ連続的にひき出して作製した金属ナノワイヤや、透光性基板上に原料ガスを導入しCVD法により作製したグラファイトナノファイバー、ペプチド又はその誘導体が自己組織化的に形成したナノファイバーに金粒子を付加してなるペプチドナノファイバーなどが挙げられる。   Furthermore, the transparent conductive film may be composed of a binder resin such as acrylic, polyester, polyurethane, and polyvinyl chloride, and conductive nanofibers. In this case, the transparent conductive film can be provided by a method such as painting or inkjet, and the thickness of the transparent conductive film can be appropriately set within a range of several tens of nm to several hundreds of nm. When the thickness is less than several tens of nm, the strength as a layer is insufficient, and when the thickness is greater than several hundred nm, the flexibility as the layer is lost and processing becomes difficult. In addition to carbon nanofibers, conductive nanofibers can be made continuously by applying an applied voltage or current from the tip of the probe to the surface of a precursor carrying metal ions such as gold, silver, platinum, copper, and palladium. Gold particles are added to metal nanowires produced by pulling them out, or nanofibers formed by self-organizing graphite nanofibers, peptides or their derivatives produced by introducing a source gas onto a light-transmitting substrate and using the CVD method And peptide nanofibers.

<多孔質半導体層>
多孔質半導体層20は、増感色素を吸着し、透明導電性基板10上に増感色素を保持するものである。
<Porous semiconductor layer>
The porous semiconductor layer 20 adsorbs a sensitizing dye and holds the sensitizing dye on the transparent conductive substrate 10.

多孔質半導体層としては、酸化チタン(TiO2)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),錫(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の金属酸化物半導体がよく、例えば、TiO2、WO3、ZnO、Nb2O5、Ta2O5、またはSrTiO3のうち少なくとも1つから成る。また窒素(N),炭素(C),フッ素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有していてもよい。酸化チタン等はいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。   Titanium oxide (TiO2) is optimal as the porous semiconductor layer, and other materials include titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), indium (In), yttrium ( Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), vanadium (V), tungsten (W), and other metals A metal oxide semiconductor of at least one kind of element is preferable, and is composed of, for example, at least one of TiO2, WO3, ZnO, Nb2O5, Ta2O5, or SrTiO3. Moreover, you may contain 1 or more types of nonmetallic elements, such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), phosphorus (P). Titanium oxide or the like is preferable because it has an electron energy band gap in the range of 2 to 5 eV, which is larger than the energy of visible light.

多孔質半導体層としては、上記材料からなるとともに内部に微細な空孔を多数有する多孔質のn型酸化物半導体層であることが好ましい。さらに上記空孔の直径は、10〜40nmであることが好ましい。直径が10nm未満の場合、上記交互共重合体の浸透吸着が阻害され、上記交互共重合体について十分な吸着量が得られにくく、また、電解質の拡散が妨げられるために拡散抵抗が増大することから、光電変換効率が低下する傾向がある。40nmを超えると、多孔質半導体層の比表面積が減少するため上記交互共重合体の吸着量が減少し、さらに、光が透過しにくくなり、上記交互共重合体が光を吸収できなくなる。また、多孔質半導体層に注入された電荷の移動距離が長くなるため電荷の再結合によるロスが大きくなること、さらに、電解質の拡散距離も増大するため拡散抵抗が増大することから、やはり光電変換効率が低下する傾向がある。   The porous semiconductor layer is preferably a porous n-type oxide semiconductor layer made of the above material and having a large number of fine pores inside. Furthermore, the diameter of the holes is preferably 10 to 40 nm. When the diameter is less than 10 nm, the osmotic adsorption of the alternating copolymer is hindered, it is difficult to obtain a sufficient amount of adsorption for the alternating copolymer, and the diffusion resistance increases because the diffusion of the electrolyte is hindered. Therefore, the photoelectric conversion efficiency tends to decrease. If it exceeds 40 nm, the specific surface area of the porous semiconductor layer is reduced, so that the amount of adsorption of the alternating copolymer is reduced, and light is hardly transmitted, and the alternating copolymer cannot absorb light. In addition, since the transfer distance of the charge injected into the porous semiconductor layer becomes long, loss due to charge recombination increases, and further, the diffusion resistance increases because the diffusion distance of the electrolyte also increases. Efficiency tends to decrease.

多孔質半導体層は、粒状体、または針状体,チューブ状体,柱状体等の線状体またはこれら種々の線状体が集合してなるものであることにより、増感色素を吸着する表面積が増え、光電変換効率を高めることができる。多孔質半導体層は、空孔率が20〜80%であることが好ましく、40〜60%であることがより好ましい。多孔質化により、緻密体である場合と比較して、光作用極層としての表面積を1000倍以上に高めることができ、光吸収と光電変換と電子伝導を効率よく行うことができるためである。   The porous semiconductor layer has a surface area that adsorbs a sensitizing dye by being a granular body, or a linear body such as a needle-shaped body, a tubular body, a columnar body, or a collection of these various linear bodies. And the photoelectric conversion efficiency can be increased. The porous semiconductor layer preferably has a porosity of 20 to 80%, and more preferably 40 to 60%. This is because the surface area as the light-working electrode layer can be increased by 1000 times or more by making the porous body more dense, and light absorption, photoelectric conversion, and electron conduction can be performed efficiently. .

なお、多孔質半導体層の空孔率は、ガス吸着測定装置を用いて窒素ガス吸着法によって試料の等温吸着曲線を求め、BJH(Barrett-Joyner-Halenda)法,CI(Chemical Ionizati-on)法,DH(Dollimore-Heal)法等によって空孔容積を求め、これと試料の粒子密度から得ることができる。   The porosity of the porous semiconductor layer is determined by obtaining an isothermal adsorption curve of the sample by a nitrogen gas adsorption method using a gas adsorption measuring device, and using a BJH (Barrett-Joyner-Halenda) method, a CI (Chemical Ionizati-on) method , DH (Dollimore-Heal) method or the like can be used to determine the pore volume and obtain it from the particle density of the sample.

多孔質半導体層の形状は、その表面積が大きくかつ電気抵抗が小さいものがよく、例えば微細粒子もしくは微細線状体からなるのがよい。その平均粒径もしくは平均線径は5〜500nmであるのがよく、より好適には10〜200nmである。平均粒径もしくは平均線径が5nm未満であると材料の微細化ができず、500nmを超えると接合面積が小さくなり、光電流が著しく小さくなるためである。   The shape of the porous semiconductor layer is preferably that having a large surface area and low electrical resistance, and is preferably composed of fine particles or fine linear bodies, for example. The average particle diameter or average wire diameter is preferably 5 to 500 nm, and more preferably 10 to 200 nm. If the average particle diameter or the average wire diameter is less than 5 nm, the material cannot be miniaturized, and if it exceeds 500 nm, the junction area is reduced, and the photocurrent is significantly reduced.

なお、多孔質半導体層を微粒子の多孔質から構成することにより、微細孔に上記交互共重合体を担持し表面が凹凸状となり光閉じ込め効果をもたらすため、光電変換効率をより高めることができる。   By forming the porous semiconductor layer from a fine porous particle, the alternating copolymer is supported in the fine pores, and the surface becomes uneven, thereby providing a light confinement effect, so that the photoelectric conversion efficiency can be further increased.

また、多孔質半導体層の厚みは1〜15μmであることが好ましい。厚みが1μm未満であると光電変換作用が著しく小さくなって実用に適さず、15μmを超えて厚みが厚くなると、多孔質半導体層と対向電極の絶縁が困難になる。   Moreover, it is preferable that the thickness of a porous semiconductor layer is 1-15 micrometers. If the thickness is less than 1 μm, the photoelectric conversion effect is remarkably reduced and is not suitable for practical use. If the thickness exceeds 15 μm, the insulation between the porous semiconductor layer and the counter electrode becomes difficult.

さらに、多孔質半導体層は、酸化物半導体微粒子の焼結体から成るとともに、酸化物半導体微粒子の平均粒径が透光性基板側より厚み方向に漸次大きくなっていることが好ましく、例えば多孔質半導体層が酸化物半導体微粒子の平均粒径が異なる2層の積層体からなることが好ましい。具体的には、透明導電膜上に平均粒径が小さい酸化物半導体微粒子を用い、その形成した半導体層の上に平均粒径が大きい酸化物半導体微粒子(散乱粒子)を用いることで、平均粒径が大きい多孔質半導体層によって光散乱と光反射による光閉じ込め効果が生じ、光電変換効率を高めることができる。   Further, the porous semiconductor layer is preferably composed of a sintered body of oxide semiconductor fine particles, and the average particle diameter of the oxide semiconductor fine particles is preferably gradually increased in the thickness direction from the translucent substrate side. The semiconductor layer is preferably composed of a two-layer laminate in which the average particle diameter of the oxide semiconductor fine particles is different. Specifically, the oxide semiconductor fine particles having a small average particle diameter are used on the transparent conductive film, and the oxide semiconductor fine particles having a large average particle diameter (scattering particles) are used on the formed semiconductor layer. The porous semiconductor layer having a large diameter produces a light confinement effect due to light scattering and light reflection, and can increase the photoelectric conversion efficiency.

より具体的には、平均粒径が小さい酸化物半導体微粒子として、平均粒径が約20nmのものを100wt%(重量%)使用し、平均粒径が大きい酸化物半導体微粒子として、平均粒径が約10nmのものを10wt%、および平均粒径が約400nmのものを90wt%混合して使用する。これらの重量比、平均粒径、それぞれの膜厚を変えることによって、最適な光閉じ込め効果が得られる。   More specifically, as oxide semiconductor fine particles having a small average particle diameter, 100 wt% (wt%) having an average particle diameter of about 20 nm is used, and as the oxide semiconductor fine particles having a large average particle diameter, the average particle diameter is A mixture having a particle size of about 10 nm and a weight average particle size of about 400 nm is used. By changing the weight ratio, the average particle diameter, and the respective film thicknesses, an optimum light confinement effect can be obtained.

<隔壁部>
図1、2で示すように、隔壁部30は、集電線31が保護層32よって被覆された構成からなる。
<Partition wall>
As shown in FIGS. 1 and 2, the partition wall portion 30 has a configuration in which a current collecting wire 31 is covered with a protective layer 32.

なお、隔壁部30の断面形状は、四角形状が好ましい。集電線の被覆効果が高くなるためである。また、隔壁部の面積を小さくして多孔質半導体層の面積を大きくできるので、発電効果を高めることができるからである。   In addition, the cross-sectional shape of the partition part 30 has preferable square shape. This is because the covering effect of the current collecting wire is increased. Moreover, since the area of the partition wall can be reduced and the area of the porous semiconductor layer can be increased, the power generation effect can be enhanced.

集電線は、多孔質半導体層と電極取出部とを電気的に接続するために形成され、導電粒子とガラス微粒子とから構成される。この場合、導電性粒子が70〜95重量%程度含有されていることが好ましい。導電性粒子の含有量が70重量%未満では、導電性が悪くなり、95重量%を超えると、印刷パターン形成が困難となる。また、導電性粒子の平均粒径は0.5〜15μmが好ましい。0.5μm未満では、導電率への寄与が小さくなり、15μmを超えると、望ましいパターン精度が得られ難くなる。なお、集電線として銀ペーストを用いることもできる。   The current collector is formed in order to electrically connect the porous semiconductor layer and the electrode extraction part, and is composed of conductive particles and glass fine particles. In this case, it is preferable that about 70 to 95% by weight of conductive particles are contained. When the content of the conductive particles is less than 70% by weight, the conductivity is deteriorated, and when it exceeds 95% by weight, it is difficult to form a printed pattern. The average particle size of the conductive particles is preferably 0.5 to 15 μm. If the thickness is less than 0.5 μm, the contribution to the conductivity is small, and if it exceeds 15 μm, it is difficult to obtain a desired pattern accuracy. In addition, a silver paste can also be used as a current collector.

なお、導電粒子としては、アルミニウム,クロム,ニッケル,コバルト及びチタンなどが挙げられる。ガラス微粒子としては、低融点ガラスが挙げられる。   Examples of the conductive particles include aluminum, chromium, nickel, cobalt, and titanium. Examples of the glass fine particles include low-melting glass.

集電線の幅は20〜140μmが好ましい。20μm未満では集電線の抵抗値が高くなり、140μmを越えると発電効率が下がる。集電線の厚みは、0.5μm〜10μmであることが好ましい。0.5μm未満であると抵抗値が高くなり、10μmを越えると集電線の形成が困難となる。さらには対向電極との距離が広がり効率が悪くなったり、多孔質半導体層での散乱強度の低下が発生し易くなる。140μmを超えると、電解質において電流損失が増大し易くなる。   The width of the current collecting wire is preferably 20 to 140 μm. If the thickness is less than 20 μm, the resistance value of the current collecting line becomes high, and if it exceeds 140 μm, the power generation efficiency decreases. The thickness of the current collector is preferably 0.5 μm to 10 μm. If the thickness is less than 0.5 μm, the resistance value is high, and if it exceeds 10 μm, it is difficult to form a current collector. Furthermore, the distance to the counter electrode increases and the efficiency becomes poor, and the scattering intensity in the porous semiconductor layer tends to decrease. When it exceeds 140 μm, current loss tends to increase in the electrolyte.

保護層は、電荷移動層の電解質から集電線を保護するものである。保護層は、Bi2O3,ZnO,B2O3,SiO2,MgO等を含むガラスから構成される。集電線を覆う保護層の幅は100〜300μmが好ましい。100μm未満では、集電線がパターン精度の不具合で電解質液層に露出し易くなり、300μmを超えると、受光面積が小さくなる。   The protective layer protects the current collector from the electrolyte of the charge transfer layer. The protective layer is made of glass containing Bi2O3, ZnO, B2O3, SiO2, MgO and the like. The width of the protective layer covering the current collector is preferably 100 to 300 μm. If the thickness is less than 100 μm, the current collector tends to be exposed to the electrolyte solution layer due to a defect in pattern accuracy, and if it exceeds 300 μm, the light receiving area becomes small.

<電極取出部>
電極取出部は、集電線から電子を受け取り、導線を介して電子を対向電極(カソード側)へと移動させる部材である。なお、電極取出部の材質、厚み、形成方法は、集電線と同じである。
<Electrode extraction part>
The electrode extraction part is a member that receives electrons from the current collector and moves the electrons to the counter electrode (cathode side) via the conducting wire. The material, thickness, and formation method of the electrode extraction part are the same as those of the current collector.

<取出部保護層>
取出部保護層は、電荷輸送層から電極取出部を保護するものである。なお。取出部保護層41の材質、厚み、形成方法は、保護層と同じである。
<Outlet protection layer>
The extraction part protective layer protects the electrode extraction part from the charge transport layer. Note that. The material, thickness, and formation method of the extraction part protective layer 41 are the same as those of the protective layer.

<第一増感色素および第二増感色素>
第一増感色素、第二増感色素は電子を多孔質半導体層に放出するとともに、色素増感型太陽電池の表面に多様な色彩を付与するものである。従って、第一増感色素と第二増感色素は、増感作用を有し、色彩が異なっていれば特に限定されない。
<First sensitizing dye and second sensitizing dye>
The first sensitizing dye and the second sensitizing dye emit electrons to the porous semiconductor layer and impart various colors to the surface of the dye-sensitized solar cell. Therefore, the first sensitizing dye and the second sensitizing dye are not particularly limited as long as they have a sensitizing action and have different colors.

そのような、第一増感色素、第二増感色素としては、有機色素または金属錯体色素を使用することができ、有機色素としては、アクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系の色素が挙げられ、金属錯体色素では、ルテニウム系色素が好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素が好ましい。例えば、酸化物半導体膜だけでは、可視光(400〜800nm程度の波長)を殆ど吸収できないが、ルテニウム錯体を担持させることにより、大幅に可視光まで取り込んで光電変換できるようになる。   As such a first sensitizing dye and a second sensitizing dye, an organic dye or a metal complex dye can be used. As an organic dye, an acridine type, an azo type, an indigo type, a quinone type, a coumarin type can be used. Merocyanine dyes and phenylxanthene dyes, and ruthenium dyes are preferable as metal complex dyes, and ruthenium bipyridine dyes and ruthenium terpyridine dyes which are ruthenium complexes are particularly preferable. For example, visible light (wavelength of about 400 to 800 nm) can hardly be absorbed with only an oxide semiconductor film, but by supporting a ruthenium complex, visible light can be significantly taken in and photoelectrically converted.

<電荷輸送層>
電荷輸送層は、対向電極(カソード側)から供給された電子を、上記増感色素に供与する層である。
<Charge transport layer>
The charge transport layer is a layer that donates electrons supplied from the counter electrode (cathode side) to the sensitizing dye.

電荷輸送層の材質としては、液状電解質もしくはゲル状電解質を用いることが好ましい。電荷の輸送特性に優れる液状電解質もしくはゲル状電解質を用いることによって、光電変換効率が向上する。また、電荷輸送層はポリマー電解質等の固体電解質、ポリチオフェン・ポリピロール,ポリフェニレンビニレン等の導電性ポリマー、またはフラーレン誘導体,ペンタセン誘導体,ペリレン誘導体,トリフェニルジアミン誘導体等の有機分子電子輸送剤から成るものであってもよい。   As a material for the charge transport layer, a liquid electrolyte or a gel electrolyte is preferably used. Photoelectric conversion efficiency is improved by using a liquid electrolyte or a gel electrolyte excellent in charge transport characteristics. The charge transport layer is composed of a solid electrolyte such as a polymer electrolyte, a conductive polymer such as polythiophene / polypyrrole or polyphenylene vinylene, or an organic molecular electron transport agent such as a fullerene derivative, a pentacene derivative, a perylene derivative, or a triphenyldiamine derivative. There may be.

なお、電荷輸送層はヨウ素/ヨウ化物塩,臭素/臭化物塩,コバルト錯体およびフェロシアン化カリウム等を含む。   The charge transport layer contains iodine / iodide salt, bromine / bromide salt, cobalt complex, potassium ferrocyanide and the like.

電荷輸送層の厚みは1〜500μmであることが好ましい。500μmを超えると電荷輸送時に抵抗が大きくなり、色素増感型太陽電池の高効率化ができない。   The thickness of the charge transport layer is preferably 1 to 500 μm. If it exceeds 500 μm, the resistance increases during charge transport, and the efficiency of the dye-sensitized solar cell cannot be increased.

<対向電極>
対向電極は、カソード電極を構成するものであり、透明導電性基板から送られてきた電子を電荷輸送層に供与するものである。なお、対向電極は基板の上に、導電層と触媒層がこの順番で形成された構成からなっている。
<Counter electrode>
The counter electrode constitutes a cathode electrode and supplies electrons sent from the transparent conductive substrate to the charge transport layer. The counter electrode has a configuration in which a conductive layer and a catalyst layer are formed in this order on a substrate.

基板は、ガラス板やプラスチック板等から成り、厚みは0.1〜20mm程度である。   A board | substrate consists of a glass plate, a plastic plate, etc., and thickness is about 0.1-20 mm.

導電層の材質としては、フッ素ドープ酸化スズ(FTO)、スズドープインジウム(ITO)アルミドープ亜鉛(AZO)、ガリウムドープ亜鉛(GZO)、ニオブドープ酸化チタン(NTO)などが挙げられる。上記の中でも、フッ素ドープ酸化スズ(FTO)を用いることが好ましい。フッ素ドープ酸化スズ(FTO)を用いることによって、色素増感型太陽電池の変換効率が向上する。   Examples of the material for the conductive layer include fluorine-doped tin oxide (FTO), tin-doped indium (ITO), aluminum-doped zinc (AZO), gallium-doped zinc (GZO), and niobium-doped titanium oxide (NTO). Among the above, it is preferable to use fluorine-doped tin oxide (FTO). By using fluorine-doped tin oxide (FTO), the conversion efficiency of the dye-sensitized solar cell is improved.

導電層の厚みは、0.1〜10μmであることが好ましい。0.1μm未満では、高い導電度を得ることができない。10μmを超えると、色素増感型太陽電池が光を透過することができない。なお導電層はケミカルベーパーディポジション(CVD)、スプレー熱分解法(SPD)、スパッタリングなどの方法によって、基板の上に形成される。   The thickness of the conductive layer is preferably 0.1 to 10 μm. If it is less than 0.1 μm, high conductivity cannot be obtained. If it exceeds 10 μm, the dye-sensitized solar cell cannot transmit light. The conductive layer is formed on the substrate by a method such as chemical vapor deposition (CVD), spray pyrolysis (SPD), or sputtering.

触媒層の材質としては、白金、炭素、ポリチオフェン誘導体などが挙げられる。上記の中でも、白金を用いることが好ましい。白金を用いることによって、変換効率と透明性が向上する。触媒層の厚みは0.1〜100 nmであることが好ましい。0.1μm未満では、電荷輸送層を構成する材料を還元できない。100μmを超えると、コストがかかりすぎる。さらには、光を透過する色素増感型太陽電池を作成することができない。なお、触媒層はドクターブレード、スクリーン印刷、スプレー塗布、インクジェットなどの方法によって、導電層の上に形成される。   Examples of the material for the catalyst layer include platinum, carbon, and polythiophene derivatives. Among the above, it is preferable to use platinum. By using platinum, conversion efficiency and transparency are improved. The thickness of the catalyst layer is preferably 0.1 to 100 nm. If the thickness is less than 0.1 μm, the material constituting the charge transport layer cannot be reduced. If it exceeds 100 μm, the cost is too high. Furthermore, a dye-sensitized solar cell that transmits light cannot be produced. The catalyst layer is formed on the conductive layer by a method such as doctor blade, screen printing, spray coating, or ink jet.

<封止材>
封止材は、電荷輸送層を色素増感型太陽電池内に封止する部材である。封止材が電荷輸送層を封止するため、光電変換素子の光照射および高温加熱に対する耐久性及び信頼性を有効に保持できる。即ち、電荷輸送層が光照射および高温加熱によって色素増感型太陽電池から漏出するのを有効に抑えることができる。
<Encapsulant>
The encapsulant is a member that encapsulates the charge transport layer in the dye-sensitized solar cell. Since the sealing material seals the charge transport layer, the durability and reliability of the photoelectric conversion element against light irradiation and high-temperature heating can be effectively maintained. That is, leakage of the charge transport layer from the dye-sensitized solar cell due to light irradiation and high-temperature heating can be effectively suppressed.

封止材の材質としては、アクリレート系のUV硬化樹脂、ポリエチレン,ポリプロピレン,エポキシ樹脂,フッ素樹脂またはシリコーン樹脂等の樹脂接着剤、もしくはガラスフリット,セラミックス等の無機接着剤を挙げることができる。   Examples of the material of the sealing material include resin adhesives such as acrylate-based UV curable resins, polyethylene, polypropylene, epoxy resins, fluororesins or silicone resins, or inorganic adhesives such as glass frit and ceramics.

封止材の厚み(高さ)は、0.5〜500μmであることが好ましい。0.5μm未満では、多孔質半導体層の厚さが0.5μm以下となり、色素が光を十分吸収できなくなってしまう。なお、500μmを超えると、電荷輸送層が500μm近くになり、内部抵抗が大きくなる。なお、封止部材はホットプレス、UV硬化などの方法によって形成される。   The thickness (height) of the sealing material is preferably 0.5 to 500 μm. If the thickness is less than 0.5 μm, the thickness of the porous semiconductor layer becomes 0.5 μm or less, and the dye cannot sufficiently absorb light. When the thickness exceeds 500 μm, the charge transport layer becomes close to 500 μm and the internal resistance increases. The sealing member is formed by a method such as hot pressing or UV curing.

(実施の形態2)
図4は、実施の形態2に係る色素増感型太陽電池1の断面図である。基本的な構成は、実施の形態1と同様であるので、ここでは相違点についてのみ説明する。図4に示すように実施の形態2では、隔壁部30の上に隔壁保護層33が形成され、その隔壁保護層33が対向電極70まで達している。そして、隔壁保護層33が、各隔壁間30に形成された多孔質半導体層20と電荷輸送層66を間仕切っている。このように構成することで、集電線31が保護層32と隔壁保護層51で二重に被覆されるので、電荷輸送層60による集電線31の腐食をより確実に防止することができる。
(Embodiment 2)
FIG. 4 is a cross-sectional view of the dye-sensitized solar cell 1 according to the second embodiment. Since the basic configuration is the same as that of the first embodiment, only the differences will be described here. As shown in FIG. 4, in the second embodiment, a partition protection layer 33 is formed on the partition wall 30, and the partition protection layer 33 reaches the counter electrode 70. The partition protective layer 33 partitions the porous semiconductor layer 20 and the charge transport layer 66 formed between the partition walls 30. By configuring in this manner, the current collecting wire 31 is doubly covered with the protective layer 32 and the partition wall protecting layer 51, so that the corrosion of the current collecting wire 31 by the charge transport layer 60 can be prevented more reliably.

<隔壁保護層>
隔壁保護層の材質としては、ポリエチレン,ポリプロピレン,エポキシ樹脂,フッ素樹脂またはシリコーン樹脂等の樹脂接着剤、もしくはガラスフリット,セラミックス等の無機接着剤を挙げることができる。
<Partition protective layer>
Examples of the material for the partition protective layer include resin adhesives such as polyethylene, polypropylene, epoxy resin, fluororesin or silicone resin, or inorganic adhesives such as glass frit and ceramics.

隔壁保護層の幅は、300〜2000μmであることが好ましい。300μm未満では、集電保護層を被服できなくなる。なお、2000μmを超えると、発電面積が小さくなるので発電効率が低下してしまう。   The width of the partition protective layer is preferably 300 to 2000 μm. If it is less than 300 μm, the current collecting protective layer cannot be covered. In addition, if it exceeds 2000 μm, the power generation area will be small, and the power generation efficiency will decrease.

(実施の形態3)
図5は、実施の形態3に係る色素増感型太陽電池1の平面図である。基本的な構成は、実施の形態1と同様であるので、ここでは相違点についてのみ説明する。図5に示すように実施の形態3では、隔壁部30が透明導電性基板10の上に独立して形成されている。そして、隔壁部30と電極取出部40を連結するために補助隔壁部90が隔壁部30と電極取出部40とに接続している。このように構成することで、隔壁部30は電極取出部40から独立して形成されるので、よりデザイン性の高い色素増感型太陽電池1となる。
(Embodiment 3)
FIG. 5 is a plan view of the dye-sensitized solar cell 1 according to the third embodiment. Since the basic configuration is the same as that of the first embodiment, only the differences will be described here. As shown in FIG. 5, in Embodiment 3, the partition wall 30 is formed independently on the transparent conductive substrate 10. An auxiliary partition wall 90 is connected to the partition wall 30 and the electrode extraction part 40 in order to connect the partition wall 30 and the electrode extraction part 40. By comprising in this way, since the partition part 30 is formed independently from the electrode extraction part 40, it becomes the dye-sensitized solar cell 1 with higher design property.

なお、隔壁補助部90は集電補助線91と保護補助層92からなっている。また、集電補助線91は保護補助層92によって被覆されている。補助集電線91と補助保護層92の材質、大きさについては、それぞれ集電線31、保護層32を構成するものと同じである。   The partition auxiliary portion 90 includes a current collecting auxiliary line 91 and a protective auxiliary layer 92. Further, the current collecting auxiliary line 91 is covered with a protective auxiliary layer 92. The materials and sizes of the auxiliary current collecting wire 91 and the auxiliary protective layer 92 are the same as those constituting the current collecting wire 31 and the protective layer 32, respectively.

次に、実施の形態1に係る色素増感型太陽電池1の製造方法について説明する。
<色素増感型太陽電池の製造方法>
色素増感型太陽電池1を得る方法としては、以下の各工程を含む。
Next, a method for manufacturing the dye-sensitized solar cell 1 according to Embodiment 1 will be described.
<Method for producing dye-sensitized solar cell>
The method for obtaining the dye-sensitized solar cell 1 includes the following steps.

図6(a)に示すように、透明導電性基板11の一方面上に透明導電膜12を形成して透明導電性基板10を得る。   As shown in FIG. 6A, a transparent conductive substrate 10 is obtained by forming a transparent conductive film 12 on one surface of the transparent conductive substrate 11.

透明導電膜としては、インジウムスズ酸化物かフッ素ドープしたスズ酸化物からなるのが好ましい。安価であり高温焼結工程において不活性であるためである。   The transparent conductive film is preferably made of indium tin oxide or fluorine-doped tin oxide. This is because it is inexpensive and inactive in the high-temperature sintering process.

次に、図6(b)に示すように、透明導電膜12上に多孔質半導体層20をパターン形成する。   Next, as shown in FIG. 6B, the porous semiconductor layer 20 is patterned on the transparent conductive film 12.

なお、多孔質半導体層は、酸化物半導体を高分子および溶剤に分散させたペーストを印刷し、焼結させることにより形成する。例えば、多孔質半導体層が酸化チタンからなる場合、以下のようにして形成される。まず、TiO2のアナターゼ粉末に酢酸を添加した後、脱イオン水とエタノールともに混練し、溶媒と高分子で安定化させた酸化チタンのペーストを調製する。調製したペーストをスクリーン印刷法、ドクターブレード法、バーコート法によって透明導電膜上に一定速度で塗布し、大気中で400〜600℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質半導体層を得る。   Note that the porous semiconductor layer is formed by printing and sintering a paste in which an oxide semiconductor is dispersed in a polymer and a solvent. For example, when the porous semiconductor layer is made of titanium oxide, it is formed as follows. First, acetic acid is added to a TiO 2 anatase powder, and then kneaded with deionized water and ethanol to prepare a titanium oxide paste stabilized with a solvent and a polymer. The prepared paste is applied on the transparent conductive film at a constant speed by a screen printing method, a doctor blade method, or a bar coating method, and is heated in the atmosphere at 400 to 600 ° C. for 10 to 60 minutes, preferably 20 to 40 minutes. By doing so, a porous semiconductor layer is obtained.

次に、図6(c)に示すように、多孔質半導体層20の形成されていない箇所に、隔壁部30を形成する。隔壁部30は集電線31を透明導電性基板10の上に形成したのち、保護層32が集電線31を被覆するようにして形成する。このように構成することで、多孔質半導体層20は、前の工程と本工程で2回焼成されることになるので、多孔質半導体層20中に含まれる不純物を殆ど取り除くことができる。その結果、多孔質半導体層の純度が高くなるので、発電効率の高い色素増感型太陽電池1となる。   Next, as shown in FIG. 6C, a partition wall 30 is formed at a location where the porous semiconductor layer 20 is not formed. The partition wall 30 is formed so that the protective layer 32 covers the current collector 31 after the current collector 31 is formed on the transparent conductive substrate 10. With such a configuration, the porous semiconductor layer 20 is baked twice in the previous step and in this step, so that impurities contained in the porous semiconductor layer 20 can be almost removed. As a result, since the purity of the porous semiconductor layer is increased, the dye-sensitized solar cell 1 with high power generation efficiency is obtained.

集電線の形成は、導電粒子とガラス微粒子を配合しペースト状にしたものを、スクリーン印刷法などの印刷法を用いて透明導電性基板上に形成し、加熱、焼成して、導電粒子を融着させることにより完了する。焼成の条件としては、特に限定されるものではないが、例えば、500〜550℃の温度で、1〜4時間かけて行う。   The current collector is formed by blending conductive particles and glass fine particles into a paste form on a transparent conductive substrate using a printing method such as screen printing, and then heating and firing to fuse the conductive particles. Complete by putting on. Although it does not specifically limit as conditions for baking, For example, it carries out at the temperature of 500-550 degreeC over 1 to 4 hours.

保護層の形成は、集電線の上に低融点ガラス等からなるペーストを印刷法などによって形成し、その後、乾燥、焼結して完了する。集電線と保護層とからなる隔壁部の厚みは多孔質半導体層の厚みより厚くなるよう行う。隔壁部の厚みが多孔質半導体層の厚みより厚ければ、次の増感色素を多孔質半導体層に含浸させる過程で、各区画に異なる増感色素を容易に含浸させることができる。   The formation of the protective layer is completed by forming a paste made of low-melting glass or the like on the current collector by a printing method or the like, and then drying and sintering. The partition wall made of the current collector and the protective layer is made thicker than the porous semiconductor layer. If the partition wall is thicker than the porous semiconductor layer, each compartment can be easily impregnated with a different sensitizing dye in the process of impregnating the porous semiconductor layer with the next sensitizing dye.

低融点ガラス等からなる保護層の焼結は、基板の歪点よりも20℃以上低い熱処理温度で行われることが望ましい。低融点ガラスの熱処理温度と基板の歪点との差が20℃未満であると、熱処理温度が制御しにくくなり、熱処理温度のばらつきが基板に変形や割れといった悪影響を与えるおそれが生じる。また、低融点ガラスの熱処理温度と基材の歪点との差が過剰に大きい場合には、使用可能な低融点ガラスが少なくなり保護層の材料の選択肢が狭くなる。   The sintering of the protective layer made of low-melting glass or the like is desirably performed at a heat treatment temperature that is 20 ° C. or more lower than the strain point of the substrate. If the difference between the heat treatment temperature of the low-melting glass and the strain point of the substrate is less than 20 ° C., the heat treatment temperature becomes difficult to control, and variations in the heat treatment temperature may adversely affect the substrate such as deformation and cracking. In addition, when the difference between the heat treatment temperature of the low-melting glass and the strain point of the base material is excessively large, the usable low-melting glass is reduced and the choice of the material for the protective layer is narrowed.

また、低融点ガラス等からなる保護層の熱処理温度は、例えば400℃〜550℃、より好ましくは、430℃〜530℃に調整される。保護層の熱処理温度が550℃を越えると、基材に悪影響を与えるおそれが生じる。また、保護層の熱処理温度が400℃未満であると、保護層の材料の選択肢が狭くなる。保護層は、前述した低融点ガラスの他に、各種樹脂としてもよい。この場合には、使用する樹脂の融点+50℃程度の熱処理温度が好ましく、例えば200℃〜350℃の範囲とすればよい。なお、保護層の焼成装置としては、公知の適切な方法を用いることができ、例えば、熱風循環オーブンやベルト炉を用いることができる   Moreover, the heat processing temperature of the protective layer which consists of low melting glass etc. is adjusted to 400 to 550 degreeC, for example, More preferably, it is 430 to 530 degreeC. If the heat treatment temperature of the protective layer exceeds 550 ° C, the substrate may be adversely affected. Further, when the heat treatment temperature of the protective layer is less than 400 ° C., the choice of the material for the protective layer becomes narrow. The protective layer may be made of various resins in addition to the low melting point glass described above. In this case, a heat treatment temperature of about the melting point of the resin to be used + 50 ° C. is preferable, and for example, it may be in the range of 200 ° C. to 350 ° C. In addition, as a protective layer baking apparatus, a well-known appropriate method can be used, for example, a hot air circulation oven or a belt furnace can be used.

次に、図6(d)に示すように、ディスペンサ200を用いて、種類の異なる増感色素(例えば、第一増感色素50、第二色素増感51)を多孔質半導体層20上の各区画に吸着させる。   Next, as shown in FIG. 6D, different kinds of sensitizing dyes (for example, the first sensitizing dye 50 and the second dye sensitizing 51) are placed on the porous semiconductor layer 20 using the dispenser 200. Adsorb to each compartment.

種類の異なる増感色素(例えば、第一増感色素50、第二色素増感51)の形成は、インクジェット法を用いて種類の異なる増感色素を各区画に印刷し、増感色素を多孔質半導体層上に吸着させることで完了する。なお、吸着後、余分な増感色素と残った液剤を除去するため、全体をエタノールですすぎ洗浄し、窒素でブロー乾燥する。なお、この製造方法では、異なる種類の増感色素を異なる区画に塗布することが出来る。そのため、解像度300dpi もしくはそれ以上の高画像品質の光電変換素子を作ることが出来る。   Different types of sensitizing dyes (for example, the first sensitizing dye 50 and the second dye sensitizing 51) are formed by printing different types of sensitizing dyes on each section using an ink jet method and making the sensitizing dye porous. It is completed by adsorbing on the porous semiconductor layer. After adsorption, in order to remove excess sensitizing dye and remaining liquid agent, the whole is rinsed with ethanol and blown dry with nitrogen. In this production method, different types of sensitizing dyes can be applied to different compartments. Therefore, a high-quality photoelectric conversion element having a resolution of 300 dpi or higher can be manufactured.

また、多孔質半導体層に増感色素(例えば、第一増感色素50、第二色素増感51)を効率的に吸着させるためには、増感色素に少なくとも1個以上のカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基等を置換基として有することが有効である。これら置換基は増感色素自体を多孔質半導体層に強固に化学吸着させることができ、励起状態の増感色素から多孔質の半導体層へ容易に電荷移動できるものであるためである。色素を吸着させる方法としては、例えば基板上に形成された多孔質半導体層を、増感色素を溶解した溶液に浸漬する方法が挙げられる。   In order to efficiently adsorb the sensitizing dye (for example, the first sensitizing dye 50 and the second dye sensitizing 51) to the porous semiconductor layer, the sensitizing dye has at least one carboxyl group or sulfonyl group. It is effective to have a group, a hydroxamic acid group, an alkoxy group, an aryl group, a phosphoryl group or the like as a substituent. This is because the sensitizing dye itself can be strongly chemically adsorbed to the porous semiconductor layer, and these substituents can easily transfer charges from the excited sensitizing dye to the porous semiconductor layer. Examples of the method for adsorbing the dye include a method in which a porous semiconductor layer formed on a substrate is immersed in a solution in which a sensitizing dye is dissolved.

多孔質半導体層に増感色素を吸着させる際の増感色素を溶解させる溶液の溶媒としては、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。溶液中の増感色素の濃度は5×10−5〜2×10−3mol/l(l(リットル):1000cm3)程度が好ましい。   Solvents for dissolving the sensitizing dye when adsorbing the sensitizing dye to the porous semiconductor layer include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, etc. May be one or a mixture of two or more. The concentration of the sensitizing dye in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (l (liter): 1000 cm 3).

多孔質半導体層に増感色素を吸着させる際、溶液及び雰囲気の温度の条件は特に限定するものではなく、例えば、大気圧下もしくは真空中、室温もしくは基板加熱の条件が挙げられる。増感色素の吸着にかける時間は増感色素及び溶液の種類、溶液の濃度、増感色素の溶液の循環量等により適宜調整することができる。これにより、増感色素を多孔質半導体層に吸着させることができる   When adsorbing the sensitizing dye to the porous semiconductor layer, the temperature conditions of the solution and the atmosphere are not particularly limited, and examples thereof include conditions under atmospheric pressure or in vacuum, room temperature, or substrate heating. The time required for adsorption of the sensitizing dye can be appropriately adjusted depending on the kind of the sensitizing dye and the solution, the concentration of the solution, the circulation amount of the solution of the sensitizing dye, and the like. Thereby, a sensitizing dye can be made to adsorb | suck to a porous semiconductor layer.

次に、図6(e)に示すように、透明導電性基板10の周縁部に封止材80を形成したのち、透明導電性基板10と対向電極70を貼り合せ封止する。なお、封止材の材質、形成方法は上述の通りである。   Next, as shown in FIG. 6E, after forming a sealing material 80 on the peripheral edge of the transparent conductive substrate 10, the transparent conductive substrate 10 and the counter electrode 70 are bonded and sealed. The material and the forming method of the sealing material are as described above.

最後に、図6(f)に示すように、透明導電性基板10と対向電極70の間にできた隙間に電解液を注入し、電荷輸送層60を形成して、色素増感型太陽電池1を得る。なお、電荷輸送層の材質は上述の通りである。   Finally, as shown in FIG. 6 (f), an electrolyte solution is injected into a gap formed between the transparent conductive substrate 10 and the counter electrode 70 to form a charge transport layer 60, thereby forming a dye-sensitized solar cell. Get one. The material of the charge transport layer is as described above.

上記方法によれば、透明導電性基板上に多孔質性半導体層を形成して、多孔質性半導体層を所定のパターンに除去したのち、除去した部分に隔壁部を形成するといった工程や、バンク構造を形成するといった工程を経ることなくして多孔質半導体層に複数の増感色素を染め分けできる。従って、色彩豊かな色素増感型太陽電池を簡便に作成することができる製造方法である。   According to the above method, a step of forming a porous semiconductor layer on a transparent conductive substrate, removing the porous semiconductor layer into a predetermined pattern, and then forming a partition wall in the removed portion, A plurality of sensitizing dyes can be dyed separately in the porous semiconductor layer without going through a process of forming a structure. Therefore, it is a manufacturing method that can easily produce a dye-sensitized solar cell rich in color.

1:色素増感型太陽電池
10:透明導電性基板
11:透明基板
12:透明導電膜
20:多孔質半導体層
30:隔壁部
31:集電線
32:保護層
33:隔壁保護層
40:電極取出部
41:取出部保護層
50:第一色素増感
51:第二色素増感
60:電荷輸送層
70:対向電極
80:封止材
90:補助隔壁部
91:補助集電線
92:補助保護層
100:第一多孔質半導体領域
101:第二多孔質半導体領域
102:第三多孔質半導体領域
103:第四多孔質半導体領域
200:ディスペンサ
1: Dye-sensitized solar cell 10: Transparent conductive substrate 11: Transparent substrate 12: Transparent conductive film 20: Porous semiconductor layer 30: Partition part 31: Current collector 32: Protection layer 33: Partition protection layer 40: Extraction of electrode Part 41: Extraction part protective layer 50: First dye sensitization 51: Second dye sensitization 60: Charge transport layer 70: Counter electrode 80: Sealing material 90: Auxiliary partition 91: Auxiliary collector 92: Auxiliary protective layer 100: First porous semiconductor region 101: Second porous semiconductor region 102: Third porous semiconductor region 103: Fourth porous semiconductor region 200: Dispenser

Claims (5)

透明導電性基板上に配された多孔質半導体層に複数の色素を染め分ける色素増感型太陽電池の製造方法であって、
前記透明導電性基板上に間隔を空けて前記多孔質半導体層を印刷法によって複数形成する第一工程と、
前記間隔を空けた箇所に集電線を形成する第二工程と、
前記集電線を保護層で被覆して、前記多孔質半導体層の高さよりも高い隔壁部を形成し、前記複数形成された多孔質半導体層をそれぞれ隔離する第三工程と、
前記隔離された多孔質半導体層のうち隣接する多孔質半導体層に異なる色素増感剤を含浸させる第三工程と、
を少なくとも備える色素増感型太陽電池の製造方法。
A method for producing a dye-sensitized solar cell in which a plurality of dyes are dyed on a porous semiconductor layer disposed on a transparent conductive substrate,
A first step of forming a plurality of porous semiconductor layers by a printing method at intervals on the transparent conductive substrate;
A second step of forming a current collector at the spaced-apart location;
Covering the current collector with a protective layer, forming a partition wall higher than the height of the porous semiconductor layer, and separating each of the plurality of formed porous semiconductor layers;
A third step of impregnating different porous semiconductor layers among the isolated porous semiconductor layers with different dye sensitizers;
A method for producing a dye-sensitized solar cell comprising at least
透明導電性基板上に配された多孔質半導体層に複数の色素が染め分けられ、前記透明導電性基板上にデザインパターンが描かれた色素増感型太陽電池であって、
前記透明導電性基板と、
前記透明導電性基板上に配された集電線と前記集電線を被覆する保護層とからなり前記透明導電性基板上に描かれたデザインパターンの輪郭部分を構成する隔壁部と、
前記隔壁部の各隔壁間に配される多孔質半導体層と、
前記各隔壁間に形成された前記多孔質半導体層のうち、少なくとも一の隔壁間に形成された前記多孔質半導体層に吸着される第一増感色素と、
前記第一増感色素が吸着された前記多孔質半導体層以外の多孔質半導体層に吸着される第二増感色素と、
前記透明導電性基板上の少なくとも一方辺に形成され、前記集電線と接続し前記第一増感色素および第二増感色素から放出された電子を外部に取り出す電極取出し部と
前記透明導電性基板と対向するように、前記多孔質半導体層上に前記多孔質半導体層とは離間して形成される対向電極と、
前記多孔質半導体層と前記対向電極との間に形成される電荷輸送層と、
前記電荷輸送層が系外に出ないよう前記透明導電性基板と前記対向電極とを封止する封止材とを備える色素増感型太陽電池。
A dye-sensitized solar cell in which a plurality of dyes are dyed separately on a porous semiconductor layer disposed on a transparent conductive substrate, and a design pattern is drawn on the transparent conductive substrate,
The transparent conductive substrate;
A partition wall portion constituting a contour portion of a design pattern drawn on the transparent conductive substrate, comprising a current collector disposed on the transparent conductive substrate and a protective layer covering the current collector;
A porous semiconductor layer disposed between the partition walls of the partition wall;
A first sensitizing dye adsorbed on the porous semiconductor layer formed between at least one of the porous semiconductor layers formed between the partition walls;
A second sensitizing dye adsorbed on a porous semiconductor layer other than the porous semiconductor layer on which the first sensitizing dye is adsorbed;
An electrode extraction portion formed on at least one side of the transparent conductive substrate, connected to the current collector, and for extracting electrons emitted from the first sensitizing dye and the second sensitizing dye to the outside; and the transparent conductive substrate A counter electrode formed on the porous semiconductor layer so as to be spaced apart from the porous semiconductor layer,
A charge transport layer formed between the porous semiconductor layer and the counter electrode;
A dye-sensitized solar cell comprising: a sealing material that seals the transparent conductive substrate and the counter electrode so that the charge transport layer does not go out of the system.
透明導電性基板上に配された多孔質半導体層に複数の色素が染め分けられ、前記透明導電性基板上にデザインパターンが描かれた色素増感型太陽電池であって、
前記透明導電性基板と、
前記透明導電性基板上に配された集電線と前記集電線を被覆する保護層とからなり前記透明導電性基板上に描かれたデザインパターンの輪郭部分を構成する隔壁部と、
前記隔壁部の各隔壁間に配される多孔質半導体層と、
前記各隔壁間に形成された前記多孔質半導体層のうち、少なくとも一の隔壁間に形成された前記多孔質半導体層に吸着される第一増感色素と、
前記第一増感色素が吸着された前記多孔質半導体層以外の多孔質半導体層に吸着される第二増感色素と、
前記透明導電性基板上の少なくとも一方辺に形成される電極取出部と、
前記隔壁部と前記電極取出部と接続し前記第一増感色素および第二増感色素から放出された電子を前記電極取出部まで導くと補助隔壁部と、
前記透明導電性基板と対向するように、前記多孔質半導体層上に前記多孔質半導体層とは離間して形成される対向電極と、
前記多孔質半導体層と前記対向電極との間に形成される電荷輸送層と、
前記電荷輸送層が系外に出ないよう前記透明導電性基板と前記対向電極とを封止する封止材とを備える色素増感型太陽電池。
A dye-sensitized solar cell in which a plurality of dyes are dyed separately on a porous semiconductor layer disposed on a transparent conductive substrate, and a design pattern is drawn on the transparent conductive substrate,
The transparent conductive substrate;
A partition wall portion constituting a contour portion of a design pattern drawn on the transparent conductive substrate, comprising a current collector disposed on the transparent conductive substrate and a protective layer covering the current collector;
A porous semiconductor layer disposed between the partition walls of the partition wall;
A first sensitizing dye adsorbed on the porous semiconductor layer formed between at least one of the porous semiconductor layers formed between the partition walls;
A second sensitizing dye adsorbed on a porous semiconductor layer other than the porous semiconductor layer on which the first sensitizing dye is adsorbed;
An electrode extraction portion formed on at least one side of the transparent conductive substrate;
When the partition part and the electrode extraction part are connected and the electrons emitted from the first sensitizing dye and the second sensitizing dye are guided to the electrode extraction part, an auxiliary partition part,
A counter electrode formed on the porous semiconductor layer so as to be opposed to the porous semiconductor layer so as to face the transparent conductive substrate;
A charge transport layer formed between the porous semiconductor layer and the counter electrode;
A dye-sensitized solar cell comprising: a sealing material that seals the transparent conductive substrate and the counter electrode so that the charge transport layer does not go out of the system.
前記隔壁部を被覆し、隔壁部と前記対向電極を接続する隔壁保護層を備えた請求項2〜3に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 2, further comprising a partition wall protective layer that covers the partition wall portion and connects the partition wall portion and the counter electrode. 前記隔壁部の断面形状が、四角形状である請求項2〜4記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 2, wherein the partition wall has a quadrangular cross-sectional shape.
JP2012151195A 2012-07-05 2012-07-05 Dye-sensitized solar cell and method for manufacturing the same Pending JP2014013716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151195A JP2014013716A (en) 2012-07-05 2012-07-05 Dye-sensitized solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151195A JP2014013716A (en) 2012-07-05 2012-07-05 Dye-sensitized solar cell and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014013716A true JP2014013716A (en) 2014-01-23

Family

ID=50109277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151195A Pending JP2014013716A (en) 2012-07-05 2012-07-05 Dye-sensitized solar cell and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014013716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087699A1 (en) * 2013-12-11 2015-06-18 日本写真印刷株式会社 Pigment-sensitized photovoltaic cell
WO2020217892A1 (en) * 2019-04-22 2020-10-29 株式会社ジャパンディスプレイ Input device
WO2022064951A1 (en) * 2020-09-25 2022-03-31 日本ゼオン株式会社 Solar battery module, panel, and printing data generation device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268891A (en) * 1999-03-19 2000-09-29 Toshiba Corp Multi-color pigment sensitizing transparent semiconductor electrode member and its manufacture, multi-color pigment sensitization type solar battery, and display element
JP2002075472A (en) * 2000-08-25 2002-03-15 Sharp Corp Color solar cell and manufacturing method of the same
JP2005142089A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Forming method of porous semiconductor electrode, manufacturing method of electrode board for dye-sensitized solar cell, electrode board for dye-sensitized solar cell, and the dye-sensitized solar cell
JP2007149675A (en) * 2005-11-25 2007-06-14 Seiko Epson Corp Electrochemical cell structure and its manufacturing method
JP2009170239A (en) * 2008-01-16 2009-07-30 Oki Semiconductor Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2010009769A (en) * 2008-06-24 2010-01-14 Sony Corp Method for manufacturing photoelectric conversion element
JP2010267480A (en) * 2009-05-14 2010-11-25 Nissha Printing Co Ltd Dye-sensitized solar cell equipped with design performance, and method of manufacturing the same
JP2011124053A (en) * 2009-12-10 2011-06-23 Nissha Printing Co Ltd Method of manufacturing dye-sensitized solar cell of not bad design
JP2011222428A (en) * 2010-04-13 2011-11-04 Fujikura Ltd Dye-sensitized solar cell module and method for manufacturing the same
JP2012079495A (en) * 2010-09-30 2012-04-19 Spd Laboratory Inc Dye-sensitized solar cell and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268891A (en) * 1999-03-19 2000-09-29 Toshiba Corp Multi-color pigment sensitizing transparent semiconductor electrode member and its manufacture, multi-color pigment sensitization type solar battery, and display element
JP2002075472A (en) * 2000-08-25 2002-03-15 Sharp Corp Color solar cell and manufacturing method of the same
JP2005142089A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Forming method of porous semiconductor electrode, manufacturing method of electrode board for dye-sensitized solar cell, electrode board for dye-sensitized solar cell, and the dye-sensitized solar cell
JP2007149675A (en) * 2005-11-25 2007-06-14 Seiko Epson Corp Electrochemical cell structure and its manufacturing method
JP2009170239A (en) * 2008-01-16 2009-07-30 Oki Semiconductor Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2010009769A (en) * 2008-06-24 2010-01-14 Sony Corp Method for manufacturing photoelectric conversion element
JP2010267480A (en) * 2009-05-14 2010-11-25 Nissha Printing Co Ltd Dye-sensitized solar cell equipped with design performance, and method of manufacturing the same
JP2011124053A (en) * 2009-12-10 2011-06-23 Nissha Printing Co Ltd Method of manufacturing dye-sensitized solar cell of not bad design
JP2011222428A (en) * 2010-04-13 2011-11-04 Fujikura Ltd Dye-sensitized solar cell module and method for manufacturing the same
JP2012079495A (en) * 2010-09-30 2012-04-19 Spd Laboratory Inc Dye-sensitized solar cell and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087699A1 (en) * 2013-12-11 2015-06-18 日本写真印刷株式会社 Pigment-sensitized photovoltaic cell
JP2015115463A (en) * 2013-12-11 2015-06-22 日本写真印刷株式会社 Dye-sensitized solar battery
WO2020217892A1 (en) * 2019-04-22 2020-10-29 株式会社ジャパンディスプレイ Input device
WO2022064951A1 (en) * 2020-09-25 2022-03-31 日本ゼオン株式会社 Solar battery module, panel, and printing data generation device

Similar Documents

Publication Publication Date Title
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
KR101243915B1 (en) Method of preparing photoelectrode structure
KR101303450B1 (en) Dye-Sensitized Solar Cells And Manufacturing Method For Thereof
KR20080079894A (en) Dye-sensitized solar cell and preparing method thereof
KR101045849B1 (en) High Efficiency Flexible Dye-Sensitized Solar Cell and Manufacturing Method Thereof
JP2011076791A (en) Photoelectric conversion element, and optical power generating device using the photoelectric conversion element
JP2010003556A (en) Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
JP2014013716A (en) Dye-sensitized solar cell and method for manufacturing the same
KR20110083011A (en) Electrode plate and dye-sensitized solar cell having the same
JP2008204881A (en) Photoelectric conversion module
JP2011165580A (en) Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
KR101195761B1 (en) Manufacturing method of dye-sensitizes solar cell with cnt and pt counter electrodes
JP5127261B2 (en) Manufacturing method of photoelectric conversion module
JP2010277999A (en) Dye-sensitized solar cell and its manufacturing method
JP2014013715A (en) Method for manufacturing dye-sensitized solar cell and dye-sensitized solar cell
JP2014022207A (en) Method of manufacturing dye-sensitized solar cell
TWI589051B (en) Manufacturing apparatus and method for production of dye-sensitized solar cell
WO2016104047A1 (en) Dye-sensitized solar cell
KR101156585B1 (en) Dye-sensitized sollar cell and its fabrication method
JP2014017165A (en) Method of manufacturing dye-sensitized solar cell
JP2014017207A (en) Dye-sensitized solar cell and manufacturing method therefor
JP5217337B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, method for producing laminate for oxide semiconductor electrode, and method for producing oxide semiconductor electrode
KR101117691B1 (en) Dye-sensitized solar cell and method of manufacturing the same
WO2014132725A1 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004