JP2011124053A - Method of manufacturing dye-sensitized solar cell of not bad design - Google Patents

Method of manufacturing dye-sensitized solar cell of not bad design Download PDF

Info

Publication number
JP2011124053A
JP2011124053A JP2009279977A JP2009279977A JP2011124053A JP 2011124053 A JP2011124053 A JP 2011124053A JP 2009279977 A JP2009279977 A JP 2009279977A JP 2009279977 A JP2009279977 A JP 2009279977A JP 2011124053 A JP2011124053 A JP 2011124053A
Authority
JP
Japan
Prior art keywords
dye
electrode layer
carrying
solar cell
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009279977A
Other languages
Japanese (ja)
Other versions
JP5410258B2 (en
Inventor
Tatsuhiko Mori
竜彦 森
Shinji Okashiwa
伸次 大栢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2009279977A priority Critical patent/JP5410258B2/en
Publication of JP2011124053A publication Critical patent/JP2011124053A/en
Application granted granted Critical
Publication of JP5410258B2 publication Critical patent/JP5410258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To enable a dye-sensitized solar cell of not bad design to be freely equipped with a collecting electrode, and to be equipped with fine patterning industrially and inexpensively. <P>SOLUTION: As the method of manufacturing the dye-sensitized solar cell of not bad design, after a transparent electrode layer is formed on a transparent substrate, a cycle of a pattern forming of a porous oxide semiconductor on the transparent electrode layer followed by a pattern forming of a dye-carrying semiconductor by carrying a dye on the porous oxide semiconductor is repeated twice or more, so that an anode member with patterns of specific letters, symbols or figures formed of semiconductors carrying two or more kinds of dyes having mutually different colors is formed, while on the other hand, a cathode member is formed by forming a rear-face electrode layer on a rear-face substrate. A dye-carrying semiconductor side of the anode member and a rear-face electrode layer side of the cathode member are made opposed to each other, so that electrolyte solution is to be filled between the dye-carrying semiconductors and the rear-face electrode layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、受光面に意匠性を備えた色素増感太陽電池の製造方法に関するものである。   The present invention relates to a method for producing a dye-sensitized solar cell having a design on a light receiving surface.

太陽電池に特定の文字、記号または図形のパターン等の意匠性を持たせるために、表面に印刷等で文字や絵柄を設けたり、集電用電極を特定の文字、記号、または図形のパターンに形成していたものがある(例えば、特許文献1参照)。   In order to make the solar cell have a design such as a pattern of specific characters, symbols or figures, the surface is provided with characters or designs by printing, etc., or the current collecting electrode is changed to a pattern of specific characters, symbols or figures. Some have been formed (for example, refer to Patent Document 1).

また、色素増感太陽電池の構成要素である多孔性半導体層をガラスフリットなどの材料で所定のパターンに仕切ることにより、受光面に任意の文字や記号あるいは図形や絵などを描くことができるカラー太陽電池がある(例えば、特許文献2参照)。   In addition, by separating the porous semiconductor layer, which is a component of the dye-sensitized solar cell, into a predetermined pattern with a material such as glass frit, it is possible to draw any character, symbol, figure or picture on the light-receiving surface. There exists a solar cell (for example, refer patent document 2).

特開2002−64214号公報JP 2002-64214 A 特開2002−75472号公報JP 2002-75472 A

しかし、特許文献1の技術のように太陽電池表面を印刷パターンや集電用電極で過剰に覆ってしまうと、太陽電池内に暗電流が流れ、それによってセル特性が悪化することが知られている。また、集電用電極を各文字、記号等のパターンとして用いると、各文字や記号等のパターンがお互いに電気的に繋がっている必要があり、意匠性を設ける上で自由度が大きく失われるという問題点があった。   However, it is known that if the surface of the solar cell is excessively covered with a printed pattern or a current collecting electrode as in the technique of Patent Document 1, dark current flows in the solar cell, thereby deteriorating the cell characteristics. Yes. In addition, when the current collecting electrode is used as a pattern of each character, symbol, etc., the pattern of each character, symbol, etc. needs to be electrically connected to each other, and the degree of freedom is greatly lost in providing design. There was a problem.

また、特許文献2の技術においては所定のパターンに多孔性半導体層を除去する工程、多孔性半導体層を除去した部分に隔壁を形成する工程等複雑な工程を有するために工業的に安価に作製することはできなかった。   Further, in the technique of Patent Document 2, since it has complicated steps such as a step of removing the porous semiconductor layer in a predetermined pattern and a step of forming a partition wall in the portion from which the porous semiconductor layer has been removed, it is manufactured industrially at a low cost. I couldn't.

本発明は上記の問題のない意匠性を備えた色素増感太陽電池の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the dye-sensitized solar cell provided with the design property which does not have said problem.

本発明は前記目的を達成するため、以下のような特徴を備える。   In order to achieve the above object, the present invention has the following features.

本発明の意匠性を備えた色素増感太陽電池の製造方法は、
透明基板上に透明電極層を形成後、透明電極層上への多孔質酸化物半導体のパターン形成に続く多孔質酸化物半導体への色素担持による色素担持半導体のパターン形成を2回以上行うことによって、互いに異なる色彩を備える2種以上の色素担持半導体による特定の文字、記号または図形のパターンが形成されたアノード部材を形成する一方で、
裏面基板上に裏面電極層を形成してカソード部材を形成し、
アノード部材の色素担持半導体側とカソード部材の裏面電極層側を対向させ、色素担持半導体と裏面電極層との間に電解質溶液を充填させることを特徴とする。
The method for producing a dye-sensitized solar cell having the design properties of the present invention,
After forming the transparent electrode layer on the transparent substrate, performing pattern formation of the dye-carrying semiconductor by carrying the dye on the porous oxide semiconductor following the pattern formation of the porous oxide semiconductor on the transparent electrode layer more than once While forming an anode member in which a pattern of specific characters, symbols or figures is formed by two or more kinds of dye-carrying semiconductors having different colors,
Forming a back electrode layer on the back substrate to form a cathode member;
The dye-supporting semiconductor side of the anode member and the back electrode layer side of the cathode member are opposed to each other, and an electrolyte solution is filled between the dye-supporting semiconductor and the back electrode layer.

また、上記の発明において、多孔質酸化物半導体のパターン形成を、半導体微粒子または繊維の分散液またはコロイド溶液の塗布にて形成してもよい。   In the above invention, the pattern formation of the porous oxide semiconductor may be formed by applying a dispersion or colloidal solution of semiconductor fine particles or fibers.

本発明の色素増感太陽電池の製造方法は、透明電極層上への多孔質酸化物半導体のパターン形成に続く多孔質酸化物半導体への色素担持による色素担持半導体のパターン形成を2回以上行うことによって、互いに異なる色彩を備える2種以上の色素担持半導体による特定の文字、記号または図形のパターンが形成されるものである。したがって、太陽電池の表面を意匠層で覆う必要がなく、集電用電極も自由に設けられる。また、半導体層の除去および除去した部分への隔壁の形成が不要で工業的に安価に作製できる。また、全面的に形成された多孔質酸化物半導体上に色素を担持させる場合とは異なり色素のにじみが生じにくく微細なパターニングが可能である。   In the method for producing a dye-sensitized solar cell of the present invention, the pattern formation of the dye-carrying semiconductor is carried out twice or more by carrying the dye on the porous oxide semiconductor following the formation of the pattern of the porous oxide semiconductor on the transparent electrode layer. Thus, a specific character, symbol, or figure pattern is formed by two or more types of dye-carrying semiconductors having different colors. Therefore, it is not necessary to cover the surface of the solar cell with the design layer, and a collecting electrode is also provided freely. Further, it is not necessary to remove the semiconductor layer and to form a partition wall in the removed portion, and it can be manufactured industrially at a low cost. Further, unlike the case where the dye is supported on the porous oxide semiconductor formed on the entire surface, the dye is less likely to bleed and fine patterning is possible.

本発明の色素増感太陽電池の製造方法に用いるアノード部材の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the anode member used for the manufacturing method of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の製造方法に用いるカソード部材を示す断面図である。It is sectional drawing which shows the cathode member used for the manufacturing method of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の製造方法により形成された色素増感太陽電池を示す断面図である。It is sectional drawing which shows the dye-sensitized solar cell formed by the manufacturing method of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の製造方法により形成された色素増感太陽電池を示す平面図である。It is a top view which shows the dye-sensitized solar cell formed by the manufacturing method of the dye-sensitized solar cell of this invention.

図面を参照しながらこの発明の実施の形態について詳しく説明する。   Embodiments of the present invention will be described in detail with reference to the drawings.

アノード部材の形成
まず、互いに異なる色彩を備える2種以上の色素担持半導体11、12による特定の文字、記号または図形のパターンが形成されたアノード部材21を形成する(図1(d)参照)。
Formation of Anode Member First, an anode member 21 in which a pattern of specific characters, symbols, or figures is formed by two or more kinds of dye-carrying semiconductors 11 and 12 having different colors (see FIG. 1D).

アノード部材21を形成するには透明基板7上に透明電極層6を形成後(図1(a)参照)、透明電極層6上への多孔質酸化物半導体5のパターン形成に続く多孔質酸化物半導体5への色素担持による色素担持半導体11、12のパターン形成を2回以上行う(図1(a)〜(d)参照)。   In order to form the anode member 21, after forming the transparent electrode layer 6 on the transparent substrate 7 (see FIG. 1A), porous oxidation following the pattern formation of the porous oxide semiconductor 5 on the transparent electrode layer 6 is performed. The pattern formation of the dye-carrying semiconductors 11 and 12 by carrying the dye on the physical semiconductor 5 is performed twice or more (see FIGS. 1A to 1D).

本発明の色素増感太陽電池の製造方法によって製造される太陽電池の基材(板)のうち、太陽光受光側は透明であって太陽光の受光を阻害せず、その表面に透明性導電膜および光電変換素子を形成することができる透明基板7としては、例えば、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン-テトラフルオロエチレン共重合樹脂、耐候性ポリエチレンテレフタレート、耐候性ポリプロピレン、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、ポリイミド、透明性ポリイミド、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリアクリル系樹脂、ガラスなどを使用することができるがこれらに限定されるものではない。透明基板7は単独の基材として使用してもよいが、二種以上の基材を積層した複合基板として使用することもできる。   Of the solar cell substrate (plate) produced by the method for producing a dye-sensitized solar cell of the present invention, the sunlight receiving side is transparent and does not hinder the reception of sunlight, and the surface thereof is transparent and conductive. Examples of the transparent substrate 7 that can form a film and a photoelectric conversion element include polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetylcellulose, and polyvinyl fluoride. Film, ethylene-tetrafluoroethylene copolymer resin, weather resistant polyethylene terephthalate, weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, polyimide, transparent polyimide, fluorine resin, cyclic Polyolefin resin, polyacrylic resin, glass and the like can be used, but are not limited thereto. The transparent substrate 7 may be used as a single base material, but can also be used as a composite substrate in which two or more kinds of base materials are laminated.

透明電極層6を形成する透明導電膜としては、酸化スズ、酸化亜鉛、酸化インジウム等が好適に使用されるがこれらに限定されるものではない。また必要に応じてこれらの材料にドーピングを施すこともできる。この透明導電膜の作製方法としては、蒸着法、スパッタ法、減圧CVD(Chemical Vapor Deposition)法、常圧CVD法、ゾルゲル法、熱分解スプレー法、電析法などが挙げられるがこれらに限定されるものではない。   As the transparent conductive film for forming the transparent electrode layer 6, tin oxide, zinc oxide, indium oxide and the like are preferably used, but are not limited thereto. Further, these materials can be doped as necessary. Examples of the method for producing the transparent conductive film include, but are not limited to, a vapor deposition method, a sputtering method, a low pressure CVD (Chemical Vapor Deposition) method, an atmospheric pressure CVD method, a sol-gel method, a pyrolysis spray method, and an electrodeposition method. It is not something.

また、透明導電膜をエッチングすることによって、光閉じこめし易いような凹凸を形成することもできる。この場合、エッチャントの種類、濃度、またはエッチング時間等を適宜変更することにより、透明導電性の材料の表面形状を容易に制御できるので、所望の凹凸が容易に得られる。   Further, by etching the transparent conductive film, it is possible to form irregularities that facilitate light confinement. In this case, since the surface shape of the transparent conductive material can be easily controlled by appropriately changing the type, concentration, etching time, or the like of the etchant, desired irregularities can be easily obtained.

透明電極層6上に色素担持半導体11、12のパターン形成を2回以上行う方法は以下のとおりである。   A method of patterning the dye-carrying semiconductors 11 and 12 on the transparent electrode layer 6 twice or more is as follows.

まず、透明電極層6上に第一の多孔質酸化物半導体5のパターン形成を行い(図1(a)参照)、引き続き、第一の多孔質酸化物半導体5に色素を担持させることによって色素担持半導体11のパターン形成を行う(図1(b)参照)。   First, a pattern of the first porous oxide semiconductor 5 is formed on the transparent electrode layer 6 (see FIG. 1A), and then the dye is supported by the first porous oxide semiconductor 5 supporting the dye. The pattern of the supported semiconductor 11 is formed (see FIG. 1B).

多孔質酸化物半導体5としては、酸化チタン、酸化ニオブ、酸化スズ、酸化亜鉛、酸化タングステン、チタン酸バリウム、硫化カドミウムなどが用いられ、またこれらを組み合わせて用いることもできる。   As the porous oxide semiconductor 5, titanium oxide, niobium oxide, tin oxide, zinc oxide, tungsten oxide, barium titanate, cadmium sulfide, or the like can be used, or a combination thereof can be used.

多孔質酸化物半導体5を透明電極層6上にパターン形成する方法としては、半導体微粒子または繊維の分散液またはコロイド溶液を塗布し乾燥、焼成する方法等が挙げられるが、これらに限定されるものでは無い。多孔質酸化物半導体5の膜厚は、1〜30μmの範囲が好ましく、3〜20μmの範囲がより好ましい。   Examples of the method for forming a pattern of the porous oxide semiconductor 5 on the transparent electrode layer 6 include a method of applying a semiconductor fine particle or fiber dispersion or colloid solution, drying and firing, and the like. Not. The film thickness of the porous oxide semiconductor 5 is preferably in the range of 1 to 30 μm, and more preferably in the range of 3 to 20 μm.

多孔質酸化物半導体5は、膜内の粒子または繊維同士を電気的にコンタクトさせ、また好ましい結晶構造を持たせるために、膜作成後に焼成することが望ましい。焼成温度は50〜600℃が好ましく、後述する第二(およびそれ以降)の多孔質酸化物半導体5の場合は、50℃〜色素が分解しない温度の範囲が特に好ましい。   The porous oxide semiconductor 5 is desirably fired after the film is formed so that the particles or fibers in the film are in electrical contact with each other and have a preferable crystal structure. The firing temperature is preferably 50 to 600 ° C., and in the case of the second (and subsequent) porous oxide semiconductor 5 described later, a temperature range of 50 ° C. to a temperature at which the dye does not decompose is particularly preferable.

多孔質酸化物半導体5に担持させる色素としては、金属錯体色素または有機色素が使用可能であり、金属錯体色素では、ルテニウム系色素が最も好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素が挙げられ、有機色素としてはアクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系の色素が挙げられるがこれらに限定されるものではない。該色素は半導体表面に対する適当は結合基を有していることが好ましく、特に好ましい結合基としては、COOH基、シアノ基、PO3 H2 基、キレート化基が挙げられる。中でもCOOH基、PO3 H2 基が好ましい。   As the dye to be supported on the porous oxide semiconductor 5, a metal complex dye or an organic dye can be used. As the metal complex dye, a ruthenium-based dye is most preferable, and in particular, a ruthenium bipyridine dye and a ruthenium terpyridine dye which are ruthenium complexes. Examples of organic dyes include, but are not limited to, acridine, azo, indigo, quinone, coumarin, merocyanine, and phenylxanthene dyes. The dye preferably has a suitable linking group for the semiconductor surface, and particularly preferred linking groups include a COOH group, a cyano group, a PO3 H2 group, and a chelating group. Of these, a COOH group and a PO3H2 group are preferable.

多孔質酸化物半導体5に色素を担持させるには、色素の溶液を半導体微粒子層に塗布する方法等が挙げられるが、これに限定されるものでは無い。色素を溶解する溶媒として、例えば、アルコール類、ニトリル類、ニトロメタン、ハロゲン化炭化水素、エーテル類、ジメチルスルホキシド、アミド類、N-メチルピロリドン、1、3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、エステル類、炭酸エステル類、ケトン類、炭化水素類やこれらの混合溶媒が挙げられる。   In order to support the dye on the porous oxide semiconductor 5, a method of applying a solution of the dye to the semiconductor fine particle layer can be mentioned, but the method is not limited thereto. Examples of the solvent for dissolving the dye include alcohols, nitriles, nitromethane, halogenated hydrocarbons, ethers, dimethyl sulfoxide, amides, N-methylpyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, Examples thereof include esters, carbonates, ketones, hydrocarbons, and mixed solvents thereof.

引き続き同様に、透明電極層6上に第二(およびそれ以降)の多孔質酸化物半導体5のパターン形成を行い(図1(c)参照)、第二(およびそれ以降)の多孔質酸化物半導体5に色素を担持させることによって色素担持半導体12のパターン形成を行う(図1(d)参照)。こうすることによって、互いに異なる色彩を備える2種以上の色素担持半導体11、12による特定の文字、記号または図形のパターンが形成されたアノード部材21を形成することができる。ここで互いに異なる色彩を備える2種以上の色素担持半導体11、12としては、互いに異なる色の色素が吸着したものでもよいし、また、同じ色の色素が吸着したものであっても吸着量が異なることによって互いに濃淡差があるものでもよい。   Subsequently, similarly, pattern formation of the second (and subsequent) porous oxide semiconductor 5 is performed on the transparent electrode layer 6 (see FIG. 1C), and the second (and subsequent) porous oxide is formed. A pattern of the dye-carrying semiconductor 12 is formed by carrying the dye on the semiconductor 5 (see FIG. 1D). By doing so, it is possible to form the anode member 21 on which a pattern of specific characters, symbols or figures is formed by two or more kinds of dye-carrying semiconductors 11 and 12 having different colors. Here, the two or more kinds of dye-carrying semiconductors 11 and 12 having different colors may be ones in which dyes of different colors are adsorbed, and even if the dyes of the same color are adsorbed, the amount of adsorption is the same. Different ones may have different shades.

カソード部材の形成
アノード部材21を形成する一方で、別途、裏面基板1上に裏面電極層2を形成してカソード部材22を形成する(図2参照)。
Formation of Cathode Member While the anode member 21 is formed, the back electrode layer 2 is separately formed on the back substrate 1 to form the cathode member 22 (see FIG. 2).

太陽光を受光しない裏面基板1としては、透明である必要はなく、特に限定されないが、例えば、透明基板7に加え、SUS薄板、Alフォイルなども使用することができる。裏面基板1は単独の基材として使用してもよいが、二種以上の基材を積層した複合基板として使用することもできる。   The back substrate 1 that does not receive sunlight does not need to be transparent and is not particularly limited. For example, in addition to the transparent substrate 7, a SUS thin plate, an Al foil, or the like can also be used. Although the back substrate 1 may be used as a single substrate, it can also be used as a composite substrate in which two or more types of substrates are laminated.

裏面電極層2を形成する導電膜としては、透明である必要はなく、特に限定されないが、例えば、透明電極層6を形成する透明導電膜に加え、炭素膜なども使用することができる。また裏面基板1が導電性を示すものであれば、裏面電極層2を必要としない。   The conductive film for forming the back electrode layer 2 does not need to be transparent and is not particularly limited. For example, in addition to the transparent conductive film for forming the transparent electrode layer 6, a carbon film or the like can also be used. Moreover, if the back substrate 1 exhibits conductivity, the back electrode layer 2 is not required.

また、透明導電膜をエッチングすることによって、光閉じこめし易いような凹凸を形成することもできる。この場合、エッチャントの種類、濃度、またはエッチング時間等を適宜変更することにより、透明導電性の材料の表面形状を容易に制御できるので、所望の凹凸が容易に得られる。   Further, by etching the transparent conductive film, it is possible to form irregularities that facilitate light confinement. In this case, since the surface shape of the transparent conductive material can be easily controlled by appropriately changing the type, concentration, etching time, or the like of the etchant, desired irregularities can be easily obtained.

また、裏面電極層2の表面には、後述する電解質への電子供給を促進させるために、白金膜3や炭素膜等を形成することもできる。   Also, a platinum film 3 or a carbon film can be formed on the surface of the back electrode layer 2 in order to promote the supply of electrons to the electrolyte described later.

意匠性を備えた色素増感太陽電池の形成
最後に、アノード部材21の色素担持半導体11、12側とカソード部材22の裏面電極層2側を対向させ、隔壁8で囲んだ状態で色素担持半導体11、12と裏面電極層2との間に電解質溶液4を充填させることにより、意匠性を備えた色素増感太陽電池9を製造できる(図3、図4参照)。
Formation of Dye-Sensitized Solar Cell with Design Properties Finally, the dye-carrying semiconductor in a state where the dye-carrying semiconductors 11 and 12 side of the anode member 21 and the back electrode layer 2 side of the cathode member 22 face each other and surrounded by the partition walls 8 By filling the electrolyte solution 4 between 11 and 12 and the back electrode layer 2, the dye-sensitized solar cell 9 having design properties can be manufactured (see FIGS. 3 and 4).

色素増感太陽電池9の電解質溶液4は、一般に色素増感太陽電池において使用することのできるものであれば、特に限定されないが、酸化還元性のものが好ましく、例えばLiI、NaI、KI、CaI2 等の金属ヨウ化物とヨウ素の組み合わせおよびLiBr、NaBr、KBr、CaBr2 等の金属臭化物と臭素の組み合わせがある。その中でも特にLiIとヨウ素の組み合わせが最も好ましい。この電解質は溶媒に溶解した形態(例えば、酸化還元性電解液)で用いられる。   The electrolyte solution 4 of the dye-sensitized solar cell 9 is not particularly limited as long as it can be generally used in a dye-sensitized solar cell, but is preferably redox, for example, LiI, NaI, KI, CaI2 There are combinations of metal iodides such as metal iodide and iodine, and combinations of metal bromides such as LiBr, NaBr, KBr, and CaBr2 and bromine. Of these, a combination of LiI and iodine is most preferable. This electrolyte is used in a form dissolved in a solvent (for example, a redox electrolyte).

その他の部材の形成
また、本発明において太陽光をより有効利用するために、光の干渉を利用した反射防止層(図示せず)が上記基板の層上あるは層間のいずれかに設けることも可能である。この反射防止層は、光の干渉性を利用したもので、一般に目的の反射防止特性を得るために所定の光学膜厚nd(屈折率n×形状膜厚d)の層から構成されればよく、本発明において積層数は特に限定されるものではない。この反射防止膜として珪素酸化物や有機フッ素化合物等の低屈折率層を単層で設けることも可能であるが、通常は、コスト及び反射防止効果の面から1〜6層とすることが好ましい。
Formation of other members Further, in order to use sunlight more effectively in the present invention, an antireflection layer (not shown) using light interference may be provided either on the substrate layer or between the layers. Is possible. This antireflection layer utilizes the coherence of light, and generally, it is sufficient if it is composed of a layer having a predetermined optical film thickness nd (refractive index n × shape film thickness d) in order to obtain the desired antireflection characteristic. In the present invention, the number of stacked layers is not particularly limited. Although it is possible to provide a single layer of a low refractive index layer such as silicon oxide or an organic fluorine compound as the antireflection film, it is usually preferable to use 1 to 6 layers in terms of cost and antireflection effect. .

また、反射防止膜は真空蒸着法、反応性蒸着法、イオンビームアシスト蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等の真空成膜プロセス、グラビアコートやスクリーンコート等のウェットコートと、熱乾燥法、熱硬化法、紫外線照射硬化法、電子線照射硬化法等を組み合わせた成膜プロセスによることができ、各々の薄膜の特性に最適な方法が適宜選択される。この他のいかなる成膜方法であっても構わない。   In addition, the antireflection film is a vacuum deposition method such as a vacuum deposition method, a reactive deposition method, an ion beam assisted deposition method, a sputtering method, an ion plating method, a plasma CVD method, a wet coating such as a gravure coating or a screen coating, A film forming process combining a heat drying method, a heat curing method, an ultraviolet ray irradiation curing method, an electron beam irradiation curing method, and the like can be performed, and an optimum method is appropriately selected for the characteristics of each thin film. Any other film forming method may be used.

また、太陽電池の耐候性を上げるために、上記基板の層上あるは層間のいずれかにガスバリアー層を設けることも可能である。例えば、ケイ素酸化物(SiOx )、ケイ素窒化物(SiNx )、酸化アルミニウム(Alx Oy )のいずれかの単独、もしくは二種以上の混合系の蒸着層、または無機−有機のハイブリッドコート層のうちのいずれか一種、または二種以上を組み合わせた複合層を好適に使用することもできる。   In order to increase the weather resistance of the solar cell, a gas barrier layer can be provided either on the substrate layer or between the layers. For example, any one of silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (Alx Oy), or a mixture of two or more kinds of vapor-deposited layers, or an inorganic-organic hybrid coat layer Any one type or a composite layer combining two or more types can also be suitably used.

上記、ケイ素酸化物(SiOx )、ケイ素窒化物(SiNx )、酸化アルミニウム(Alx Oy )などのバリア層は蒸着法、スパッタ法、CVD法、ディッピング法、ゾルゲル法などにより基材上に容易に形成することができる。このようなバリア層の厚さは5〜500nmの範囲が好ましく、30〜150nmの範囲が特に好ましい。   The above barrier layers such as silicon oxide (SiOx), silicon nitride (SiNx), and aluminum oxide (Alx Oy) can be easily formed on the substrate by vapor deposition, sputtering, CVD, dipping, sol-gel, etc. can do. The thickness of such a barrier layer is preferably in the range of 5 to 500 nm, particularly preferably in the range of 30 to 150 nm.

1 裏面基板
2 裏面電極層
3 白金膜
4 電解質溶液
5 多孔質酸化物半導体
6 透明電極層
7 透明基板
8 隔壁
9 色素増感太陽電池
11 色素担持半導体
12 色素担持半導体
21 アノード部材
22 カソード部材
DESCRIPTION OF SYMBOLS 1 Back substrate 2 Back electrode layer 3 Platinum film 4 Electrolyte solution 5 Porous oxide semiconductor 6 Transparent electrode layer 7 Transparent substrate 8 Partition 9 Dye-sensitized solar cell 11 Dye carrying | support semiconductor 12 Dye carrying | support semiconductor 21 Anode member 22 Cathode member

Claims (2)

透明基板上に透明電極層を形成後、透明電極層上への多孔質酸化物半導体のパターン形成に続く多孔質酸化物半導体への色素担持による色素担持半導体のパターン形成を2回以上行うことによって、互いに異なる色彩を備える2種以上の色素担持半導体による特定の文字、記号または図形のパターンが形成されたアノード部材を形成する一方で、
裏面基板上に裏面電極層を形成してカソード部材を形成し、
アノード部材の色素担持半導体側とカソード部材の裏面電極層側を対向させ、色素担持半導体と裏面電極層との間に電解質溶液を充填させることを特徴とする意匠性を備えた色素増感太陽電池の製造方法。
After forming the transparent electrode layer on the transparent substrate, performing pattern formation of the dye-carrying semiconductor by carrying the dye on the porous oxide semiconductor following the pattern formation of the porous oxide semiconductor on the transparent electrode layer more than once While forming an anode member in which a pattern of specific characters, symbols or figures is formed by two or more kinds of dye-carrying semiconductors having different colors,
Forming a back electrode layer on the back substrate to form a cathode member;
A dye-sensitized solar cell having a design property, wherein the dye-carrying semiconductor side of the anode member and the back electrode layer side of the cathode member are opposed to each other, and an electrolyte solution is filled between the dye-carrying semiconductor and the back electrode layer Manufacturing method.
多孔質酸化物半導体のパターン形成を、半導体微粒子または繊維の分散液またはコロイド溶液の塗布にて形成する請求項1に記載の意匠性を備えた色素増感太陽電池の製造方法。


The method for producing a dye-sensitized solar cell having the design property according to claim 1, wherein the pattern formation of the porous oxide semiconductor is formed by coating a dispersion or colloidal solution of semiconductor fine particles or fibers.


JP2009279977A 2009-12-10 2009-12-10 Method for producing dye-sensitized solar cell with design properties Expired - Fee Related JP5410258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279977A JP5410258B2 (en) 2009-12-10 2009-12-10 Method for producing dye-sensitized solar cell with design properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279977A JP5410258B2 (en) 2009-12-10 2009-12-10 Method for producing dye-sensitized solar cell with design properties

Publications (2)

Publication Number Publication Date
JP2011124053A true JP2011124053A (en) 2011-06-23
JP5410258B2 JP5410258B2 (en) 2014-02-05

Family

ID=44287755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279977A Expired - Fee Related JP5410258B2 (en) 2009-12-10 2009-12-10 Method for producing dye-sensitized solar cell with design properties

Country Status (1)

Country Link
JP (1) JP5410258B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013716A (en) * 2012-07-05 2014-01-23 Nissha Printing Co Ltd Dye-sensitized solar cell and method for manufacturing the same
JP2014165049A (en) * 2013-02-26 2014-09-08 Rohm Co Ltd Dye-sensitized solar cell, manufacturing method of the same and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176565A (en) * 1999-12-10 2001-06-29 Nokia Mobile Phones Ltd Pigment sensitized solar battery
JP2002075472A (en) * 2000-08-25 2002-03-15 Sharp Corp Color solar cell and manufacturing method of the same
JP2005346934A (en) * 2004-05-31 2005-12-15 Casio Comput Co Ltd Dye-sensitized solar cell, ornament device, electronic equipment, and manufacturing method of dye-sensitized solar cell
JP2006179380A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Solar cell module equipped with designability and its manufacturing method
JP2007194000A (en) * 2006-01-17 2007-08-02 Seiko Epson Corp Method of manufacturing composition for forming photoelectric conversion layer, composition for forming photoelectric conversion later, method of manufacturing photoelectric conversion element, photoelectric conversion element, and electronic equipment
JP2010267480A (en) * 2009-05-14 2010-11-25 Nissha Printing Co Ltd Dye-sensitized solar cell equipped with design performance, and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176565A (en) * 1999-12-10 2001-06-29 Nokia Mobile Phones Ltd Pigment sensitized solar battery
JP2002075472A (en) * 2000-08-25 2002-03-15 Sharp Corp Color solar cell and manufacturing method of the same
JP2005346934A (en) * 2004-05-31 2005-12-15 Casio Comput Co Ltd Dye-sensitized solar cell, ornament device, electronic equipment, and manufacturing method of dye-sensitized solar cell
JP2006179380A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Solar cell module equipped with designability and its manufacturing method
JP2007194000A (en) * 2006-01-17 2007-08-02 Seiko Epson Corp Method of manufacturing composition for forming photoelectric conversion layer, composition for forming photoelectric conversion later, method of manufacturing photoelectric conversion element, photoelectric conversion element, and electronic equipment
JP2010267480A (en) * 2009-05-14 2010-11-25 Nissha Printing Co Ltd Dye-sensitized solar cell equipped with design performance, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013716A (en) * 2012-07-05 2014-01-23 Nissha Printing Co Ltd Dye-sensitized solar cell and method for manufacturing the same
JP2014165049A (en) * 2013-02-26 2014-09-08 Rohm Co Ltd Dye-sensitized solar cell, manufacturing method of the same and electronic apparatus

Also Published As

Publication number Publication date
JP5410258B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
Si et al. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability
KR101593779B1 (en) Transparent conductive film and electric device
Kashiwa et al. All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores
JP5531300B2 (en) Dye-sensitized solar cell
Peiris et al. Enhancement of the hole conducting effect of NiO by a N 2 blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode
JP2015119102A (en) Hybrid solar cell
Kim et al. Conducting polymer coated non-woven graphite fiber film for dye-sensitized solar cells: superior Pt-and FTO-free counter electrodes
JP2009170239A (en) Dye-sensitized solar cell and its manufacturing method
Sacco et al. Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers
KR102163405B1 (en) Photoelectric conversion element
Hossain et al. Investigation of TiO2 nanotubes/nanoparticles stacking sequences to improve power conversion efficiency of dye-sensitized solar cells
JP2010267480A (en) Dye-sensitized solar cell equipped with design performance, and method of manufacturing the same
KR20150048317A (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
JP5410258B2 (en) Method for producing dye-sensitized solar cell with design properties
TW201123583A (en) Dye-sensitized solar cell and method forming the same
Huang et al. Interface Engineering of electron Transport Layer‐Free Planar Perovskite Solar Cells with Efficiency Exceeding 15%
KR100908243B1 (en) Dye-Sensitized Solar Cell Including Electron Recombination Blocking Layer and Manufacturing Method Thereof
JP2006179380A (en) Solar cell module equipped with designability and its manufacturing method
KR101623653B1 (en) Manufacturing method and thin film solar cell using perovskite and dye
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2010277999A (en) Dye-sensitized solar cell and its manufacturing method
JP2018098223A (en) Photoelectric conversion element and solar cell module
JP2006210229A (en) Dye-sensitized solar battery and manufacturing method of the same
Uzum et al. Perovskite/crystalline silicon tandem solar cells fabricated by non-vacuum-process
CN107833937B (en) A kind of graphene solar battery and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees