JP2014019893A - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
JP2014019893A
JP2014019893A JP2012158554A JP2012158554A JP2014019893A JP 2014019893 A JP2014019893 A JP 2014019893A JP 2012158554 A JP2012158554 A JP 2012158554A JP 2012158554 A JP2012158554 A JP 2012158554A JP 2014019893 A JP2014019893 A JP 2014019893A
Authority
JP
Japan
Prior art keywords
plane
copper foil
rolled copper
bending resistance
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012158554A
Other languages
Japanese (ja)
Other versions
JP5373941B1 (en
Inventor
Takemi Muroga
岳海 室賀
Soshi Seki
聡至 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2012158554A priority Critical patent/JP5373941B1/en
Priority to KR1020120145035A priority patent/KR102002355B1/en
Priority to CN201310055208.9A priority patent/CN103547067A/en
Application granted granted Critical
Publication of JP5373941B1 publication Critical patent/JP5373941B1/en
Publication of JP2014019893A publication Critical patent/JP2014019893A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Abstract

PROBLEM TO BE SOLVED: To bestow a high flex resistance and an excellent crease resistance.SOLUTION: Multiple crystal faces parallel to the principal face include a {022} face, a {002} face, a {113} face, a {111} face, and a {133} face, whereas the diffraction peak intensity ratio of the respective crystal faces calculated from X-ray diffraction measurements using a 2θ/θ method targeting the principal face and converted so as to yield a total value of 100 is I+I≥75.0, whereas on a graph plotting the average intensity of diffraction peaks of the {111} face measured by using the X-ray Pole-Figure method, the ordinate intercept [A] of a straight line linking the respective average intensities of diffraction peaks of the {111} face at tilt angles of 47° and 53° and the maximal value [B] of the average intensity of diffraction peaks of the {111} face within a tilt angle range of 15° or above and 90° or below bear a ratio of [A]/[B]<1/4.

Description

本発明は、圧延銅箔に関し、特に、フレキシブルプリント配線板に用いられる圧延銅箔に関する。   The present invention relates to a rolled copper foil, and more particularly to a rolled copper foil used for a flexible printed wiring board.

フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、薄くて可撓性に優れることから、電子機器等への実装形態における自由度が高い。そのため、FPCは、折り畳み式携帯電話の折り曲げ部や、デジタルカメラ、プリンタヘッド等の可動部のほか、ハードディスクドライブ(HDD:Hard Disk Drive)やデジタルバーサタイルディ
スク(DVD:Digital Versatile Disk)やコンパクトディスク(CD:Compact Disk)等のディスク関連機器の可動部の配線等に用いられることが多い。したがって、FPCやその配線材として用いられる圧延銅箔には、高屈曲特性、つまり、繰り返しの曲げに耐える優れた耐屈曲性が要求されてきた。
A flexible printed circuit (FPC) is thin and excellent in flexibility, and thus has a high degree of freedom in mounting form on an electronic device or the like. For this reason, FPCs are not only for folding parts of foldable mobile phones, but also for moving parts such as digital cameras and printer heads, as well as hard disk drives (HDDs), digital versatile disks (DVDs), and compact disks (DVDs). It is often used for wiring of movable parts of disk related equipment such as CD (Compact Disk). Therefore, the rolled copper foil used as FPC and its wiring material has been required to have high bending properties, that is, excellent bending resistance that can withstand repeated bending.

FPC用の圧延銅箔は、熱間圧延、冷間圧延等の工程を経て製造される。圧延銅箔は、その後のFPCの製造工程において、接着剤を介し或いは直接的に、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされる。基材上の圧延銅箔は、エッチング等の表面加工を施されて配線となる。圧延銅箔の耐屈曲性は、圧延されて硬化した冷間圧延後の硬質な状態よりも、再結晶により軟化した焼鈍後の状態の方が著しく向上する。そこで、例えば上述のFPCの製造工程においては、冷間圧延後の圧延銅箔を用いて伸びやしわ等の変形を避けつつ圧延銅箔を裁断し、基材上に重ね合わせる。その後、圧延銅箔の再結晶焼鈍も兼ねて加熱することにより、圧延銅箔と基材とを密着させ一体化する。   The rolled copper foil for FPC is manufactured through processes such as hot rolling and cold rolling. In the subsequent FPC manufacturing process, the rolled copper foil is bonded to an FPC base film (base material) made of a resin such as polyimide by heating or the like via an adhesive or directly. The rolled copper foil on the base material is subjected to surface processing such as etching to become a wiring. The bending resistance of the rolled copper foil is significantly improved in the state after annealing softened by recrystallization than in the hard state after cold rolling that has been rolled and hardened. Therefore, for example, in the manufacturing process of the FPC described above, the rolled copper foil is cut using the rolled copper foil after cold rolling while avoiding deformation such as elongation and wrinkles, and is superimposed on the substrate. Thereafter, the rolled copper foil and the base material are brought into close contact with each other by heating while also serving as recrystallization annealing of the rolled copper foil.

上述のFPCの製造工程を前提として、耐屈曲性に優れた圧延銅箔やその製造方法についてこれまでに種々の研究がなされ、圧延銅箔の表面に立方体方位である{002}面({200}面)を発達させるほど耐屈曲性が向上することが数多く報告されている。   On the premise of the above-mentioned FPC manufacturing process, various studies have been made so far on a rolled copper foil excellent in bending resistance and its manufacturing method, and the {002} plane ({200) having a cubic orientation on the surface of the rolled copper foil. } Surface) has been reported to improve the flex resistance.

例えば、特許文献1では、最終冷間圧延の直前の焼鈍を、再結晶粒の平均粒径が5μm〜20μmになる条件下で行う。また、最終冷間圧延での圧延加工度を90%以上とする。これにより、再結晶組織となるよう調質された状態(再結晶焼鈍後の状態)において、圧延面のX線回折で求めた{200}面の強度をIとし、微粉末銅のX線回折で求めた{200}面の強度をIとしたとき、I/I>20である立方体集合組織を得る。 For example, in Patent Document 1, annealing immediately before the final cold rolling is performed under the condition that the average grain size of the recrystallized grains is 5 μm to 20 μm. Further, the rolling degree in the final cold rolling is set to 90% or more. As a result, in a state tempered to a recrystallized structure (state after recrystallization annealing), the strength of the {200} plane obtained by X-ray diffraction of the rolled surface is I, and X-ray diffraction of fine powder copper When the intensity of the {200} plane obtained in step 1 is I 0 , a cubic texture with I / I 0 > 20 is obtained.

また、例えば、特許文献2では、最終冷間圧延前の立方体集合組織の発達度を高め、最終冷間圧延での加工度を93%以上とする。更に再結晶焼鈍を施すことにより、{200}面の積分強度がI/I≧40の、立方体集合組織が著しく発達した圧延銅箔を得る。 Further, for example, in Patent Document 2, the degree of development of the cube texture before the final cold rolling is increased, and the degree of processing in the final cold rolling is set to 93% or more. Further, by performing recrystallization annealing, a rolled copper foil having a remarkably developed cubic texture with an integral strength of {200} plane of I / I 0 ≧ 40 is obtained.

また、例えば、特許文献3では、最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15%〜50%に制御する。これにより、再結晶焼鈍後には、所定の結晶粒配向状態が得られる。つまり、X線回折極点図測定により得られる圧延面の{200}面に対する{111}面の面内配向度Δβが10°以下となる。また、圧延面における立方体集合組織である{200}面の規格化した回折ピーク強度[a]と{200}面の双晶関係にある結晶領域の規格化した回折ピーク強度[b]との比が、[a]/[b
]≧3となる。
Further, for example, in Patent Document 3, the total work degree in the final cold rolling process is set to 94% or more, and the work degree per pass is controlled to 15% to 50%. Thereby, a predetermined crystal grain orientation state is obtained after recrystallization annealing. That is, the in-plane orientation degree Δβ of the {111} plane with respect to the {200} plane of the rolled plane obtained by X-ray diffraction pole figure measurement is 10 ° or less. Further, the ratio between the normalized diffraction peak intensity [a] of the {200} plane which is a cubic texture in the rolled surface and the normalized diffraction peak intensity [b] of the crystal region in the twin relation of the {200} plane. Is [a] / [b
] ≧ 3.

また、例えば、特許文献4では、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔を、
以下のように規定している。圧延面に対するX線回折2θ/θ測定により得られる結果で
、銅結晶の回折ピークの80%以上を{220}Cu面({022}面)とする。また、圧延面を基準としたX線Pole−Figure法を用いた測定により得られる結果で、各あおり角度における面内回転軸走査で得られる{111}Cu面回折ピークの規格化平均強度をプロットした際に、以下のいずれかの状態とする。つまり、あおり角度が35°〜75°の範囲における規格化平均強度が階段状になっていない状態とする。もしくは、極大領域が実質的に1つだけ存在する結晶粒配向状態を有することとする。これにより、再結晶焼鈍後に立方体集合組織を得る。
Moreover, for example, in Patent Document 4, the rolled copper foil before the recrystallization annealing after the final cold rolling step,
It is defined as follows. As a result obtained by X-ray diffraction 2θ / θ measurement on the rolled surface, 80% or more of the diffraction peak of the copper crystal is defined as a {220} Cu surface ({022} surface). Also, plotting the normalized average intensity of {111} Cu plane diffraction peaks obtained by in-plane rotation axis scanning at each tilt angle as a result obtained by measurement using the X-ray Pole-Figure method based on the rolled surface. When it does, it will be in one of the following states. In other words, the normalized average intensity in the range where the tilt angle is 35 ° to 75 ° is not stepped. Alternatively, it has a crystal grain orientation state in which only one maximum region exists. Thereby, a cubic texture is obtained after recrystallization annealing.

従来技術では、以上のように、再結晶焼鈍工程後に圧延銅箔の立方体集合組織を発達させて耐屈曲性の向上を図っている。   In the prior art, as described above, the cube texture of the rolled copper foil is developed after the recrystallization annealing step to improve the bending resistance.

特許第3009383号公報Japanese Patent No. 3009383 特許第3856616号公報Japanese Patent No. 3856616 特許第4285526号公報Japanese Patent No. 4285526 特許第4215093号公報Japanese Patent No. 4215093

一方、近年では、電子機器の小型化や薄型化に伴い、小スペースへFPCを折り曲げて組み込むことが多くなってきている。特に、スマートフォン等のパネル部分では、配線の形成されたFPCが180°に折り曲げられて組み込まれることもある。このため、圧延銅箔に対し、小さな曲げ半径を許容する耐折り曲げ性の要求が高まってきている。   On the other hand, in recent years, with the downsizing and thinning of electronic devices, the FPC is often folded and incorporated in a small space. In particular, in a panel portion of a smartphone or the like, an FPC in which wiring is formed may be folded at 180 ° and incorporated. For this reason, the request | requirement of the bending resistance which accept | permits a small bending radius is increasing with respect to rolled copper foil.

このように、用途等の違いに応じて、繰り返しの曲げに耐える耐屈曲性と、小さな曲げ半径に耐える耐折り曲げ性と、の異なる要求が生じ得る。これらの異なる要求に応えるため、従来は、それぞれの用途ごとに、異なる特性の圧延銅箔を分けて製造していた。しかしながら、このような状況は生産性の面から効率的とはいえず、採算性が悪いという課題があった。   In this way, depending on the application and the like, different demands may arise between bending resistance that can withstand repeated bending and bending resistance that can withstand a small bending radius. In order to meet these different requirements, conventionally, rolled copper foils having different characteristics have been separately manufactured for each application. However, such a situation is not efficient in terms of productivity, and there is a problem that profitability is poor.

本発明の目的は、再結晶焼鈍工程後に、高い耐屈曲性とともに優れた耐折り曲げ性を具備させることが可能な圧延銅箔を提供することである。このように、両特性を兼ね備える圧延銅箔が実現可能となれば、耐屈曲性を重視する用途と耐折り曲げ性を重視する用途とのどちらへも適用可能となる。よって、圧延銅箔の製造においても、FPCの製造においても、生産効率を著しく向上させることができる。   An object of the present invention is to provide a rolled copper foil that can be provided with excellent bending resistance as well as high bending resistance after the recrystallization annealing step. As described above, if a rolled copper foil having both characteristics can be realized, it can be applied to both uses that place importance on bending resistance and uses that place importance on bending resistance. Therefore, production efficiency can be remarkably improved both in the production of rolled copper foil and in the production of FPC.

本発明の第1の態様によれば、
主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、
前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、
前記主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、
{022}+I{002}≧75.0であり、
前記主表面を基準とするX線Pole−Figure法を用い、15°以上90°以下の範囲内の複数のあおり角度のそれぞれについて、前記主表面の面内回転角度を0°以上
360°以下の範囲内で変化させて測定した{111}面の回折ピークの平均強度を求め、
前記あおり角度を横軸とし、回折ピーク強度を縦軸として、前記{111}面の回折ピークの平均強度をプロットしたグラフを作成したとき、
前記あおり角度が47°での前記{111}面の回折ピークの平均強度と前記あおり角度が53°での前記{111}面の回折ピークの平均強度とを結ぶ直線の縦軸切片を[A]とし、前記あおり角度が15°以上90°以下の範囲内での前記{111}面の回折ピークの平均強度の最大値を[B]としたとき、
[A]/[B]<1/4である
圧延銅箔が提供される。
According to a first aspect of the invention,
A rolled copper foil comprising a main surface, after a final cold rolling step having a plurality of crystal planes parallel to the main surface, and before a recrystallization annealing step,
The plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane,
The diffraction peak intensity ratios of the crystal planes obtained by X-ray diffraction measurement using the 2θ / θ method with respect to the main surface and converted so that the total value becomes 100 are I {022} and I {002} , respectively . , I {113} , I {111} , and I {133} ,
I {022} + I {002} ≧ 75.0,
Using the X-ray Pole-Figure method with the main surface as a reference, the in-plane rotation angle of the main surface is 0 ° or more and 360 ° or less for each of a plurality of tilt angles within a range of 15 ° or more and 90 ° or less. Obtain the average intensity of diffraction peaks of {111} planes measured by varying within the range,
When creating a graph plotting the average intensity of diffraction peaks of the {111} plane with the tilt angle as the horizontal axis and the diffraction peak intensity as the vertical axis,
A vertical axis intercept of a straight line connecting the average intensity of the diffraction peak of the {111} plane at the tilt angle of 47 ° and the average intensity of the diffraction peak of the {111} plane at the tilt angle of 53 ° is [A When the maximum value of the average intensity of the diffraction peaks of the {111} plane in the range where the tilt angle is 15 ° or more and 90 ° or less is [B],
A rolled copper foil with [A] / [B] <1/4 is provided.

本発明の第2の態様によれば、
前記{111}面の回折ピーク強度比が、
{111}≦10.0である
第1の態様に記載の圧延銅箔が提供される。
According to a second aspect of the invention,
The diffraction peak intensity ratio of the {111} plane is
The rolled copper foil as described in the 1st aspect which is I {111} <= 10.0 is provided.

本発明の第3の態様によれば、
前記主表面の表面粗さが、
十点平均粗さRzjis≦1.5μmであり、
算術平均粗さRa≦0.4μmである
第1又は第2の態様に記載の圧延銅箔が提供される。
According to a third aspect of the invention,
The surface roughness of the main surface is
Ten-point average roughness Rzjis ≦ 1.5 μm,
The rolled copper foil as described in the 1st or 2nd aspect which is arithmetic mean roughness Ra <= 0.4micrometer is provided.

本発明の第4の態様によれば、
無酸素銅、又はタフピッチ銅を主成分とする
第1〜第3の態様のいずれかに記載の圧延銅箔が提供される。
According to a fourth aspect of the invention,
The rolled copper foil in any one of the 1st-3rd aspect which has oxygen-free copper or tough pitch copper as a main component is provided.

本発明の第5の態様によれば、
銀、硼素、チタン、錫の少なくともいずれかが添加されている
第1〜第4の態様のいずれかに記載の圧延銅箔が提供される。
According to a fifth aspect of the present invention,
The rolled copper foil in any one of the 1st-4th aspect to which at least any one of silver, boron, titanium, and tin is added is provided.

本発明の第6の態様によれば、
厚さが20μm以下となっている
第1〜第5の態様のいずれかに記載の圧延銅箔が提供される。
According to a sixth aspect of the present invention,
The rolled copper foil in any one of the 1st-5th aspect which is 20 micrometers or less in thickness is provided.

本発明の第7の態様によれば、
フレキシブルプリント配線板用である
第1〜第6の態様のいずれかに記載の圧延銅箔が提供される。
According to a seventh aspect of the present invention,
The rolled copper foil in any one of the 1st-6th aspect which is an object for flexible printed wiring boards is provided.

本発明によれば、再結晶焼鈍工程後に、高い耐屈曲性とともに優れた耐折り曲げ性を具備させることが可能な圧延銅箔が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the rolled copper foil which can be equipped with the outstanding bending resistance with high bending resistance after a recrystallization annealing process is provided.

本発明の一実施形態に係る圧延銅箔の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the rolled copper foil which concerns on one Embodiment of this invention. 本発明の実施例及び比較例におけるX線回折の測定方法の概要を示す図である。It is a figure which shows the outline | summary of the measuring method of the X-ray diffraction in the Example and comparative example of this invention. 2θ/θ法を用いたX線回折の測定結果であって、(a)は本発明の実施例1に係る圧延銅箔のX線回折チャートであり、(b)は実施例2に係る圧延銅箔のX線回折チャートであり、(c)は比較例1に係る圧延銅箔のX線回折チャートである。It is a measurement result of X-ray diffraction using 2θ / θ method, (a) is an X-ray diffraction chart of a rolled copper foil according to Example 1 of the present invention, (b) is a rolling according to Example 2. It is an X-ray diffraction chart of copper foil, (c) is an X-ray diffraction chart of the rolled copper foil which concerns on the comparative example 1. FIG. 本発明の実施例1に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。It is the graph produced by plotting the average intensity | strength of the diffraction peak of the {111} surface which concerns on Example 1 of this invention. 本発明の実施例2に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。It is the graph produced by plotting the average intensity | strength of the diffraction peak of the {111} surface which concerns on Example 2 of this invention. 本発明の実施例3に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。It is the graph produced by plotting the average intensity | strength of the diffraction peak of the {111} surface which concerns on Example 3 of this invention. 本発明の実施例4に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。It is the graph produced by plotting the average intensity | strength of the diffraction peak of the {111} surface which concerns on Example 4 of this invention. 本発明の実施例5に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。It is the graph produced by plotting the average intensity | strength of the diffraction peak of the {111} surface which concerns on Example 5 of this invention. 比較例1に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。6 is a graph created by plotting the average intensity of diffraction peaks on the {111} plane according to Comparative Example 1. 比較例2に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。10 is a graph created by plotting the average intensity of diffraction peaks on the {111} plane according to Comparative Example 2. 比較例3に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。14 is a graph created by plotting the average intensity of diffraction peaks on the {111} plane according to Comparative Example 3. 比較例4に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。10 is a graph created by plotting the average intensity of diffraction peaks on the {111} plane according to Comparative Example 4. 比較例5に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。10 is a graph created by plotting the average intensity of diffraction peaks on the {111} plane according to Comparative Example 5. 本発明の実施例に係る圧延銅箔の耐屈曲性を測定する摺動屈曲試験装置の模式図である。It is a schematic diagram of the sliding bending test apparatus which measures the bending resistance of the rolled copper foil which concerns on the Example of this invention. 本発明の実施例に係る圧延銅箔の耐折り曲げ性の試験方法の概要を示す図である。It is a figure which shows the outline | summary of the test method of the bending resistance of the rolled copper foil which concerns on the Example of this invention. 本発明の実施例6に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。It is the graph produced by plotting the average intensity | strength of the diffraction peak of the {111} surface which concerns on Example 6 of this invention. 実施例7に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。10 is a graph created by plotting the average intensity of diffraction peaks on the {111} plane according to Example 7. FIG. 比較例6に係る{111}面の回折ピークの平均強度をプロットして作成したグラフである。14 is a graph created by plotting the average intensity of diffraction peaks on the {111} plane according to Comparative Example 6. 純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。It is a reverse pole figure of a pure copper type metal, and (a) is a reverse pole figure showing a crystal rotation direction by tensile deformation, and (b) is a reverse pole figure showing a crystal rotation direction by compression deformation. 一般的な逆極点図に、{013}面、{023}面およびこれらの結晶面との方位差が比較的小さい結晶面の領域を描き加えた図である。FIG. 6 is a diagram in which a {013} plane, a {023} plane, and a crystal plane region having a relatively small orientation difference from these crystal planes are added to a general inverted pole figure.

<本発明者等が得た知見>
上述のように、FPC用途で求められる優れた耐屈曲性の圧延銅箔を得るには、圧延面の立方体方位を発達させるほど良い。本発明者等も、立方体方位の占有率を増大させるべく種々の実験を行ってきた。そして、それまでの実験結果から、最終冷間圧延工程後に存在していた{022}面が、その後の再結晶焼鈍工程によって再結晶に調質されると、{002}面、すなわち立方体方位となることを確認した。つまり、最終冷間圧延工程後、再結晶焼鈍工程前においては、{022}面が主方位となっていることが好ましい。
<Knowledge obtained by the present inventors>
As described above, in order to obtain a rolled copper foil having excellent bending resistance required for FPC applications, it is better to develop the cube orientation of the rolled surface. The present inventors have also conducted various experiments in order to increase the occupation ratio of the cube orientation. And from the experimental results so far, when the {022} plane existing after the final cold rolling step is tempered to recrystallization by the subsequent recrystallization annealing step, the {002} plane, that is, the cube orientation and It was confirmed that That is, it is preferable that the {022} plane is the main orientation after the final cold rolling step and before the recrystallization annealing step.

一方、上述の特許文献1〜4に記載があるように、また、本発明者等が試みたように、立方体集合組織を多く発現させたとしても、多結晶構造をとる圧延銅箔において立方体集合組織である{002}面が100%を占めることはない。これは再結晶焼鈍工程前でも同じであり、再結晶焼鈍工程前の状態では主方位である{022}面や、再結晶前後に結晶方位の保たれる{002}面以外にも、{113}面、{111}面、{133}面、{013}面、{023}面等の副方位の結晶面が制御されることなく複数混在する。このような前提のもと、例えば特許文献4のように、{022}面の占有率を80%以上に制
御するには、高度な圧延技術や設備が必要となってしまう。
On the other hand, as described in the above-mentioned Patent Documents 1 to 4, and as tried by the present inventors, even if a large number of cube textures are expressed, cube aggregation in a rolled copper foil having a polycrystalline structure The {002} plane that is the organization does not occupy 100%. This is the same even before the recrystallization annealing process. In addition to the {022} plane which is the main orientation before the recrystallization annealing process and the {002} plane where the crystal orientation is maintained before and after the recrystallization, {113 }, {111} planes, {133} planes, {013} planes, {023} planes and other sub-orientation crystal planes are mixed together without being controlled. Under such a premise, as in Patent Document 4, for example, in order to control the occupation ratio of the {022} plane to 80% or more, advanced rolling technology and equipment are required.

また、これらの複数の結晶面を有する結晶粒は、圧延銅箔の諸特性に種々の影響を及ぼすと考えられる。そこで、本発明者等は、これまで不要とされてきた副方位の結晶面に着目し、主方位の占有率を減少させることなく高い耐屈曲性を維持しながら、これら副方位の結晶面の占有率を制御することによって圧延銅箔に他の特性、例えば近年、要求の高まりがみられる耐折り曲げ性を高めることができないかを検討してきた。   Moreover, it is thought that the crystal grain which has these several crystal planes has various influences on the various characteristics of a rolled copper foil. Therefore, the present inventors have focused on the sub-oriented crystal planes that have been made unnecessary so far, while maintaining high bending resistance without reducing the occupancy of the main orientation, It has been investigated whether controlling the occupancy rate can enhance other characteristics of the rolled copper foil, for example, the bending resistance, which has been increasing in demand in recent years.

係る検討において、本発明者等は、{113}面、{111}面、{133}面、{013}面、{023}面等の副方位を含む結晶面の、圧延銅箔の主表面における回折ピークの解析を進めた。回折ピークは各副方位の存在を示し、その強度比から各副方位の占有率を知ることができる。このような鋭意研究の結果、本発明者等は、係る回折ピークの状態を様々に規定し、これらを制御することで、主方位の{022}面の制御によって高い耐屈曲性が既に得られている状況下であっても、さらに耐折り曲げ性を向上させることができることを見いだした。   In such examination, the inventors of the present invention determined that the main surface of the rolled copper foil is a crystal plane including sub-orientations such as {113} plane, {111} plane, {133} plane, {013} plane, {023} plane, etc. The analysis of diffraction peaks at has been advanced. The diffraction peak indicates the presence of each sub-azimuth, and the occupation ratio of each sub-azimuth can be known from the intensity ratio. As a result of such diligent research, the present inventors have specified various states of diffraction peaks, and by controlling these, high bending resistance has already been obtained by controlling the {022} plane of the main orientation. It was found that the bending resistance can be further improved even under the circumstances.

また、これと併せて、本発明者等は、FPC用途で求められる耐折り曲げ性の高い圧延銅箔を得るべく、さらに鋭意研究を行った。その結果、耐折り曲げ性には結晶方位のみならず、圧延銅箔の主表面の凹凸の状態が大きく影響していることを見いだした。   At the same time, the present inventors have further conducted intensive studies to obtain a rolled copper foil having high bending resistance required for FPC applications. As a result, it was found that not only the crystal orientation but also the unevenness of the main surface of the rolled copper foil had a great influence on the bending resistance.

本発明は、発明者等が見いだしたこれらの知見に基づくものである。   The present invention is based on these findings found by the inventors.

<本発明の一実施形態>
(1)圧延銅箔の構成
まずは、本発明の一実施形態に係る圧延銅箔の結晶構造等の構成について説明する。
<One Embodiment of the Present Invention>
(1) Configuration of Rolled Copper Foil First, the configuration of the rolled copper foil according to an embodiment of the present invention, such as the crystal structure, will be described.

(圧延銅箔の概要)
本実施形態に係る圧延銅箔は、例えば主表面としての圧延面を備える板状に構成されている。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料とする鋳塊に、後述の熱間圧延工程や冷間圧延工程等を施し所定厚さとした、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔である。
(Outline of rolled copper foil)
The rolled copper foil which concerns on this embodiment is comprised by the plate shape provided with the rolling surface as a main surface, for example. This rolled copper foil has a predetermined thickness by subjecting an ingot made of pure copper such as oxygen-free copper (OFC) or tough pitch copper to a hot rolling process or a cold rolling process, which will be described later. The rolled copper foil after the final cold rolling process and before the recrystallization annealing process.

本実施形態に係る圧延銅箔は、例えばFPCの可撓性の配線材用途に用いられるよう、総加工度が90%以上、より好ましくは94%以上の最終冷間圧延工程により厚さが20μm以下に構成されている。係る圧延銅箔は、この後、上述のように、例えばFPCの基材との貼り合わせの工程を兼ねて再結晶焼鈍工程が施され、再結晶することにより優れた耐屈曲性を具備させることが企図されている。   The rolled copper foil according to the present embodiment has a thickness of 20 μm by a final cold rolling process with a total workability of 90% or more, more preferably 94% or more so that it can be used for flexible wiring materials such as FPC. It is structured as follows. After that, the rolled copper foil is subjected to a recrystallization annealing process, for example, which also serves as a bonding process with a base material of FPC as described above, and has excellent bending resistance by recrystallization. Is contemplated.

原材料となる無酸素銅は、例えばJIS C1020,H3100等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、タフピッチ銅は、例えばJIS C1100,H3100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。これらの銅材に銀(Ag)等の所定の添加材を微量に加えて希薄銅合金とし、耐熱性等の諸特性が調整された圧延銅箔とする場合もある。本実施形態に係る圧延銅箔には純銅と希薄銅合金との両方を含むことができ、原材料の銅材質や添加材による本実施形態の効果への影響はほとんど生じない。   The oxygen-free copper used as a raw material is a copper material having a purity specified in JIS C1020, H3100, etc. of 99.96% or more. The oxygen content may not be completely zero, and for example, oxygen of about several ppm may be included. Further, tough pitch copper is a copper material having a purity specified in, for example, JIS C1100, H3100, etc. of 99.9% or more. In the case of tough pitch copper, the oxygen content is, for example, about 100 ppm to 600 ppm. In some cases, a small amount of a predetermined additive such as silver (Ag) is added to these copper materials to form a diluted copper alloy, and a rolled copper foil in which various properties such as heat resistance are adjusted. The rolled copper foil according to the present embodiment can contain both pure copper and dilute copper alloy, and the influence of the present embodiment on the effect of the present embodiment by the copper material and the additive material hardly occurs.

最終冷間圧延工程における総加工度は、最終冷間圧延工程前の加工対象物(銅の板材)の厚さをTとし、最終冷間圧延工程後の加工対象物の厚さをTとすると、総加工度(%)=[(T−T)/T]×100で表わされる。総加工度を90%以上、より好
ましくは94%以上とすることで、耐屈曲性に優れる圧延銅箔が得られる。
The total degree of work in the final cold rolling process is defined as T B is the thickness of the workpiece (copper plate material) before the final cold rolling process, and T A is the thickness of the workpiece after the final cold rolling process. Then, the total degree of processing (%) = [(T B −T A ) / T B ] × 100. By setting the total workability to 90% or more, more preferably 94% or more, a rolled copper foil having excellent bending resistance can be obtained.

(圧延面の結晶構造)
また、本実施形態に係る圧延銅箔は、圧延面に平行な複数の結晶面を有している。具体的には、最終冷間圧延工程後、再結晶焼鈍工程前の状態で、複数の結晶面には、{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれる。{022}面は圧延面における主方位となっており、その他の各結晶面は副方位である。
(Crystal structure of rolled surface)
Moreover, the rolled copper foil which concerns on this embodiment has several crystal planes parallel to a rolling surface. Specifically, after the final cold rolling step and before the recrystallization annealing step, the plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and { 133} plane is included. The {022} plane is the main orientation in the rolling plane, and the other crystal planes are sub-azimuths.

上述のように、係る各結晶面の状態は、各結晶面について測定される回折ピーク強度等の状態を規定した比例関係式によって制御される。各結晶面の回折ピーク強度は、圧延銅箔の圧延面に対する2θ/θ法を用いたX線回折測定から求めることができる。ここで、2θ/θ法を用いたX線回折測定の概略について、後述する実施例及び比較例に係る図2を参照して説明する。なお、X線回折測定の詳細については後述する。   As described above, the state of each crystal plane is controlled by a proportional relational expression that defines the state of diffraction peak intensity and the like measured for each crystal plane. The diffraction peak intensity of each crystal plane can be determined from X-ray diffraction measurement using the 2θ / θ method with respect to the rolled surface of the rolled copper foil. Here, an outline of X-ray diffraction measurement using the 2θ / θ method will be described with reference to FIG. 2 relating to an example and a comparative example described later. Details of the X-ray diffraction measurement will be described later.

図2に示すように、圧延銅箔等の試料片50をθ軸、ψ軸、φ軸の3つの走査軸回りに回転可能に配置する。2θ/θ法を用いたX線回折測定では、試料片50をθ軸回りに回転させ、試料片50に対し角度θで入射X線を入射する。また、入射X線の入射方向に対して角度2θで回折された回折X線を検出する。これにより、試料片50の主表面に対して平行な各結晶面の回折ピークが、主表面における各結晶面の占有率に応じた強度で得られる。   As shown in FIG. 2, a sample piece 50 such as a rolled copper foil is disposed so as to be rotatable around three scanning axes of the θ axis, the ψ axis, and the φ axis. In X-ray diffraction measurement using the 2θ / θ method, the sample piece 50 is rotated about the θ axis, and incident X-rays are incident on the sample piece 50 at an angle θ. Further, diffracted X-rays diffracted at an angle 2θ with respect to the incident direction of incident X-rays are detected. Thereby, the diffraction peak of each crystal plane parallel to the main surface of the sample piece 50 is obtained with the intensity | strength according to the occupation rate of each crystal plane in the main surface.

このようなX線回折により測定した上述の5つの結晶面の回折ピーク強度を合計値が100となるような比に換算したものが、各結晶面の回折ピーク強度比I{022}、I{002}、I{113}、I{111}、及びI{133}である。係る回折ピーク強度比は、圧延面における各結晶面の占有率に略等しい。 The diffraction peak intensity ratios I {022} and I {of the respective crystal planes are obtained by converting the diffraction peak intensities of the five crystal planes measured by X-ray diffraction into a ratio such that the total value becomes 100. 002} , I {113} , I {111} , and I {133} . The diffraction peak intensity ratio is substantially equal to the occupancy ratio of each crystal plane on the rolled surface.

各結晶面の回折ピーク強度から、代表として{022}面の回折ピーク強度比を求める換算式(A)を以下に示す。ここで、各結晶面の回折ピーク強度をそれぞれI’{022}、I’{002}、I’{113}、I’{111}、及びI’{133}とする。 A conversion formula (A) for obtaining the diffraction peak intensity ratio of the {022} plane as a representative from the diffraction peak intensity of each crystal plane is shown below. Here, it is assumed that the diffraction peak intensities of the crystal planes are I ' {022} , I' {002} , I ' {113} , I' {111} , and I ' {133} , respectively.

本実施形態に係る圧延銅箔において、{022}面および{002}面の回折ピーク強度比は、例えば以下の式(1)が成り立つ関係にある。   In the rolled copper foil according to the present embodiment, the diffraction peak intensity ratio between the {022} plane and the {002} plane has a relationship that satisfies the following formula (1), for example.

{022}+I{002}≧75.0・・・(1) I {022} + I {002} ≧ 75.0 (1)

また、より好ましくは、本実施形態に係る圧延銅箔において、{111}面の回折ピーク強度比について以下の式(2)が成り立つ。   More preferably, in the rolled copper foil according to the present embodiment, the following expression (2) holds for the diffraction peak intensity ratio of the {111} plane.

{111}≦10.0・・・(2) I {111} ≦ 10.0 (2)

また、本実施形態に係る圧延銅箔は、少なくとも上述の式(1)に加え、圧延銅箔の圧延面を基準とするX線Pole−Figure(極点図)法を用いて求められる数値をも満たすよう規定される。ここで、X線Pole−Figure法を用いた測定の概略について、図2を参照して説明する。なお、係る測定の詳細については後述する。   Moreover, the rolled copper foil which concerns on this embodiment has the numerical value calculated | required using the X-ray Pole-Figure (pole figure) method on the basis of the rolling surface of rolled copper foil in addition to the above-mentioned Formula (1). It is prescribed to satisfy. Here, the outline of the measurement using the X-ray Pole-Figure method will be described with reference to FIG. Details of the measurement will be described later.

図2に示すように、X線Pole−Figure法の反射法を用いた測定では、上述の試料片50を更にψ軸回りに回転させ、15°以上90°以下の範囲内の複数のあおり角度ψのそれぞれについて2θ/θ法と同様に回折X線を検出する。このとき、各あおり角度ψにおいては、その角度を維持しつつ、上述の試料片50をφ軸回りに回転させて面内回転角度φを0°以上360°以下の範囲内で変化させて測定を行い、得られた銅結晶の{111}面の回折ピークの平均強度をそれぞれ求める。   As shown in FIG. 2, in the measurement using the reflection method of the X-ray Pole-Figure method, the sample piece 50 described above is further rotated around the ψ axis, and a plurality of tilt angles within a range of 15 ° to 90 ° are obtained. Diffraction X-rays are detected for each of ψ as in the 2θ / θ method. At this time, each tilt angle ψ is measured by maintaining the angle and rotating the sample piece 50 around the φ axis to change the in-plane rotation angle φ within the range of 0 ° to 360 °. And the average intensity of diffraction peaks on the {111} plane of the obtained copper crystal is obtained.

このような測定により求めた各平均強度を用い、本実施形態に係る圧延銅箔を規定する手法を以下に説明する。   A method for defining the rolled copper foil according to the present embodiment using each average strength obtained by such measurement will be described below.

あおり角度ψを横軸とし、回折ピーク強度を縦軸として、上述の{111}面の回折ピークの平均強度をプロットし、例えば後述の実施例1に係る図4のようなグラフを作成する。   With the tilt angle ψ as the horizontal axis and the diffraction peak intensity as the vertical axis, the above-mentioned {111} plane diffraction peak average intensity is plotted, for example, to create a graph as shown in FIG.

例えば図4に示すように、あおり角度ψが47°での{111}面の回折ピークの平均強度と、あおり角度ψが53°での{111}面の回折ピークの平均強度とを直線で結ぶ。これにより、この直線の縦軸切片を得る。このとき、係る縦軸切片を[A]とする。   For example, as shown in FIG. 4, the average intensity of the diffraction peak on the {111} plane when the tilt angle ψ is 47 ° and the average intensity of the diffraction peak on the {111} plane when the tilt angle ψ is 53 ° are linear. tie. Thereby, the vertical axis intercept of this straight line is obtained. At this time, the vertical axis intercept is [A].

また、グラフの範囲内、つまり、あおり角度ψが15°以上90°以下の範囲内での{111}面の回折ピークの平均強度の最大値を[B]とする。このとき、本実施形態に係る圧延銅箔においては、以下の式(3)を満たす。   In addition, the maximum value of the average intensity of the diffraction peaks on the {111} plane within the graph range, that is, within the range where the tilt angle ψ is 15 ° or more and 90 ° or less is defined as [B]. At this time, in the rolled copper foil which concerns on this embodiment, the following formula | equation (3) is satisfy | filled.

[A]/[B]<1/4・・・(3)       [A] / [B] <1/4 (3)

以上、式(1),(3)、さらに好ましくは式(2)により規定される条件を満たすことで、本実施形態に係る圧延銅箔は、再結晶焼鈍工程後には、繰り返しの曲げに耐える高い耐屈曲性とともに、小さな曲げ半径に耐える優れた耐折り曲げ性を具備するよう構成される。   As described above, the rolled copper foil according to the present embodiment can withstand repeated bending after the recrystallization annealing process by satisfying the conditions defined by the expressions (1) and (3), more preferably the expression (2). It is configured to have excellent bending resistance that can withstand a small bending radius in addition to high bending resistance.

(圧延面の表面粗さ)
また、好ましくは、本実施形態に係る圧延銅箔は、上述の構成に加え、更に以下の表面粗さを備える。
(Roughness of the rolled surface)
Preferably, the rolled copper foil according to the present embodiment further has the following surface roughness in addition to the above-described configuration.

つまり、本実施形態に係る圧延銅箔は、圧延面の表面粗さが、好ましくは十点平均粗さRzjisおよび算術平均粗さRaで以下の式(4),(5)を満たすように規定されて
いる。
That is, the rolled copper foil according to the present embodiment is defined so that the surface roughness of the rolled surface preferably satisfies the following formulas (4) and (5) with a ten-point average roughness Rzjis and an arithmetic average roughness Ra. Has been.

十点平均粗さRzjis≦1.5μm・・・(4)
算術平均粗さRa≦0.4μm・・・(5)
Ten-point average roughness Rzjis ≦ 1.5 μm (4)
Arithmetic average roughness Ra ≦ 0.4 μm (5)

なお、ここでいう十点平均粗さ及び算術平均粗さとは、JIS B 0601:2001により、それぞれ規定される十点平均粗さRzjisおよび算術平均粗さRaのことである。JIS規格で各々定義される表面粗さの表示記号には変遷がみられ、いささか混同が生じ易いため、以下の表1に、表面粗さについてのJIS規格の変遷を示す。   The ten-point average roughness and the arithmetic average roughness referred to here are a ten-point average roughness Rzjis and an arithmetic average roughness Ra respectively defined by JIS B 0601: 2001. Since changes in the surface roughness symbols defined in the JIS standards are seen and easily confused, Table 1 below shows changes in the JIS standards for surface roughness.

十点平均粗さRzjisおよび算術平均粗さRaは、粗さ測定によって得られた粗さ曲線から求められる。   The ten-point average roughness Rzjis and the arithmetic average roughness Ra are obtained from a roughness curve obtained by roughness measurement.

つまり、十点平均粗さRzjisについては、まず、粗さ曲線からその平均線の方向に基準長さだけ抜き取る。この抜き取り部分の平均線から縦倍率の方向に所定数の山頂と谷底とを測定する。このとき、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和を求める。これらの平均値の和をマイクロメートル(μm)で表わしたものが十点平均粗さRzjisである。   That is, for the ten-point average roughness Rzjis, first, a reference length is extracted from the roughness curve in the direction of the average line. A predetermined number of peaks and valleys are measured in the direction of the vertical magnification from the average line of the extracted portions. At this time, the sum of the average value of the absolute values of the altitudes of the tops from the highest peak to the fifth and the average value of the absolute values of the altitudes of the bottoms from the lowest valley to the fifth is obtained. The ten-point average roughness Rzjis represents the sum of these average values in micrometers (μm).

また、算術平均粗さRaについては、粗さ曲線から抜き取った平均線から、測定曲線までの、偏差の絶対値を合計し、平均値を求める。つまり、このように、粗さ曲線と平均線とによって得られる面積を長さLで割って求めた平均値をマイクロメートル(μm)で表わしたものが算術平均粗さRaである。   For the arithmetic average roughness Ra, the absolute value of the deviation from the average line extracted from the roughness curve to the measurement curve is summed to obtain the average value. That is, the arithmetic average roughness Ra is obtained by expressing the average value obtained by dividing the area obtained by the roughness curve and the average line by the length L in micrometers (μm).

以上、好ましくは式(4),(5)をさらに満たすことにより、本実施形態に係る圧延銅箔は、再結晶焼鈍工程後には、高い耐屈曲性とともに、いっそう優れた耐折り曲げ性を安定的に具備するよう構成される。   As described above, preferably by further satisfying the formulas (4) and (5), the rolled copper foil according to the present embodiment stably exhibits excellent bending resistance as well as high bending resistance after the recrystallization annealing step. It is comprised so that it may comprise.

(2)圧延銅箔に付与される特性
以上のような結晶構造や表面粗さを備えることで、圧延銅箔に付与されることとなる特性について以下に説明する。
(2) Properties imparted to the rolled copper foil The properties to be imparted to the rolled copper foil by providing the crystal structure and surface roughness as described above will be described below.

(式(1)で規定される結晶構造について)
上述のように、再結晶焼鈍工程前の{022}面は再結晶焼鈍工程後に{002}面へと変化し、再結晶焼鈍工程前の{002}面は再結晶焼鈍工程後もそのまま残存することで、圧延銅箔の耐屈曲性を向上させる。つまり、上述の式(1)において、例えばI{022}+I{002}=75.0+0=75.0の場合と、I{022}+I{002}=55.0+20.0=75.0の場合とでは、再結晶焼鈍工程後に得られる圧延銅箔は互いに略同様の{002}面の結晶組織を備えることがわかっている。
(Regarding the crystal structure defined by the formula (1))
As described above, the {022} plane before the recrystallization annealing process changes to the {002} plane after the recrystallization annealing process, and the {002} plane before the recrystallization annealing process remains after the recrystallization annealing process. This improves the bending resistance of the rolled copper foil. That is, in the above formula (1), for example, I {022} + I {002} = 75.0 + 0 = 75.0 and I {022} + I {002} = 55.0 + 20.0 = 75.0 In some cases, it has been found that the rolled copper foil obtained after the recrystallization annealing step has substantially the same {002} plane crystal structure.

また、再結晶焼鈍工程の際、{002}面は、自身の結晶方位は変化しないものの、種結晶となって、{022}面が{002}面へと変化し成長することを促進する。したがって、再結晶焼鈍工程前において上述の式(1)を満たすことで、このような効果を充分に得ることができる。   In the recrystallization annealing process, the {002} plane does not change its crystal orientation, but becomes a seed crystal and promotes the growth of the {022} plane changing to the {002} plane. Therefore, by satisfying the above formula (1) before the recrystallization annealing step, such an effect can be sufficiently obtained.

多結晶構造をとる圧延銅箔において、例えば上述の特許文献4のように、{022}面
のみによって耐屈曲性を向上させようとすることには限界がある。また、再結晶焼鈍工程前の圧延銅箔における{022}面の回折ピークでみた占有率を80%以上とするには、高度な圧延技術や設備等を要する。
In the rolled copper foil having a polycrystalline structure, there is a limit to improving the bending resistance by using only the {022} plane as described in Patent Document 4 described above, for example. Moreover, in order to make 80% or more of the occupation rate seen by the diffraction peak of the {022} plane in the rolled copper foil before a recrystallization annealing process, an advanced rolling technique, an installation, etc. are required.

しかしながら、本実施形態においては{022}面のみならず、再結晶焼鈍工程時に種結晶となり、また、再結晶焼鈍工程後も自身は変化しない{002}面の効果も活かすこととしている。これにより、高度な圧延技術や設備等に過度に依存することなく、比較的容易に特許文献4の圧延銅箔と同等以上の特性を得ることができる。   However, in this embodiment, not only the {022} plane but also the seed crystal is formed during the recrystallization annealing process, and the effect of the {002} plane that does not change itself after the recrystallization annealing process is also utilized. Thereby, the characteristic equivalent to or higher than the rolled copper foil of Patent Document 4 can be obtained relatively easily without excessively depending on advanced rolling technology and equipment.

すなわち、特許文献4のような結晶状態、つまり、I{022}≧80.0であるような状態と、本実施形態のようなI{022}+I{002}≧75.0の状態とが、再結晶焼鈍工程後には、互いに略同様の{002}面の結晶組織を備える状態となることがわかっている。これはあたかも、再結晶焼鈍工程前の{022}面と{002}面とを足し合わせた占有率、例えば75.0%よりも、再結晶焼鈍工程後の{002}面の占有率のほうが、例えば特許文献4と同等の80.0%、或いはそれ以上に増加したかのようにみえる。本発明者等は、再結晶により{002}面の結晶が成長する際、例えば上述のような副方位を含め、他のいずれかの副方位を{002}面が取り込むためと考えている。これは、結晶成長の技術分野において、例えばオストワルド成長等にみられるような、大きな結晶が小さな結晶を吸収して成長する現象等から類推できる。 That is, there are a crystal state as in Patent Document 4, that is, a state where I {022} ≧ 80.0 and a state where I {022} + I {002} ≧ 75.0 as in this embodiment. It has been found that after the recrystallization annealing step, substantially the same crystal structures of {002} planes are provided. This is as if the occupancy ratio of the {002} plane after the recrystallization annealing process is more than the occupancy ratio of the {022} plane and the {002} plane before the recrystallization annealing process, for example 75.0%. For example, it appears as if it increased to 80.0% equivalent to Patent Document 4 or more. The present inventors consider that when the crystal of the {002} plane grows by recrystallization, the {002} plane takes in any other sub-azimuth including the sub-azimuth as described above, for example. This can be inferred from a phenomenon in which a large crystal grows by absorbing a small crystal as seen in, for example, Ostwald growth in the technical field of crystal growth.

このように、{002}面は、副方位ではあっても、圧延銅箔の特性値を向上させる働きを有する。   Thus, the {002} plane has a function of improving the characteristic value of the rolled copper foil even if it is in the sub-orientation.

なお、上述の式(1)により規定される数値は高ければ高いほど良く、これまでのところ、上限値は認められていない。但し、より優れた耐屈曲性が得られる式(1)の目安となる数値として、好ましくは77.5以上、より好ましくは80.0以上、とすることができる。   Note that the higher the numerical value defined by the above formula (1), the better, and so far no upper limit has been recognized. However, the numerical value serving as a standard of the formula (1) for obtaining better bending resistance can be preferably 77.5 or more, more preferably 80.0 or more.

(式(2)で規定される結晶構造について)
一方で、{002}面以外の副方位である{113}面、{111}面、{133}面や、その他の副方位は、耐屈曲性には寄与しない不要な結晶面である。そればかりでなく、本発明者等による鋭意研究の結果、このような副方位の多くが、耐屈曲性や耐折り曲げ性をはじめ、圧延銅箔の種々の特性に対して悪影響を与えるということが判明した。
(Regarding the crystal structure defined by the formula (2))
On the other hand, the {113} plane, {111} plane, {133} plane and other sub-directions which are sub-azimuths other than the {002} plane are unnecessary crystal planes that do not contribute to bending resistance. In addition, as a result of earnest research by the present inventors, many such sub-orientations have an adverse effect on various properties of rolled copper foil, including bending resistance and bending resistance. found.

本発明者等によれば、例えば{111}面は、耐折り曲げ性を低下させる傾向を有する。この点につき、本発明者等は、以下のように説明付けを行っている。   According to the present inventors, for example, the {111} plane has a tendency to reduce the bending resistance. In this regard, the present inventors have provided an explanation as follows.

結晶方位学の観点に基づく本発明者等の考察によると、小さな曲げ半径で折り曲げられた際には、塑性変形し易い材料の方が、折り曲げによる亀裂(割れ)や破断等が発生し難く耐折り曲げ性に優れる傾向にある。塑性変形は、材料中の結晶の「すべり」という現象により起こる。銅結晶においては、すべりは{111}面に沿って起こり、{111}面は「すべり面」と呼ばれる。しかし、例えば圧延銅箔が有する{111}面が圧延面に平行である場合には、すべりの起こりが悪くなって、塑性変形が起こり難くなる。よって、割れ等が発生し易く、耐折り曲げ性に劣る圧延銅箔となってしまう。   According to the present inventors' consideration from the viewpoint of crystal orientation, materials that are more likely to be plastically deformed when bent with a small bending radius are less prone to cracking or breaking due to bending. It tends to be excellent in bendability. Plastic deformation is caused by a phenomenon called “slip” of crystals in the material. In a copper crystal, slip occurs along the {111} plane, and the {111} plane is called a “slip plane”. However, for example, when the {111} plane of the rolled copper foil is parallel to the rolled surface, the occurrence of slippage is poor and plastic deformation is difficult to occur. Therefore, it becomes easy to generate | occur | produce a crack etc. and will become a rolled copper foil inferior to bending resistance.

本発明者等は、以上の考察に基づき、{111}面の占有率の適正化を図った。この結果、{111}面の回折強度ピーク比が10.0より大きい圧延銅箔は、折り曲げによる割れが発生し易くなることがわかった。したがって、再結晶焼鈍工程前後においてほとんど変化しない{111}面について、再結晶焼鈍工程前の状態で、好ましくは上述の式(2)を満たすことで、{111}面による耐折り曲げ性への悪影響を極めて小さくし、よ
りいっそう耐折り曲げ性を向上させることができる。
Based on the above consideration, the present inventors have attempted to optimize the occupation ratio of the {111} plane. As a result, it was found that the rolled copper foil having a diffraction intensity peak ratio of the {111} plane larger than 10.0 is likely to be cracked by bending. Therefore, the {111} plane that hardly changes before and after the recrystallization annealing step preferably satisfies the above-described formula (2) in the state before the recrystallization annealing step, thereby adversely affecting the bending resistance of the {111} plane. Can be made extremely small, and the bending resistance can be further improved.

なお、上述の式(2)により規定される数値は低ければ低いほど良く、これまでのところ、下限値は認められていない。   In addition, the numerical value prescribed | regulated by above-mentioned Formula (2) is so good that it is low, and the lower limit is not recognized so far.

(式(3)で規定される結晶構造について)
また、本発明者等は、{111}面以外の副方位についても研究を重ね、耐折り曲げ性に不利となる可能性のある副方位をさらに特定し、これを低減することとした。
(Regarding the crystal structure defined by the formula (3))
The inventors of the present invention have also studied the sub-azimuths other than the {111} plane, further identified the sub-azimuths that may be disadvantageous in bending resistance, and reduced them.

例えば{013}面や{023}面、或いはこれらの結晶面に近い結晶方位、具体的には、これらの結晶面と±10°程度以内にある結晶方位を有する結晶面には、少なくとも耐折り曲げ性を直接的に向上させる作用はないものと考えられ、耐折り曲げ性に不利となる可能性のある副方位として低減を図ることが望ましい。これらの結晶面は、再結晶焼鈍工程において再結晶した後も結晶方位が変わらない。よって、これらの結晶面についても、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔における状態を制御できれば、これらの結晶方位の影響に妨げられることなく、圧延銅箔の優れた耐折り曲げ性を確保することができる。   For example, the {013} plane, {023} plane, or a crystal orientation close to these crystal planes, specifically, a crystal plane having a crystal orientation within about ± 10 ° with these crystal planes is at least bent-resistant. It is considered that there is no effect of directly improving the property, and it is desirable to reduce the sub-orientation which may be disadvantageous for the bending resistance. The crystal orientation of these crystal faces does not change even after recrystallization in the recrystallization annealing process. Therefore, for these crystal faces, if the state of the rolled copper foil after the final cold rolling process and before the recrystallization annealing process can be controlled, the excellent resistance of the rolled copper foil is not hindered by the influence of these crystal orientations. Bendability can be ensured.

ところで、{013}面や{023}面は、たとえ圧延銅箔の圧延面に存在していたとしても、2θ/θ法によるX線回折測定では検出されない。銅は面心立方構造の結晶なので、2θ/θ法によるX線回折測定では{hkl}面のh,k,lが全て奇数値または全て偶数値でなければ回折ピークとして現れない。{013}面や{023}面のように、h,k,lが奇数値と偶数値との混在となっていると、消滅則によって回折ピークが消失してしまうためである。   By the way, the {013} plane and the {023} plane are not detected by X-ray diffraction measurement by the 2θ / θ method even if they exist on the rolled surface of the rolled copper foil. Since copper has a face-centered cubic crystal, X-ray diffraction measurement by the 2θ / θ method does not appear as a diffraction peak unless h, k, and l on the {hkl} plane are all odd or even values. This is because the diffraction peak disappears due to the extinction rule when h, k, and l are a mixture of odd and even values such as the {013} plane and the {023} plane.

そこで、本実施形態では、X線Pole−Figure法を用いてこれらの結晶面を上述の式(3)のように規定する。上述において、あおり角度ψが47°での{111}面の回折ピークは、圧延銅箔の圧延面に平行な{013}面の存在を意味する。また、係る回折ピークの平均強度等から{013}面の状態を知ることができる。また、あおり角度ψが53°での{111}面の回折ピークは、圧延銅箔の圧延面に平行な{023}面の存在を意味する。また、係る回折ピークの平均強度等から{023}面の状態を知ることができる。   Therefore, in the present embodiment, these crystal planes are defined as in the above-described formula (3) by using the X-ray Pole-Figure method. In the above description, the diffraction peak of the {111} plane when the tilt angle ψ is 47 ° means the presence of a {013} plane parallel to the rolled surface of the rolled copper foil. Further, the state of the {013} plane can be known from the average intensity of the diffraction peaks. Further, the diffraction peak of the {111} plane at a tilt angle ψ of 53 ° means the presence of a {023} plane parallel to the rolled surface of the rolled copper foil. The state of the {023} plane can be known from the average intensity of the diffraction peaks.

回折ピークの平均強度のグラフにおける直線が上述の式(3)を満たすことで、これらの結晶面の占有率が充分に低い圧延銅箔となり、耐折り曲げ性に対する影響を低減することができる。係る直線が上述の式(3)を満たすか否かは、例えばあおり角度ψが47°での回折ピークの平均強度とあおり角度ψが53°での回折ピークの平均強度との大小関係や、これらの平均強度とグラフの最大値の平均強度との大小関係や、2つの平均強度を結ぶ直線の傾き等によって決まる。   When the straight line in the graph of the average intensity of the diffraction peaks satisfies the above-described formula (3), the occupancy ratio of these crystal planes becomes a rolled copper foil, and the influence on the bending resistance can be reduced. Whether or not such a straight line satisfies the above-mentioned formula (3) is, for example, the magnitude relationship between the average intensity of the diffraction peak when the tilt angle ψ is 47 ° and the average intensity of the diffraction peak when the tilt angle ψ is 53 °, It is determined by the magnitude relationship between these average intensities and the average intensity of the maximum value of the graph, the slope of a straight line connecting two average intensities, and the like.

本発明者等は、{013}面や{023}面、及びこれらの結晶面に近い結晶方位、つまりこれらの結晶面との結晶方位差が比較的小さい結晶面は、圧延銅箔中に所定量存在している場合には集合組織を形成していると考えている。また、上述のグラフにより得られる直線の縦軸切片[A]がグラフの最大値[B]に対して4分の1という状態は、これらの結晶面が集合組織を形成するかどうかの境界を表わしていると考えられる。つまり、[A]/[B]<1/4であれば、{013}面や{023}面等は集合組織を形成していないか、或いは形成が不充分で、少なくとも耐折り曲げ性の向上を妨げるような作用を及ぼさないと推察される。また、これらの結晶面が[A]/[B]≧1/4となって集合組織を形成することで、これらの結晶方位群の影響が無視できないほど顕著になって、耐折り曲げ性の向上を妨げる可能性が生じてしまうと思われる。   The present inventors have found that the {013} plane, the {023} plane, and crystal orientations close to these crystal planes, that is, crystal planes having a relatively small difference in crystal orientation from these crystal planes are located in the rolled copper foil. When a certain amount exists, it is considered that a texture is formed. Further, the state where the vertical axis intercept [A] of the straight line obtained by the above-mentioned graph is a quarter of the maximum value [B] of the graph indicates that the boundary of whether these crystal planes form a texture or not. It is thought that it represents. That is, if [A] / [B] <1/4, the {013} plane, {023} plane, etc. do not form a texture or are insufficiently formed, and at least improve the bending resistance. It is presumed that it does not act to hinder. In addition, by forming a texture with these crystal planes [A] / [B] ≧ 1/4, the influence of these crystal orientation groups becomes so remarkable that the bending resistance is improved. It seems that there is a possibility of disturbing.

この点、本発明者等は、再結晶焼鈍工程後の{002}面の働きが関与していると考えている。つまり、再結晶焼鈍後に圧延銅箔の圧延面にみられる{002}面は、耐屈曲性のみならず耐折り曲げ性の向上にも寄与している可能性がある。{013}面や{023}面が集合組織を形成しているか否かで、この{002}面の働きが充分に発揮されたりされなかったり、つまり、耐折り曲げ性が向上したり悪化したりすると推察される。   In this regard, the present inventors believe that the action of the {002} plane after the recrystallization annealing step is involved. That is, the {002} surface seen on the rolled surface of the rolled copper foil after recrystallization annealing may contribute not only to bending resistance but also to bending resistance. Depending on whether the {013} plane or the {023} plane forms a texture, the function of the {002} plane is not fully exhibited, that is, the bending resistance is improved or deteriorated. I guess that.

再結晶焼鈍工程後の{002}面が、耐折り曲げ性にも寄与するとの推察は、以下に基づくものである。優れた耐屈曲性には低ひずみでの高サイクル疲労特性に優れることが要求され、優れた耐折り曲げ性には高ひずみでの低サイクル疲労特性に優れることが要求される。このことから、本発明者等は、耐屈曲性、耐折り曲げ性のいずれの特性に対しても、同じ結晶面、つまり、{002}面が寄与しているのではないかと考えたのである。   The inference that the {002} plane after the recrystallization annealing process also contributes to bending resistance is based on the following. Excellent bending resistance is required to be excellent in high cycle fatigue characteristics at low strain, and excellent bending resistance is required to be excellent in low cycle fatigue characteristics at high strain. From this, the present inventors considered that the same crystal plane, that is, the {002} plane, contributed to both the bending resistance and the bending resistance.

それにも関わらず、これまで両特性が完全には相関性を示してこなかった要因は、{013}面や{023}面が集合組織を形成しているか否かによると考えられる。{002}面の占有率が充分に高い状態となっていても、耐折り曲げ性が向上するか否かは、{013}面や{023}面が集合組織を形成しているか否かにより影響を受けていたと推察される。   Nevertheless, it is considered that the reason why both characteristics have not been completely correlated so far is based on whether the {013} plane and the {023} plane form a texture. Whether the {002} plane occupancy is sufficiently high or not, whether the bending resistance is improved depends on whether the {013} plane and the {023} plane form a texture. It is presumed that he had received.

また、そもそも、これらの結晶面の集合組織による耐折り曲げ性の低下は、以下のように説明づけることができる。{013}面と{002}面とのなす角度は18.4°であり、{023}面と{002}面とのなす角度は33.7°である。このように、{013}面と{023}面とは共に、{002}面との結晶方位が大きく異なっている。主方位である{002}面とこれだけ結晶方位の異なる{013}面や{023}面が集合組織を形成すると、高ひずみが加わる耐折り曲げ性に対する影響は多大であると考えられる。よって、これらの結晶面による集合組織の形成により、耐折り曲げ性が充分に発揮されないと推察される。   In the first place, the decrease in bending resistance due to the texture of these crystal planes can be explained as follows. The angle formed between the {013} plane and the {002} plane is 18.4 °, and the angle formed between the {023} plane and the {002} plane is 33.7 °. Thus, both the {013} plane and the {023} plane are greatly different in crystal orientation from the {002} plane. If the {002} plane, which is the main orientation, and the {013} plane or {023} plane having such a different crystal orientation form a texture, it is considered that the influence on bending resistance to which high strain is applied is great. Therefore, it is presumed that the bending resistance is not sufficiently exhibited due to the formation of a texture by these crystal faces.

なお、上述の式(3)により規定される[A]/[B]は低ければ低いほど良く、これまでのところ、下限値は認められていない。   In addition, [A] / [B] prescribed | regulated by above-mentioned Formula (3) is so good that it is low, and the lower limit is not recognized so far.

(式(4)(5)で規定される表面粗さについて)
上述のように、本発明者等は、各結晶面の回折ピーク強度比等の制御に加え、好ましくは圧延銅箔の圧延面の表面粗さが所定値以下であるとき、圧延銅箔の耐折り曲げ性をいっそう向上させることができることを見いだした。これは、圧延銅箔の圧延面の凹凸差が大きいと、圧延銅箔を折り曲げたときに凹部が開く方向に変形し、ここを起点に割れが発生し易くなるためと考えられる。
(Surface roughness specified by Formulas (4) and (5))
As described above, the present inventors, in addition to controlling the diffraction peak intensity ratio of each crystal plane, preferably, when the surface roughness of the rolled copper foil is not more than a predetermined value, It was found that the bendability could be further improved. This is presumably because if the unevenness of the rolling surface of the rolled copper foil is large, the rolled copper foil is deformed in the direction in which the recess is opened when the rolled copper foil is bent, and cracks are likely to occur from this point.

当初、本発明者等は、圧延銅箔の表面粗さを十点平均粗さRzjisで規定することとした。これを所定値以下に抑えることで、圧延銅箔の耐折り曲げ性をいっそう向上させることができる。   Initially, the present inventors decided to prescribe | regulate the surface roughness of rolled copper foil by 10-point average roughness Rzjis. By suppressing this below a predetermined value, the bending resistance of the rolled copper foil can be further improved.

しかしながら、十点平均粗さRzjisの制御のみでは、測定試験用の試料片ごとに耐折り曲げ性がばらつき、優れた耐折り曲げ性を安定的に得ることができない場合があった。   However, only by controlling the ten-point average roughness Rzjis, the bending resistance varies for each sample piece for the measurement test, and the excellent bending resistance may not be stably obtained.

本発明者等は、さらなる鋭意研究の結果、十点平均粗さRzjisに加え、算術平均粗さRaを用いて表面粗さを規定し、これらを制御することで、優れた耐折り曲げ性が安定的に得られることを見いだした。本発明者等は、この理由について、上述の表1に示したような種々の表面粗さの指標の特徴に鑑みて、以下のような考察を行った。   As a result of further diligent research, the present inventors have defined the surface roughness using the arithmetic average roughness Ra in addition to the ten-point average roughness Rzjis, and by controlling these, the excellent bending resistance is stable. I found out that I could get it. The present inventors have considered the following reasons in view of the characteristics of various surface roughness indices as shown in Table 1 above.

上述の表1にも示すJIS B 0601:2001の規定による最大高さRzは、最凸部と最凹部との差により表わされる。よって、他の部分がどれだけ平坦であっても、大きく突出した部分や落ちくぼんだ部分があると、最大高さRzは大きくなる。   The maximum height Rz according to JIS B 0601: 2001 shown in Table 1 above is represented by the difference between the most convex part and the most concave part. Therefore, no matter how flat the other portion is, if there is a large protruding portion or a depressed portion, the maximum height Rz becomes large.

本実施形態に係る圧延銅箔の表面粗さの指標の1つとして用いる十点平均粗さRzjisは、このような最凸部と最凹部とを含むそれぞれ5点ずつの差を抜き出して数値化したものである。つまり、山頂と谷底との合計10点を用いて数値化するため、上述の最大高さRzのように1つの凹凸差だけでなく、平均的にどれくらいの凹凸差があるかの情報が得られる。   The ten-point average roughness Rzjis used as one of the indices of the surface roughness of the rolled copper foil according to the present embodiment is quantified by extracting the difference of five points each including the most convex part and the most concave part. It is a thing. In other words, since it is digitized using a total of 10 points of the summit and the valley bottom, not only one unevenness difference as in the above-mentioned maximum height Rz, but information on how much unevenness difference is on average can be obtained. .

しかし、これだけでは、安定的に優れた耐折り曲げ性を得るには充分でない。例えば、十点平均粗さRzjisの値が小さくとも、最大凹凸部の各5点の値に対し、測定箇所の全体がこれと同等の凹凸差となっている場合もある。この場合には、全体的に表面が荒れた状態となっていることを意味する。極端に大きい凹凸はなくとも、所定の大きさの凹凸が全体的に数多く存在していると、それらが起点となって割れが発生する確率が高まってしまう。   However, this alone is not sufficient to stably obtain excellent bending resistance. For example, even if the value of the ten-point average roughness Rzjis is small, there are cases where the entire measurement location has an uneven difference equivalent to the value of each of the five points of the maximum uneven portion. In this case, it means that the surface is rough as a whole. Even if there are no extremely large irregularities, if there are a large number of irregularities of a predetermined size as a whole, the probability of occurrence of cracks starting from them increases.

一方、圧延銅箔の表面粗さのもう1つの指標である算術平均粗さRaは、凹凸差に着目する十点平均粗さRzjis等とは異なり、測定箇所全体でどれだけうねりがあるか、に着目する。つまり、中心となる直線状の平均線に対して、粗さ曲線がどれだけ外れているかであり、全体の平均である平均線と粗さ曲線の凹凸との間の面積をみていることになる。   On the other hand, the arithmetic average roughness Ra, which is another index of the surface roughness of the rolled copper foil, differs from the ten-point average roughness Rzjis, which focuses on the unevenness difference, how much undulation is present in the entire measurement location, Pay attention to. In other words, it is how far the roughness curve deviates from the central linear average line, and the area between the average line that is the average of the whole and the roughness of the roughness curve is seen. .

よって、十点平均粗さRzjisが上述の所定値内であっても、算術平均粗さRaは大きくなることがある。また、十点平均粗さRzjisが極端に大きい場合、つまり、最大凹凸部の各5点が極端に大きい場合であっても、他の部分に目立った表面荒れがなければ、算術平均粗さRaが小さくなることがある。また、凹凸が大きい場合が部分的である場合には、算術平均粗さRaが小さくとも十点平均粗さRzjisは大きくなることがある。また、算術平均粗さRaが大きくとも、十点平均粗さRzjisはそれほど大きくないことがある。   Therefore, even if the ten-point average roughness Rzjis is within the above-described predetermined value, the arithmetic average roughness Ra may increase. In addition, when the ten-point average roughness Rzjis is extremely large, that is, when each of the five points of the maximum unevenness is extremely large, the arithmetic average roughness Ra is not present if there is no conspicuous surface roughness in other portions. May become smaller. When the unevenness is large and partial, the arithmetic average roughness Ra may be small, but the ten-point average roughness Rzjis may be large. Even if the arithmetic average roughness Ra is large, the ten-point average roughness Rzjis may not be so large.

以上のことから鑑みて、十点平均粗さRzjisを所定値以内に制御することで、極端に大きな凹凸差を排除し、圧延銅箔を折り曲げたときに凹凸部が開裂して破断してしまうのを抑制できる。一方で、算術平均粗さRaを所定値以内に制御することで、全体としてのバラツキを抑え、ひいては耐折り曲げ性の数値の安定化を図ることができる。   In view of the above, by controlling the ten-point average roughness Rzjis within a predetermined value, an extremely large unevenness difference is eliminated, and when the rolled copper foil is bent, the unevenness portion is cleaved and broken. Can be suppressed. On the other hand, by controlling the arithmetic average roughness Ra within a predetermined value, it is possible to suppress variation as a whole and to stabilize the value of the bending resistance.

このように、本実施形態によれば、2θ/θ法やX線Pole−Figure法のようなX線の回折ピーク等に顕現される圧延銅箔の内面的な制御により、優れた耐屈曲性および耐折り曲げ性を圧延銅箔に付与することができる。また、好ましくは、十点平均粗さRzjisおよび算術平均粗さRaの表面粗さ等に顕現される圧延銅箔の外面的な制御により、更に優れた耐折り曲げ性を安定的に圧延銅箔に付与することができる。   As described above, according to the present embodiment, excellent bending resistance is achieved by the internal control of the rolled copper foil that is manifested in an X-ray diffraction peak or the like such as 2θ / θ method or X-ray Pole-Figure method. And bending resistance can be imparted to the rolled copper foil. Preferably, further excellent bending resistance can be stably produced in the rolled copper foil by external control of the rolled copper foil manifested in the surface roughness of the ten-point average roughness Rzjis and the arithmetic average roughness Ra. Can be granted.

(3)圧延銅箔の製造方法
次に、本発明の一実施形態に係る圧延銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る圧延銅箔の製造工程を示すフロー図である。
(3) Manufacturing method of rolled copper foil Next, the manufacturing method of the rolled copper foil which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 1 is a flow chart showing the manufacturing process of the rolled copper foil according to this embodiment.

(鋳塊の準備工程S10)
図1に示すように、まずは、無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料として鋳造を行って鋳塊(インゴット)を準備する。鋳塊は、例えば所
定厚さ、所定幅を備える板状に形成する。原材料となる無酸素銅やタフピッチ銅等の純銅は、圧延銅箔の諸特性を調整するため、所定の添加材が添加された希薄銅合金となっていてもよい。
(Ingot preparation step S10)
As shown in FIG. 1, first, casting is performed using pure copper such as oxygen-free copper (OFC) or tough pitch copper as a raw material to prepare an ingot. The ingot is formed in a plate shape having a predetermined thickness and a predetermined width, for example. Pure copper such as oxygen-free copper or tough pitch copper as a raw material may be a dilute copper alloy to which a predetermined additive is added in order to adjust various properties of the rolled copper foil.

添加材で調整可能な諸特性には、例えば耐熱性がある。上述のように、FPC用の圧延銅箔では、圧延銅箔に高い耐屈曲性を付与する再結晶焼鈍工程は、例えばFPCの基材との貼り合わせの工程を兼ねて行われる。貼り合わせの際の加熱温度は、例えばFPCの樹脂等からなる基材の硬化温度や、使用する接着剤の硬化温度等に併せて設定され、温度条件の範囲は広く多種多様である。このように設定された加熱温度に圧延銅箔の軟化温度を合わせるべく、圧延銅箔の耐熱性を調整可能な添加材が添加される場合がある。   Various characteristics that can be adjusted with the additive include, for example, heat resistance. As described above, in the rolled copper foil for FPC, the recrystallization annealing step for imparting high bending resistance to the rolled copper foil is performed, for example, also as a bonding step with the FPC base material. The heating temperature at the time of bonding is set in accordance with, for example, the curing temperature of a base material made of an FPC resin or the like, the curing temperature of an adhesive to be used, and the range of temperature conditions is wide and diverse. In order to adjust the softening temperature of the rolled copper foil to the heating temperature set in this way, an additive capable of adjusting the heat resistance of the rolled copper foil may be added.

本実施形態に使用される鋳塊として、添加材が無添加の鋳塊や、幾種類かの添加材を添加した鋳塊を以下の表2に例示する。   Examples of ingots used in the present embodiment are ingots having no additive added thereto, and ingots to which several kinds of additives are added are shown in Table 2 below.

また、表2に示す添加材やその他の添加材として、耐熱性を上昇又は降下させる添加材
には、例えば10ppm〜500ppm程度の硼素(B)、ニオブ(Nb)、チタン(Ti)、ニッケル(Ni)、ジルコニウム(Zr)、バナジウム(V)、マンガン(Mn)、ハフニウム(Hf)、タンタル(Ta)、及びカルシウム(Ca)のいずれか1つ又は複数の元素を添加した例がある。或いは、第1の添加元素としてAgを添加し、第2の添加元素として代表例に挙げたこれらの元素のいずれか1つ又は複数の元素を添加した例がある。そのほか、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、砒素(As)、Cd(カドミウム)、インジウム(In)、錫(Sn)、アンチモン(Sb)、金(Au)等を微量添加することも可能である。
Further, as additives shown in Table 2 and other additives, for example, boron (B), niobium (Nb), titanium (Ti), nickel (about 10 ppm to 500 ppm) can be used as an additive for increasing or decreasing the heat resistance. There is an example in which one or more elements of Ni), zirconium (Zr), vanadium (V), manganese (Mn), hafnium (Hf), tantalum (Ta), and calcium (Ca) are added. Alternatively, there is an example in which Ag is added as the first additive element and any one or more of these elements listed as representative examples are added as the second additive element. In addition, chromium (Cr), zinc (Zn), gallium (Ga), germanium (Ge), arsenic (As), Cd (cadmium), indium (In), tin (Sn), antimony (Sb), gold (Au) ) Etc. can also be added in small amounts.

なお、鋳塊の組成は、後述の最終冷間圧延工程S40を経た後の圧延銅箔においても略そのまま維持され、鋳塊中に添加材を加えた場合には、鋳塊と圧延銅箔とは略同じ添加材濃度となる。   Note that the composition of the ingot is maintained substantially as it is in the rolled copper foil after the final cold rolling step S40 described later, and when an additive is added to the ingot, the ingot and the rolled copper foil Have substantially the same additive concentration.

また、後述の焼鈍工程S32における温度条件は、銅材質や添加材による耐熱性に応じて適宜変更する。但し、このような銅材質や添加材、これに応じた焼鈍工程S32の温度条件の変更等は、本実施形態の効果に対してほとんど影響を与えない。   Moreover, the temperature conditions in the below-mentioned annealing process S32 are suitably changed according to the heat resistance by a copper material or an additive. However, such a change in the temperature condition of the copper material or additive and the annealing step S32 according to the copper material or the additive hardly affects the effect of the present embodiment.

(熱間圧延工程S20)
次に、準備した鋳塊に熱間圧延を施して、鋳造後の所定厚さよりも薄い板厚の板材とする。
(Hot rolling process S20)
Next, the prepared ingot is hot-rolled to obtain a plate material having a thickness smaller than a predetermined thickness after casting.

(繰り返し工程S30)
続いて、冷間圧延工程S31と焼鈍工程S32とを所定回数繰り返し実施する繰り返し工程S30を行う。すなわち、冷間圧延を施して加工硬化させた板材に、焼鈍処理を施して板材を焼き鈍すことにより加工硬化を緩和する。これを所定回数繰り返すことで、「生地」と称される銅条が得られる。銅材に耐熱性を調整する添加材等が加えられている場合は、銅材の耐熱性に応じて焼鈍処理の温度条件を適宜変更する。
(Repetition step S30)
Subsequently, a repeating step S30 is performed in which the cold rolling step S31 and the annealing step S32 are repeatedly performed a predetermined number of times. That is, work hardening is eased by subjecting a plate material cold-rolled and work hardened to an annealing treatment to anneal the plate material. By repeating this a predetermined number of times, a copper strip called “dough” is obtained. When an additive for adjusting heat resistance is added to the copper material, the temperature condition of the annealing treatment is appropriately changed according to the heat resistance of the copper material.

なお、繰り返し工程S30中、繰り返し途中の焼鈍工程S32を「中間焼鈍工程」と呼ぶ。また、繰り返しの最後、つまり、後述の最終冷間圧延工程S40の直前に行われる焼鈍工程S32を「最終焼鈍工程」又は「生地焼鈍工程」と呼ぶ。生地焼鈍工程では、銅条(生地)に生地焼鈍処理を施し、焼鈍生地を得る。生地焼鈍工程においても、銅材の耐熱性に応じて温度条件を適宜変更する。このとき、生地焼鈍工程は、上述の各工程に起因する加工歪みを充分に緩和することのできる温度条件、例えば完全焼鈍処理と略同等の温度条件で実施することが好ましい。   In addition, in the repetition process S30, the annealing process S32 in the middle of the repetition is referred to as an “intermediate annealing process”. Further, the annealing step S32 performed at the end of the repetition, that is, immediately before the final cold rolling step S40 described later is referred to as a “final annealing step” or a “dough annealing step”. In the dough annealing step, dough annealing is performed on the copper strip (fabric) to obtain an annealed dough. Also in the dough annealing step, the temperature condition is appropriately changed according to the heat resistance of the copper material. At this time, the dough annealing step is preferably performed under a temperature condition that can sufficiently relieve the processing strain caused by each of the above-described steps, for example, a temperature condition substantially equivalent to a complete annealing treatment.

(最終冷間圧延工程S40)
次に、最終冷間圧延工程S40を実施する。最終冷間圧延は仕上げ冷間圧延とも呼ばれ、仕上げとなる冷間圧延を複数回に亘って焼鈍生地に施して薄い銅箔状とする。このとき、高い耐屈曲性を有する圧延銅箔が得られるよう、総加工度を90%以上、より好ましくは94%以上とする。これにより、再結晶焼鈍工程後において、いっそう優れた耐屈曲性が得られ易い圧延銅箔となる。
(Final cold rolling process S40)
Next, the final cold rolling step S40 is performed. The final cold rolling is also called finish cold rolling, and the cold rolling to be finished is applied to the annealed fabric a plurality of times to form a thin copper foil. At this time, the total workability is set to 90% or more, more preferably 94% or more so that a rolled copper foil having high bending resistance can be obtained. Thereby, after the recrystallization annealing process, it becomes a rolled copper foil in which more excellent bending resistance can be easily obtained.

また、以下に述べるように、複数回繰り返される冷間圧延の1回(1パス)あたりの加工度や中立点の位置移動、好ましくは、圧延に用いるロールの表面粗さ等を制御して、冷間圧延時に焼鈍生地に働く圧縮応力と引張応力とを変化させる。これにより、圧延銅箔の各結晶面の回折ピーク強度比を変化させることができる。   In addition, as described below, the degree of processing per one time (one pass) of cold rolling repeated multiple times and the movement of the position of the neutral point, preferably controlling the surface roughness of the roll used for rolling, The compressive stress and tensile stress acting on the annealed fabric during cold rolling are changed. Thereby, the diffraction peak intensity ratio of each crystal plane of the rolled copper foil can be changed.

すなわち、1パスあたりの加工度は、冷間圧延を複数回繰り返すごとに焼鈍生地が薄くなるのに応じて徐々に小さくしていくことが好ましい。ここで、1パスあたりの加工度は
、上述の総加工度の例に倣い、nパス目の圧延前の加工対象物の厚さをTBnとし、圧延後の加工対象物の厚さをTAnとすると、1パスあたりの加工度(%)=[(TBn−TAn)/TBn]×100で表わされる。
That is, it is preferable that the degree of processing per pass is gradually reduced as the annealed dough becomes thinner each time cold rolling is repeated a plurality of times. Here, the degree of processing per pass follows the above-described example of the total degree of processing, and the thickness of the workpiece before rolling of the nth pass is T Bn, and the thickness of the workpiece after rolling is T B Assuming that An is a degree of processing per pass (%) = [(T Bn −T An ) / T Bn ] × 100.

圧延加工時、焼鈍生地等の加工対象物は、例えば互いに対向する1対の圧延ロール間の間隙に引き込まれ、反対側に引き出されることで減厚される。加工対象物の速度は、圧延ロールに引き込まれる前の入り口側では圧延ロールの回転速度より遅く、圧延ロールから引き出された後の出口側では圧延ロールの回転速度より速い。したがって、加工対象物には、入り口側では圧縮応力が、出口側では引張応力が加わる。加工対象物を薄く加工するためには、圧縮応力>引張応力でなければならない。1パスあたりの加工度を調整することで、圧縮応力>引張応力であることを前提として、それぞれの応力成分(圧縮成分と引張成分)の比を調整することができる。   At the time of rolling, an object to be processed such as an annealed dough is reduced in thickness by, for example, being drawn into a gap between a pair of opposing rolling rolls and drawn to the opposite side. The speed of the workpiece is slower than the rotational speed of the rolling roll on the entrance side before being drawn into the rolling roll, and faster than the rotational speed of the rolling roll on the exit side after being drawn out from the rolling roll. Accordingly, the workpiece is subjected to compressive stress on the entrance side and tensile stress on the exit side. In order to thinly process a workpiece, compressive stress> tensile stress must be satisfied. By adjusting the degree of processing per pass, it is possible to adjust the ratio of each stress component (compression component and tensile component) on the premise that compression stress> tensile stress.

また、最終冷間圧延工程S40では、冷間圧延を複数回繰り返すごとに、以下に説明する中立点の位置が圧延ロールの出口側へと移動していくよう制御することが好ましい。上述のように、圧延ロールの回転速度に対して入り口側と出口側とで大小関係が逆転する加工対象物の速度は、入り口側及び出口側の間のどこかの位置で圧延ロールの回転速度と等しくなる。この両者の速度が等しい位置を中立点といい、中立点では加工対象物に加わる圧力が最大となる。   In the final cold rolling step S40, it is preferable to control the position of the neutral point described below to move toward the exit side of the rolling roll every time cold rolling is repeated a plurality of times. As described above, the speed of the workpiece whose magnitude relationship is reversed between the entrance side and the exit side with respect to the rotational speed of the rolling roll is the rotational speed of the rolling roll at some position between the entrance side and the exit side. Is equal to The position where both speeds are equal is called a neutral point, and the pressure applied to the workpiece is maximized at the neutral point.

中立点の位置は、前方張力、後方張力、圧延速度(圧延ロールの回転速度)、圧延ロール径、圧延ロールの表面粗さ、加工度、圧延荷重等の組み合わせを調整することで制御することができる。つまり、中立点の位置を制御することによっても、圧縮応力及び引張応力の比を調整することができる。   The position of the neutral point can be controlled by adjusting a combination of front tension, rear tension, rolling speed (rolling roll rotation speed), rolling roll diameter, rolling roll surface roughness, processing degree, rolling load, and the like. it can. That is, the ratio between the compressive stress and the tensile stress can be adjusted also by controlling the position of the neutral point.

また、最終冷間圧延工程S40においては、例えば表面粗さが算術平均粗さRaで0.075μm以下の圧延ロールを用いることが好ましい。圧延ロールの表面粗さは、上述の圧縮応力と引張応力との応力バランスや圧延銅箔の表面粗さに影響を与える。よって、圧延ロールの表面粗さを所定値に制御することで、各結晶面の比率を制御することができる。また、表面粗さが上述の式(4),(5)を満たす圧延銅箔を得ることができる。   In the final cold rolling step S40, for example, it is preferable to use a rolling roll having a surface roughness of arithmetic average roughness Ra of 0.075 μm or less. The surface roughness of the rolling roll affects the stress balance between the compression stress and the tensile stress and the surface roughness of the rolled copper foil. Therefore, the ratio of each crystal plane can be controlled by controlling the surface roughness of the rolling roll to a predetermined value. Moreover, the rolled copper foil whose surface roughness satisfy | fills said formula (4), (5) can be obtained.

なお、このとき、油膜当量を適宜調整したうえで、圧延ロールの表面粗さを所定値とすることが好ましい。油膜当量は、加工対象物に塗布される圧延油の油膜の厚みに関わる指標である。油膜当量については後述する。   At this time, it is preferable to adjust the surface roughness of the rolling roll to a predetermined value after appropriately adjusting the oil film equivalent. The oil film equivalent is an index related to the thickness of the oil film of the rolling oil applied to the workpiece. The oil film equivalent will be described later.

このように、最終冷間圧延工程S40時の圧縮応力と引張応力との応力バランスは、1パスあたりの加工度や中立点の位置移動や圧延ロールの表面粗さ等により制御される。そして、各結晶面の回折ピーク強度のバランスは、主に最終冷間圧延工程S40時の圧縮応力と引張応力との応力バランスにより決まる。   Thus, the stress balance between the compressive stress and the tensile stress at the time of the final cold rolling step S40 is controlled by the degree of processing per pass, the movement of the neutral point, the surface roughness of the rolling roll, and the like. And the balance of the diffraction peak intensity of each crystal plane is mainly determined by the stress balance between the compressive stress and the tensile stress in the final cold rolling step S40.

具体的には、最終冷間圧延工程S40等の圧延加工時、銅材中の銅結晶は、圧延加工時の応力により回転現象を起こし、いくつかの経路で{022}面へと変化する。圧縮応力が大きくなるほど{013}面や{023}面を経由し易く、引張応力が大きくなるほど{111}面を経由し易い。そして、それぞれが{022}面へと変化する。{022}面まで到達しなかった結晶や、{022}面に到達したものの引張応力によって{111}面へと回転してしまった結晶が副方位となる。   Specifically, during the rolling process such as the final cold rolling step S40, the copper crystal in the copper material undergoes a rotation phenomenon due to the stress during the rolling process, and changes to the {022} plane in several paths. The greater the compressive stress, the easier it is to go through the {013} plane and {023} plane, and the greater the tensile stress, the easier it is to go through the {111} plane. And each changes to the {022} plane. A crystal that has not reached the {022} plane or a crystal that has reached the {022} plane but has been rotated to the {111} plane by the tensile stress is the sub-orientation.

このように、圧縮応力と引張応力との応力バランスを変えることで{022}面への変化の経路が変わり、副方位の結晶面の回折ピーク強度のバランスを調整することができる。係る結晶面の回折ピーク強度のバランスは、上述の通り、圧延銅箔の耐屈曲性や耐折り
曲げ性に多大な影響を与える。
Thus, by changing the stress balance between the compressive stress and the tensile stress, the path of change to the {022} plane is changed, and the balance of the diffraction peak intensities of the sub-oriented crystal planes can be adjusted. The balance of the diffraction peak intensity of the crystal plane has a great influence on the bending resistance and bending resistance of the rolled copper foil as described above.

以上のように、各パスにおける加工度の大きさ制御や中立点の位置制御、好ましくは、圧延ロールの表面粗さの制御等を行いつつ、最終冷間圧延工程S40を施すことで、上述の式(1),(3)、さらに好ましくは式(2)を満たす圧延銅箔を得ることができる。また、好ましくは、上述の表面粗さの式(4),(5)が所定値となる。よって、再結晶焼鈍工程後には、繰り返しの曲げに耐える高い耐屈曲性とともに、小さな曲げ半径に耐える優れた耐折り曲げ性を具備する圧延銅箔が得られる。   As described above, by performing the final cold rolling step S40 while performing the size control of the degree of processing in each pass and the position control of the neutral point, preferably the surface roughness of the rolling roll, etc. The rolled copper foil which satisfy | fills Formula (1), (3), More preferably, Formula (2) can be obtained. Preferably, the above-described surface roughness expressions (4) and (5) are predetermined values. Therefore, after the recrystallization annealing step, a rolled copper foil having high bending resistance that can withstand repeated bending and excellent bending resistance that can withstand a small bending radius can be obtained.

(表面処理工程S50)
以上の工程を経て銅箔状となった生地に所定の表面処理を施す。以上により、本実施形態に係る圧延銅箔が製造される。
(Surface treatment step S50)
A predetermined surface treatment is applied to the fabric that has been formed into a copper foil through the above steps. The rolled copper foil which concerns on this embodiment is manufactured by the above.

(4)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る圧延銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(4) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board (FPC) using the rolled copper foil which concerns on one Embodiment of this invention is demonstrated.

(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る圧延銅箔を所定のサイズに裁断し、例えばポリイミド等の樹脂からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。このとき、接着剤を介して貼り合わせを行う3層材CCLを形成する方法と、接着剤を介さず直接貼り合わせを行う2層材CCLを形成する方法のいずれを用いてもよい。接着剤を用いる場合には、加熱処理により接着剤を硬化させて圧延銅箔と基材とを密着させ一体化する。接着剤を用いない場合には、加熱・加圧により圧延銅箔と基材とを直接密着させる。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上400℃以下の温度で、1分以上120分以下とすることができる。
(Recrystallization annealing process (CCL process))
First, the rolled copper foil according to the present embodiment is cut into a predetermined size, and bonded to an FPC base material made of a resin such as polyimide to form a CCL (Copper Clad Laminate). At this time, either a method of forming a three-layer material CCL that is bonded using an adhesive or a method of forming a two-layer material CCL that is directly bonded without using an adhesive may be used. When an adhesive is used, the adhesive is cured by heat treatment, and the rolled copper foil and the base material are brought into close contact with each other to be integrated. When an adhesive is not used, the rolled copper foil and the substrate are brought into direct contact with each other by heating and pressing. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive and the base material, and can be set to 1 to 120 minutes at a temperature of 150 to 400 ° C., for example.

上述のように、圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、CCL工程での加熱により圧延銅箔が軟化し再結晶される。つまり、基材に圧延銅箔を貼り合わせるCCL工程が、圧延銅箔に対する再結晶焼鈍工程を兼ねている。圧延銅箔に対し再結晶焼鈍工程が施されることにより、再結晶組織を有する圧延銅箔が得られる。   As described above, the heat resistance of the rolled copper foil is adjusted according to the heating temperature at this time. Therefore, the rolled copper foil is softened and recrystallized by heating in the CCL process. That is, the CCL process of bonding the rolled copper foil to the base material also serves as a recrystallization annealing process for the rolled copper foil. A rolled copper foil having a recrystallized structure is obtained by subjecting the rolled copper foil to a recrystallization annealing step.

つまり、再結晶焼鈍工程前において主方位であった{022}面と副方位であった{002}面の多くが、共に再結晶組織へと調質された{002}面となる。これにより、高い耐屈曲性が得られる。   That is, most of the {022} plane that was the main orientation and the {002} plane that was the sub-azimuth before the recrystallization annealing process are {002} planes that are both tempered into a recrystallized structure. Thereby, high bending resistance is obtained.

また、その他の副方位は、再結晶後も最終冷間圧延工程後の状態を保ったまま、ほとんど変化することなく再結晶組織へと調質される。但し、再結晶状態となることで、これら副方位の結晶面から加工硬化の影響が取り除かれ、これら副方位の結晶面が持つ作用が最大限に近い形で発現する。   Further, the other sub-orientations are tempered into a recrystallized structure with almost no change while maintaining the state after the final cold rolling process even after recrystallization. However, by being in the recrystallized state, the influence of work hardening is removed from the crystal planes of these sub-orientations, and the action of the crystal planes of these sub-orientations appears in a form close to the maximum.

例えば、{013}面や{023}面の持つ作用が発揮され、耐折り曲げ性を低下させる可能性のある状態となる。しかしながら、本実施形態の圧延銅箔においては、{013}面および{023}面は、上述の式(3)から得られる条件によって占有率が充分に低い状態にある。よって、集合組織が形成され難く、{013}面や{023}面の持つ係る作用も抑制される。   For example, the action of the {013} plane and the {023} plane is exhibited, and the bending resistance is likely to be deteriorated. However, in the rolled copper foil of this embodiment, the {013} plane and the {023} plane are in a state where the occupation ratio is sufficiently low depending on the condition obtained from the above-described formula (3). Therefore, it is difficult to form a texture, and the action of the {013} plane and the {023} plane is also suppressed.

また、{111}面により耐折り曲げ性を低下させる作用が発揮され得る状態となる。但し、本実施形態に係る圧延銅箔において、上述の式(2)を満たすこととした場合には
、{111}面の占有率が低い状態にあるので、その作用が抑制される。
Moreover, it will be in the state which can exhibit the effect | action which reduces bending resistance by {111} surface. However, in the rolled copper foil according to the present embodiment, when the above-described formula (2) is satisfied, the occupancy of the {111} plane is in a low state, so that the action is suppressed.

また、上述の十点平均粗さRzjis及び算術平均粗さRaにより規定される表面粗さが所定値とした場合には、バラツキが小さく、安定して優れた耐折り曲げ性がいっそう得られ易くなる。   Further, when the surface roughness defined by the above-mentioned 10-point average roughness Rzjis and arithmetic average roughness Ra is a predetermined value, the variation is small, and stable and excellent bending resistance can be more easily obtained. .

また、このように、CCL工程が再結晶焼鈍工程を兼ねることで、圧延銅箔を基材に貼り合わせるまでの工程では、冷間圧延工程後の加工硬化した状態で圧延銅箔を取り扱うことができ、圧延銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。   In addition, in this way, the CCL process also serves as the recrystallization annealing process, and in the process until the rolled copper foil is bonded to the base material, the rolled copper foil can be handled in a work-hardened state after the cold rolling process. It is possible to prevent deformation such as elongation, wrinkling, and bending when the rolled copper foil is bonded to the base material.

上述のように、副方位の各結晶面は再結晶焼鈍工程前後でほとんど変化しない。したがって、優れた耐屈曲性及び耐折り曲げ性を得るには、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔について、上述の関係式や条件を満たすように副方位を制御しておけばよい。   As described above, each crystal plane in the sub-direction hardly changes before and after the recrystallization annealing process. Therefore, in order to obtain excellent bending resistance and bending resistance, the sub-orientation is controlled so that the above relational expression and conditions are satisfied for the rolled copper foil after the final cold rolling process and before the recrystallization annealing process. Just keep it.

(表面加工工程)
次に、基材に貼り合わせた圧延銅箔に表面加工工程を施す。表面加工工程では、圧延銅箔に例えばエッチング等の手法を用いて銅配線等を形成する配線形成工程と、銅配線と他の電子部材との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、銅配線等を保護するため銅配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the rolled copper foil bonded to the base material. In the surface processing step, for example, a wiring forming step for forming copper wiring or the like on the rolled copper foil by using a technique such as etching, and surface treatment such as plating for improving the connection reliability between the copper wiring and other electronic members. And a protective film forming step of forming a protective film such as a solder resist so as to cover a part of the copper wiring in order to protect the copper wiring and the like.

以上により、本実施形態に係る圧延銅箔を用いたFPCが製造される。   As described above, the FPC using the rolled copper foil according to this embodiment is manufactured.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態においては、圧延銅箔の耐熱性を調整する添加材として主にAgを用いることとしたが、添加材は、Agや上述の代表例等に挙げたものに限られない。また、添加材により調整可能な諸特性は耐熱性に限られず、調整を必要とする諸特性に応じて添加材を適宜選択してもよい。   For example, in the above-described embodiment, Ag is mainly used as an additive for adjusting the heat resistance of the rolled copper foil, but the additive is not limited to those listed in Ag and the above-described representative examples. . Moreover, the various characteristics that can be adjusted by the additive are not limited to heat resistance, and the additive may be appropriately selected according to the various characteristics that require adjustment.

また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。   In the above-described embodiment, the CCL process in the FPC manufacturing process also serves as a recrystallization annealing process for the rolled copper foil. However, the recrystallization annealing process may be performed as a separate process from the CCL process.

また、上述の実施形態においては、圧延銅箔はFPC用途に用いられることとしたが、圧延銅箔の用途はこれに限られず、耐屈曲性及び耐折り曲げ性を必要とする用途に用いることができる。圧延銅箔の厚さについても、FPC用途をはじめとする各種用途に応じて、10μm以下の超極薄、或いは、20μm超などとしてもよい。   Moreover, in the above-mentioned embodiment, although rolled copper foil was used for FPC use, the use of rolled copper foil is not restricted to this, It is used for the use which requires bending resistance and bending resistance. it can. The thickness of the rolled copper foil may also be ultra-thin of 10 μm or less, or over 20 μm, depending on various uses including FPC.

また、上述の実施形態においては、最終冷間圧延工程S40での総加工度を90%以上などとし優れた耐屈曲性を得ることとしたが、副方位の結晶面や圧延銅箔の表面粗さの調整により耐折り曲げ性を得る手法は、これとは独立して用いることができる。つまり、耐折り曲げ性が特に重要であって、ある程度の耐屈曲性が得られていればよい場合等には、最終冷間圧延工程における総加工度を例えば85%、75%、65%等のように、90%未満としてもよい。また、副方位の結晶面や圧延銅箔の表面粗さの調整により耐折り曲げ性を得る手法は、副方位の結晶面の調整により耐屈曲性を得る手法と独立して用いること
も可能である。
Further, in the above-described embodiment, the total degree of work in the final cold rolling step S40 is 90% or more and the like, and excellent bending resistance is obtained. A technique for obtaining bending resistance by adjusting the thickness can be used independently of this. That is, when the bending resistance is particularly important and it is sufficient that a certain degree of bending resistance is obtained, the total degree of work in the final cold rolling step is, for example, 85%, 75%, 65%, etc. Thus, it may be less than 90%. In addition, the technique for obtaining bending resistance by adjusting the crystal orientation of the sub-orientation and the surface roughness of the rolled copper foil can be used independently of the technique for obtaining bending resistance by adjusting the crystal face of the sub-azimuth. .

また、上述の実施形態においては、{013}面および{023}面を検出するにあたり、X線Pole−Figure法のうち、特に反射法による測定を行うこととしたが、透過法により測定することとしてもよい。また、X線Pole−Figure法以外にも、Inverse Pole−Figure(逆極点図)法や、その他の方法を用いてもよい。   In the above-described embodiment, in detecting the {013} plane and the {023} plane, among the X-ray pole-figure method, the measurement is performed by the reflection method, but the measurement is performed by the transmission method. It is good. In addition to the X-ray Pole-Figure method, an Inverse Pole-Figure (reverse pole figure) method and other methods may be used.

なお、本発明の効果を奏するためには、上述した構成や工程のすべてが必須であるとは限らない。上述の実施形態や後述の実施例で挙げる種々の条件もあくまで例示であって、適宜変更可能である。   In addition, in order to show the effect of this invention, not all the structures and processes mentioned above are necessarily essential. The various conditions given in the above-described embodiment and examples described later are merely examples, and can be changed as appropriate.

次に、本発明に係る実施例について比較例とともに説明する。   Next, examples according to the present invention will be described together with comparative examples.

(1)無酸素銅を用いた圧延銅箔
まずは、無酸素銅を用いた実施例1〜5および比較例1〜5に係る圧延銅箔を以下のとおり製作し、それぞれについて各種評価を行った。ここではまず、上述の式(1)〜(3)に係る効果を検証した。
(1) Rolled copper foil using oxygen-free copper First, the rolled copper foils according to Examples 1 to 5 and Comparative Examples 1 to 5 using oxygen-free copper were manufactured as follows, and various evaluations were performed for each. . Here, first, the effects according to the above formulas (1) to (3) were verified.

(圧延銅箔の製作)
目標濃度を200ppmとするAgを添加した無酸素銅を用い、上述の実施形態と同様の手順及び手法で、実施例1〜5および比較例1〜5に係る圧延銅箔を製作した。但し、比較例1〜5については、後述する1パスあたりの加工度や中立点の位置等、主に最終冷間圧延工程において、構成を外れる処理等を含めた。
(Production of rolled copper foil)
The rolled copper foil which concerns on Examples 1-5 and Comparative Examples 1-5 was manufactured by the same procedure and method as the above-mentioned embodiment using the oxygen-free copper which added Ag which makes a target density | concentration 200 ppm. However, about Comparative Examples 1-5, the processing etc. which remove | deviate a structure were included mainly in the last cold rolling process, such as the workability per pass mentioned later, and the position of a neutral point.

具体的には、無酸素銅に所定量のAgを溶解して鋳造した厚さ150mm、幅500mmの鋳塊を準備した。以下の表3に、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により調べた、鋳塊中のAg濃度の分析値を示す。   Specifically, an ingot having a thickness of 150 mm and a width of 500 mm prepared by dissolving a predetermined amount of Ag in oxygen-free copper and casting was prepared. Table 3 below shows the analytical values of the Ag concentration in the ingot, which were examined by high frequency inductively coupled plasma (ICP) emission spectroscopy.

表3に示すように、目標濃度の200ppmに対し、分析値は180ppm〜216ppmと、いずれも200ppm±20ppm(10%)程度内のバラツキに抑えられている。Agは元々、主原材料である無酸素銅に不可避不純物として数ppm〜十数ppm程度含有されている場合があるほか、鋳塊を鋳造する際のバラツキ等の種々の原因により、目標濃度に対して±10%程度内のバラツキは金属材料分野では一般的なものである。   As shown in Table 3, with respect to the target concentration of 200 ppm, the analytical values are 180 ppm to 216 ppm, both of which are suppressed to variations within about 200 ppm ± 20 ppm (10%). Ag is originally contained in oxygen-free copper, which is the main raw material, as an inevitable impurity in the range of several ppm to several tens of ppm, and due to various causes such as variations in casting an ingot, the target concentration can be reduced. Variation within ± 10% is common in the metal material field.

次に、上述の実施形態と同様の手順及び手法で、熱間圧延工程にて厚さ8mmの板材を得た後、冷間圧延工程と、750℃〜850℃の温度で約2分間保持する中間焼鈍工程とを繰り返し実施し、厚さ0.4mm(400μm)の銅条(生地)を製作した。続いて、
約750℃の温度で約2分間保持する生地焼鈍工程にて焼鈍生地を得た。
Next, after obtaining a plate material having a thickness of 8 mm in the hot rolling step by the same procedure and method as in the above embodiment, the cold rolling step and holding at a temperature of 750 ° C. to 850 ° C. for about 2 minutes. The intermediate annealing step was repeatedly performed to produce a copper strip (fabric) having a thickness of 0.4 mm (400 μm). continue,
An annealed dough was obtained in a dough annealing step that was held at a temperature of about 750 ° C. for about 2 minutes.

ここで、各焼鈍工程の温度条件等は、Agを180ppm〜216ppm含有する無酸素銅材の耐熱性に合わせた。なお、組成が同じ銅材に対して各焼鈍工程で異なる温度条件を用いたのは、銅材の厚さに応じて耐熱性が変化するためであり、銅材が薄いときは温度を下げることができる。   Here, the temperature conditions of each annealing process were matched with the heat resistance of the oxygen-free copper material containing 180 ppm to 216 ppm of Ag. In addition, the reason why the different temperature conditions were used in each annealing process for copper materials with the same composition is that the heat resistance changes depending on the thickness of the copper material, and when the copper material is thin, the temperature should be lowered. Can do.

最後に、上述の実施形態と同様の手順及び手法で最終冷間圧延工程を行った。最終冷間圧延工程での条件を以下の表4に示す。   Finally, the final cold rolling process was performed by the same procedure and method as in the above embodiment. The conditions in the final cold rolling process are shown in Table 4 below.

表4に示すように、上段から下段へと順次板厚が薄くなるのに応じて、各実施例、比較例とも、各々の右欄のように条件を切り替えて、最終冷間圧延を行った。つまり、厚さが400μm以下における冷間圧延加工の、1パスあたりの加工度と中立点の位置とを変化させた。各々の右欄に示す中立点の位置(mm)は、圧延ロールと加工対象物である焼鈍生地との接触面の出口側端部から中立点までの長さで示した。   As shown in Table 4, according to the progressive reduction of the plate thickness from the upper stage to the lower stage, in each of the examples and comparative examples, the conditions were changed as shown in the right column of each, and the final cold rolling was performed. . That is, the degree of processing per pass and the position of the neutral point of the cold rolling process with a thickness of 400 μm or less were changed. The position (mm) of the neutral point shown in each right column is indicated by the length from the outlet side end of the contact surface between the rolling roll and the annealed material as the workpiece to the neutral point.

各実施例、比較例とも、各々の右欄の範囲内で条件を振って、各実施例についてはそれぞれが所定の構成の範囲内となるよう、また、各比較例についてはそれぞれが所定の構成を外れるよう処理を施した。但し、今回用いた表4の条件は、あくまでも一例であって、どれくらいの板厚で条件を切り替えるか、各条件の数値をどのように設定するかは、最終的に所望する圧延銅箔の結晶構造等に応じて適宜選択することができる。比較例の条件に示したように、概して、急激な減厚を図ると本構成を外れる傾向にある。   In each example and comparative example, conditions are set within the range in the right column so that each example falls within a predetermined configuration range, and each comparative example has a predetermined configuration. Processing was performed so that However, the conditions in Table 4 used this time are merely examples, and how much thickness is used to switch the conditions, and how to set the numerical values of each condition depends on the desired rolled copper foil crystal. It can select suitably according to a structure etc. As shown in the conditions of the comparative example, generally, when the thickness is sharply reduced, there is a tendency to deviate from this configuration.

また、特に、表4に示す各々の条件の最下段にてパス数を調整することで、最終的に得られる圧延銅箔の厚さを調整することができる。本実施例および比較例では最終的な厚さを12μmとしたが、これより厚いもの、例えば18μm厚さの圧延銅箔を得るには、12μm厚さの場合よりパス数を減らせばよい。また、12μmより薄いもの、例えば9μm厚さの圧延銅箔を得るには、12μm厚さの場合よりパス数を増やせばよい。   In particular, the thickness of the finally obtained rolled copper foil can be adjusted by adjusting the number of passes at the lowest stage of each condition shown in Table 4. In this example and the comparative example, the final thickness is set to 12 μm, but in order to obtain a rolled copper foil having a thickness greater than this, for example, 18 μm, the number of passes may be reduced as compared with the case of 12 μm. In addition, in order to obtain a rolled copper foil having a thickness of less than 12 μm, for example, 9 μm, the number of passes may be increased as compared with a thickness of 12 μm.

また、優れた耐屈曲性を得るため、実施例1〜5および比較例1〜5の全てにおいて、最終冷間圧延工程での総加工度が94%以上となるように条件を設定した。具体的には、実施例1〜5および比較例1〜5ともに、総加工度を97%とした。以上により、厚さが12μmの実施例1〜5および比較例1〜5に係る圧延銅箔を製作した。   In addition, in order to obtain excellent bending resistance, conditions were set in all of Examples 1 to 5 and Comparative Examples 1 to 5 so that the total degree of work in the final cold rolling process was 94% or more. Specifically, in all of Examples 1 to 5 and Comparative Examples 1 to 5, the total degree of processing was set to 97%. By the above, the rolled copper foil which concerns on Examples 1-5 and Comparative Examples 1-5 whose thickness is 12 micrometers was manufactured.

以上のように製作した各圧延銅箔について次の評価を行った。   The following evaluation was performed about each rolled copper foil manufactured as mentioned above.

(2θ/θ法によるX線回折測定)
まずは、実施例1〜5および比較例1〜5に係る圧延銅箔に対し、2θ/θ法によるX線回折測定を行った。測定方法の詳細について、図2を用いて以下に説明する。図2は、本発明の実施例及び比較例におけるX線回折の測定方法の概要を示す図である。
(X-ray diffraction measurement by 2θ / θ method)
First, X-ray diffraction measurement by the 2θ / θ method was performed on the rolled copper foils according to Examples 1 to 5 and Comparative Examples 1 to 5. Details of the measurement method will be described below with reference to FIG. FIG. 2 is a diagram showing an outline of a method for measuring X-ray diffraction in Examples and Comparative Examples of the present invention.

図2に示すように、実施例1〜5および比較例1〜5に係る圧延銅箔の試料片50を、上述の通り、θ軸、ψ軸、φ軸の3つの走査軸回りに回転可能に配置する。これら3つの走査軸は、一般に、それぞれ試料軸、あおり軸、面内回転軸と呼ばれる。本実施形態におけるX線回折の測定には、銅(Cu)管球から発生するX線(Cu Kα線)を用いるものとする。   As shown in FIG. 2, the rolled copper foil sample pieces 50 according to Examples 1 to 5 and Comparative Examples 1 to 5 can be rotated around the three scanning axes of the θ axis, the ψ axis, and the φ axis as described above. To place. These three scanning axes are generally called a sample axis, a tilt axis, and an in-plane rotation axis, respectively. For the measurement of X-ray diffraction in the present embodiment, X-rays (Cu Kα rays) generated from a copper (Cu) tube are used.

2θ/θ法を用いたX線回折測定では、入射X線に対して試料片50と図示しない検出器とをθ軸で走査(θ軸周りに回転)する。このとき、試料片50の走査角を角度θとし、検出器の走査角を角度2θとする。これにより、上述の通り、角度θで入射X線が入射され、角度2θで回折された回折X線が検出される。   In the X-ray diffraction measurement using the 2θ / θ method, the sample piece 50 and a detector (not shown) are scanned (rotated around the θ axis) with respect to the incident X-ray. At this time, the scanning angle of the sample piece 50 is an angle θ, and the scanning angle of the detector is an angle 2θ. Thereby, as described above, incident X-rays are incident at an angle θ, and diffracted X-rays diffracted at an angle 2θ are detected.

本実施例および比較例では、株式会社リガク製のX線回折装置(型式:Ultima IV)を用い、以下の表5に示す条件で係る測定を行った。代表として、図3(a),(b)に実施例1,2のX線回折チャートを、図3(c)に比較例1のX線回折チャートをそれぞれ示す。   In this example and a comparative example, the measurement which concerns on the conditions shown in the following Table 5 was performed using the Rigaku Co., Ltd. X-ray-diffraction apparatus (model | form: Ultimate IV). As representatives, the X-ray diffraction charts of Examples 1 and 2 are shown in FIGS. 3A and 3B, and the X-ray diffraction chart of Comparative Example 1 is shown in FIG.

次に、2θ/θ法により測定した銅結晶の{022}面、{002}面、{113}面、{111}面、及び{133}面の回折ピーク強度を合計値が100となるような比に
換算し、各結晶面の回折ピーク強度比を求めた。また、上述の式(1)に係る値(I{022}+I{002})を求めた。以下の表6に、実施例1〜5および比較例1〜5に係る圧延銅箔について、上述のように求めた各結晶面の回折ピーク強度比I{022}、I{002}、I{113}、I{111}(式(2))、I{133}の値、および、式(1)の値を示す。
Next, the total value of diffraction peak intensities of the {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane of the copper crystal measured by the 2θ / θ method is 100. In other words, the diffraction peak intensity ratio of each crystal plane was determined. Moreover, the value (I {022} + I {002} ) concerning Formula (1) described above was obtained. In Table 6 below, for the rolled copper foils according to Examples 1 to 5 and Comparative Examples 1 to 5, the diffraction peak intensity ratios I {022} , I {002} , I { 113} , I {111} (formula (2)), the value of I {133} , and the value of formula (1) are shown.

上述のように、本実施例及び比較例では、最終冷間圧延工程での1パスあたりの加工度や中立点の位置を変化させている。これにより、冷間圧延加工時に、加工対象物に加わる圧縮成分と引張成分との応力成分の比が変化する。その結果、各結晶面の比率が変わり、表6に示す各結晶面の回折ピーク強度比や、式(1)に係る値も変化している。   As described above, in this example and the comparative example, the degree of processing per pass and the position of the neutral point in the final cold rolling process are changed. Thereby, the ratio of the stress component of the compression component added to a workpiece and a tension component changes at the time of cold rolling. As a result, the ratio of each crystal plane is changed, and the diffraction peak intensity ratio of each crystal plane shown in Table 6 and the value related to Equation (1) are also changed.

また、表6に示すように、実施例1〜5の各条件の組み合わせでは、式(1),(2)の各値はいずれも上述の所定範囲内にあった。   Moreover, as shown in Table 6, in each combination of the conditions of Examples 1 to 5, each value of the formulas (1) and (2) was within the predetermined range.

一方、比較例1〜5の各条件の組み合わせでは、いくつかの圧延銅箔において、式(1),(2)の各値のうち、1つ、または、両方の値が上述の所定範囲外となった。表6中、上述の所定範囲を外れた値を下線付きの太字で示した。   On the other hand, in the combination of the conditions of Comparative Examples 1 to 5, in some rolled copper foils, one or both of the values of the formulas (1) and (2) are outside the above predetermined range. It became. In Table 6, values outside the above-mentioned predetermined range are shown in bold with underline.

(X線Pole−Figure法による測定)
次に、実施例1〜5および比較例1〜5に係る圧延銅箔に対し、X線Pole−Figure法による測定を行った。係る測定の方法には、後述するあおり角度ψを15°〜90°の範囲とする反射法と、0°〜15°の範囲とする透過法とがある。本実施例では、上述の実施形態で説明したように、反射法を用いた。測定方法の詳細について、図2を用いて以下に説明する。
(Measurement by X-ray Pole-Figure method)
Next, the measurement by the X-ray Pole-Figure method was performed with respect to the rolled copper foil which concerns on Examples 1-5 and Comparative Examples 1-5. Such measurement methods include a reflection method in which a tilt angle ψ described later is in a range of 15 ° to 90 ° and a transmission method in which a tilt angle ψ is in a range of 0 ° to 15 °. In this example, the reflection method was used as described in the above embodiment. Details of the measurement method will be described below with reference to FIG.

図2に示すように、X線Pole−Figure法を用いた測定では、上述の2θ/θ法を用いたX線回折測定と同様に、各圧延銅箔の試料片50を配置する。   As shown in FIG. 2, in the measurement using the X-ray Pole-Figure method, the sample piece 50 of each rolled copper foil is arranged similarly to the X-ray diffraction measurement using the 2θ / θ method described above.

また、X線Pole−Figure法では、以下のように規定されるあおり角度ψを利用して測定を行う。つまり、試料片50に垂直な方向(φ軸方向)のあおり角度ψを90
°と定義する。また、着目する結晶面である{hkl}面に幾何学的に対応する結晶面である{h’k’l’}面が{hkl}面となす角度をψ’とする。このとき、あおり角度ψ=90−ψ’と規定される。
In the X-ray Pole-Figure method, measurement is performed using a tilt angle ψ defined as follows. That is, the tilt angle ψ in the direction perpendicular to the sample piece 50 (φ-axis direction) is set to 90.
Define as °. Further, an angle formed by the {h′k′l ′} plane, which is a crystal plane geometrically corresponding to the {hkl} plane, which is the crystal plane of interest, is defined as ψ ′. At this time, it is defined that the tilt angle ψ = 90−ψ ′.

このような規定の元、試料片50をψ軸走査(ψ軸周りに回転)し、あおり角度ψを15°以上90°以下の範囲内で変化させる。つまり、上述の範囲内のあおり角度ψで試料片50を傾けていく。このようにあおり角度ψを変化させながら、複数のあおり角度ψにおいて、2θ/θ法と同様に回折X線を検出する。つまり、あおり角度ψが90°のとき、原理的に2θ/θ法と同様の測定を行っていることとなる。   Under such a definition, the sample piece 50 is scanned by the ψ axis (rotated around the ψ axis), and the tilt angle ψ is changed within a range of 15 ° to 90 °. That is, the sample piece 50 is tilted at the tilt angle ψ within the above range. In this way, while changing the tilt angle ψ, diffracted X-rays are detected at a plurality of tilt angles ψ as in the 2θ / θ method. That is, when the tilt angle ψ is 90 °, the same measurement as the 2θ / θ method is performed in principle.

また、各あおり角度ψにおける測定にあたっては、検出器の走査角を角度2θに固定し、{h’k’l’}面の2θ値に対して試料片50をφ軸走査(φ軸周りに回転)し、面内回転角度φを0°以上360°以下の範囲内で変化させる。つまり、上述の範囲内の面内回転角度φで試料片50を自転させる。このようにして測定された{h’k’l’}面の回折ピークにつき、面内回転角度φが0°以上360°以下の範囲内の回折ピークの平均強度を、各あおり角度ψについて求める。   In the measurement at each tilt angle ψ, the scanning angle of the detector is fixed at an angle 2θ, and the sample piece 50 is scanned on the φ axis with respect to the 2θ value on the {h′k′l ′} plane (around the φ axis). And the in-plane rotation angle φ is changed within a range of 0 ° to 360 °. That is, the sample piece 50 is rotated at an in-plane rotation angle φ within the above range. For the diffraction peaks of the {h′k′l ′} plane measured in this way, the average intensity of the diffraction peaks in the range where the in-plane rotation angle φ is 0 ° or more and 360 ° or less is obtained for each tilt angle ψ. .

このとき、所定のあおり角度ψにおいて検出された{h’k’l’}面は、圧延銅箔の圧延面に平行な{hkl}面と幾何学的に対応する。本実施例において着目すべき{hkl}面は、{013}面および{023}面である。圧延銅箔の圧延面に平行な{013}面と幾何学的な対応関係にあるのは、あおり角度ψが47°において検出される{111}面である。また、圧延銅箔の圧延面に平行な{023}面と幾何学的な対応関係にあるのは、あおり角度ψが53°において検出される{111}面である。   At this time, the {h′k′l ′} plane detected at a predetermined tilt angle ψ geometrically corresponds to the {hkl} plane parallel to the rolled surface of the rolled copper foil. The {hkl} planes to be noted in this embodiment are the {013} plane and the {023} plane. The {111} plane detected at a tilt angle ψ of 47 ° has a geometrical correspondence with the {013} plane parallel to the rolling plane of the rolled copper foil. Further, the {111} plane detected at a tilt angle ψ of 53 ° has a geometrical correspondence with the {023} plane parallel to the rolling plane of the rolled copper foil.

よって、上述の通り、X線Pole−Figure法を用いて得られた{111}面の回折ピークの平均強度のグラフから、本実施例の圧延銅箔が所定の結晶構造を備えるか否かを判定することができる。   Therefore, as described above, from the graph of the average intensity of the diffraction peak of the {111} plane obtained using the X-ray Pole-Figure method, it is determined whether or not the rolled copper foil of this example has a predetermined crystal structure. Can be determined.

本実施例および比較例では、株式会社リガク製のX線回折装置(型式:Ultima IV)を用い、以下の表7に示す条件で上述のような測定を行った。図4〜8に、実施例1〜5に係る{111}面の回折ピークの平均強度をプロットして作成したグラフを示す。また、図9〜13に、比較例1〜5に係る{111}面の回折ピークの平均強度をプロットして作成したグラフを示す。   In this example and a comparative example, the above-described measurement was performed under the conditions shown in Table 7 below using an X-ray diffractometer (model: Ultimate IV) manufactured by Rigaku Corporation. 4 to 8 show graphs created by plotting the average intensity of diffraction peaks on the {111} plane according to Examples 1 to 5. FIG. Moreover, the graph created by plotting the average intensity | strength of the diffraction peak of the {111} surface which concerns on FIGS.

図4〜13までのグラフの横軸はあおり角度ψ(°)であり、縦軸は回折ピーク強度(
任意単位)である。グラフには、上述のX線Pole−Figure法を用いた測定によ
り求めた各平均強度がプロットされている。また、グラフには、グラフの範囲内での{111}面の回折ピークの平均強度の最大値[B]とその4分の1の値を示す。また、グラフには、あおり角度ψがそれぞれ47°,53°での{111}面の回折ピークの平均強度を結ぶ直線と、その縦軸切片[A]とを示す。
4 to 13, the horizontal axis is the tilt angle ψ (°), and the vertical axis is the diffraction peak intensity (
Arbitrary unit). In the graph, the average intensities obtained by the measurement using the X-ray Pole-Figure method described above are plotted. Further, the graph shows the maximum value [B] of the average intensity of diffraction peaks on the {111} plane within the range of the graph and a value of a quarter thereof. In addition, the graph shows a straight line connecting the average intensities of diffraction peaks on the {111} plane when the tilt angle ψ is 47 ° and 53 °, respectively, and its vertical axis intercept [A].

図4〜13に示すように、実施例1〜5の結果では、いずれも縦軸切片[A]がグラフの最大値[B]の4分の1未満となって上述の式(3)を満たしていた。一方で、比較例1〜5の結果では、いずれも縦軸切片[A]がグラフの最大値[B]の4分の1以上となって上述の式(3)を満たさなかった。   As shown in FIGS. 4 to 13, in each of the results of Examples 1 to 5, the vertical axis intercept [A] is less than a quarter of the maximum value [B] of the graph, and the above equation (3) is obtained. I met. On the other hand, in the results of Comparative Examples 1 to 5, in all cases, the vertical axis intercept [A] was not less than ¼ of the maximum value [B] of the graph and did not satisfy the above formula (3).

(耐屈曲性の評価)
次に、各圧延銅箔の耐屈曲性を調べるため、各圧延銅箔が破断するまでの繰返し曲げ回数(屈曲回数)を測定する屈曲疲労寿命試験を行った。係る試験は、信越エンジニアリング株式会社製のFPC高速屈曲試験機(型式:SEK−31B2S)を用い、IPC(米国プリント回路工業会)規格に準拠して行った。図14には、信越エンジニアリング株式会社製のFPC高速屈曲試験機等も含む、一般的な摺動屈曲試験装置10の模式図を示す。
(Evaluation of bending resistance)
Next, in order to examine the bending resistance of each rolled copper foil, a bending fatigue life test was performed in which the number of repeated bendings (number of bendings) until each rolled copper foil broke. Such a test was performed using an FPC high-speed bending tester (model: SEK-31B2S) manufactured by Shin-Etsu Engineering Co., Ltd. in accordance with the IPC (American Printed Circuit Industry Association) standard. FIG. 14 is a schematic diagram of a general sliding bending test apparatus 10 including an FPC high-speed bending tester manufactured by Shin-Etsu Engineering Co., Ltd.

まずは、実施例1〜5および比較例1〜5に係る圧延銅箔を幅12.5mm、長さ220mmに切り取った、厚さが12μmの試料片50に、上述の再結晶焼鈍工程に倣い、300℃、60分間の再結晶焼鈍を施した。係る条件は、フレキシブルプリント配線板のCCL工程で、基材との密着の際に圧延銅箔が実際に受ける熱量の一例を模している。   First, the rolled copper foil according to Examples 1 to 5 and Comparative Examples 1 to 5 was cut to a width of 12.5 mm and a length of 220 mm, and the sample piece 50 having a thickness of 12 μm was copied in accordance with the above-described recrystallization annealing step. Recrystallization annealing was performed at 300 ° C. for 60 minutes. Such a condition imitates an example of the amount of heat that the rolled copper foil actually receives in close contact with the substrate in the CCL process of the flexible printed wiring board.

次に、図14に示すように、圧延銅箔の試料片50を、摺動屈曲試験装置10の試料固定板11にネジ12で固定した。続いて、試料片50を振動伝達部13に接触させて貼り付け、発振駆動体14により振動伝達部13を上下方向に振動させて試料片50に振動を伝達し、屈曲疲労寿命試験を実施した。屈曲疲労寿命の測定条件としては、曲げ半径10rを1.5mmとし、ストローク10sを10mmとし、振幅数を25Hzとした。係る条件下、各圧延銅箔から切り取った試料片50を5枚ずつ測定し、破断が発生するまでの屈曲回数の平均値を比較した。以下の表8に結果を示す。   Next, as shown in FIG. 14, a sample piece 50 of rolled copper foil was fixed to the sample fixing plate 11 of the sliding bending test apparatus 10 with screws 12. Subsequently, the specimen piece 50 was attached in contact with the vibration transmission section 13, and the vibration transmission section 13 was vibrated in the vertical direction by the oscillation driver 14 to transmit vibration to the specimen piece 50, and a bending fatigue life test was performed. . As the measurement conditions for the bending fatigue life, the bending radius 10r was 1.5 mm, the stroke 10 s was 10 mm, and the amplitude number was 25 Hz. Under such conditions, five sample pieces 50 cut from each rolled copper foil were measured, and the average values of the number of bendings until breakage occurred were compared. The results are shown in Table 8 below.

表8に示すように、実施例1〜5および比較例1,3においては、いずれも上述の式(1)を満たすので、屈曲回数が200万回以上の高い耐屈曲性が得られた。一方、上述の式(1)を満たさない比較例2,4,5においては、いずれも屈曲回数が200万回を大幅に下回る結果となってしまった。   As shown in Table 8, in Examples 1 to 5 and Comparative Examples 1 and 3, both satisfy the above-described formula (1), and thus high bending resistance with a number of bendings of 2 million times or more was obtained. On the other hand, in Comparative Examples 2, 4, and 5 that do not satisfy the above-described formula (1), the number of bendings was significantly less than 2 million.

ここで、着目すべきは、比較例2,4,5であっても、もともと比較的高水準の耐屈曲性を備えている点である。これは、例えば上述の特許文献3等で実績が得られている総加工度が94%以上、具体的には、総加工度が97%の最終冷間圧延工程を経ているためである。実施例1〜5においては、更に、上述の式(1)を満たすことにより、耐屈曲性の更なる向上が可能となった。   Here, it should be noted that even Comparative Examples 2, 4, and 5 originally have a relatively high level of bending resistance. This is because, for example, the total work degree that has been obtained in the above-mentioned Patent Document 3 is 94% or more, specifically, the final cold rolling process has been performed with a total work degree of 97%. In Examples 1-5, the bending resistance can be further improved by further satisfying the above-described formula (1).

(耐折り曲げ性の評価)
続いて、各圧延銅箔の耐折り曲げ性を調査した。耐折り曲げ性についての一般的な試験の規格では、例えばFPC用途等で要求される180°の折り曲げについての標準化がなされていない。そこで、図15に示す手法により、各圧延銅箔に割れが生じるまでの折り曲げ回数を測定する折り曲げ試験を行った。
(Evaluation of bending resistance)
Subsequently, the bending resistance of each rolled copper foil was investigated. In general test standards for bending resistance, standardization for bending at 180 °, which is required for FPC applications, for example, has not been made. Then, the bending test which measures the frequency | count of bending until a crack arises in each rolled copper foil with the method shown in FIG. 15 was done.

すなわち、まずは、実施例1〜5および比較例1〜5に係る厚さ12μmの圧延銅箔の片面に、厚さ25μmのポリイミド系樹脂を塗って300℃、60分間の熱処理を施し、ポリイミド系樹脂を硬化させた。係る熱処理は、上述のCCL工程および再結晶焼鈍を模したものである。その後、圧延銅箔を、圧延方向に対し、幅15mm、長さ100mmに切り取って、ポリイミド系樹脂が硬化したポリイミド系樹脂層51pを備える圧延銅箔51fの試料片51とした。次に、図15に示すように、厚さが0.4mmのスペーサ20を挟み込むように、ポリイミド系樹脂層51pを内側にして試料片51を180°折り曲げた。そして、この状態で折り曲げ部分の圧延銅箔51fの表面を金属顕微鏡で観察して割れの有無を確認した。割れがなければ、試料片51を折り曲げた状態から元の伸ばした状態に戻した。これを1サイクルとして、各圧延銅箔から切り取った試料片51の5枚ずつについて、1サイクル毎に折り曲げ部分の観察をしつつ、割れが発生するまでサイクルを繰り返し、折り曲げ回数を測定した。以下の表9に結果を示す。   That is, first, a polyimide resin having a thickness of 25 μm was applied to one side of a rolled copper foil having a thickness of 12 μm according to Examples 1 to 5 and Comparative Examples 1 to 5, and then subjected to a heat treatment at 300 ° C. for 60 minutes. The resin was cured. Such heat treatment is a simulation of the CCL process and recrystallization annealing described above. Thereafter, the rolled copper foil was cut into a width of 15 mm and a length of 100 mm with respect to the rolling direction to obtain a sample piece 51 of a rolled copper foil 51 f provided with a polyimide resin layer 51 p in which a polyimide resin was cured. Next, as shown in FIG. 15, the sample piece 51 was bent 180 ° with the polyimide resin layer 51 p inside so as to sandwich the spacer 20 having a thickness of 0.4 mm. In this state, the surface of the rolled copper foil 51f at the bent portion was observed with a metal microscope to confirm the presence or absence of cracks. If there was no crack, the sample piece 51 was returned from the bent state to the original extended state. With this as one cycle, for each of the five sample pieces 51 cut out from each rolled copper foil, the cycle was repeated until cracking occurred while observing the bent portion every cycle, and the number of bending was measured. The results are shown in Table 9 below.

表9に示すように、上述の式(1)〜(3)を全て満たす実施例1〜5のいずれにおいても、折り曲げ回数は20回以上となり、優れた耐折り曲げ性が得られた。   As shown in Table 9, in any of Examples 1 to 5 that satisfy all of the above formulas (1) to (3), the number of bendings was 20 times or more, and excellent bending resistance was obtained.

一方、いずれの比較例においても式(3)を満たしておらず、折り曲げ回数は20回未満となった。よって、充分な耐折り曲げ性は得られなかった。これは、式(2)を満たす比較例1〜3についても同様である。これらの耐折り曲げ性は、他の比較例よりは高めだが、実施例と比べて劣っていた。つまり、式(2)の制御により耐折り曲げ性を向上させるには、式(3)を満たしていることが前提となっていると考えられる。   On the other hand, in any of the comparative examples, the expression (3) was not satisfied, and the number of bendings was less than 20. Therefore, sufficient bending resistance was not obtained. The same applies to Comparative Examples 1 to 3 that satisfy Expression (2). These bending resistances were higher than those of other comparative examples, but were inferior to those of the examples. In other words, in order to improve the bending resistance by controlling the expression (2), it is considered that the expression (3) is satisfied.

(2)タフピッチ銅を用いた圧延銅箔
次に、目標濃度を200ppmとするAgを添加したタフピッチ銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例6,7および比較例6に係る圧延銅箔を製作した。但し、比較例6については、上述の表4の条件等、構成を外れる処理等を含めた。
(2) Rolled copper foil using tough pitch copper Next, using a tough pitch copper to which Ag with a target concentration of 200 ppm was added, and using the same procedure and method as in the above embodiment, Example 6 having a thickness of 12 μm 7 and the rolled copper foil which concerns on the comparative example 6 were manufactured. However, about the comparative example 6, the process etc. which remove | deviated a structure, such as the conditions of the above-mentioned Table 4, were included.

実施例6,7および比較例6の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ199ppm、193ppmおよび195ppmであった。全て目標濃度に対して±10%程度内のバラツキであって、金属材料の分野では一般的なものである。なお、中間焼鈍工程および生地焼鈍工程では、係る濃度のAgを含有するタフピッチ銅材の耐熱性に合わせた温度条件を用いた。具体的には、中間焼鈍工程では650℃〜750℃の温度で約2分間保持し、生地焼鈍工程では約700℃の温度で約1分間保持した。また、これらの実施例及び比較例についても、上述の表4の条件を最終冷間圧延工程に適用した。   The Ag concentrations in the ingots of Examples 6 and 7 and Comparative Example 6 were 199 ppm, 193 ppm and 195 ppm as analytical values obtained by the IPC emission spectroscopic analysis method, respectively. All are variations within about ± 10% of the target concentration, and are common in the field of metal materials. In the intermediate annealing process and the dough annealing process, temperature conditions were used in accordance with the heat resistance of the tough pitch copper material containing Ag having such a concentration. Specifically, the intermediate annealing step was held at a temperature of 650 ° C. to 750 ° C. for about 2 minutes, and the dough annealing step was held at a temperature of about 700 ° C. for about 1 minute. Moreover, also about these Examples and the comparative examples, the conditions of the above-mentioned Table 4 were applied to the final cold rolling process.

以上のように製作した実施例6,7および比較例6に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定およびX線Pole−Figure法を用いた測定を行い、上述の式(1),(2)を求め、また、上述と同様にグラフを作成した。以下の表10に、2θ/θ法によるX線回折測定の結果を示す。また、図16〜18に、X線Pole−Figure法を用いて作成した実施例6,7および比較例6に係るグラフをそれぞれ示す。   For the rolled copper foils according to Examples 6 and 7 and Comparative Example 6 manufactured as described above, the X-ray diffraction measurement by the 2θ / θ method and the X-ray Pole-Figure method were performed by the same method and procedure as the above-described example. The measurement used was performed, the above-mentioned formula (1), (2) was calculated | required, and the graph was created similarly to the above-mentioned. Table 10 below shows the results of X-ray diffraction measurement by the 2θ / θ method. In addition, FIGS. 16 to 18 show graphs according to Examples 6 and 7 and Comparative Example 6 created using the X-ray Pole-Figure method, respectively.

また、実施例6,7および比較例6に係る圧延銅箔に対し、上述と同様の再結晶焼鈍を施した後、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験および折り曲げ試験を行った。   Moreover, after giving the recrystallization annealing similar to the above with respect to the rolled copper foil which concerns on Example 6, 7 and the comparative example 6, a bending fatigue life test and a bending test are performed by the method and procedure similar to the above-mentioned Example. went.

以下の表11に、上述の結果のまとめを示す。表11中、上述の式(1)〜(3)のいずれかの所定範囲を外れた値を下線付きの太字で示した。   Table 11 below summarizes the above results. In Table 11, values outside the predetermined range of any of the above formulas (1) to (3) are shown in bold underlined.

表11に示すように、いずれの実施例および比較例に係る圧延銅箔も式(1)を満たし、屈曲回数が200万回以上の良好な耐屈曲性が得られた。また、比較例6を除き、いずれの実施例も式(3)を満たし、折り曲げ回数が20回以上の耐折り曲げ性が得られた。ここで、式(2)を満たすが式(3)を満たさない比較例6の耐折り曲げ性は悪く、式(2)を満たさないが式(3)を満たす実施例6の耐折り曲げ性は比較的良好である。このことから、上述の通り、耐折り曲げ性の向上には、式(3)を満たすことが前提となっていることがわかる。式(3)を満たしたうえで更に式(2)を制御すれば、実施例7のように、より一層優れた耐折り曲げ性が得られる。   As shown in Table 11, the rolled copper foil according to any of the examples and comparative examples also satisfied the formula (1), and good bending resistance with the number of bendings of 2 million times or more was obtained. Moreover, except the comparative example 6, all the examples satisfy | filled Formula (3), and the bending resistance whose frequency | count of bending was 20 times or more was obtained. Here, the bending resistance of Comparative Example 6 that satisfies Expression (2) but does not satisfy Expression (3) is poor, and the bending resistance of Example 6 that does not satisfy Expression (2) but satisfies Expression (3) is comparative. Good. From this, it can be seen that, as described above, it is assumed that the expression (3) is satisfied in order to improve the bending resistance. If Formula (2) is further controlled after satisfying Formula (3), much more excellent bending resistance can be obtained as in Example 7.

以上のことから、各条件が所定範囲内であれば、タフピッチ銅を主原材料とする圧延銅箔についても、良好な耐折り曲げ性を得て、更に耐屈曲性の向上を図ることができることがわかった。   From the above, it can be seen that, if each condition is within a predetermined range, it is possible to obtain a good bending resistance and to further improve the bending resistance with respect to a rolled copper foil mainly made of tough pitch copper. It was.

(3)異なる添加材を用いた圧延銅箔(AgおよびTi添加)
次に、目標濃度を120ppmとするAgおよび目標濃度を40ppmとするチタン(Ti)を添加材として加えた無酸素銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例8,9および比較例7,8に係る圧延銅箔を製作した。但し、比較例7,8については、上述の表4の条件等、構成を外れる処理等を含めた。
(3) Rolled copper foil using different additives (Ag and Ti added)
Next, using oxygen-free copper to which Ag (target concentration: 120 ppm) and titanium (Ti) (target concentration: 40 ppm) are added as an additive, the thickness is 12 μm in the same procedure and manner as in the above-described embodiment. The rolled copper foil which concerns on Examples 8 and 9 and Comparative Examples 7 and 8 was manufactured. However, for Comparative Examples 7 and 8, the conditions in Table 4 described above and the like included processing that deviates from the configuration.

実施例8,9および比較例7,8の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ110ppm、115ppm、113ppmおよび110ppmであった。また、Ti濃度は、それぞれ38ppm、36ppm、37ppmおよび36ppmであった。全て目標濃度に対して±10%程度内のバラツキであって、金属材料の分野では一般的なものである。   Ag concentrations in the ingots of Examples 8 and 9 and Comparative Examples 7 and 8 were 110 ppm, 115 ppm, 113 ppm, and 110 ppm, respectively, as analytical values obtained by IPC emission spectroscopy. Ti concentrations were 38 ppm, 36 ppm, 37 ppm and 36 ppm, respectively. All are variations within about ± 10% of the target concentration, and are common in the field of metal materials.

また、中間焼鈍工程および生地焼鈍工程では、このような濃度のAgおよびTiを含有する無酸素銅材の耐熱性に合わせた温度条件を用いた。具体的には、中間焼鈍工程では温度650℃〜750℃で約2分間保持し、生地焼鈍工程では約700℃の温度で約1分間保持した。また、これらの実施例及び比較例についても、上述の表4の条件を最終冷間圧延工程に適用した。   Moreover, in the intermediate annealing process and the dough annealing process, the temperature conditions according to the heat resistance of the oxygen-free copper material containing such concentrations of Ag and Ti were used. Specifically, the intermediate annealing step was held at a temperature of 650 ° C. to 750 ° C. for about 2 minutes, and the dough annealing step was held at a temperature of about 700 ° C. for about 1 minute. Moreover, also about these Examples and the comparative examples, the conditions of the above-mentioned Table 4 were applied to the final cold rolling process.

以上のように製作した実施例8,9および比較例7,8に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定およびX線Pole−Figure法を用いた測定を行い、上述の式(1)〜(3)を求めた。   For the rolled copper foils according to Examples 8 and 9 and Comparative Examples 7 and 8 manufactured as described above, X-ray diffraction measurement and X-ray Pole-Figure by the 2θ / θ method are performed in the same manner and procedure as in the above-described Examples. Measurement using the method was performed to obtain the above-mentioned formulas (1) to (3).

また、実施例8,9および比較例7,8に係る圧延銅箔に対し、上述と同様の再結晶焼鈍を施した後、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験および折り曲げ試験を行った。   In addition, after subjecting the rolled copper foils according to Examples 8 and 9 and Comparative Examples 7 and 8 to recrystallization annealing similar to the above, the bending fatigue life test and the bending were performed in the same manner and procedure as in the above Examples. A test was conducted.

以下の表12に、上述の結果のまとめを示す。表12中に示す上述の式(1)〜(3)のいずれかの所定範囲を外れた値を下線付きの太字で示した。   Table 12 below summarizes the above results. Values outside the predetermined range of any one of the above-described formulas (1) to (3) shown in Table 12 are shown in bold underlined.

表12に示すように、実施例8,9に係る圧延銅箔については、各結晶面の回折ピーク強度の関係が式(1)〜(3)を全て満たしていた。このため、いずれも良好な耐屈曲性を得ることができた。一方、比較例8に係る圧延銅箔については、式(1)を満たすことで良好な耐屈曲性が得られたが、式(3)が所定範囲を外れたために、式(2)を満たしてはいるものの耐折り曲げ性が悪いという結果となってしまった。また、比較例7に係る圧延銅箔については、式(1)が所定値を外れるため耐屈曲性が悪く、また、式(2),(3)は所定範囲内であったが、耐折り曲げ性が悪いという結果となってしまった。比較例7においては、式(1)が所定値を外れていることが耐折り曲げ性の悪化の要因と考えられる。すなわち、式(1)を満たすことで、再結晶焼鈍工程前に所定量の{002}面が圧延銅箔中に含有されていることが、式(3)の制御による耐折り曲げ性の向上の前提であると考えられる。   As shown in Table 12, for the rolled copper foils according to Examples 8 and 9, the relationship between the diffraction peak intensities of the crystal planes satisfied all the expressions (1) to (3). For this reason, all were able to obtain favorable bending resistance. On the other hand, with respect to the rolled copper foil according to Comparative Example 8, satisfactory bending resistance was obtained by satisfying the formula (1), but the formula (3) was out of the predetermined range, so that the formula (2) was satisfied. However, the bending resistance was poor. Moreover, about the rolled copper foil which concerns on the comparative example 7, since Formula (1) remove | deviated from predetermined value, bending resistance was bad, and although Formula (2), (3) was in the predetermined range, it was bending-proof. The result was bad. In Comparative Example 7, it is considered that the fact that the formula (1) is out of the predetermined value is a cause of deterioration of the bending resistance. That is, by satisfying the formula (1), a predetermined amount of {002} plane is contained in the rolled copper foil before the recrystallization annealing step, which improves the bending resistance by controlling the formula (3). It is considered a premise.

以上のことから、各条件が所定範囲内であれば、AgとTiとのような異なる添加材を添加した圧延銅箔についても、良好な耐屈曲性及び耐折り曲げ性が得られることがわかった。   From the above, it was found that if each condition is within a predetermined range, good bending resistance and bending resistance can be obtained also for the rolled copper foil added with different additives such as Ag and Ti. .

(4)異なる添加材を用いた圧延銅箔(AgおよびB添加(その1))
次に、目標濃度を120ppmとするAgおよび目標濃度を100ppm〜200ppmとする硼素(B)を添加材として加えた無酸素銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例10,11および比較例9,10に係る圧延銅箔を製作した。但し、比較例9,10については、上述の表4の条件等、構成を外れる処理等を含めた。
(4) Rolled copper foil using different additives (Ag and B addition (1))
Next, using oxygen-free copper to which Ag with a target concentration of 120 ppm and boron (B) with a target concentration of 100 ppm to 200 ppm added as an additive is used, the thickness is increased by the same procedure and method as in the above-described embodiment. The rolled copper foil which concerns on Examples 10 and 11 and Comparative Examples 9 and 10 of 12 micrometers was manufactured. However, for Comparative Examples 9 and 10, the processing described above in Table 4 and the like included processing that deviates from the configuration.

実施例10,11および比較例9,10の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ110ppm、120ppm、115ppmおよび120ppmであった。全て目標濃度に対して±10%程度内のバラツキであって、金属材料の分野では一般的なものである。また、B濃度は、それぞれ115ppm、180ppm、155ppmおよび110ppmであった。上述の100ppm〜200ppmの範囲内で制御されており、所定値内である。Bは酸化性が強いため、また、原子量が小さく軽いため、鋳造中に酸化してしまい、溶融した銅から分離して、溶湯中にノロとよばれるカス(スラグ)が浮いてしまう。溶湯に浮いたノロは、Bの喪失分となってしまうので、上述のようなある程度幅を持たせた濃度制御範囲とするのが一般的である。   The Ag concentrations in the ingots of Examples 10 and 11 and Comparative Examples 9 and 10 were 110 ppm, 120 ppm, 115 ppm, and 120 ppm, respectively, as analytical values obtained by IPC emission spectroscopy. All are variations within about ± 10% of the target concentration, and are common in the field of metal materials. The B concentrations were 115 ppm, 180 ppm, 155 ppm and 110 ppm, respectively. It is controlled within the above-mentioned range of 100 ppm to 200 ppm and is within a predetermined value. Since B is highly oxidizable and has a small atomic weight and light weight, it is oxidized during casting and separated from molten copper, and a residue (slag) called Noro floats in the molten metal. Noro floating in the molten metal becomes a loss of B, so it is general to set the concentration control range with a certain width as described above.

また、中間焼鈍工程および生地焼鈍工程では、このような濃度のAgおよびBを含有する無酸素銅材の耐熱性に合わせた温度条件を用いた。具体的には、中間焼鈍工程では温度
630℃〜780℃で約2分間保持し、生地焼鈍工程では約700℃の温度で約1分間保持した。また、これらの実施例及び比較例についても、上述の表4の条件を最終冷間圧延工程に適用した。
Moreover, in the intermediate annealing process and the dough annealing process, the temperature conditions according to the heat resistance of the oxygen-free copper material containing such concentrations of Ag and B were used. Specifically, the intermediate annealing step was held at a temperature of 630 ° C. to 780 ° C. for about 2 minutes, and the dough annealing step was held at a temperature of about 700 ° C. for about 1 minute. Moreover, also about these Examples and the comparative examples, the conditions of the above-mentioned Table 4 were applied to the final cold rolling process.

以上のように製作した実施例10,11および比較例9,10に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定およびX線Pole−Figure法を用いた測定を行い、上述の式(1)〜(3)を求めた。   For the rolled copper foils according to Examples 10 and 11 and Comparative Examples 9 and 10 manufactured as described above, X-ray diffraction measurement and X-ray Pole-Figure by the 2θ / θ method are performed in the same manner and procedure as in the above-described Examples. Measurement using the method was performed to obtain the above-mentioned formulas (1) to (3).

また、実施例10,11および比較例9,10に係る圧延銅箔に対し、上述と同様の再結晶焼鈍を施した後、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験および折り曲げ試験を行った。   In addition, after subjecting the rolled copper foils according to Examples 10 and 11 and Comparative Examples 9 and 10 to recrystallization annealing similar to the above, bending fatigue life test and bending are performed in the same manner and procedure as in the above Examples. A test was conducted.

以下の表13に、上述の結果のまとめを示す。表13中に示す上述の式(1)〜(3)のいずれかの所定範囲を外れた値を下線付きの太字で示した。   Table 13 below summarizes the above results. Values outside the predetermined range of any of the above formulas (1) to (3) shown in Table 13 are shown in bold underlined.

表13に示すように、実施例10,11に係る圧延銅箔については、各結晶面の回折ピーク強度の関係が式(1)〜(3)を全て満たしていた。このため、いずれも良好な耐屈曲性および耐折り曲げ性を得ることができた。一方、比較例9に係る圧延銅箔については、式(1)〜(3)が全て所定値を外れ、耐屈曲性も耐折り曲げ性も共に悪いという結果となってしまった。また、比較例10に係る圧延銅箔については、式(1)を満たすことで良好な耐屈曲性が得られたが、式(2),(3)が所定範囲を外れ、耐折り曲げ性が悪いという結果となってしまった。但し、式(1)〜(3)が全て所定値外となった比較例9よりは、耐折り曲げ性が若干改善された。   As shown in Table 13, for the rolled copper foils according to Examples 10 and 11, the relationship between the diffraction peak intensities of the crystal planes satisfied all of the expressions (1) to (3). For this reason, in both cases, good bending resistance and bending resistance could be obtained. On the other hand, with respect to the rolled copper foil according to Comparative Example 9, the formulas (1) to (3) all deviated from the predetermined values, and both the bending resistance and the bending resistance were poor. Moreover, about the rolled copper foil which concerns on the comparative example 10, although favorable bending resistance was obtained by satisfy | filling Formula (1), Formula (2) and (3) remove | deviated from the predetermined range, and bending resistance is The result was bad. However, the bending resistance was slightly improved as compared with Comparative Example 9 in which the expressions (1) to (3) were all out of the predetermined values.

以上のことから、各条件が所定範囲内であれば、AgとBとのような異なる添加材を添加した圧延銅箔についても、良好な耐屈曲性及び耐折り曲げ性が得られることがわかった。   From the above, it was found that, if each condition is within a predetermined range, good bending resistance and bending resistance can be obtained also for the rolled copper foil to which different additives such as Ag and B are added. .

(5)異なる添加材を用いた圧延銅箔(AgおよびB添加(その2))
次に、上述と同様、AgとBとを添加した圧延銅箔について、上述の式(1)〜(3)に加え、表面粗さに係る式(4),(5)の効果を検証した。
(5) Rolled copper foil using different additives (Ag and B addition (2))
Next, in the same manner as described above, for the rolled copper foil added with Ag and B, the effects of the expressions (4) and (5) related to the surface roughness were verified in addition to the above expressions (1) to (3). .

(圧延銅箔の製作)
まずは、目標濃度を120ppmとするAgおよび目標濃度を100ppm〜200ppmとする硼素(B)を添加材として加えた無酸素銅を用い、上述の実施例と同様の手順及び手法に加え、後述するように圧延銅箔の表面粗さを制御しつつ、厚さが12μmの実施例12〜18および比較例11〜31に係る圧延銅箔を製作した。但し、比較例11〜31については、後述する1パスあたりの加工度や中立点の位置、圧延ロールの表面粗さ
等、主に最終冷間圧延工程において、構成を外れる処理等を含めた。
(Production of rolled copper foil)
First, using oxygen-free copper to which Ag with a target concentration of 120 ppm and boron (B) with a target concentration of 100 ppm to 200 ppm added as an additive is used, in addition to the same procedures and methods as in the above-described embodiment, as described later. In addition, while controlling the surface roughness of the rolled copper foil, rolled copper foils according to Examples 12 to 18 and Comparative Examples 11 to 31 having a thickness of 12 μm were manufactured. However, about Comparative Examples 11-31, the process etc. which remove | deviate a structure mainly in the last cold rolling process, such as the processing degree per pass mentioned later, the position of a neutral point, and the surface roughness of a rolling roll, were included.

実施例12〜18および比較例11〜31の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、以下の表14に示すように、100ppm〜140ppmと、全て目標濃度に対して±20ppm程度内のバラツキであった。このようなバラツキは、例えば100ppm〜300ppmの範囲内で希薄合金を製造する場合に、鋳造条件等によっては鋳造時に混入し得る量である。つまり、鋳造する銅の原材料に混入し得る量と、鋳造における一般的なバラツキ量との総量が、上述の範囲内のバラツキとなる。また、Bについては、以下の表15に示すように、100ppm〜195ppmと目標濃度の範囲内で制御されており、上述のように、ノロによる喪失分等を考慮すれば所定値内である。   Ag concentrations in the ingots of Examples 12 to 18 and Comparative Examples 11 to 31 are analytical values obtained by IPC emission spectroscopic analysis, and as shown in Table 14 below, 100 ppm to 140 ppm, all at target concentrations. On the other hand, the variation was within ± 20 ppm. Such variation is an amount that can be mixed during casting depending on casting conditions or the like when a dilute alloy is produced within a range of 100 ppm to 300 ppm, for example. That is, the total amount of the amount that can be mixed into the copper raw material to be cast and the general variation amount in casting is within the above-described range. Further, B is controlled within the range of 100 ppm to 195 ppm and the target concentration as shown in Table 15 below, and as described above, it is within a predetermined value in consideration of a loss due to Noro and the like.

また、中間焼鈍工程および生地焼鈍工程では、このような濃度のAgおよびBを含有する無酸素銅材の耐熱性に合わせた温度条件を用いた。具体的には、中間焼鈍工程では温度630℃〜800℃で約2分間保持した。ここでの温度の上限値は、「AgおよびB添加(その1)」よりもAg濃度の最大値が高かったことを受けて、高めに設定した。また、生地焼鈍工程では約700℃の温度で約1分間保持した。   Moreover, in the intermediate annealing process and the dough annealing process, the temperature conditions according to the heat resistance of the oxygen-free copper material containing such concentrations of Ag and B were used. Specifically, in the intermediate annealing step, the temperature was maintained at 630 ° C. to 800 ° C. for about 2 minutes. The upper limit value of the temperature here was set higher because the maximum value of the Ag concentration was higher than “Ag and B addition (part 1)”. In the dough annealing process, the temperature was maintained at about 700 ° C. for about 1 minute.

また、本実施例及び比較例については、以下の表16の条件を最終冷間圧延工程に適用した。表16の条件を適用するにあたっては、繰り返し工程後の銅条(生地)の厚さを0.3mm(300μm)とし、厚さが300μm以下における冷間圧延加工の、1パスあたりの加工度と中立点の位置とを、表16のように変化させた。   Moreover, about the present Example and the comparative example, the conditions of the following Table 16 were applied to the last cold rolling process. In applying the conditions of Table 16, the thickness of the copper strip (dough) after the repetitive process is 0.3 mm (300 μm), and the degree of processing per pass of the cold rolling process when the thickness is 300 μm or less The position of the neutral point was changed as shown in Table 16.

表16に示す2つの条件のうち、左側が所定の構成の範囲内となるよう調整された条件である。全ての実施例および一部の比較例について、この範囲内で条件を振って、それぞれが所定の構成の範囲内となるよう処理を施した。また、右側の条件は、所定の構成を外れるよう調整された条件である。残りの比較例について、この範囲内で条件を振って、それぞれが所定の構成を外れるよう処理を施した。表16の条件についても、上述の表4と同様、例示的なものである。   Of the two conditions shown in Table 16, the conditions are adjusted so that the left side is within the range of the predetermined configuration. For all the examples and some comparative examples, conditions were set within this range, and processing was performed so that each would be within a predetermined configuration range. The right condition is a condition adjusted to deviate from the predetermined configuration. With respect to the remaining comparative examples, conditions were set within this range, and processing was performed so that each of them deviated from the predetermined configuration. The conditions in Table 16 are also exemplary as in Table 4 above.

例えば、本実施例および比較例では、繰り返し工程後の銅条(生地)の厚さを300μmとしたが、繰り返し工程後の厚さが400μm〜100μmの範囲内のいずれかの厚さであれば、同様に、1パスあたりの加工度を35%未満とし、中立点の位置を0.4mm以上とする表4もしくは表16に記載の実施例と同様の条件を用いることができる。また、繰り返し工程を、400μmを超える厚さで終了したときは、係る厚さから400μmに減厚されるまでは、最終冷間圧延工程における1パスあたりの加工度および中立点の位置は問わない。400μmに到達した後の圧延加工においては、表4もしくは表16の実施例と同様の条件とすればよい。   For example, in this example and the comparative example, the thickness of the copper strip (fabric) after the repeating process is set to 300 μm, but the thickness after the repeating process is any thickness within the range of 400 μm to 100 μm. Similarly, the same conditions as in the examples described in Table 4 or Table 16 in which the degree of processing per pass is less than 35% and the position of the neutral point is 0.4 mm or more can be used. In addition, when the repetition process is finished with a thickness exceeding 400 μm, the degree of processing per one pass and the position of the neutral point in the final cold rolling process is not limited until the thickness is reduced from the thickness to 400 μm. . In the rolling process after reaching 400 μm, the same conditions as in the examples of Table 4 or Table 16 may be used.

また、最終冷間圧延工程では、算術平均粗さRaが0.075μm以下の表面粗さが小さい圧延ロールを実施例12〜18、及び比較例16〜18,24,26,29に使用し、算術平均粗さRaが0.080μm以上の表面粗さが大きい圧延ロールを残りの比較例11〜15,19〜23,25,27,28,30,31に使用した。   In the final cold rolling step, a rolling roll having a small surface roughness with an arithmetic average roughness Ra of 0.075 μm or less is used in Examples 12 to 18 and Comparative Examples 16 to 18, 24, 26, and 29. Rolling rolls having a large surface roughness with an arithmetic average roughness Ra of 0.080 μm or more were used in the remaining Comparative Examples 11-15, 19-23, 25, 27, 28, 30, 31.

また、本実施例及び比較例については、総加工度を96%と、低めの設定とした。   Moreover, about the present Example and the comparative example, the total workability was set to 96% and a low setting.

以下の表17に、実施例12〜18と同様の圧延条件で処理した比較例を○、異なる圧延条件で処理した比較例を×で示す。また、実施例12〜18と同様の圧延ロールで処理した比較例を○、異なる圧延ロールで処理した比較例を×で示す。   In the following Table 17, comparative examples treated under the same rolling conditions as in Examples 12 to 18 are indicated by ◯, and comparative examples treated under different rolling conditions are indicated by ×. Moreover, the comparative example processed with the rolling roll similar to Examples 12-18 is shown by (circle) and the comparative example processed with the different rolling roll by x.

(X線回折測定)
以上のように製作した実施例12〜18および比較例11〜31に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定およびX線Pole−Figure法を用いた測定を行い、上述の式(1)〜(3)を求めた。それぞれの結果を、以下の表18に示す。表18中、上述の所定範囲を外れた値を下線付きの太字で示した。
(X-ray diffraction measurement)
For the rolled copper foils according to Examples 12 to 18 and Comparative Examples 11 to 31 manufactured as described above, X-ray diffraction measurement and X-ray Pole-Figure by the 2θ / θ method are performed in the same manner and procedure as in the above-described Examples. Measurement using the method was performed to obtain the above-mentioned formulas (1) to (3). The respective results are shown in Table 18 below. In Table 18, values outside the above-mentioned predetermined range are shown in bold with underline.

(表面粗さ測定)
続いて、実施例12〜18および比較例11〜31に係る圧延銅箔の表面粗さをみるため、十点平均粗さRzjis及び算術平均粗さRaの測定を行った。係る測定には、株式会社小坂研究所製の表面粗さ測定機(型式:SE500)を用いた。測定条件としては、触針径を2μm、測定速度を0.2mm/sec、測定長を4mm、抜き取り基準長さを0.8mm、荷重を0.75mN以下とした。測定結果を、以下の表19に示す。
(Surface roughness measurement)
Then, in order to see the surface roughness of the rolled copper foil which concerns on Examples 12-18 and Comparative Examples 11-31, the 10-point average roughness Rzjis and arithmetic average roughness Ra were measured. For the measurement, a surface roughness measuring machine (model: SE500) manufactured by Kosaka Laboratory Ltd. was used. The measurement conditions were a stylus diameter of 2 μm, a measurement speed of 0.2 mm / sec, a measurement length of 4 mm, a sampling reference length of 0.8 mm, and a load of 0.75 mN or less. The measurement results are shown in Table 19 below.

上述のように、本実施例及び比較例では、最終冷間圧延工程において、算術平均粗さRaの異なる圧延ロールをそれぞれ用いている。よって、表19に示すように、表面粗さが小さい圧延ロールを用いた実施例および一部比較例の各条件の組み合わせでは、圧延銅箔の表面は比較的平坦化され、十点平均粗さRzjis及び算術平均粗さRaのいずれも上述の所定範囲内となった。   As described above, in this example and the comparative example, rolling rolls having different arithmetic average roughness Ra are used in the final cold rolling process. Therefore, as shown in Table 19, the surface of the rolled copper foil is relatively flattened with a ten-point average roughness in the combination of the conditions of the examples using the rolling rolls with a small surface roughness and some comparative examples. Both Rzjis and arithmetic average roughness Ra were within the predetermined range.

一方、表面粗さが大きい圧延ロールを用いた残りの比較例においては、いずれか一方、或いは両方の表面粗さの値が上述の所定範囲外となった。表19中、上述の所定範囲を外
れた値を下線付きの太字で示した。
On the other hand, in the remaining comparative examples using a rolling roll having a large surface roughness, the surface roughness value of either one or both was out of the predetermined range. In Table 19, values outside the above-mentioned predetermined range are shown in bold with underline.

(耐屈曲性および耐折り曲げ性の評価)
次に、実施例12〜18および比較例11〜31に係る圧延銅箔に対し、上述と同様の再結晶焼鈍を施した後、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験および折り曲げ試験を行った。以下の表20に、結果を示す。
(Evaluation of bending resistance and bending resistance)
Next, after subjecting the rolled copper foils according to Examples 12 to 18 and Comparative Examples 11 to 31 to recrystallization annealing similar to the above, bending fatigue life tests and procedures similar to those in the above Examples were performed. A bending test was performed. The results are shown in Table 20 below.

表20に示すように、実施例12〜18に係る圧延銅箔については、各結晶面の回折ピ
ーク強度の関係が式(1)〜(3)をすべて満たし、また、表面粗さの式(4),(5)も共に満たしていた。このため、いずれも良好な耐屈曲性および耐折り曲げ性を得ることができた。また、圧延銅箔の表面粗さについて考慮していない上述の実施例1〜11と比較しても、耐折り曲げ性は格段に向上しており、また、折り曲げ回数が115回〜121回と、バラツキの小さい結果が得られた。一方で、上述の実施例1〜11と比較して、耐屈曲性が総じて低めとなっているのは、本実施例における最終冷間圧延工程での総加工度を低めに設定したためである。総加工度の効果が弱い状況下であっても、本実施例の構成を適用することで、耐屈曲性を向上させる効果が認められた。
As shown in Table 20, about the rolled copper foil which concerns on Examples 12-18, the relationship of the diffraction peak intensity | strength of each crystal plane satisfy | fills all Formula (1)-(3), and is the formula of surface roughness ( Both 4) and 5) were satisfied. For this reason, in both cases, good bending resistance and bending resistance could be obtained. In addition, even when compared with Examples 1 to 11 described above that do not consider the surface roughness of the rolled copper foil, the bending resistance is remarkably improved, and the number of bendings is 115 to 121 times. Results with little variation were obtained. On the other hand, the reason why the bending resistance is generally lower than that of the above-described Examples 1 to 11 is that the total workability in the final cold rolling step in this example is set to be low. Even under a situation where the effect of the total workability is weak, the effect of improving the bending resistance was recognized by applying the configuration of this example.

一方、比較例11〜31に係る圧延銅箔については、式(1)〜(5)の少なくとも1つ、或いは複数の値が所定値を外れ、優れた耐屈曲性、および安定的に優れた耐折り曲げ性を共に兼備させることはできなかった。但し、少なくとも式(1)を満たす比較例11〜14,16〜22,27,30については、耐屈曲性は実施例と略同等の高い値が得られた。また、比較例29については、式(1)のみを満たさず、耐屈曲性が劣っていたが、式(2)〜(5)の全てが所定範囲内となっており、他の比較例よりも耐折り曲げ性に優れる結果となった。耐折り曲げ性が実施例より劣るのは、式(1)を満たしていないためと考えられ、やはり、式(1)の値も耐折り曲げ性に関与していると推察される。以下の表21に、すべての結果をまとめたものを示す。表21中、式(1)〜(5)までの項目に関し、○は所定値内、×は所定値外を示す。また、耐屈曲性及び耐折り曲げ性の項目に関し、○は良、×は否を示す。   On the other hand, for the rolled copper foils according to Comparative Examples 11 to 31, at least one of the formulas (1) to (5) or a plurality of values deviated from a predetermined value, excellent bending resistance, and stably excellent. It was not possible to combine both bending resistance. However, for Comparative Examples 11 to 14, 16 to 22, 27, and 30 that satisfy at least the formula (1), the bending resistance was as high as that of the example. Moreover, about the comparative example 29, it did not satisfy | fill only Formula (1) and the bending resistance was inferior, However, All of Formula (2)-(5) is in the predetermined range, and from other comparative examples Also resulted in excellent bending resistance. The reason why the bending resistance is inferior to that of the example is considered to be because the expression (1) is not satisfied, and it is presumed that the value of the expression (1) is also related to the bending resistance. Table 21 below summarizes all the results. In Table 21, regarding the items of the formulas (1) to (5), ◯ indicates that the value is within the predetermined value and x indicates that the value is outside the predetermined value. Moreover, regarding the item of bending resistance and bending resistance, (circle) shows good and x shows no.

以上のことから、表面粗さの小さい圧延ロールを用いるなどして圧延銅箔の表面粗さを制御することにより、耐折り曲げ性をいっそう向上させることができることがわかった。   From the above, it was found that the bending resistance can be further improved by controlling the surface roughness of the rolled copper foil by using a rolling roll having a small surface roughness.

(6)異なる添加材を用いた圧延銅箔(Sn添加)
次に、目標濃度を30ppm〜100ppmとする錫(Sn)を添加材として加えた無酸素銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例19〜25および比較例32〜52に係る圧延銅箔を製作した。但し、比較例32〜52については、上述の表16の条件や圧延ロールの表面粗さ等、構成を外れる処理等を含めた。
(6) Rolled copper foil using different additives (Sn addition)
Next, using oxygen-free copper to which tin (Sn) having a target concentration of 30 ppm to 100 ppm is added as an additive, Examples 19 to 25 having a thickness of 12 μm and the same procedure and method as in the above-described Examples and The rolled copper foil which concerns on Comparative Examples 32-52 was manufactured. However, about the comparative examples 32-52, the process etc. which remove | deviate from a structure, such as the conditions of above-mentioned Table 16, the surface roughness of a rolling roll, etc. were included.

実施例19〜25および比較例32〜52の鋳塊中におけるSn濃度は、IPC発光分
光分析法により得た分析値で、以下の表22に示すように、いずれも目標濃度の範囲内に制御されていた。
The Sn concentrations in the ingots of Examples 19 to 25 and Comparative Examples 32 to 52 are analytical values obtained by IPC emission spectroscopic analysis, and are all controlled within the target concentration range as shown in Table 22 below. It had been.

また、中間焼鈍工程および生地焼鈍工程では、このような濃度のSnを含有する無酸素銅材の耐熱性に合わせた温度条件を用いた。具体的には、中間焼鈍工程では温度750℃〜850℃で約2分間保持し、生地焼鈍工程では約800℃の温度で約1分間保持した。また、これらの実施例及び比較例については、上述の表16の条件を最終冷間圧延工程に適用した。   Moreover, in the intermediate annealing process and the dough annealing process, the temperature condition according to the heat resistance of the oxygen-free copper material containing such a concentration of Sn was used. Specifically, the intermediate annealing step was held at a temperature of 750 ° C. to 850 ° C. for about 2 minutes, and the dough annealing step was held at a temperature of about 800 ° C. for about 1 minute. For these examples and comparative examples, the conditions in Table 16 above were applied to the final cold rolling process.

また、最終冷間圧延工程では、算術平均粗さRaが0.075μm以下の表面粗さが小さい圧延ロールを実施例19〜25、及び比較例37〜39,45,47,50に使用し、算術平均粗さRaが0.080μm以上の表面粗さが大きい圧延ロールを残りの比較例32〜36,40〜44,46,48,49,51,52に使用した。   In the final cold rolling step, a roll having a small surface roughness with an arithmetic average roughness Ra of 0.075 μm or less is used in Examples 19 to 25 and Comparative Examples 37 to 39, 45, 47, and 50. Rolling rolls having a large surface roughness with an arithmetic average roughness Ra of 0.080 μm or more were used in the remaining Comparative Examples 32-36, 40-44, 46, 48, 49, 51, 52.

また、本実施例及び比較例については、上述の実施例12〜18等と同様、総加工度を96%と低めの設定とした。   Moreover, about the present Example and the comparative example, like the above-mentioned Examples 12-18 etc., the total processing degree was set as low as 96%.

以下の表23に、実施例19〜25と同様の圧延条件で処理した比較例を○、異なる圧延条件で処理した比較例を×で示す。また、実施例19〜25と同様の圧延ロールで処理した比較例を○、異なる圧延ロールで処理した比較例を×で示す。   Table 23 below shows a comparative example treated with the same rolling conditions as in Examples 19 to 25, and a comparative example treated with different rolling conditions with x. Moreover, the comparative example processed by the rolling roll similar to Examples 19-25 is shown by (circle) and the comparative example processed by the different rolling roll is shown by x.

以上のように製作した実施例19〜25および比較例32〜52に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定およびX線Pole−Figure法を用いた測定を行い、上述の式(1)〜(3)を求めた。以下の表24に、2θ/θ法によるX線回折測定の結果を示す。表24中、式(1),(2)のいずれかの所定範囲を外れた値を下線付きの太字で示した。   With respect to the rolled copper foils according to Examples 19 to 25 and Comparative Examples 32 to 52 manufactured as described above, X-ray diffraction measurement and X-ray Pole-Figure by the 2θ / θ method are performed in the same manner and procedure as the above-described Examples. Measurement using the method was performed to obtain the above-mentioned formulas (1) to (3). Table 24 below shows the results of X-ray diffraction measurement by the 2θ / θ method. In Table 24, values outside the predetermined range of either of the formulas (1) and (2) are shown in bold underlined.

また、実施例19〜25および比較例32〜52に係る圧延銅箔に対し、上述と同様の再結晶焼鈍を施した後、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験および折り曲げ試験を行った。   Moreover, after performing recrystallization annealing similar to the above with respect to the rolled copper foil which concerns on Examples 19-25 and Comparative Examples 32-52, it is a bending fatigue life test and bending by the method and procedure similar to the above-mentioned Example. A test was conducted.

以下の表25に、上述の結果のまとめを示す。表25中に示す上述の式(1)〜(5)のいずれかの所定範囲を外れた値を下線付きの太字で示した。   Table 25 below summarizes the above results. Values outside the predetermined range of any one of the above formulas (1) to (5) shown in Table 25 are shown in bold underlined.

表25に示すように、実施例19〜25に係る圧延銅箔については、各結晶面の回折ピーク強度の関係が式(1)〜(3)をすべて満たし、また、表面粗さの式(4),(5)も共に満たしていた。このため、いずれも優れた耐屈曲性および安定的に優れた耐折り曲げ性を得ることができた。   As shown in Table 25, for the rolled copper foils according to Examples 19 to 25, the relationship between the diffraction peak intensities of the crystal planes satisfies all the expressions (1) to (3), and the surface roughness expression ( Both 4) and 5) were satisfied. For this reason, all were able to obtain excellent bending resistance and stable bending resistance.

一方、比較例32〜52に係る圧延銅箔については、式(1)〜(5)の少なくとも1つ、或いは複数の値が所定値を外れ、優れた耐屈曲性、および安定的に優れた耐折り曲げ性を共に兼備させることはできなかった。但し、少なくとも式(1)を満たす比較例32〜35,37〜43,48,51については、耐屈曲性は実施例と略同等の高い値が得ら
れた。また、比較例50については、式(1)のみを満たさず、式(2)〜(5)の全てが所定範囲内となっていた。このため、耐屈曲性が劣るほか、他の比較例よりも優れ、実施例よりも劣った耐折り曲げ性が得られた。
On the other hand, for the rolled copper foils according to Comparative Examples 32 to 52, at least one of the formulas (1) to (5) or a plurality of values deviated from a predetermined value, excellent bending resistance, and stably excellent. It was not possible to combine both bending resistance. However, for Comparative Examples 32 to 35, 37 to 43, 48, and 51 that satisfy at least the formula (1), the bending resistance was as high as that of the example. Moreover, about the comparative example 50, only Formula (1) was not satisfy | filled but all of Formula (2)-(5) was in the predetermined range. For this reason, in addition to inferior bending resistance, bending resistance superior to those of other comparative examples and inferior to that of Examples was obtained.

上述の比較例29および比較例50等の結果は、耐屈曲性に対する要求があまり高くなく、耐折り曲げ性のみを主に向上させたいような場合に適用できることがわかる。つまり、式(1)については過度の制御を行わず、式(2)〜(5)の複数の値のみを制御することで、比較的高い耐折り曲げ性が得られる。   It can be seen that the results of the comparative example 29 and the comparative example 50 described above are applicable to a case where the demand for bending resistance is not so high and only the bending resistance is desired to be improved. That is, comparatively high bending resistance can be obtained by controlling only a plurality of values of formulas (2) to (5) without performing excessive control on formula (1).

以上のことから、各条件が所定範囲内であれば、Snのような異なる添加材を添加した圧延銅箔についても、良好な耐屈曲性及び耐折り曲げ性が得られることがわかった。   From the above, it was found that if each condition is within a predetermined range, good bending resistance and bending resistance can be obtained also for a rolled copper foil to which a different additive such as Sn is added.

<本発明者等による考察>
上述の圧延銅箔の製造工程における副方位の結晶面の制御および表面粗さの制御に対する本発明者等の考察について、以下に説明する。
<Discussion by the present inventors>
The inventors' consideration on the control of the sub-oriented crystal plane and the control of the surface roughness in the manufacturing process of the rolled copper foil described above will be described below.

(1)結晶回転について
上述のように、最終冷間圧延工程等の圧延加工時、銅材には、圧縮応力と、圧縮応力よりも弱い引張応力とが加わっている。圧延される銅材中の銅結晶は、圧延加工時の応力によって{022}面への回転現象を起こし、圧延加工の進展とともに、圧延面に平行な結晶面の方位が主に{022}面である圧延集合組織を形成する。このとき、上述のように、圧縮応力と引張応力との比により、{022}面へと向かって回転する経路が変わる。これについて、図19を用いて説明する。
(1) About crystal rotation As described above, during the rolling process such as the final cold rolling process, the copper material is subjected to compressive stress and tensile stress weaker than the compressive stress. The copper crystal in the rolled copper material causes a rotation phenomenon to the {022} plane due to the stress during the rolling process, and with the progress of the rolling process, the orientation of the crystal plane parallel to the rolled plane is mainly the {022} plane. A rolling texture is formed. At this time, as described above, the path of rotation toward the {022} plane varies depending on the ratio of the compressive stress and the tensile stress. This will be described with reference to FIG.

図19は、下記の技術文献(イ)から引用した純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。なお、逆極点図では、{002}面を{001}面と表記し、{022}面を{011}面と表記することになっている。つまり、{002}面は、{002}面に平行な面の最小数値である{001}面で表わし、{022}面は、{022}面に平行な面の最小数値である{011}面で表わす。   FIG. 19 is a reverse pole figure of a pure copper type metal quoted from the following technical document (A), (a) is a reverse pole figure showing a crystal rotation direction by tensile deformation, and (b) is by compression deformation. It is a reverse pole figure which shows a crystal rotation direction. In the inverted pole figure, the {002} plane is expressed as {001} plane and the {022} plane is expressed as {011} plane. That is, the {002} plane is represented by the {001} plane which is the minimum value of the plane parallel to the {002} plane, and the {022} plane is the minimum value of the plane parallel to the {022} plane. Express in terms of faces.

(イ)編著者 長嶋晋一、“集合組織”、丸善株式会社、昭和59年1月20日、p96の図2.52(a),(c)   (B) Editor Shinichi Nagashima, “Aggregate Organization”, Maruzen Co., Ltd., January 20, 1984, p. 96, Figures 2.52 (a) and (c)

図19に示すように、銅材中の銅結晶は、引張応力による変形のみでは{111}面へと向かって回転し、圧縮応力による変形のみでは{011}面へと向かって回転する。圧延加工では、圧縮成分と引張成分とが合わさった変形をするため、結晶回転方向はこれほど単純ではない。ただし、引張成分より圧縮成分が優勢となって変形し、圧延加工がされるので、総じて{011}面へと向かう結晶回転を起こしつつ、圧縮成分と引張成分との割合によって{111}面へも一部回転しようとする。このとき、圧縮成分の方が優勢であるので、{111}面へと回転しかけた結晶が{011}面へと戻される結晶回転も起きる。また、これとは逆に、{011}面へと向かって回転している結晶や{011}面に到達した結晶が、引張成分によって{133}面や{111}面へ向かって回転する場合もある。   As shown in FIG. 19, the copper crystal in the copper material rotates toward the {111} plane only by deformation due to tensile stress, and rotates toward the {011} plane only by deformation due to compressive stress. In rolling, since the compression component and the tensile component are deformed, the crystal rotation direction is not so simple. However, since the compressive component prevails over the tensile component and deforms and is rolled, the crystal rotation toward the {011} plane generally takes place, and the {111} plane changes depending on the ratio of the compressive component and the tensile component. Also try to rotate partly. At this time, since the compression component is dominant, crystal rotation is also caused in which the crystal that has been rotated to the {111} plane returns to the {011} plane. On the contrary, when a crystal rotating toward the {011} plane or a crystal reaching the {011} plane rotates toward the {133} plane or the {111} plane due to the tensile component There is also.

このように、圧縮成分と引張成分とが、圧縮成分>引張成分の関係を保ちながら混在する中で結晶回転が起こると、最終的には主方位の結晶面は{011}面となり、また、圧縮成分と引張成分との混合による結晶回転の結果、副方位の結晶面は、{001}面、{113}面、{111}面、{133}面になると考えられる。   Thus, when crystal rotation occurs while the compression component and the tensile component are mixed while maintaining the relationship of compression component> tensile component, the crystal plane of the main orientation finally becomes the {011} plane, As a result of crystal rotation by mixing the compression component and the tensile component, the crystal planes in the sub-orientation are considered to be {001}, {113}, {111}, and {133} planes.

また、圧縮応力による結晶回転で経由する結晶面として、{013}面や{023}面等もある。図20に示す逆極点図の結晶方位は一般的なものであるが、図中に{013}面、{023}面およびこれらの結晶面との方位差が比較的小さい結晶面の領域を描き加えた。図20に示すように、圧縮応力による結晶回転では、{013}面や{023}面等を経由して{011}面({022}面)へと回転していく。圧延加工時の回転では、圧縮応力>引張応力の関係にあることから、{013}面や{023}面、或いはこれらの結晶面との方位差が比較的小さい結晶面からなる結晶群の領域を通る場合が多い。図20の逆極点図において、この領域付近の副方位が耐折り曲げ性に多大な影響を及ぼし得る。また、{022}面への回転途中、この領域で回転が止まってしまったこれら{013}面や{023}面等の結晶群の状態、つまり、これらの結晶群が集合組織を形成しているか否かも、上述の通り、耐折り曲げ性に影響を与える可能性があると推察される。   In addition, there are {013} planes, {023} planes, and the like as crystal planes that pass through crystal rotation due to compressive stress. Although the crystal orientation of the inverse pole figure shown in FIG. 20 is general, the {013} plane, the {023} plane, and a crystal plane region in which the orientation difference between these crystal planes is relatively small are drawn. added. As shown in FIG. 20, in the crystal rotation due to the compressive stress, the crystal rotates to the {011} plane ({022} plane) via the {013} plane, the {023} plane, and the like. In the rotation at the time of rolling, since there is a relationship of compressive stress> tensile stress, the {013} plane, the {023} plane, or a crystal group region composed of crystal planes having a relatively small orientation difference from these crystal planes Often passes. In the inverse pole figure of FIG. 20, the sub-orientation in the vicinity of this region can greatly affect the bending resistance. Further, during the rotation to the {022} plane, the state of crystal groups such as the {013} plane and {023} plane that have stopped rotating in this region, that is, these crystal groups form a texture. Whether or not there is a possibility of affecting the bending resistance as described above.

圧延加工では、上述のように、圧延される銅材に圧縮応力と、圧縮応力よりも弱い引張応力との両方が加わらなければ、銅材の形状を保ちながら圧延することはできない。つまり、圧縮応力のみでは、単なるプレス加工と同様、放射状に伸び広がった形状となってしまう。圧縮応力>引張応力という前提のもと、{022}面まで回転が到達しなかった方位の残存や、引張応力の影響により、{111}面へ向けて回転した結晶が副方位となる。このように、耐折り曲げ性を低下させる{111}面は引張応力によって形成された副方位であり、同じく耐折り曲げ性を低下させる{013}面や{023}面は、圧縮応力によって形成された副方位である。   In the rolling process, as described above, if both the compressive stress and the tensile stress weaker than the compressive stress are not applied to the rolled copper material, the copper material cannot be rolled while maintaining the shape of the copper material. That is, only compressive stress results in a shape that expands and spreads radially, as in mere pressing. Under the premise that compressive stress> tensile stress, the crystal that has rotated toward the {111} plane becomes the sub-azimuth due to the remaining orientation that did not reach the {022} plane and the influence of tensile stress. As described above, the {111} plane that lowers the bending resistance is a sub-orientation formed by tensile stress, and the {013} plane and the {023} plane that also lower the bending resistance are formed by compressive stress. It is a sub-azimuth.

よって、圧延銅箔の圧延面における{111}面や、{013}面、{023}面の占有率をなるべく抑えるには、圧縮応力と引張応力のバランスを適宜調整しながら圧延することが重要となる。   Therefore, in order to suppress the occupancy of the {111} plane, {013} plane, and {023} plane on the rolled surface of the rolled copper foil as much as possible, it is important to perform rolling while appropriately adjusting the balance between compression stress and tensile stress It becomes.

(2)最終冷間圧延工程における特性制御
圧縮成分と引張成分とは、上述の実施形態に係る最終冷間圧延工程S40でも行っている通り、例えば圧延加工時の1パスあたりの圧延条件を変化させることで制御することができる。つまり、上述の実施形態や実施例にて試みたように、例えば1パスあたりの加工度の変化に着目することができる。
(2) Characteristic control in the final cold rolling process The compression component and the tensile component change the rolling conditions per pass at the time of rolling, for example, as in the final cold rolling process S40 according to the above-described embodiment. Can be controlled. That is, as tried in the above-described embodiments and examples, attention can be paid to a change in the processing degree per pass, for example.

また、上述の実施形態や実施例においては、最終冷間圧延工程における1パスあたりの加工度と併せ、中立点の位置制御も行っている。つまり、圧縮成分と引張成分との制御パラメータの調整にあたっては、例えば中立点の位置変化に着目することも可能である。   Moreover, in the above-mentioned embodiment and Example, the position control of the neutral point is performed together with the degree of processing per pass in the final cold rolling process. That is, in adjusting the control parameters of the compression component and the tensile component, it is possible to pay attention to, for example, a change in the position of the neutral point.

上述の加工度や中立点の位置等の制御因子は圧延機の構成に関わるところであり、圧延機の仕様に依存するところが大きい。具体的には、圧延ロールの段数、圧延ロールの総数、圧延ロールの組み合わせ配置、各圧延ロールの径や材質や表面状態(表面粗さ)等の圧延ロールの構成などの違いにより、銅材への圧縮応力の加わり方や摩擦係数等に違いが生じる。圧延機が異なれば、上述の実施例で挙げた条件に係る各制御因子もその絶対値が異なるため、圧延機ごとに適宜調整することができる。また、同じ圧延機においても、圧延ロールの表面状態や圧延ロールの材質が異なれば、各制御因子の絶対値が異なる。よって、同じ圧延機であっても、それぞれの状態に応じて適宜調整することができる。   Control factors such as the above-described degree of processing and the position of the neutral point are related to the configuration of the rolling mill and largely depend on the specifications of the rolling mill. Specifically, depending on the difference in the number of rolling rolls, the total number of rolling rolls, the combined arrangement of the rolling rolls, the diameter and material of each rolling roll, the configuration of the rolling rolls such as the surface condition (surface roughness), etc. There is a difference in the way the compressive stress is applied and the friction coefficient. If the rolling mills are different, each control factor related to the conditions mentioned in the above embodiment also has different absolute values, and can be appropriately adjusted for each rolling mill. Further, even in the same rolling mill, the absolute value of each control factor is different if the surface state of the rolling roll and the material of the rolling roll are different. Therefore, even if it is the same rolling mill, it can adjust suitably according to each state.

上述の実施形態や実施例においては、圧延ロールの表面粗さによる制御も行っている。例えば、1パスあたりの加工度を一定とし、圧延ロールの表面粗さを変えると、圧延される銅材が受ける摩擦係数が変わって、中立点の位置が変わり圧延荷重も変わる。その結果、圧延加工における圧縮応力と引張応力とのバランスが変わり、銅結晶の回転方向や回転経路が変わる。   In the above-described embodiments and examples, control based on the surface roughness of the rolling roll is also performed. For example, if the degree of processing per pass is constant and the surface roughness of the rolling roll is changed, the friction coefficient applied to the rolled copper material changes, the position of the neutral point changes, and the rolling load also changes. As a result, the balance between the compressive stress and the tensile stress in the rolling process changes, and the rotation direction and the rotation path of the copper crystal change.

(3)圧延ロールの表面粗さによる特性制御
上述のように、本発明者等は、圧延銅箔の表面粗さを十点平均粗さRzjisおよび算術平均粗さRaで規定し、これらを所定値以下に抑えることで、圧延銅箔の耐折り曲げ性を向上させることができることを見いだした。
(3) Property control by surface roughness of rolling roll As described above, the present inventors define the surface roughness of the rolled copper foil by a ten-point average roughness Rzjis and an arithmetic average roughness Ra, which are predetermined. It has been found that the bending resistance of the rolled copper foil can be improved by keeping it below the value.

このように、圧延銅箔に優れた耐折り曲げ性を安定的に付与する表面粗さは、例えば次に挙げる因子により制御することができる。すなわち、主な因子には、圧延油の粘度η、圧延ロールの回転速度U、圧延時の銅材の速度U、噛み込み角α、平均圧延圧力p、圧延ロールの表面粗さ(算術平均粗さRa)等がある。これらの因子のうち、圧延ロールの算術平均粗さRa以外の諸因子は、油膜の厚みに対応する油膜当量tdとして、下記の技術文献(ロ)を参考とする次式(B)のように1つにまとめることができる。 Thus, the surface roughness that stably imparts excellent bending resistance to the rolled copper foil can be controlled by, for example, the following factors. That is, main factors include viscosity η of rolling oil, rotation speed U 0 of rolling roll, speed U 1 of copper material during rolling, biting angle α, average rolling pressure p, surface roughness of rolling roll (arithmetic) Average roughness Ra). Among these factors, factors other than the arithmetic average roughness Ra of the rolling rolls are as oil film equivalent td corresponding to the thickness of the oil film, as in the following formula (B) with reference to the following technical literature (b). Can be combined into one.

td={η(U+U)}/αp・・・(B) td = {η (U 0 + U 1 )} / αp (B)

(ロ)小豆島明、“圧延中の油膜厚み及びロールと材料の表面あらさについて”、日本機械学会論文集(第3部)、44巻377号、昭和53年1月、p332−339   (B) Akira Shodoshima, “About oil film thickness during rolling and surface roughness of rolls and materials”, Transactions of the Japan Society of Mechanical Engineers (Part 3), Vol. 44, 377, January 1978, p332-339

圧延ロールの算術平均粗さRa以外の諸因子により規定される油膜当量tdを一定に保つことができれば、これら諸因子の影響を軽減して、主に圧延ロールの算術平均粗さRaのみによって、圧延銅箔の表面粗さを種々に制御することができる。   If the oil film equivalent td defined by factors other than the arithmetic average roughness Ra of the rolling roll can be kept constant, the influence of these factors can be reduced, mainly by the arithmetic average roughness Ra of the rolling roll, The surface roughness of the rolled copper foil can be controlled in various ways.

ここで、上述の式(B)に係る圧延ロールの回転速度U、圧延時の銅材の速度U、平均圧延圧力pは、圧延条件での1パスあたりの加工度や中立点を制御する制御因子でもある。1パスあたりの加工度や中立点を制御するため、これらの制御因子を変化させた場合、油膜当量tdを一定に保つには、例えば以下の手法がある。つまり、例えば圧延油の粘度ηを3×10−3N/m・s〜5×10−3N/m・sの範囲で一定に制御すると、噛み込み角αが一定となる。よって、油膜当量tdを一定に制御することができる。 Here, the rotation speed U 0 of the rolling roll according to the above formula (B), the speed U 1 of the copper material during rolling, and the average rolling pressure p control the degree of processing and neutral point per pass under rolling conditions. It is also a controlling factor. In order to control the degree of processing and the neutral point per pass, when these control factors are changed, for example, the following method is used to keep the oil film equivalent td constant. For example, if it is controlled to a constant viscosity of the rolling oil η in the range of 3 × 10 -3 N / m 2 · s~5 × 10 -3 N / m 2 · s, the angular biting α is constant. Therefore, the oil film equivalent td can be controlled to be constant.

上述の実施形態に係る最終冷間圧延工程S40では、例えば油膜当量tdを適宜調整したうえで、圧延ロールの表面粗さを所定値とすることとしたので、所定の表面粗さを備える圧延銅箔を製造することができる。   In the final cold rolling step S40 according to the above-described embodiment, for example, the oil film equivalent td is appropriately adjusted, and the surface roughness of the rolling roll is set to a predetermined value, so that the rolled copper having the predetermined surface roughness is used. A foil can be produced.

なお、上述の実施形態や実施例において、圧延ロールの表面粗さを算術平均粗さRaにより規定したのは、以下の理由からである。   In the above-described embodiments and examples, the surface roughness of the rolling roll is defined by the arithmetic average roughness Ra for the following reason.

すなわち、圧延ロールは、最終冷間圧延工程S40で使用され、銅材の変形加工に係る重要な工具である。よって、圧延ロール全体の状態をできるだけ隈なく捉えることが重要となる。したがって、凹凸差を1点で捉える最大高さRzや各5点ずつで捉える十点平均粗さRzjis等ではなく、面または線で捉える算術平均粗さRaを用いることとした。これにより、圧延ロールの全体的な表面粗さを把握することができる。   That is, the rolling roll is an important tool used in the final cold rolling step S40 and related to the deformation processing of the copper material. Therefore, it is important to capture the state of the entire rolling roll as little as possible. Therefore, the arithmetic average roughness Ra captured by a surface or a line is used instead of the maximum height Rz that captures the unevenness difference at one point and the ten-point average roughness Rzjis captured at each of the five points. Thereby, the overall surface roughness of the rolling roll can be grasped.

なお、耐折り曲げ性を向上させる圧延銅箔の表面粗さは、他の制御因子を用いて制御してもよい。   In addition, you may control the surface roughness of the rolled copper foil which improves bending resistance using another control factor.

(4)その他の制御因子
また、上述の実施形態や実施例においては、最終冷間圧延工程における圧延ロールの表面粗さを含めた圧延条件により銅結晶の回転方向や回転経路を制御したが、他の工程においても同様の制御は可能である。
(4) Other control factors In the above-described embodiments and examples, the rotation direction and the rotation path of the copper crystal were controlled by the rolling conditions including the surface roughness of the rolling roll in the final cold rolling process. Similar control is possible in other processes.

例えば、最終冷間圧延工程の圧延条件を一定とし、最終冷間圧延工程直前までの製造工
程の条件を変更することで、最終冷間圧延工程にも影響が及び、最終冷間圧延工程における回転方向や回転経路を間接的に変化させることが可能と考えられる。但し、上述の実施形態や実施例のように、最終冷間圧延工程における圧延条件を変化させれば、回転方向や回転経路を直接的に制御することができ、制御性をいっそう高めることができる。
For example, by making the rolling conditions in the final cold rolling process constant and changing the manufacturing process conditions until just before the final cold rolling process, the final cold rolling process is also affected, and the rotation in the final cold rolling process It is considered possible to indirectly change the direction and the rotation path. However, if the rolling conditions in the final cold rolling process are changed as in the above-described embodiments and examples, the rotation direction and the rotation path can be directly controlled, and the controllability can be further enhanced. .

このように、最終冷間圧延工程後における圧延銅箔の結晶方位の状態は、特定の製造方法により限定されるものではない。圧延銅箔の結晶方位の状態は、種々の手法により制御することができ、その方法は幾通りも存在するからである。   Thus, the state of the crystal orientation of the rolled copper foil after the final cold rolling step is not limited by a specific manufacturing method. This is because the crystal orientation state of the rolled copper foil can be controlled by various methods, and there are various methods.

10 摺動屈曲試験装置
11 試料固定板
12 ネジ
13 振動伝達部
14 発振駆動体
20 スペーサ
50,51 試料片
DESCRIPTION OF SYMBOLS 10 Sliding bending test apparatus 11 Sample fixing plate 12 Screw 13 Vibration transmission part 14 Oscillation drive body 20 Spacer 50, 51 Sample piece

Claims (7)

主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、
前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、
前記主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、
{022}+I{002}≧75.0であり、
前記主表面を基準とするX線Pole−Figure法を用い、15°以上90°以下の範囲内の複数のあおり角度のそれぞれについて、前記主表面の面内回転角度を0°以上360°以下の範囲内で変化させて測定した{111}面の回折ピークの平均強度を求め、
前記あおり角度を横軸とし、回折ピーク強度を縦軸として、前記{111}面の回折ピークの平均強度をプロットしたグラフを作成したとき、
前記あおり角度が47°での前記{111}面の回折ピークの平均強度と前記あおり角度が53°での前記{111}面の回折ピークの平均強度とを結ぶ直線の縦軸切片を[A]とし、前記あおり角度が15°以上90°以下の範囲内での前記{111}面の回折ピークの平均強度の最大値を[B]としたとき、
[A]/[B]<1/4である
ことを特徴とする圧延銅箔。
A rolled copper foil comprising a main surface, after a final cold rolling step having a plurality of crystal planes parallel to the main surface, and before a recrystallization annealing step,
The plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane,
The diffraction peak intensity ratios of the crystal planes obtained by X-ray diffraction measurement using the 2θ / θ method with respect to the main surface and converted so that the total value becomes 100 are I {022} and I {002} , respectively . , I {113} , I {111} , and I {133} ,
I {022} + I {002} ≧ 75.0,
Using the X-ray Pole-Figure method with the main surface as a reference, the in-plane rotation angle of the main surface is 0 ° or more and 360 ° or less for each of a plurality of tilt angles within a range of 15 ° or more and 90 ° or less. Obtain the average intensity of diffraction peaks of {111} planes measured by varying within the range,
When creating a graph plotting the average intensity of diffraction peaks of the {111} plane with the tilt angle as the horizontal axis and the diffraction peak intensity as the vertical axis,
A vertical axis intercept of a straight line connecting the average intensity of the diffraction peak of the {111} plane at the tilt angle of 47 ° and the average intensity of the diffraction peak of the {111} plane at the tilt angle of 53 ° is [A When the maximum value of the average intensity of the diffraction peaks of the {111} plane in the range where the tilt angle is 15 ° or more and 90 ° or less is [B],
[A] / [B] <1/4, The rolled copper foil characterized by the above-mentioned.
前記{111}面の回折ピーク強度比が、
{111}≦10.0である
ことを特徴とする請求項1に記載の圧延銅箔。
The diffraction peak intensity ratio of the {111} plane is
The rolled copper foil according to claim 1, wherein I {111} ≦ 10.0.
前記主表面の表面粗さが、
十点平均粗さRzjis≦1.5μmであり、
算術平均粗さRa≦0.4μmである
ことを特徴とする請求項1又は2に記載の圧延銅箔。
The surface roughness of the main surface is
Ten-point average roughness Rzjis ≦ 1.5 μm,
Arithmetic mean roughness Ra ≦ 0.4 μm, The rolled copper foil according to claim 1 or 2.
無酸素銅、又はタフピッチ銅を主成分とする
ことを特徴とする請求項1〜3のいずれかに記載の圧延銅箔。
The rolled copper foil according to any one of claims 1 to 3, comprising oxygen-free copper or tough pitch copper as a main component.
銀、硼素、チタン、錫の少なくともいずれかが添加されている
ことを特徴とする請求項1〜4のいずれかに記載の圧延銅箔。
The rolled copper foil according to any one of claims 1 to 4, wherein at least one of silver, boron, titanium, and tin is added.
厚さが20μm以下である
ことを特徴とする請求項1〜5のいずれかに記載の圧延銅箔。
The rolled copper foil according to claim 1, wherein the thickness is 20 μm or less.
フレキシブルプリント配線板用である
ことを特徴とする請求項1〜6のいずれかに記載の圧延銅箔。
It is an object for flexible printed wiring boards, The rolled copper foil in any one of Claims 1-6 characterized by the above-mentioned.
JP2012158554A 2012-07-17 2012-07-17 Rolled copper foil Active JP5373941B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012158554A JP5373941B1 (en) 2012-07-17 2012-07-17 Rolled copper foil
KR1020120145035A KR102002355B1 (en) 2012-07-17 2012-12-13 Rolled copper foil
CN201310055208.9A CN103547067A (en) 2012-07-17 2013-02-21 Rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158554A JP5373941B1 (en) 2012-07-17 2012-07-17 Rolled copper foil

Publications (2)

Publication Number Publication Date
JP5373941B1 JP5373941B1 (en) 2013-12-18
JP2014019893A true JP2014019893A (en) 2014-02-03

Family

ID=49954944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158554A Active JP5373941B1 (en) 2012-07-17 2012-07-17 Rolled copper foil

Country Status (3)

Country Link
JP (1) JP5373941B1 (en)
KR (1) KR102002355B1 (en)
CN (1) CN103547067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204108A (en) * 2017-06-07 2018-12-27 株式会社Shカッパープロダクツ Oxygen-free copper plate and ceramic wiring board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133518A1 (en) * 2011-03-31 2012-10-04 新日鐵化学株式会社 Copper foil, copper-clad laminate, flexible circuit board, and manufacturing method for copper-clad laminate
CN104914121A (en) * 2015-06-12 2015-09-16 朱彦婷 Method and device for measuring orientation of engineered monocrystal
US20230114969A1 (en) * 2020-03-06 2023-04-13 Mitsubishi Materials Corporation Pure copper plate, copper/ceramic bonded body, and insulated circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106313A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2008106312A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil, and its production method
JP2010150578A (en) * 2008-12-24 2010-07-08 Hitachi Cable Ltd Rolled copper foil
JP2012062499A (en) * 2010-09-14 2012-03-29 Mitsubishi Materials Corp Copper or copper alloy rolled foil for electronic component, and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009383B2 (en) 1998-03-31 2000-02-14 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP3856616B2 (en) 2000-03-06 2006-12-13 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP2010121154A (en) * 2008-11-18 2010-06-03 Hitachi Cable Ltd Method for producing rolled copper foil and rolled copper foil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106313A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2008106312A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil, and its production method
JP2010150578A (en) * 2008-12-24 2010-07-08 Hitachi Cable Ltd Rolled copper foil
JP2012062499A (en) * 2010-09-14 2012-03-29 Mitsubishi Materials Corp Copper or copper alloy rolled foil for electronic component, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204108A (en) * 2017-06-07 2018-12-27 株式会社Shカッパープロダクツ Oxygen-free copper plate and ceramic wiring board
JP7094151B2 (en) 2017-06-07 2022-07-01 株式会社Shカッパープロダクツ Oxygen-free copper plate and ceramic wiring board

Also Published As

Publication number Publication date
CN103547067A (en) 2014-01-29
JP5373941B1 (en) 2013-12-18
KR20140010858A (en) 2014-01-27
KR102002355B1 (en) 2019-07-22

Similar Documents

Publication Publication Date Title
JP4285526B2 (en) Rolled copper foil and method for producing the same
JP4215093B2 (en) Rolled copper foil and method for producing the same
JP5373941B1 (en) Rolled copper foil
JP2009111203A (en) Rolled copper foil, and flexible printed wiring board
JP5373940B1 (en) Rolled copper foil
JP2010150598A (en) Rolled copper foil
JP5126435B1 (en) Rolled copper foil
JP5126434B1 (en) Rolled copper foil
JP2012062499A (en) Copper or copper alloy rolled foil for electronic component, and method for producing the same
JP5390852B2 (en) Rolled copper foil
JP5201432B1 (en) Rolled copper foil
JP5126436B1 (en) Rolled copper foil
JP5201431B1 (en) Rolled copper foil
JP5273236B2 (en) Rolled copper foil
JP2014098179A (en) Copper plating layer-fitted rolled copper foil
JP5246526B1 (en) Rolled copper foil
JP2014139335A (en) Copper plating layer-clad rolled copper foil

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250