JP2014015674A - Rolled copper foil and copper-clad laminate - Google Patents

Rolled copper foil and copper-clad laminate Download PDF

Info

Publication number
JP2014015674A
JP2014015674A JP2013003772A JP2013003772A JP2014015674A JP 2014015674 A JP2014015674 A JP 2014015674A JP 2013003772 A JP2013003772 A JP 2013003772A JP 2013003772 A JP2013003772 A JP 2013003772A JP 2014015674 A JP2014015674 A JP 2014015674A
Authority
JP
Japan
Prior art keywords
copper foil
rolled copper
thickness
rolled
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013003772A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ito
保之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2013003772A priority Critical patent/JP2014015674A/en
Publication of JP2014015674A publication Critical patent/JP2014015674A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide rolled copper foil having improved bent part deposition resistance, and a copper-clad laminate using the same.SOLUTION: The copper foil uses oxygen free copper comprising 30 to 100 ppm Sn as a base material, the area ratio of the (200) face in the main surface after heat treatment at 300°C for 5 min is 0.65 or higher, and the copper foil has a thickness t of 5 to 50 μm.

Description

本発明は、基材の片面に圧延銅箔を貼り合わせた銅張積層板に係り、特に、基材の貼り合わせに用いる銅箔の耐折り曲げ性を改善した圧延銅箔、及び、これを用いた銅張積層板に関するものである。   The present invention relates to a copper clad laminate in which a rolled copper foil is bonded to one side of a substrate, and in particular, a rolled copper foil with improved bending resistance of a copper foil used for bonding a substrate, and the use thereof The present invention relates to a copper-clad laminate.

例えばプリント配線板(FPC:Flexible Printed Circuit)は、一般に銅箔と合成樹脂等の基材とを加熱圧着して貼り合わせ、もしくは合成樹脂等のワニスを銅箔側へ塗布、乾燥させることにより、銅張積層板を形成し、その後、目的とする回路を形成するためにフォトレジストによる回路を印刷した後、不要の銅部をエッチングにより除去して回路を形成することにより製造される。   For example, a printed wiring board (FPC: Flexible Printed Circuit) is generally obtained by bonding a copper foil and a base material such as a synthetic resin by thermocompression bonding, or by applying a varnish such as a synthetic resin to the copper foil side and drying. A copper-clad laminate is formed, and then a circuit using a photoresist is printed to form a target circuit, and then unnecessary copper portions are removed by etching to form a circuit.

プリント配線板に用いられる銅箔は、大きく分類して圧延銅箔と電解銅箔がある。特に圧延銅箔は、電解銅箔よりも優れた屈曲特性を示し、これまで携帯電話のヒンジ部やスライド部といった可動部の配線材料として一般的に使われてきた。   Copper foils used for printed wiring boards are roughly classified into rolled copper foils and electrolytic copper foils. In particular, rolled copper foil exhibits bending characteristics superior to electrolytic copper foil, and has been generally used as a wiring material for movable parts such as hinge parts and slide parts of mobile phones.

近年ではヒンジ部やスライド部を持たない、スレート型のスマートフォンと呼ばれる携帯電話が広く浸透してきているが、小型化、省スペース化のためにプリント配線板を折り曲げて実装されることが増えてきた。これは、これまでのスライド部などでの、いわゆる摺動屈曲と呼ばれる、曲げ半径の比較的大きい(曲げ半径0.5〜2mm)一般的な銅箔の弾性変形域での繰り返し曲げとは異なり、曲げ半径が小さく(曲げ半径0.5mm以下)、銅箔の塑性変形域での1回または数回の曲げ変形となる。   In recent years, mobile phones called slate-type smartphones that do not have hinges or slides have become widespread, but printed wiring boards have been increasingly bent and mounted to reduce size and space. . This is different from the conventional repeated bending in the elastic deformation region of copper foil having a relatively large bending radius (bending radius of 0.5 to 2 mm), which is so-called sliding bending, in the conventional slide portion. The bending radius is small (the bending radius is 0.5 mm or less), and the bending deformation is performed once or several times in the plastic deformation region of the copper foil.

このように、部材に折り返し等の曲げ部(ハゼ)を設ける場合の曲げ変形は、一般的にハゼ折変形と呼ばれる。塑性変形域での変形であるので、これまでの摺動屈曲特性に関する知見とは大きく異なる。プリント配線板の実装については1回のハゼ折で十分であるが、実際には実装時のハンドリングや実装位置の修正による数度のハゼ折が加わる場合があり、また、信頼性の面からも数回のハゼ折に耐える銅箔が要求されるようになってきた。   As described above, the bending deformation in the case where a bent portion (haze) such as a folded portion is provided on the member is generally referred to as goby folding deformation. Since it is a deformation in the plastic deformation region, it is greatly different from the knowledge about the sliding bending characteristics so far. For mounting a printed wiring board, one goby folding is sufficient, but in reality, several goby folding may be added due to handling during mounting or correction of the mounting position, and also from the viewpoint of reliability. Copper foil that can withstand several goby folds has been required.

耐ハゼ折特性を改善するための試みは、例えば特許文献1では、柱状の銅結晶粒子を含み、25℃における伸び率を5%以上とすることで電解銅箔が破断し難いプリント配線板が得られることが報告されている。   For example, Patent Document 1 discloses a printed wiring board that includes columnar copper crystal particles and has an elongation rate at 25 ° C. of 5% or more, which makes it difficult for the electrolytic copper foil to break. It has been reported that it can be obtained.

また、特許文献2では350℃で、0.5時間焼鈍後の加工硬化指数を0.3以上0.45以下とすることで圧延銅箔の耐ハゼ折特性を改善できることが報告されている。   Moreover, in patent document 2, it is reported that the goblet folding-proof characteristic of a rolled copper foil can be improved by making the work hardening index | exponent after 0.3 hour annealing at 350 degreeC into 0.3 or more and 0.45 or less.

特開2007−335541号公報JP 2007-335541 A 特開2011−136357号公報JP 2011-136357 A

しかし、現在広く使われている銅箔について本発明者らが調査したところ、特に電解銅箔は厚み18μmでも1回または2回、厚み12μmでは1回のハゼ折で銅箔の破断が観察された。   However, the present inventors have investigated copper foils that are widely used at present, and in particular, electrolytic copper foils have been observed to break once or twice even with a thickness of 18 μm, and with one goat fold at a thickness of 12 μm. It was.

圧延銅箔では、厚み18μmで4回、厚み12μmで2回または3回で同様に圧延銅箔の破断が観察された。これは耐ハゼ折特性に関して、電解銅箔に対して圧延銅箔が優位であることを示している。したがって、電解銅箔についての特許文献1では、十分な耐ハゼ折特性は得られないと考えられる。   In the rolled copper foil, breakage of the rolled copper foil was observed similarly at a thickness of 18 μm four times and at a thickness of 12 μm two times or three times. This indicates that the rolled copper foil is superior to the electrolytic copper foil with respect to the cross-fold resistance. Therefore, in patent document 1 about an electrolytic copper foil, it is thought that sufficient goblet folding resistance cannot be obtained.

しかし、伸び率が電解銅箔よりも大きい圧延銅箔においても耐ハゼ折特性は十分ではない。今後、銅箔がますます薄肉化の傾向にあることを考えると、圧延銅箔の厚み12μmでの結果は、十分に満足できるものではない。   However, even with a rolled copper foil having an elongation percentage larger than that of the electrolytic copper foil, the goblet folding resistance is not sufficient. Considering that the copper foil tends to be thinner in the future, the result of the rolled copper foil with a thickness of 12 μm is not fully satisfactory.

耐ハゼ折特性は銅箔の厚みによっても異なり、銅箔厚みが厚いほうが耐ハゼ折特性が良好であることが本発明者らの検討により明らかになっているが、特許文献2においては樹脂層との合計厚みが50μm以下と記載されているだけであり、銅箔厚みが明確ではない。すなわち、現在フレキシブルプリント配線板において多く使われている銅箔厚み18μmや12μmの銅箔では、要求される耐ハゼ折特性を得られない可能性がある。   The anti-seize fold characteristics differ depending on the thickness of the copper foil, and it has been clarified by the present inventors that a thicker copper foil has better anti-sag fold characteristics. And the total thickness is 50 μm or less, and the copper foil thickness is not clear. That is, there is a possibility that the required anti-sag fold characteristics cannot be obtained with a copper foil having a thickness of 18 μm or 12 μm, which is currently widely used in flexible printed wiring boards.

このように、従来の圧延銅箔を用い、厚みを18μmとした場合のハゼ折り回数は4回、厚みを12μmとした場合には、2回又は3回が限界であり、耐折り曲げ性を、さらに向上させることは困難であった。   Thus, when using a conventional rolled copper foil, the number of goby folds when the thickness is 18 μm is 4 times, and when the thickness is 12 μm, the limit is 2 or 3 times. Further improvement has been difficult.

そこで、本発明の目的は、十分な耐折り曲げ性、特に、耐ハゼ折特性を向上させた圧延銅箔、及び、これを用いた銅張積層板を提供することにある。   Accordingly, an object of the present invention is to provide a rolled copper foil having improved sufficient bending resistance, in particular, goby folding resistance, and a copper-clad laminate using the rolled copper foil.

本発明の第1の態様によれば、
30ppm以上100ppm以下のSnを含有する無酸素銅を母材とし、
300℃で5分間の熱処理後の主表面における(200)面の面積率が0.65以上であり、
5μm以上50μm以下の厚みtを有する
圧延銅箔が提供される。
According to a first aspect of the invention,
The base material is oxygen-free copper containing 30 ppm or more and 100 ppm or less of Sn,
The area ratio of the (200) plane on the main surface after heat treatment at 300 ° C. for 5 minutes is 0.65 or more,
A rolled copper foil having a thickness t of 5 μm or more and 50 μm or less is provided.

本発明の第2の態様によれば、
前記主表面またはその裏面の少なくともいずれかの最大谷深さRvが1.5μm以下である
第1の態様に記載の圧延銅箔が提供される。
According to a second aspect of the invention,
The rolled copper foil as described in the 1st aspect whose maximum valley depth Rv of at least any one of the said main surface or its back surface is 1.5 micrometers or less is provided.

本発明の第3の態様によれば、
300℃で5分間の熱処理後で、かつ、ポリイミドフィルムの少なくとも山側となる面に貼り合わされ折り曲げられた状態で、曲げ部に荷重3kgを加えるハゼ折試験にて、
前記曲げ部の山側での破断までの曲げ回数Xが、前記曲げ部の山側での曲げ半径Bpと、材質固有の定数Cとによる関係式、
X=65Bp−C
で表わされ、前記定数Cが6以下となる
第2の態様に記載の圧延銅箔が提供される。
According to a third aspect of the invention,
After the heat treatment at 300 ° C. for 5 minutes, and in a state of being bonded and bent on at least the surface of the polyimide film, in a goby folding test in which a load of 3 kg is applied to the bent portion,
The number of times X of bending until breakage on the peak side of the bent part is a relational expression by a bending radius Bp on the peak side of the bent part and a constant C specific to the material,
X = 65Bp-C
The rolled copper foil as described in the 2nd aspect with which the said constant C will be 6 or less is provided.

本発明の第4の態様によれば、
300℃で5分間の熱処理後で、かつ、厚み25μmのポリイミドフィルムの両面に貼り合わされ折り曲げられた状態で、谷側での曲げ半径が0.125mmの曲げ部に荷重3kgを加えるハゼ折試験にて、
前記曲げ部の山側での破断までの曲げ回数Xが、前記厚みtによる関係式、
X−1=At
で表わされ、傾きAが0.17以上となる
第1〜第3の態様のいずれかに記載の圧延銅箔が提供される。
According to a fourth aspect of the invention,
In a goby folding test in which a load of 3 kg is applied to a bent portion having a bend radius of 0.125 mm on the valley side after being heat-treated at 300 ° C. for 5 minutes and bonded to both sides of a 25 μm-thick polyimide film and bent. And
The number of times of bending X until the break on the mountain side of the bent portion is a relational expression according to the thickness t,
X-1 = At
The rolled copper foil in any one of the 1st-3rd aspect with which inclination A is 0.17 or more is provided.

本発明の第5の態様によれば、
前記厚みtが12μmであるときに、前記破断までの曲げ回数Xが4回以上となる
第3又は第4の態様に記載の圧延銅箔が提供される。
According to a fifth aspect of the present invention,
When the thickness t is 12 μm, the rolled copper foil according to the third or fourth aspect is provided in which the number of times X of bending until the break is 4 or more.

本発明の第6の態様によれば、
前記厚みtが18μmであるときに、前記破断までの曲げ回数Xが6回以上となる
第3〜第5の態様のいずれかに記載の圧延銅箔が提供される。
According to a sixth aspect of the present invention,
When the thickness t is 18 μm, there is provided the rolled copper foil according to any one of the third to fifth aspects in which the number of times of bending X until the break is 6 or more.

本発明の第7の態様によれば、
最終焼鈍工程からの加工度が93%以上である
第1〜第6の態様のいずれかに記載の圧延銅箔が提供される。
According to a seventh aspect of the present invention,
The rolled copper foil in any one of the 1st-6th aspect whose workability from the last annealing process is 93% or more is provided.

本発明の第8の態様によれば、
前記主表面またはその裏面の少なくともいずれかに銅めっき層が形成され、
前記銅めっき層が形成された前記主表面またはその裏面の最大谷深さRvが1.5μm以下である
第1〜第7の態様のいずれかに記載の圧延銅箔が提供される。
According to an eighth aspect of the present invention,
A copper plating layer is formed on at least one of the main surface or the back surface thereof,
The rolled copper foil in any one of the 1st-7th aspect whose maximum valley depth Rv of the said main surface in which the said copper plating layer was formed, or its back surface is 1.5 micrometers or less is provided.

本発明の第9の態様によれば、
第1〜第8の態様のいずれかに記載の圧延銅箔を、基材となる樹脂層の少なくとも片面に積層してなり、
前記圧延銅箔が、焼鈍条件下での熱処理を経ている
銅張積層板が提供される。
According to a ninth aspect of the present invention,
The rolled copper foil according to any one of the first to eighth aspects is laminated on at least one side of the resin layer to be a base material,
There is provided a copper clad laminate in which the rolled copper foil is subjected to a heat treatment under annealing conditions.

本発明は、十分な耐折り曲げ性を有する圧延銅箔、及び、これを用いた銅張積層板を提供することが出来るという優れた効果を発揮する。   The present invention exhibits an excellent effect that a rolled copper foil having sufficient bending resistance and a copper-clad laminate using the rolled copper foil can be provided.

従来の圧延銅箔と電解銅箔の銅箔厚みと破断までの曲げ回数の関係を示す図である。It is a figure which shows the relationship between the copper foil thickness of the conventional rolled copper foil and electrolytic copper foil, and the frequency | count of bending until a fracture | rupture. 実施例1〜9及び比較例1〜12に係る(200)面の面積率と破断までの曲げ回数との関係を示す図である。It is a figure which shows the relationship between the area ratio of the (200) plane which concerns on Examples 1-9 and Comparative Examples 1-12, and the frequency | count of bending until a fracture | rupture. 実施例10〜15及び比較例13〜17に係る最大谷深さRvと破断までの曲げ回数との関係を示す図である。It is a figure which shows the relationship between the maximum valley depth Rv which concerns on Examples 10-15 and Comparative Examples 13-17, and the frequency | count of bending until a fracture | rupture. 実施例16〜21及び比較例18〜21に係る最大谷深さRv/(200)面の面積率と定数Cとの関係を示す図である。It is a figure which shows the relationship between the area ratio of the maximum valley depth Rv / (200) surface and the constant C which concern on Examples 16-21 and Comparative Examples 18-21. 実施例及び比較例に係るハゼ折試験を説明する図である。It is a figure explaining the goby folding test concerning an example and a comparative example. 本発明の一実施形態および参考例に係る圧延銅箔に対するハゼ折試験における山側の曲げ半径Bpと破断までの曲げ回数との関係を示す図である。It is a figure which shows the relationship between the bending radius Bp of the peak side in the goby folding test with respect to the rolled copper foil which concerns on one Embodiment and reference example of this invention, and the frequency | count of bending until a fracture | rupture.

<本発明者等が得た知見>
以下に、銅箔とハゼ折り回数について説明する。
<Knowledge obtained by the present inventors>
Below, copper foil and the number of goby folds will be described.

ハゼ折変形によって銅箔が破断するまでの繰り返し曲げ回数は、銅箔の材質および厚みによって異なる。   The number of times the copper foil is repeatedly bent until the copper foil breaks due to the goby bending deformation depends on the material and thickness of the copper foil.

図1は、圧延銅箔と電解銅箔のハゼ折試験時に銅箔が破断するまでの回数と銅箔厚みの関係について示したものである。   FIG. 1 shows the relationship between the number of times the copper foil breaks and the thickness of the copper foil during the goby folding test of the rolled copper foil and the electrolytic copper foil.

このハゼ折試験は、厚み25μmのポリイミドフィルムの両面に銅箔を貼り合わせた両面フレキシブル基板(2L FCCL:2 Layer Flexible Copper Clad Laminate、つまり、両面フレキシブル銅張積層板のことを指す)に対し、曲げ部に荷重3kgを載せて破断に至る回数を測定するものである。   This goby folding test is performed on a double-sided flexible substrate (2L FCCL: 2 Layer Flexible Copper Clad Laminate, that is, a double-sided flexible copper-clad laminate), on both sides of a polyimide film having a thickness of 25 μm. A load of 3 kg is placed on the bent portion and the number of times to break is measured.

これによると、電解銅箔では、18μmで1回又は2回で破断し、圧延銅箔は電解銅箔より、耐ハゼ折特性がよく、18μmで4回、12μmで、2回又は3回であり、これが限界となる。したがって、破断するまでの曲げ回数を4回以上を得ようとする場合、圧延銅箔においては、銅箔厚み18μm以上が必要であることがわかる。   According to this, with electrolytic copper foil, it breaks once or twice at 18 μm, and rolled copper foil has better anti-slipping properties than electrolytic copper foil, 4 times at 18 μm, 2 times or 3 times at 12 μm. Yes, this is the limit. Therefore, when it is going to obtain 4 times or more of bending times until it breaks, it is understood that the rolled copper foil requires a copper foil thickness of 18 μm or more.

銅箔厚み(t)と破断までの曲げ回数(X)の間には、図1から以下の関係が成り立つ。
X−1=At
ここで、X:破断までの曲げ回数(回)、A:グラフの傾き(素材により決まる定数)、t:銅箔厚み(μm)である。
The following relationship is established from FIG. 1 between the copper foil thickness (t) and the number of bending times (X) until breakage.
X-1 = At
Here, X is the number of times of bending until breakage (times), A is the slope of the graph (a constant determined by the material), and t is the copper foil thickness (μm).

図1における圧延銅箔は、図から傾きA=0.15であり、傾きAを大きくすれば破断までの曲げ回数を多くできる。例えば、銅箔厚み12μmにおいても破断までの曲げ回数4回を得ようとする場合、傾きA=0.17以上の素材を用いる必要がある。また、傾きA=0.27の素材では、銅箔厚み18μmでは曲げ回数は6回以上となる。   The rolled copper foil in FIG. 1 has a slope A = 0.15 from the figure, and if the slope A is increased, the number of times of bending until breakage can be increased. For example, even when the thickness of the copper foil is 12 μm, it is necessary to use a material having an inclination A = 0.17 or more in order to obtain four times of bending until breakage. In the case of a material having an inclination A = 0.27, the number of bendings is 6 times or more at a copper foil thickness of 18 μm.

このような圧延銅箔を得るために、本発明者らは圧延銅箔の結晶配向に着目した。そして、圧延銅箔の圧延面に占める所定方位の結晶の面積率が高まると、同じ厚さでも破断までの曲げ回数を多くできることを見いだした。   In order to obtain such a rolled copper foil, the present inventors paid attention to the crystal orientation of the rolled copper foil. And when the area ratio of the crystal | crystallization of the predetermined orientation which occupies for the rolling surface of rolled copper foil increases, it discovered that the frequency | count of bending until a fracture | rupture could be increased even if it is the same thickness.

また、これと併せて、本発明者等は、耐ハゼ折特性の高い圧延銅箔を得るべく、さらに鋭意研究を行った。その結果、耐ハゼ折特性には結晶配向のみならず、圧延銅箔の表面の凹凸の状態が大きく影響していることを見いだした。   At the same time, the present inventors conducted further intensive studies to obtain a rolled copper foil having high goblet folding resistance. As a result, it was found that not only the crystal orientation but also the unevenness of the surface of the rolled copper foil had a great influence on the goblet folding resistance.

本発明は、発明者等が見いだしたこれらの知見に基づくものである。   The present invention is based on these findings found by the inventors.

<本発明の一実施形態>
以下、本発明の好適な一実施の形態を詳述する。
<One Embodiment of the Present Invention>
Hereinafter, a preferred embodiment of the present invention will be described in detail.

(1)圧延銅箔の構成
本実施形態に係る圧延銅箔は、例えば30ppm以上100ppm以下のスズ(Sn)を含有する無酸素銅(OFC:Oxygen−Free Copper)またはタフピッチ銅(TPC:Tough Pitch Copper)を母材とする。圧延銅箔の厚みtは、例えば5μm以上50μm以下となっている。
(1) Configuration of Rolled Copper Foil The rolled copper foil according to the present embodiment is, for example, oxygen-free copper (OFC) or tough pitch copper (TPC) containing 30 ppm to 100 ppm of tin (Sn). Copper) is used as a base material. The thickness t of the rolled copper foil is, for example, 5 μm or more and 50 μm or less.

また、本実施形態に係る圧延銅箔は、少なくとも300℃で5分間の熱処理後、主表面としての圧延面における(200)面の面積率(以降、(200)面積率ともいう)が0.65以上となるよう構成されている。係る熱処理は、例えばフレキシブルプリント配線板の製造工程で圧延銅箔に加えられる焼鈍等である。   Moreover, the rolled copper foil which concerns on this embodiment has an area ratio (henceforth (200) area ratio) of (200) plane in the rolling surface as a main surface after heat processing for 5 minutes at least 300 degreeC. It is comprised so that it may be 65 or more. Such heat treatment is, for example, annealing applied to the rolled copper foil in the manufacturing process of the flexible printed wiring board.

また、本実施形態に係る圧延銅箔は、圧延面またはその裏面の少なくともいずれかの最大谷深さRvが1.5μm以下であることが好ましい。このとき、圧延銅箔の圧延面またはその裏面の少なくともいずれかには銅めっき層が形成されていてもよく、少なくとも銅めっき層が形成された圧延面またはその裏面の最大谷深さRvが1.5μm以下であればよい。   In the rolled copper foil according to the present embodiment, it is preferable that the maximum valley depth Rv of at least one of the rolled surface and the back surface thereof is 1.5 μm or less. At this time, a copper plating layer may be formed on at least one of the rolled surface of the rolled copper foil or its back surface, and the maximum valley depth Rv of the rolled surface or its back surface on which at least the copper plating layer is formed is 1. It may be less than 5 μm.

また、例えばフレキシブルプリント配線板等の用途に用いられる圧延銅箔は、表面に粗化処理等が施され、ポリイミドフィルム等の基材となる樹脂層との密着性の向上を図る場合がある。本実施形態に係る圧延銅箔においても、圧延面またはその裏面の少なくともいずれかに粗化処理が施されていてもよい。但し、この場合において、上述の最大谷深さRvは、粗化処理による表面粗さを除外した値、つまり、粗化処理前の値である。   In addition, for example, a rolled copper foil used for applications such as a flexible printed wiring board is subjected to a roughening treatment on the surface, and may improve the adhesion with a resin layer serving as a base material such as a polyimide film. Also in the rolled copper foil which concerns on this embodiment, the roughening process may be given to at least any one of the rolling surface or its back surface. However, in this case, the above-mentioned maximum valley depth Rv is a value excluding the surface roughness due to the roughening treatment, that is, a value before the roughening treatment.

((200)面の面積率)
上述のように、本発明者等は、圧延銅箔の結晶配向に着目して研究を進めた結果、(200)面積率が高い圧延銅箔ほど破断までの曲げ回数が多くなることを見いだした。
((200) surface area ratio)
As described above, as a result of researches focusing on the crystal orientation of the rolled copper foil, the present inventors have found that a rolled copper foil having a higher (200) area ratio has a higher number of bends until breakage. .

ここで、(200)面積率とは、SEM−EBSP(Scaning Electron Microscope−Electron BackScattering Pattern)をもちいて圧延銅箔の表面(圧延面)の結晶配向を測定し、測定領域において(200)面配向を持つ結晶粒が占める面積率を示す。   Here, the (200) area ratio means that the crystal orientation of the surface (rolled surface) of the rolled copper foil is measured using SEM-EBSP (Scanning Electron Microscope-Electron Backscattering Pattern), and the (200) plane orientation is measured in the measurement region. Indicates the area ratio occupied by crystal grains having

圧延銅箔は、焼鈍で軟質化状態となり、破断までの曲げ回数は、銅の結晶集合組織である立方体方位が発達して屈曲特性が向上し、圧延面に占める(200)面積率が、0.4以上となると、同じ厚さでも破断までの曲げ回数を多くできる。   The rolled copper foil is annealed and softened, and the number of bendings until breakage is such that the cubic orientation, which is the crystal texture of copper, develops and the bending characteristics are improved, and the (200) area ratio in the rolled surface is 0. When it is 4 or more, the number of times of bending until breakage can be increased even with the same thickness.

ここで、銅箔厚み18μmにおいて曲げ回数6回以上を得るためには、(200)面積率は0.65以上が必要になる。また銅箔厚み12μmで4回以上でも(200)面積率は0.65以上が必要になる。   Here, in order to obtain the number of bendings of 6 times or more at a copper foil thickness of 18 μm, the (200) area ratio needs to be 0.65 or more. Moreover, even if it is 4 times or more with a copper foil thickness of 12 μm, the (200) area ratio needs to be 0.65 or more.

これを、例えば上述のハゼ折試験の結果を示す図1から導き出される次式(1)、
X−1=At・・・(1)
における傾きAで表わすと、例えば傾きA=0.25以上となる。
This is, for example, the following expression (1) derived from FIG.
X-1 = At (1)
For example, the inclination A = 0.25 or more.

ここで上述のとおり、ハゼ折試験は、厚み25μmのポリイミドフィルムの両面に同じ厚みt(μm)を有する圧延銅箔を貼り合わせた両面フレキシブル基板(2L FCCL)に対して行う。このとき、谷側(折り曲げた内側)での曲げ半径が0.125mmの曲げ部に荷重3kgを加え、曲げ部の山側(折り曲げた外側)での破断、つまり、山側に配置される圧延銅箔の破断までの曲げ回数X(回)を測定する。このとき、式(1)により与えられるグラフの傾きAは圧延銅箔の結晶配向等の素材により決まり、この傾きAの値から所定の素材の破断までの回数(ハゼ折り回数)を予測することができる。   Here, as described above, the goby folding test is performed on a double-sided flexible substrate (2L FCCL) in which a rolled copper foil having the same thickness t (μm) is bonded to both sides of a 25 μm-thick polyimide film. At this time, a load of 3 kg was applied to a bent portion having a bend radius of 0.125 mm on the valley side (bent inner side), and the rupture on the mountain side (bent outer side) of the bent portion, that is, the rolled copper foil disposed on the mountain side The number of bending times X (times) until rupture is measured. At this time, the slope A of the graph given by Equation (1) is determined by the material such as the crystal orientation of the rolled copper foil, and the number of times until the predetermined material breaks (the number of goby folds) is predicted from the value of the slope A. Can do.

つまり、例えば、圧延銅箔の厚み12μmにおいて破断までの曲げ回数4回を得ようとする場合、傾きA=0.17が必要となる。また、圧延銅箔の厚み18μmにおいて破断までの曲げ回数6回を得ようとする場合、傾きA=0.27が必要となる。本実施形態の圧延銅箔は傾きA=0.25であり、厚み18μmでの曲げ回数6回を略満たし、厚み12μmでの曲げ回数4回をより確実に満たす。   That is, for example, when it is attempted to obtain four times of bending up to breakage when the rolled copper foil has a thickness of 12 μm, an inclination A = 0.17 is required. Moreover, when it is going to obtain the bending frequency | count of 6 times until a fracture | rupture in thickness 18micrometer of rolled copper foil, inclination A = 0.27 is needed. The rolled copper foil of this embodiment has an inclination A = 0.25, substantially satisfies the number of times of bending 6 times at a thickness of 18 μm, and more reliably satisfies the number of times of bending 4 times at a thickness of 12 μm.

なお、無酸素銅またはタフピッチ銅のみの場合には、導電率はよいが軟化温度が200℃と低く、Snを添加することで軟化温度が250℃となり、適度な電導率で耐熱性も向上できる。   In the case of only oxygen-free copper or tough pitch copper, the electrical conductivity is good, but the softening temperature is as low as 200 ° C., and by adding Sn, the softening temperature becomes 250 ° C., and the heat resistance can be improved with an appropriate electrical conductivity. .

(最大谷深さRv)
また、上述のように、本発明者等は、圧延銅箔の表面の性状に着目して研究を進めた結果、表面の凹凸が少ない圧延銅箔ほど破断までの曲げ回数が多くなることを見いだした。
(Maximum valley depth Rv)
In addition, as described above, the inventors of the present invention have conducted research focusing on the properties of the surface of the rolled copper foil, and as a result, found that a rolled copper foil with fewer surface irregularities has a higher number of bendings until breakage. It was.

例えば、後述の最終冷間圧延工程後の圧延銅箔の圧延面には、しばしばオイルピットと呼ばれる凹部が認められることがある。係るオイルピットは、圧延時の圧延油の噛み込み等により発生し、例えば上述の粗化処理による凹凸とは異なるものである。   For example, a concave portion called an oil pit is often recognized on the rolled surface of the rolled copper foil after the final cold rolling step described later. Such oil pits are generated by biting of rolling oil at the time of rolling, and are different from the unevenness caused by, for example, the roughening treatment described above.

すなわち、例えば粗化処理後の圧延銅箔の表面を観察すると、オイルピットとは別に、粗化処理による凹凸が圧延銅箔の表面に存在していることがわかる。また、粗化処理による凹凸は、ポリイミドフィルム等の基材側に食い込み、密着力の向上に寄与していることがみてとれる。一方で、オイルピットは基材との密着性には寄与しない。耐ハゼ折特性に影響を及ぼすのは、粗化処理による凹凸ではなく、オイルピットのような凹部の深さである。   That is, for example, when the surface of the rolled copper foil after the roughening treatment is observed, it can be seen that irregularities due to the roughening treatment exist on the surface of the rolled copper foil, separately from the oil pits. In addition, it can be seen that the unevenness due to the roughening treatment bites into the base material side such as a polyimide film and contributes to the improvement of the adhesion. On the other hand, the oil pit does not contribute to the adhesion with the base material. It is not the unevenness caused by the roughening treatment, but the depth of the recesses such as oil pits that affect the anti-sag folding characteristics.

本発明者等によれば、このようなオイルピットをはじめ、圧延銅箔の圧延面やその裏面に凹部が存在すると、ハゼ折試験等ではこれが起点となって圧延銅箔にクラックが発生し、破断してしまう。このとき、凹部が存在するのが基材と接する側か否かにはよらず破断の可能性が高まる。   According to the present inventors, including such oil pits, when there are recesses on the rolled surface of the rolled copper foil or on the back surface thereof, cracks occur in the rolled copper foil as a starting point in the goby folding test, etc. It breaks. At this time, the possibility of breakage increases regardless of whether or not the concave portion exists on the side in contact with the base material.

本実施形態に係る圧延銅箔では、圧延面またはその裏面の少なくともいずれかの最大谷深さRvが1.5μm以下と、このような凹部が低減された状態、あるいは、少なくともその深さが浅い状態である。このため、このようなクラックの発生が抑制され、耐ハゼ折特性を向上させることができる。ここで、最大谷深さRvは、JIS B 0601:2001に規定される表面粗さの1つである。JIS B 0601:2001によれば、最大谷深さRvは、表面粗さ測定で得られる粗さ平均線から谷底までの深さの最大値である。   In the rolled copper foil according to the present embodiment, the maximum valley depth Rv of at least one of the rolled surface and the back surface thereof is 1.5 μm or less, such a state in which such concave portions are reduced, or at least the depth is shallow. State. For this reason, generation | occurrence | production of such a crack is suppressed and a goblet folding-proof characteristic can be improved. Here, the maximum valley depth Rv is one of the surface roughnesses defined in JIS B 0601: 2001. According to JIS B 0601: 2001, the maximum valley depth Rv is the maximum value of the depth from the roughness average line obtained by the surface roughness measurement to the valley bottom.

ところで、上述の説明においては、ポリイミドフィルムの両面に圧延銅箔を貼り合わせた両面フレキシブル基板に対するハゼ折試験の結果から式(1)を導き出した。   By the way, in above-mentioned description, Formula (1) was derived from the result of the goby folding test with respect to the double-sided flexible board which bonded the rolled copper foil on both surfaces of the polyimide film.

ここでは、最大谷深さRvについての知見も加味したうえで、ポリイミドフィルムの厚みや、山側の曲げ半径Bp等も変数として組み込むことで、次式(2)、
X=65Bp−C・・・(2)
を導き出すことができる。
Here, after taking into account the knowledge about the maximum valley depth Rv, the thickness of the polyimide film, the bend radius Bp on the mountain side, and the like are incorporated as variables to obtain the following formula (2),
X = 65Bp-C (2)
Can be derived.

すなわち、ここでのハゼ折試験は、厚みtPI(μm)のポリイミドフィルムの片面または両面に厚みtCu(μm)を有する圧延銅箔を1枚ずつ、合計n枚貼り合わせたフレキシブル基板(FCCL)に対して行う。このとき、谷側での曲げ半径Bv(mm)の曲げ部に荷重3kgを加え、山側に配置される圧延銅箔の破断までの曲げ回数X(回)を測定する。このときの山側の曲げ半径Bp(mm)は次式(3)で表わされる。
Bp=n・tCu(×10−3)+tPI(×10−3)+Bv・・・(3)
ここで、nは、圧延銅箔の貼り合わせ枚数であり、片面に貼り合わせた場合はn=1、両面に貼り合わせた場合はn=2である。また、式(3)中、「×10−3」としているのは単位換算(μm→mm)のためである。
That is, the goblet folding test here is a flexible substrate (FCCL) in which a total of n pieces of rolled copper foil having a thickness t Cu (μm) are bonded to one or both sides of a polyimide film having a thickness t PI (μm). ). At this time, a load of 3 kg is applied to the bending portion of the bending radius Bv (mm) on the valley side, and the number of bending times X (times) until the fracture of the rolled copper foil arranged on the mountain side is measured. The peak-side bending radius Bp (mm) at this time is expressed by the following equation (3).
Bp = n · t Cu (× 10 −3 ) + t PI (× 10 −3 ) + Bv (3)
Here, n is the number of rolled copper foils to be bonded, and n = 1 when bonded to one side and n = 2 when bonded to both sides. In the formula (3), “× 10 −3 ” is for unit conversion (μm → mm).

また、このとき、式(2)における定数Cは、圧延銅箔の結晶配向等の素材により決まる材質固有の定数である。本発明者等によれば、定数Cは、圧延銅箔が熱処理後に有する(200)面の面積率や、圧延銅箔の表面の最大谷深さRvと相関があることがわかっている。   At this time, the constant C in the equation (2) is a material-specific constant determined by a material such as crystal orientation of the rolled copper foil. According to the present inventors, it has been found that the constant C has a correlation with the area ratio of the (200) plane that the rolled copper foil has after heat treatment and the maximum valley depth Rv of the surface of the rolled copper foil.

上述の式(2)のように、山側の曲げ半径Bpと破断までの曲げ回数Xとは比例する。これを図6のグラフに示す。   As in the above equation (2), the bending radius Bp on the peak side is proportional to the number of times of bending X until breakage. This is shown in the graph of FIG.

図6は、本実施形態および参考例に係る圧延銅箔に対するハゼ折試験における山側の曲げ半径Bpと破断までの曲げ回数の関係を示す図である。図6の横軸は、山側の曲げ半径Bp(mm)であり、縦軸は、破断までの曲げ回数(回)である。また、図において、黒菱形(◆)印は、(200)面の面積率が0.92の本実施形態に係る圧延銅箔のプロットであり、図中、黒四角(■)印は、(200)面の面積率が0.33の参考例に係る圧延銅箔のプロットである。   FIG. 6 is a diagram showing the relationship between the peak-side bending radius Bp and the number of bendings until breakage in the goby folding test for the rolled copper foil according to the present embodiment and the reference example. The horizontal axis in FIG. 6 is the peak-side bending radius Bp (mm), and the vertical axis is the number of times of bending (times) until fracture. Further, in the figure, black rhombus (♦) marks are plots of the rolled copper foil according to the present embodiment in which the area ratio of the (200) plane is 0.92, and in the figure, the black square (■) marks are ( It is a plot of the rolled copper foil which concerns on the reference example whose area ratio of 200) plane is 0.33.

図6に示すように、(200)面の面積率が高いほど、定数C、つまり、グラフの縦軸との切片の絶対値は小さい。この定数Cの値から、所定の素材の破断までの回数(ハゼ折り回数)を予測することができる。すなわち、例えば、上述のように、厚み12μmや18μmの圧延銅箔が両面に貼り合わされ、ポリイミドフィルムの厚みを25μm、谷側の曲げ半径0.125mm、とした場合とは異なる試験条件においても、その圧延銅箔が比較対象の圧延銅箔と同等の定数Cを示していれば、それらの耐ハゼ折特性は同等であるといえる。   As shown in FIG. 6, the higher the area ratio of the (200) plane, the smaller the constant C, that is, the absolute value of the intercept with the vertical axis of the graph. From the value of the constant C, it is possible to predict the number of times until the predetermined material breaks (number of goby folds). That is, for example, as described above, a rolled copper foil having a thickness of 12 μm or 18 μm is bonded to both surfaces, and the polyimide film has a thickness of 25 μm and a valley-side bending radius of 0.125 mm. If the rolled copper foil shows the constant C equivalent to the rolled copper foil of a comparison object, it can be said that their anti-strip properties are equivalent.

本実施形態における圧延銅箔においては、例えば定数Cは6以下である。なお、圧延銅箔の厚み12μmにおいて破断までの曲げ回数4回を得ようとする場合、定数Cは7以下であればよい。また、圧延銅箔の厚み18μmにおいて破断までの曲げ回数6回を得ようとする場合、定数Cは6以下でなければならない。本実施形態の圧延銅箔は定数Cが6以下であり、厚み18μmでの曲げ回数6回を満たし、厚み12μmでの曲げ回数4回をより確実に満たす。   In the rolled copper foil in the present embodiment, for example, the constant C is 6 or less. In addition, when it is going to obtain the bending frequency | count of 4 times until a fracture | rupture in thickness 12 micrometers of rolled copper foil, the constant C should just be 7 or less. Moreover, when it is going to obtain the bending frequency 6 times until a fracture | rupture in thickness 18micrometer of rolled copper foil, the constant C must be 6 or less. The rolled copper foil of this embodiment has a constant C of 6 or less, satisfies the number of bending times of 6 at a thickness of 18 μm, and more reliably satisfies the number of bending times of 4 at a thickness of 12 μm.

(2)圧延銅箔の製造方法
まずは、(200)面積率を0.65以上の圧延銅箔を得るための製造条件の一例について説明する。
(2) Manufacturing method of rolled copper foil First, an example of manufacturing conditions for obtaining a rolled copper foil having a (200) area ratio of 0.65 or more will be described.

これらはあくまで一例であり、本発明の圧延銅箔の製造方法を規定するものではない。   These are merely examples, and do not define the method for producing the rolled copper foil of the present invention.

本実施形態に係る圧延銅箔は、無酸素銅(OFC)またはタフピッチ銅(TPC)に、Snを30ppm以上100ppm以下添加して鋳塊(インゴット)とし、これを熱間圧延した後、冷間圧延とひずみ取り焼鈍を繰り返して厚み5μm以上50μm以下として製造する。   In the rolled copper foil according to the present embodiment, Sn is added to oxygen free copper (OFC) or tough pitch copper (TPC) in an amount of 30 ppm to 100 ppm to form an ingot, which is hot-rolled, and then cold-rolled. Rolling and strain relief annealing are repeated to produce a thickness of 5 μm to 50 μm.

すなわち、圧延銅箔は無酸素銅またはタフピッチ銅を溶解し、鋳造することにより得られたインゴットを元に製造される。溶解時、30〜100ppmのSnを添加する。Snが100ppmを超えて含有すると、耐熱性が過剰に高くなってしまい、フレキシブルプリント配線板の製造工程で銅箔に加えられる熱によっても圧延銅箔が再結晶を起こさなくなる。圧延銅箔はフレキシブルプリント配線板の製造工程における加熱によって再結晶することにより屈曲特性やハゼ折特性を発現させるため、過剰な耐熱性はFCCLの特性を損なう原因となる。   That is, the rolled copper foil is manufactured based on an ingot obtained by melting and casting oxygen-free copper or tough pitch copper. When dissolved, add 30-100 ppm of Sn. When Sn exceeds 100 ppm, the heat resistance becomes excessively high, and the rolled copper foil does not recrystallize due to heat applied to the copper foil in the manufacturing process of the flexible printed wiring board. Since the rolled copper foil is recrystallized by heating in the manufacturing process of the flexible printed wiring board, it exhibits bending characteristics and goby folding characteristics. Therefore, excessive heat resistance is a cause of impairing FCCL characteristics.

熱間圧延工程にて、インゴットは、まず、厚み2.5mmまで熱間圧延により引き伸ばされ板材となる。その後、冷間圧延と焼鈍を繰り返す繰り返し工程にて、所定の厚みまで圧延される。その後、最終焼鈍工程にて、板材に最終焼鈍を施して焼鈍生地を得る。最終冷間圧延工程では、焼鈍生地に最終冷間圧延を施す。この場合、目標とする最終厚みが得られるまで冷間圧延を複数回(複数パス)繰り返してもよい。   In the hot rolling process, the ingot is first stretched by hot rolling to a thickness of 2.5 mm to become a plate material. Then, it rolls to predetermined thickness in the repeating process which repeats cold rolling and annealing. Thereafter, in the final annealing step, the plate material is subjected to final annealing to obtain an annealed fabric. In the final cold rolling step, the annealed dough is subjected to final cold rolling. In this case, cold rolling may be repeated a plurality of times (a plurality of passes) until a target final thickness is obtained.

この際、最終焼鈍工程からの加工度を93%以上として圧延銅箔とする。加工度は、以下の式(4)で定義される。
加工度(%)=(最終焼鈍厚み−最終厚み)/最終焼鈍厚み×100・・・(4)
At this time, the degree of processing from the final annealing step is set to 93% or more to obtain a rolled copper foil. The degree of processing is defined by the following formula (4).
Degree of processing (%) = (final annealing thickness−final thickness) / final annealing thickness × 100 (4)

本実施形態で求める特性を得るためには、加工度は93%以上99%未満とする必要がある。93%未満では加えられるひずみ量が少ないために、銅箔が軟化しにくくなる。99%より高い加工度では、与えられるひずみ量が多すぎるために、冷間圧延中の加工熱によって圧延銅箔が再結晶してしまい、ひずみが開放されるために逆に(200)面積率は低下する。   In order to obtain the characteristics required in this embodiment, the degree of processing needs to be 93% or more and less than 99%. If it is less than 93%, the amount of strain applied is small, so the copper foil is difficult to soften. If the degree of work is higher than 99%, too much strain is applied, so that the rolled copper foil is recrystallized by the heat of processing during cold rolling, and the strain is released. Will decline.

また、以上の製造工程において、表面の最大谷深さRvが1.5μm以下の圧延銅箔を得る製造条件の一例について説明する。   Moreover, in the above manufacturing process, an example of manufacturing conditions for obtaining a rolled copper foil having a surface maximum valley depth Rv of 1.5 μm or less will be described.

上述のように、圧延銅箔の表面の凹部の一因となるオイルピットは、圧延銅箔の結晶配向等の状態や素材の違いによらず発生する。すなわち、係るオイルピットは、例えば最終冷間圧延工程等の圧延時に、圧延対象である生地とロールとの間に圧延油が噛み込まれ、生地がロールの拘束を受けない自由塑性変形を起こすことによって発生する。   As described above, the oil pits that contribute to the recesses on the surface of the rolled copper foil are generated regardless of the state of the crystal orientation of the rolled copper foil and the difference in material. That is, such an oil pit causes free plastic deformation in which, for example, rolling oil is caught between a roll to be rolled and a roll at the time of rolling such as a final cold rolling process, and the dough is not subjected to the restriction of the roll. Caused by.

そこで、例えば最終冷間圧延工程におけるロール粗さや圧延油の粘度を調整することにより、係るオイルピットを低減することができる。すなわち、ロール粗さや圧延油の粘度を低減することで、ロールの凹凸への圧延油の浸入や高粘度の圧延油の流動性低下等による圧延油の噛み込みが低減される。よって、オイルピットの発生を抑制することができる。   Therefore, for example, by adjusting the roll roughness and the viscosity of the rolling oil in the final cold rolling step, the oil pits can be reduced. In other words, by reducing the roll roughness and the viscosity of the rolling oil, the rolling oil can be prevented from entering due to the intrusion of the rolling oil into the irregularities of the roll and the fluidity of the high viscosity rolling oil being lowered. Therefore, generation | occurrence | production of an oil pit can be suppressed.

また、オイルピットをはじめ、最終冷間圧延工程後の圧延銅箔の表面に既に発生してしまった凹部については、例えば圧延銅箔の表面を平滑化する銅めっきにより凹部を埋めることで、深さを低減することができる。銅めっき層は、圧延銅箔の片面あるいは両面に形成することができる。   In addition, for the recesses that have already occurred on the surface of the rolled copper foil after the final cold rolling process, including oil pits, for example, by filling the recesses with copper plating that smoothes the surface of the rolled copper foil, Can be reduced. The copper plating layer can be formed on one side or both sides of the rolled copper foil.

なお、上述のように、本実施形態に係る圧延銅箔に粗化処理を施してもよい。粗化処理は、公知である様々な技術を用いて行うことができる。但し、この場合であっても、上述の最大谷深さRvの数値は粗化処理前の値とする。つまり、本実施形態に係る圧延銅箔においては、最終冷間圧延後、あるいは、少なくとも銅めっき後の状態において、最大谷深さRvが1.5μm以下となっていることが好ましい。   In addition, as mentioned above, you may perform a roughening process to the rolled copper foil which concerns on this embodiment. The roughening treatment can be performed using various known techniques. However, even in this case, the numerical value of the maximum valley depth Rv is a value before the roughening process. That is, in the rolled copper foil according to the present embodiment, the maximum valley depth Rv is preferably 1.5 μm or less after the final cold rolling or at least after the copper plating.

この得られた圧延銅箔を大気中にて300℃、5分加熱することで、(200)面積率を0.65以上とすることができる。   By heating the obtained rolled copper foil in the atmosphere at 300 ° C. for 5 minutes, the (200) area ratio can be 0.65 or more.

これにより本発明の圧延銅箔は、十分な耐折り曲げ性を有する圧延銅箔とすることができる。   Thereby, the rolled copper foil of this invention can be made into the rolled copper foil which has sufficient bending resistance.

なお、以上のように得られた圧延銅箔は、プリント配線板の用途としてのみでなく、例えばリチウムイオン二次電池の負極材の用途としても使用することができる。   In addition, the rolled copper foil obtained as mentioned above can be used not only as an application of a printed wiring board but also as an application of a negative electrode material of a lithium ion secondary battery, for example.

(3)銅張積層板の製造方法
上述の熱処理は、例えばフレキシブルプリント配線板の製造工程における焼鈍工程として行ってもよい。フレキシブルプリント配線板の製造工程には、例えば銅張積層板としてのフレキシブル基板(FCCL)の製造工程と、フォトレジストを用いて不要の銅箔部分をエッチングにより除去して回路等を形成する回路の形成工程等が含まれる。
(3) Manufacturing method of copper clad laminated board The above-mentioned heat processing may be performed as an annealing process in the manufacturing process of a flexible printed wiring board, for example. The manufacturing process of the flexible printed wiring board includes, for example, a manufacturing process of a flexible substrate (FCCL) as a copper-clad laminate and a circuit that forms a circuit by removing unnecessary copper foil portions by etching using a photoresist. A forming process and the like are included.

また、銅張積層板の製造工程は、本実施形態に係る圧延銅箔に、焼鈍条件下での熱処理を施す熱処理工程(焼鈍工程)と、ポリイミドフィルム等、基材となる樹脂層の少なくとも片面に圧延銅箔を積層する積層工程と、を有する。   Moreover, the manufacturing process of a copper clad laminated board is the heat processing process (annealing process) which heat-processes on the rolled copper foil which concerns on this embodiment on annealing conditions, and at least single side | surface of the resin layer used as a base material, such as a polyimide film And a laminating step of laminating the rolled copper foil.

焼鈍条件下での熱処理とは、少なくとも本実施形態の要件、つまり、式(1)の傾きAや、式(2)の定数Cを満たす程度まで、圧延銅箔が焼鈍される条件下での熱処理をいう。熱処理の温度および時間の組み合わせ範囲は、適宜調整が可能であり、例えば300℃で1分間以上30分以下の範囲であって、時間を5分間などとすることができる。或いは、270℃で2分以上60分以下、又は、350℃で10秒以上5分以下などとすることができる。   The heat treatment under annealing conditions is at least the requirements of the present embodiment, that is, the conditions under which the rolled copper foil is annealed to such an extent that the slope A of formula (1) and the constant C of formula (2) are satisfied. Refers to heat treatment. The combination range of the heat treatment temperature and time can be adjusted as appropriate, for example, at 300 ° C. for 1 minute to 30 minutes, and the time can be 5 minutes. Alternatively, it may be 2 minutes to 60 minutes at 270 ° C., or 10 seconds to 5 minutes at 350 ° C.

またこのとき、熱処理工程と積層工程とを同時に行ってもよい。すなわち、例えば熱硬化型接着剤等を用いて樹脂層に圧延銅箔を貼り合わせる際の、或いは、接着剤等を用いず樹脂層に直接的に圧延銅箔を貼り合わせる際の、加熱・加圧の条件を、上述の焼鈍条件と同様、例えば300℃以上、5分間以上などとすれば、圧延銅箔に対する焼鈍も兼ねることができる。   At this time, the heat treatment step and the lamination step may be performed simultaneously. That is, for example, when the rolled copper foil is bonded to the resin layer using a thermosetting adhesive or the like, or when the rolled copper foil is bonded directly to the resin layer without using an adhesive or the like. If the pressure conditions are set to 300 ° C. or higher, for example, 5 minutes or longer, as in the above-described annealing conditions, the rolled copper foil can also be annealed.

以上により、本実施形態に係る圧延銅箔を、基材となる樹脂層の少なくとも片面に積層してなり、係る圧延銅箔が、焼鈍条件下での熱処理を経ている本実施形態に係る銅張積層板としてのフレキシブル基板(FCCL)が製造される。   By the above, the rolled copper foil which concerns on this embodiment is laminated | stacked on the at least single side | surface of the resin layer used as a base material, The rolled copper foil which concerns on this embodiment which has passed through the heat processing on annealing conditions A flexible substrate (FCCL) as a laminate is manufactured.

このように本実施形態では、加工度を93%以上とし、その上で、例えば300℃、5分加熱することで、十分な耐折り曲げ性、より具体的には、耐ハゼ折特性を有する圧延銅箔および銅張積層板を提供することができる。   As described above, in the present embodiment, the degree of work is set to 93% or more, and then, for example, by heating at 300 ° C. for 5 minutes, sufficient bending resistance, more specifically, rolling having goby folding characteristics. Copper foil and copper clad laminate can be provided.

実施例1〜21について比較例1〜21とともに説明する。   Examples 1 to 21 will be described together with Comparative Examples 1 to 21.

(圧延銅箔の評価)
無酸素銅またはタフピッチ銅を溶解し、必要に応じてSnを後掲の表1,2に示す量添加して鋳造し、インゴットを製作した。インゴットを熱間圧延した後に冷間圧延とひずみ取り焼鈍とを繰り返し、厚み6μm〜18μmの圧延銅箔を製作した。
(Evaluation of rolled copper foil)
Oxygen-free copper or tough pitch copper was dissolved, and if necessary, Sn was added in the amounts shown in Tables 1 and 2 below and cast to produce an ingot. After the ingot was hot-rolled, cold rolling and strain relief annealing were repeated to produce a rolled copper foil having a thickness of 6 μm to 18 μm.

この時、加工度を変化させるために最終焼鈍での厚みを適宜変化させた。最終焼鈍工程以降の最終冷間圧延では、軸方向の表面粗さ、つまり、算術平均粗さRaが0.1μm以下のロールを用いた。また、圧延油の動粘度を4cSt〜7cStとした。また、一部の圧延銅箔には銅めっきを施し、あるいは、エッチングを施した。   At this time, in order to change the workability, the thickness in the final annealing was appropriately changed. In the final cold rolling after the final annealing step, a roll having an axial surface roughness, that is, an arithmetic average roughness Ra of 0.1 μm or less was used. The kinematic viscosity of the rolling oil was 4 cSt to 7 cSt. Some rolled copper foils were subjected to copper plating or etching.

より具体的には、実施例1〜9および比較例1〜12においては、圧延銅箔の組成の影響をみるため、Snの添加量をそれぞれ変化させた。また、加工度の影響をみるため、最終冷間圧延工程における加工度をそれぞれ変化させた。   More specifically, in Examples 1 to 9 and Comparative Examples 1 to 12, the amount of Sn added was changed to see the influence of the composition of the rolled copper foil. Moreover, in order to see the influence of a work degree, the work degree in the last cold rolling process was changed, respectively.

また、実施例10〜15および比較例13〜17においては、他の圧延条件の影響をみるため、ロールの軸方向の表面粗さ及び圧延油の動粘度をそれぞれ変化させた。また、圧延銅箔に対する表面処理の影響をみるため、一部の実施例に係る圧延銅箔において表面に銅めっき層を形成し、一部の比較例に係る圧延銅箔においては表面をエッチングした。   Moreover, in Examples 10-15 and Comparative Examples 13-17, in order to see the influence of other rolling conditions, the surface roughness of the axial direction of the roll and the kinematic viscosity of the rolling oil were changed. Moreover, in order to see the influence of the surface treatment with respect to the rolled copper foil, a copper plating layer was formed on the surface in the rolled copper foil according to some examples, and the surface was etched in the rolled copper foil according to some comparative examples. .

このとき、銅めっきとしては、圧延後の圧延銅箔に対し、脱脂、酸洗を行って圧延油を除去した後、係る圧延銅箔に対し、以下の組成の銅めっき液を用いた平滑銅めっきを行った。銅めっき液には、硫酸銅5水和物(CuSO・5HO)200g/L、硫酸(HSO)100g/L、レベラおよびブライトナ(荏原ユージライト株式会社製CU−BRITE TH−R III)を含む組成のものを用いた。 At this time, as copper plating, after the rolled copper foil after rolling is degreased and pickled to remove the rolling oil, smooth copper using a copper plating solution having the following composition is used for the rolled copper foil. Plating was performed. For the copper plating solution, copper sulfate pentahydrate (CuSO 4 .5H 2 O) 200 g / L, sulfuric acid (H 2 SO 4 ) 100 g / L, Leveler and Brightna (CU-BRITE TH- manufactured by Sugawara Eugene Corporation) R III) was used.

また、実施例16〜21および比較例18〜21においては、山側の曲げ半径Bpの影響をみるため、圧延銅箔やポリイミドフィルムの厚みをそれぞれ変化させた。   Moreover, in Examples 16-21 and Comparative Examples 18-21, in order to see the influence of the bending radius Bp of the peak side, the thickness of the rolled copper foil or the polyimide film was changed, respectively.

以上により、実施例1〜21および比較例1〜21に係る圧延銅箔を得た。   The rolled copper foil which concerns on Examples 1-21 and Comparative Examples 1-21 was obtained by the above.

このように得られた圧延銅箔について、最大谷深さRvを測定した。係る測定は、JIS B 0601:2001に則り、株式会社キーエンス製レーザマイクロスコープVK−8700を用いて行った。測定条件は、対物レンズ倍率50倍、カットオフ条件λs=0.25μm、λc=0.8mmとした。   The maximum valley depth Rv was measured for the rolled copper foil thus obtained. The measurement concerned was performed using Keyence Co., Ltd. laser microscope VK-8700 according to JIS B 0601: 2001. The measurement conditions were an objective lens magnification of 50 times, a cutoff condition λs = 0.25 μm, and λc = 0.8 mm.

得られた圧延銅箔を大気中にて300℃、5分加熱した。   The obtained rolled copper foil was heated in the atmosphere at 300 ° C. for 5 minutes.

この熱処理後の圧延銅箔について、(200)面の面積率を求めた。   About the rolled copper foil after this heat processing, the area ratio of (200) plane was calculated | required.

具体的には、表面の酸化膜をフラットミリング装置で除去し、SEM−EBSP分析を行った。分析は日立ハイテクノロジーズ製走査型電子顕微鏡SU−70およびTSL製OIMを用いて行った。測定条件はSEM倍率200倍、傾斜70度、分析領域400μm×400μm、測定ピッチ3μmとした。   Specifically, the oxide film on the surface was removed with a flat milling apparatus, and SEM-EBSP analysis was performed. The analysis was performed using a scanning electron microscope SU-70 manufactured by Hitachi High-Technologies and an OIM manufactured by TSL. The measurement conditions were an SEM magnification of 200 times, an inclination of 70 degrees, an analysis region of 400 μm × 400 μm, and a measurement pitch of 3 μm.

得られた結晶方位をコンピュータで計算し、分析領域内の(200)面配向の占める面積率を(200)面積率として計算した。   The obtained crystal orientation was calculated by a computer, and the area ratio occupied by the (200) plane orientation in the analysis region was calculated as the (200) area ratio.

(フレキシブル基板の評価)
圧延により得られた圧延銅箔を用いてフレキシブル基板(FCCL)を製作した。FCCLの製作にあたっては、圧延銅箔の片面に予め粗化処理を行った。すなわち、圧延後の圧延銅箔に対し、脱脂、酸洗を行って圧延油を除去した後、電解銅めっきにより粗化処理を行った。電解銅めっき液には、硫酸銅5水和物(CuSO・5HO)90g/L、硫酸(HSO)100g/Lの組成のものを用いた。電解条件は、液温30℃、印加電流45A/dm、時間3秒とした。粗化処理後の圧延銅箔の表面粗さは、十点平均粗さRzで1.1μmであった。
(Evaluation of flexible substrate)
A flexible substrate (FCCL) was manufactured using the rolled copper foil obtained by rolling. In manufacturing the FCCL, a roughening treatment was performed in advance on one side of the rolled copper foil. That is, the rolled copper foil after rolling was degreased and pickled to remove the rolling oil, and then roughened by electrolytic copper plating. The electrolytic copper plating solution used had a composition of copper sulfate pentahydrate (CuSO 4 .5H 2 O) 90 g / L and sulfuric acid (H 2 SO 4 ) 100 g / L. The electrolysis conditions were a liquid temperature of 30 ° C., an applied current of 45 A / dm 2 , and a time of 3 seconds. The surface roughness of the rolled copper foil after the roughening treatment was 1.1 μm in terms of 10-point average roughness Rz.

次に、圧延銅箔とポリイミドフィルムとを貼り合わせてFCCLを製作した。本実施例では基材としてカネカ製ポリイミドフィルムアピカルBP(厚み25μm)を用い、その両面に圧延銅箔を真空プレスで貼り合せた。プレス条件は圧力5MPa、温度300℃、時間5分とした。以上により、実施例1〜21および比較例1〜21に係るFCCLを得た。   Next, the rolled copper foil and the polyimide film were bonded together to produce FCCL. In this example, Kaneka polyimide film Apical BP (thickness 25 μm) was used as a substrate, and a rolled copper foil was bonded to both sides thereof by a vacuum press. The pressing conditions were a pressure of 5 MPa, a temperature of 300 ° C., and a time of 5 minutes. By the above, FCCL which concerns on Examples 1-21 and Comparative Examples 1-21 was obtained.

このFCCLを20mm×20mmの大きさに切り出し、図5に示すハゼ折試験の試料10とした。   This FCCL was cut into a size of 20 mm × 20 mm and used as a sample 10 for the goby folding test shown in FIG.

図5に示すように、ハゼ折試験では、圧延方向と垂直の方向に試料10を折り曲げ、上下押さえ板20t,20bで挟んで荷重をかける。今回は荷重を3kgとした。また、常に同じ場所が折り曲げられるよう、試料10にマーク10mを付け(a)、曲げ部の谷側(内側)に厚み0.25mmのSUS板20sを挟むようにして(b)折り曲げを行った(すなわち、谷側の曲げ半径Bv0.125mmで折り曲げをすることになる。)(c)。実体顕微鏡で曲げ部直上より山側に配置される圧延銅箔の破断の有無を観察する(d)。破断がなければ、折り曲げた試料10を開き、荷重をかけて平らに伸ばしたあとに(e)再び折り曲げを行う。このように、山側の圧延銅箔の破断が見られるまでの曲げ回数をハゼ折回数として求める。   As shown in FIG. 5, in the goby folding test, the sample 10 is bent in a direction perpendicular to the rolling direction, and a load is applied between the upper and lower pressing plates 20t and 20b. This time, the load was 3 kg. Further, the specimen 10 was marked (a) so that the same place was always bent (a), and the SUS plate 20s having a thickness of 0.25 mm was sandwiched between the valley side (inner side) of the bent portion (b) was bent (that is, (B) is bent with a bending radius Bv of 0.125 mm on the valley side.) (C). With a stereomicroscope, the presence or absence of fracture of the rolled copper foil arranged on the mountain side from directly above the bent portion is observed (d). If there is no break, the bent sample 10 is opened, and after being flattened by applying a load, (e) bending is performed again. In this manner, the number of bendings until the peak-side rolled copper foil is broken is determined as the number of goby foldings.

(評価結果−組成および加工度の影響)
得られた結果を表1,2に示す。なお、表1,2の組成において、OFCおよびTPCはそれぞれ無酸素銅およびタフピッチ銅を示し、例えばOFC−Sn50ppmとあるのは、無酸素銅にSnを50ppm添加したものを示す。
(Evaluation results-influence of composition and processing degree)
The obtained results are shown in Tables 1 and 2. In the compositions of Tables 1 and 2, OFC and TPC represent oxygen-free copper and tough pitch copper, respectively. For example, OFC-Sn 50 ppm indicates that 50 ppm of Sn is added to oxygen-free copper.

Figure 2014015674
Figure 2014015674
Figure 2014015674
Figure 2014015674

上述のとおり、実施例1〜9および比較例1〜12においては、圧延銅箔の組成の影響をみた。   As above-mentioned, in Examples 1-9 and Comparative Examples 1-12, the influence of the composition of rolled copper foil was seen.

その結果、実施例1,2のように、OFCにSnを30ppm〜50ppm添加した厚み18μmの圧延銅箔は、(200)面の面積率が0.65以上であり、ハゼ折り回数は6回以上であり、耐ハゼ折特性に優れていた。   As a result, as in Examples 1 and 2, the rolled copper foil with a thickness of 18 μm in which Sn is added to OFC at 30 ppm to 50 ppm has an (200) plane area ratio of 0.65 or more, and the number of goose folds is 6 times. It was above, and it was excellent in the goblet folding resistance.

一方、比較例1,2のように、Snを添加しない圧延銅箔は、加工度を高くしても(200)面の面積率が0.65を満たさず、ハゼ折り回数は5回以下となってしまった。また、比較例3,4のように、Snを過剰に添加した場合も、ポリイミドフィルムとの貼り合わせ時に受ける熱量では圧延銅箔が十分に軟化せず、ハゼ折試験では1回程度で破断してしまっている。   On the other hand, as in Comparative Examples 1 and 2, the rolled copper foil to which Sn is not added does not satisfy the area ratio of the (200) plane even when the degree of processing is increased, and the number of goose foldings is 5 or less. It is had. In addition, as in Comparative Examples 3 and 4, even when Sn is added excessively, the rolled copper foil is not sufficiently softened by the amount of heat received at the time of bonding with the polyimide film, and breaks in about one time in the goby folding test. It has been.

厚み12μmの圧延銅箔においても、実施例8のようにOFCにSnを50ppm添加したものは十分な耐ハゼ折特性を示した。これに対し、Snを添加しなかった比較例9のTPCや比較例10のOFC、或いは、Snを過剰に添加した比較例11のOFCでは、耐ハゼ折特性が低下してしまった。   Also in the rolled copper foil having a thickness of 12 μm, the one in which 50 ppm of Sn was added to the OFC as in Example 8 showed sufficient goblet folding resistance. In contrast, the TPC of Comparative Example 9 to which Sn was not added, the OFC of Comparative Example 10 or the OFC of Comparative Example 11 to which Sn was excessively added deteriorated the goblet folding resistance.

また上述のとおり、実施例1〜9および比較例1〜12においては、最終冷間圧延工程における加工度の影響もみた。   Moreover, as above-mentioned, in Examples 1-9 and Comparative Examples 1-12, the influence of the work degree in the last cold rolling process was also seen.

その結果、実施例4〜7のように、加工度を93%以上99%未満とすることで、(200)面の面積率は0.65以上となり、耐ハゼ折特性も良好であった。   As a result, as in Examples 4 to 7, when the degree of processing was 93% or more and less than 99%, the area ratio of the (200) plane was 0.65 or more, and the goblet folding resistance was also good.

一方、Snを添加しないTPCに係る比較例5,6においては、比較例6のように、加工度を93%以上としても十分な(200)面の面積率は得られず、耐ハゼ折特性も満足できるものとならなかった。また、OFCにSnを50ppm添加した場合であっても、比較例7のように加工度が93%未満の場合や、比較例8のように加工度が99%以上の場合は、(200)面の面積率は0.65を下回り、耐ハゼ折特性も低下してしまった。   On the other hand, in Comparative Examples 5 and 6 related to TPC without addition of Sn, as in Comparative Example 6, a sufficient (200) plane area ratio was not obtained even when the degree of processing was 93% or more, and the anti-strip fold characteristics Was not satisfactory. Even when 50 ppm of Sn is added to the OFC, when the degree of processing is less than 93% as in Comparative Example 7 or when the degree of processing is 99% or more as in Comparative Example 8, (200) The area ratio of the surface was less than 0.65, and the goblet folding resistance was also deteriorated.

厚み12μmの圧延銅箔においても、加工度が98%であった実施例8,9では、十分な耐ハゼ折特性が得られた。一方で、加工度が92%であった比較例12では、耐ハゼ折特性が低下してしまった。   Even in the rolled copper foil having a thickness of 12 μm, in Examples 8 and 9 in which the degree of processing was 98%, sufficient goblet folding resistance was obtained. On the other hand, in Comparative Example 12 where the degree of processing was 92%, the goblet folding resistance was deteriorated.

以上、圧延銅箔の組成の影響および最終冷間圧延工程における加工度の影響について表わしたグラフを図2に示す。図2の横軸は、(200)面の面積率であり、縦軸は、破断までの曲げ回数(回)である。図において白三角印は、実施例1〜7の厚み18μmの圧延銅箔、黒三角印は比較例1〜8の厚み18μmの圧延銅箔、白四角は実施例8,9の厚み12μmの圧延銅箔、黒四角は比較例9〜12の厚み12μmの圧延銅箔である。   The graph showing the influence of the composition of the rolled copper foil and the influence of the working degree in the final cold rolling process is shown in FIG. The horizontal axis in FIG. 2 is the area ratio of the (200) plane, and the vertical axis is the number of times of bending (times) until fracture. In the figure, the white triangle mark is a rolled copper foil having a thickness of 18 μm in Examples 1 to 7, the black triangle mark is a rolled copper foil having a thickness of 18 μm in Comparative Examples 1 to 8, and the white square is a rolled copper foil having a thickness of 12 μm in Examples 8 and 9. Copper foils and black squares are rolled copper foils of Comparative Examples 9 to 12 having a thickness of 12 μm.

図2に示すように、圧延銅箔の(200)面の面積率が0.65以上であれば、十分な耐折り曲げ性、より具体的には、耐ハゼ折特性が得られることがわかる。   As shown in FIG. 2, it can be seen that if the area ratio of the (200) plane of the rolled copper foil is 0.65 or more, sufficient bending resistance, more specifically, goby folding resistance can be obtained.

(評価結果−他の圧延条件および表面処理の影響)
また上述のとおり、実施例10〜15および比較例13〜17においては、ロールの軸方向の表面粗さ及び圧延油の動粘度等の他の圧延条件の影響をみた。
(Evaluation results-influence of other rolling conditions and surface treatment)
Moreover, as above-mentioned, in Examples 10-15 and Comparative Examples 13-17, the influence of other rolling conditions, such as the surface roughness of the axial direction of a roll and kinematic viscosity of rolling oil, was seen.

その結果、圧延時の圧延油の動粘度を4cStとした実施例10と、圧延時の圧延油の動粘度を7cStとした比較例13とを比較すると以下のようになった。圧延油の動粘度が高い比較例13の場合、圧延時にロールに噛み込まれる圧延油の量が増加し、オイルピットが多く発生してしまう。このため、比較例13では、(200)面の面積率は0.65以上と十分であるにも関わらず、ハゼ折り回数は5回と低下してしまった。これは、オイルピットの多発による最大谷深さRvの増大が原因であると考えられる。   As a result, Example 10 in which the kinematic viscosity of the rolling oil during rolling was 4 cSt and Comparative Example 13 in which the kinematic viscosity of the rolling oil during rolling was 7 cSt were compared as follows. In the case of Comparative Example 13 in which the kinematic viscosity of the rolling oil is high, the amount of rolling oil bitten by the roll during rolling increases, and many oil pits are generated. For this reason, in Comparative Example 13, although the area ratio of the (200) plane was sufficient as 0.65 or more, the number of goby folds decreased to 5. This is considered to be caused by an increase in the maximum valley depth Rv due to frequent oil pits.

また、実施例11,12では、圧延時に算術平均粗さRa0.06μm以下のロールを用いて圧延したのに対し、比較例14では、算術平均粗さRa0.10μmと、比較的粗いロールを用いて圧延した。このため、比較例14では、(200)面の面積率は0.65を満たしていたが、最大谷深さRvが1.5以上となってしまい、ハゼ折り回数は5回に低下してしまった。これは、圧延油粘度を高めた時と同様、圧延時にロールに噛み込まれる圧延油の量が、ロールの表面粗さによって増加し、オイルピットが多く発生してしまったためと考えられる。   In Examples 11 and 12, rolling was performed using a roll having an arithmetic average roughness Ra of 0.06 μm or less at the time of rolling, whereas in Comparative Example 14, an arithmetic average roughness Ra of 0.10 μm and a relatively coarse roll were used. Rolled. For this reason, in Comparative Example 14, the area ratio of the (200) plane satisfied 0.65, but the maximum valley depth Rv was 1.5 or more, and the number of goby folds decreased to 5 times. Oops. This is thought to be because the amount of rolling oil bitten into the roll during rolling increased due to the surface roughness of the roll, and many oil pits were generated, as in the case of increasing the rolling oil viscosity.

また上述のとおり、実施例10〜15および比較例13〜17においては、圧延銅箔に対する表面処理の影響をみた。   Moreover, as above-mentioned, in Examples 10-15 and Comparative Examples 13-17, the influence of the surface treatment with respect to rolled copper foil was seen.

その結果、圧延銅箔の表面に銅めっき層を厚み0.3μmになるよう形成した実施例13〜15では、圧延条件に関わらず、最大谷深さRvは1.5μm以下となり、ハゼ折り回数も高い値が得られた。   As a result, in Examples 13 to 15 in which the copper plating layer was formed to have a thickness of 0.3 μm on the surface of the rolled copper foil, the maximum valley depth Rv was 1.5 μm or less regardless of the rolling conditions, A high value was also obtained.

一方、同様に銅めっき層を形成した比較例15では、最大谷深さRvは1.5以下となったものの、Snを添加しないTPCであるため(200)面の面積率が低下し、十分な耐ハゼ折特性が得られなかった。   On the other hand, in Comparative Example 15 in which the copper plating layer was similarly formed, although the maximum valley depth Rv was 1.5 or less, the area ratio of the (200) plane was sufficiently reduced because of the TPC without adding Sn. No goblet folding resistance was obtained.

また、比較例16,17では、圧延後の圧延銅箔の表面をエッチングした。エッチング液により、圧延銅箔の結晶粒界が優先的に除去され、オイルピットのような窪みが多く発生した。このため、最大谷深さRvは1.5μm以上となってしまい、ハゼ折り回数は低下してしまった。   Moreover, in Comparative Examples 16 and 17, the surface of the rolled copper foil after rolling was etched. The crystal grain boundaries of the rolled copper foil were preferentially removed by the etching solution, and many depressions such as oil pits were generated. For this reason, the maximum valley depth Rv is 1.5 μm or more, and the number of goby folding is reduced.

以上、他の圧延条件の影響および圧延銅箔に対する表面処理の影響について表わしたグラフを図3に示す。図3の横軸は、最大谷深さRv(μm)であり、縦軸は、破断までの曲げ回数(回)である。図において白三角印は、実施例14を除く実施例10〜15の厚み18μmの圧延銅箔、黒三角印は比較例15を除く比較例13〜17の厚み18μmの圧延銅箔、黒四角は比較例15のTCPを用いた18μmの圧延銅箔である。   FIG. 3 shows a graph representing the influence of other rolling conditions and the influence of surface treatment on the rolled copper foil. The horizontal axis in FIG. 3 is the maximum valley depth Rv (μm), and the vertical axis is the number of times of bending (times) until fracture. In the figure, the white triangle mark is a rolled copper foil having a thickness of 18 μm in Examples 10 to 15 except Example 14, the black triangle mark is a rolled copper foil having a thickness of 18 μm in Comparative Examples 13 to 17 excluding Comparative Example 15, and the black square is This is an 18 μm rolled copper foil using the TCP of Comparative Example 15.

図3に示すように、圧延銅箔の(200)面の面積率が0.65以上で、最大谷深さRvが1.5μm以下であった実施例において、耐ハゼ折特性を満足していることがわかる。   As shown in FIG. 3, in the example in which the area ratio of the (200) plane of the rolled copper foil was 0.65 or more and the maximum valley depth Rv was 1.5 μm or less, satisfying the goby folding resistance. I understand that.

(評価結果−山側の曲げ半径Bpの影響)
また上述のとおり、実施例16〜21および比較例18〜21においては、山側の曲げ半径Bpの影響をみた。
(Evaluation result-influence of the bending radius Bp on the mountain side)
Moreover, as above-mentioned, in Examples 16-21 and Comparative Examples 18-21, the influence of the bending radius Bp of the mountain side was seen.

その結果、ポリイミドフィルムの厚みを変更した実施例16,17においても、上述の式(2)の定数Cは6以下であったため、ポリイミドフィルムの厚み25μmの場合と同等の良好な耐ハゼ折特性であった。   As a result, also in Examples 16 and 17 in which the thickness of the polyimide film was changed, the constant C of the above-described formula (2) was 6 or less, so that the good folding resistance property equivalent to the polyimide film thickness of 25 μm was obtained. Met.

また、実施例18,19では、ポリイミドフィルムの厚みは25μmであるが、谷側の曲げ半径Bvを変えることで山側の曲げ半径Bpを変化させた。この場合においても、定数Cは6以下であったため、谷側の曲げ半径Bvが0.125mmの場合と同等の良好な耐ハゼ折特性を得た。つまり、実施例18では、谷側の曲げ半径Bv0.075mmの厳しい条件においてもハゼ折り回数3回が得られており、例えば谷側の曲げ半径Bv0.125mm等であれば、より多くのハゼ折り回数となることが予想される。   In Examples 18 and 19, the thickness of the polyimide film was 25 μm, but the bending radius Bp on the peak side was changed by changing the bending radius Bv on the valley side. Also in this case, since the constant C was 6 or less, the same excellent folding resistance characteristic as that obtained when the trough-side bending radius Bv was 0.125 mm was obtained. That is, in Example 18, the number of goby folds is 3 times even under severe conditions of the valley side bend radius Bv 0.075 mm. For example, if the bend side bend radius Bv is 0.125 mm, more goby folds are obtained. Expected to be a number of times.

また、実施例20,21では、圧延銅箔の厚みをそれぞれ6μmおよび9μmと変化させることで山側の曲げ半径Bpを変化させた。この場合においても、定数Cは6以下であったため、圧延銅箔の厚みが18μmや12μmの場合と同等の良好な耐ハゼ折特性を得た。   In Examples 20 and 21, the bending radius Bp on the peak side was changed by changing the thickness of the rolled copper foil to 6 μm and 9 μm, respectively. Even in this case, since the constant C was 6 or less, the same excellent folding resistance as that obtained when the rolled copper foil had a thickness of 18 μm or 12 μm was obtained.

一方、比較例18〜21では、Snを添加しないTPCを用い、圧延銅箔とポリイミドフィルムとの厚み、及び谷側の曲げ半径Bvを変化させることで山側の曲げ半径Bpを変化させた。これにより、定数Cが6を超え、耐ハゼ折特性が悪化した。ポリイミドフィルムの厚み50μmの比較例18においても、ハゼ折り回数が6回であり、ポリイミドフィルムの厚みを薄くした条件では、ハゼ折り回数が6回を下回ってしまうことが予想される。   On the other hand, in Comparative Examples 18-21, the bending radius Bp on the peak side was changed by changing the thickness of the rolled copper foil and the polyimide film and the bending radius Bv on the valley side using TPC without adding Sn. As a result, the constant C exceeded 6 and the goblet folding characteristics deteriorated. Also in Comparative Example 18 having a polyimide film thickness of 50 μm, the number of goby folds is 6, and it is expected that the number of goby folds will be less than 6 under the condition that the thickness of the polyimide film is reduced.

(評価結果−定数Cについて)
次に、実施例1〜21および比較例1〜21の結果から、上述の式(2)の定数Cと、最大谷深さRvおよび(200)面の面積率との相関を評価した。
(Evaluation result-constant C)
Next, from the results of Examples 1 to 21 and Comparative Examples 1 to 21, the correlation between the constant C of the above-described formula (2), the maximum valley depth Rv, and the area ratio of the (200) plane was evaluated.

実施例1〜21および比較例1〜21のうち、いくつかの実施例および比較例を抽出し、これらの相関を表わしたグラフを図4に示す。図4の横軸は、最大谷深さRvと(200)面の面積率との比(最大谷深さRv/(200)面の面積率)であり、縦軸は定数Cである。図において白三角印は、実施例に係る圧延銅箔、黒三角印は比較例に係る圧延銅箔である。   Some Examples and Comparative Examples are extracted from Examples 1 to 21 and Comparative Examples 1 to 21, and a graph showing these correlations is shown in FIG. The horizontal axis in FIG. 4 is the ratio of the maximum valley depth Rv to the area ratio of the (200) plane (maximum valley depth Rv / (200) plane area ratio), and the vertical axis is the constant C. In the figure, the white triangle mark is the rolled copper foil according to the example, and the black triangle mark is the rolled copper foil according to the comparative example.

図4に示すように、耐ハゼ折特性が良好であった実施例においてはいずれも定数Cが6以下となっていることがわかる。このように、定数Cの値から、耐ハゼ折特性の良否を判断することができる。   As shown in FIG. 4, it can be seen that the constant C is 6 or less in any of the examples in which the goby folding resistance was good. In this way, the quality of the goblet folding resistance can be determined from the value of the constant C.

10 試料
10m マーク
20b 押さえ板(下)
20s SUS板
20t 押さえ板(上)
10 Sample 10m Mark 20b Holding plate (bottom)
20s SUS plate 20t holding plate (top)

Claims (9)

30ppm以上100ppm以下のSnを含有する無酸素銅を母材とし、
300℃で5分間の熱処理後の主表面における(200)面の面積率が0.65以上であり、
5μm以上50μm以下の厚みtを有する
ことを特徴とする圧延銅箔。
The base material is oxygen-free copper containing 30 ppm or more and 100 ppm or less of Sn,
The area ratio of the (200) plane on the main surface after heat treatment at 300 ° C. for 5 minutes is 0.65 or more,
A rolled copper foil having a thickness t of 5 μm or more and 50 μm or less.
前記主表面またはその裏面の少なくともいずれかの最大谷深さRvが1.5μm以下である
ことを特徴とする請求項1に記載の圧延銅箔。
2. The rolled copper foil according to claim 1, wherein a maximum valley depth Rv of at least one of the main surface or the back surface thereof is 1.5 μm or less.
300℃で5分間の熱処理後で、かつ、ポリイミドフィルムの少なくとも山側となる面に貼り合わされ折り曲げられた状態で、曲げ部に荷重3kgを加えるハゼ折試験にて、
前記曲げ部の山側での破断までの曲げ回数Xが、前記曲げ部の山側での曲げ半径Bpと、材質固有の定数Cとによる関係式、
X=65Bp−C
で表わされ、前記定数Cが6以下となる
ことを特徴とする請求項2に記載の圧延銅箔。
After the heat treatment at 300 ° C. for 5 minutes, and in a state of being bonded and bent on at least the surface of the polyimide film, in a goby folding test in which a load of 3 kg is applied to the bent portion,
The number of times X of bending until breakage on the peak side of the bent part is a relational expression by a bending radius Bp on the peak side of the bent part and a constant C specific to the material,
X = 65Bp-C
The rolled copper foil according to claim 2, wherein the constant C is 6 or less.
300℃で5分間の熱処理後で、かつ、厚み25μmのポリイミドフィルムの両面に貼り合わされ折り曲げられた状態で、谷側での曲げ半径が0.125mmの曲げ部に荷重3kgを加えるハゼ折試験にて、
前記曲げ部の山側での破断までの曲げ回数Xが、前記厚みtによる関係式、
X−1=At
で表わされ、傾きAが0.17以上となる
ことを特徴とする請求項1〜3のいずれかに記載の圧延銅箔。
In a goby folding test in which a load of 3 kg is applied to a bent portion having a bend radius of 0.125 mm on the valley side after being heat-treated at 300 ° C. for 5 minutes and bonded to both sides of a 25 μm-thick polyimide film and bent. And
The number of times of bending X until the break on the mountain side of the bent portion is a relational expression according to the thickness t,
X-1 = At
The rolled copper foil according to any one of claims 1 to 3, wherein the slope A is 0.17 or more.
前記厚みtが12μmであるときに、前記破断までの曲げ回数Xが4回以上となる
ことを特徴とする請求項3又は4に記載の圧延銅箔。
5. The rolled copper foil according to claim 3, wherein when the thickness t is 12 μm, the number of bending times X until the breakage is 4 or more.
前記厚みtが18μmであるときに、前記破断までの曲げ回数Xが6回以上となる
ことを特徴とする請求項3〜5のいずれかに記載の圧延銅箔。
The rolled copper foil according to any one of claims 3 to 5, wherein when the thickness t is 18 µm, the number of bending times X until the breakage is 6 or more.
最終焼鈍工程からの加工度が93%以上である
ことを特徴とする請求項1〜6のいずれかに記載の圧延銅箔。
The rolled copper foil according to any one of claims 1 to 6, wherein a working degree from the final annealing step is 93% or more.
前記主表面またはその裏面の少なくともいずれかに銅めっき層が形成され、
前記銅めっき層が形成された前記主表面またはその裏面の最大谷深さRvが1.5μm以下である
ことを特徴とする請求項1〜7のいずれかに記載の圧延銅箔。
A copper plating layer is formed on at least one of the main surface or the back surface thereof,
The rolled copper foil according to any one of claims 1 to 7, wherein a maximum valley depth Rv of the main surface or the back surface thereof on which the copper plating layer is formed is 1.5 µm or less.
請求項1〜8のいずれかに記載の圧延銅箔を、基材となる樹脂層の少なくとも片面に積層してなり、
前記圧延銅箔が、焼鈍条件下での熱処理を経ている
ことを特徴とする銅張積層板。

The rolled copper foil according to any one of claims 1 to 8 is laminated on at least one side of a resin layer serving as a base material,
The copper-clad laminate, wherein the rolled copper foil is subjected to a heat treatment under annealing conditions.

JP2013003772A 2012-06-11 2013-01-11 Rolled copper foil and copper-clad laminate Pending JP2014015674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003772A JP2014015674A (en) 2012-06-11 2013-01-11 Rolled copper foil and copper-clad laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012132075 2012-06-11
JP2012132075 2012-06-11
JP2013003772A JP2014015674A (en) 2012-06-11 2013-01-11 Rolled copper foil and copper-clad laminate

Publications (1)

Publication Number Publication Date
JP2014015674A true JP2014015674A (en) 2014-01-30

Family

ID=50110616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003772A Pending JP2014015674A (en) 2012-06-11 2013-01-11 Rolled copper foil and copper-clad laminate

Country Status (1)

Country Link
JP (1) JP2014015674A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203148A (en) * 2014-04-16 2015-11-16 株式会社Shカッパープロダクツ Copper alloy material, ceramic wiring board and production method of ceramic wiring board
JP2017140838A (en) * 2016-02-09 2017-08-17 Jx金属株式会社 Laminate for printed wiring board, manufacturing method of printed wiring board and manufacturing method of electronic apparatus
KR20170122661A (en) 2016-04-27 2017-11-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide film and copper-clad laminate
TWI651988B (en) * 2014-09-19 2019-02-21 日商日鐵化學材料股份有限公司 Copper clad laminate and circuit board
KR20190038381A (en) 2017-09-29 2019-04-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board
KR20210018478A (en) * 2019-02-01 2021-02-17 장 춘 페트로케미컬 컴퍼니 리미티드 Surface-treated copper foil and copper foil substrate
CN112685934A (en) * 2020-12-24 2021-04-20 深圳市信维通信股份有限公司 Method for predicting FCCL (Flexible conductive copper clad laminate) bending fatigue stress based on copper foil and base material thickness

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203148A (en) * 2014-04-16 2015-11-16 株式会社Shカッパープロダクツ Copper alloy material, ceramic wiring board and production method of ceramic wiring board
TWI651988B (en) * 2014-09-19 2019-02-21 日商日鐵化學材料股份有限公司 Copper clad laminate and circuit board
JP2017140838A (en) * 2016-02-09 2017-08-17 Jx金属株式会社 Laminate for printed wiring board, manufacturing method of printed wiring board and manufacturing method of electronic apparatus
KR20210086588A (en) 2016-04-27 2021-07-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide film and copper-clad laminate
KR20170122661A (en) 2016-04-27 2017-11-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyimide film and copper-clad laminate
KR20190038381A (en) 2017-09-29 2019-04-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board
US11362337B2 (en) 2019-02-01 2022-06-14 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil and electrode, and lithium-ion secondary battery comprising the same
JP2021530615A (en) * 2019-02-01 2021-11-11 長春石油化學股▲分▼有限公司 Surface-treated copper foil and copper foil substrate
KR20210018478A (en) * 2019-02-01 2021-02-17 장 춘 페트로케미컬 컴퍼니 리미티드 Surface-treated copper foil and copper foil substrate
JP7144593B2 (en) 2019-02-01 2022-09-29 長春石油化學股▲分▼有限公司 Surface treated copper foil and copper foil substrate
KR102486639B1 (en) 2019-02-01 2023-01-09 장 춘 페트로케미컬 컴퍼니 리미티드 Surface treated copper foil and copper foil substrate
CN112685934A (en) * 2020-12-24 2021-04-20 深圳市信维通信股份有限公司 Method for predicting FCCL (Flexible conductive copper clad laminate) bending fatigue stress based on copper foil and base material thickness
CN112685934B (en) * 2020-12-24 2023-02-14 深圳市信维通信股份有限公司 Method for predicting FCCL (Flexible conductive copper clad laminate) bending fatigue stress based on copper foil and base material thickness

Similar Documents

Publication Publication Date Title
JP2014015674A (en) Rolled copper foil and copper-clad laminate
JP4716520B2 (en) Rolled copper foil
JP5094834B2 (en) Copper foil manufacturing method, copper foil and copper clad laminate
JP4401998B2 (en) High-gloss rolled copper foil for copper-clad laminate and method for producing the same
JP5281031B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP5411192B2 (en) Rolled copper foil and method for producing the same
TWI633195B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6392268B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TW200927960A (en) Copper alloy sheet material for electric and electronic parts
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP2016188406A (en) Copper alloy sheet for heat radiation component
JP2014214376A (en) Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board
JP2004256879A (en) Rolled copper foil having high elongation
JP6617313B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2017166044A (en) Copper alloy sheet for heat radiation component
JP2011058029A (en) Copper alloy foil
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5889443B2 (en) Copper foil for printed circuit boards
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP2018131653A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus prepared therewith
JP2014152344A (en) Composite copper foil and production method thereof
JP2014152343A (en) Composite copper foil and production method thereof
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6774827B2 (en) Coating material for rolled aluminum alloy plates for small electronic equipment cases
TW202041721A (en) Copper foil for flexible printed board, copper-clad laminate using the same, flexible printed board and electronic machine having excellent flexibility after formation of a fine circuit