JP2014012460A - 船舶推進システム - Google Patents

船舶推進システム Download PDF

Info

Publication number
JP2014012460A
JP2014012460A JP2012150727A JP2012150727A JP2014012460A JP 2014012460 A JP2014012460 A JP 2014012460A JP 2012150727 A JP2012150727 A JP 2012150727A JP 2012150727 A JP2012150727 A JP 2012150727A JP 2014012460 A JP2014012460 A JP 2014012460A
Authority
JP
Japan
Prior art keywords
output
engine
troll
propulsion system
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012150727A
Other languages
English (en)
Inventor
Hiroshi Inoue
宏 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2012150727A priority Critical patent/JP2014012460A/ja
Priority to US13/928,457 priority patent/US9586664B2/en
Publication of JP2014012460A publication Critical patent/JP2014012460A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/007Trolling propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

【課題】使い勝手のよいトローリング推進機能を実現する船舶推進システムを提供する。
【解決手段】船外機3は、船舶に与えられる推進力の発生源としてのエンジン39と、エンジン39に供給される空気量を調整するためのスロットルバルブ46と、アクセル操作ユニットの操作量に応じて定まるスロットル開度がアイドル開度以外の一定値に保持されているときに、エンジン39の出力を変動させる制御ユニット20とを含む。
【選択図】図4

Description

この発明は、エンジン(内燃機関)を推進力の発生源として用いた船舶推進システムに関する。
特許文献1は、内燃機関によって推進手段を駆動する船外機を開示している。内燃機関の吸気通路にはスロットル弁が配置されている。また、スロットル弁よりも下流側の吸気通路に大気側の空気を導入するバイパス通路が設けられている。バイパス通路には、開度調整可能な開閉弁が介装されている。内燃機関の始動時には、機関温度に応じて開閉弁の開度(バイパス開度)が制御され、暖機完了後には、所定のアイドル回転速度となるようにバイパス開度が制御される。そして、所望のトローリング推進状態を得るために、制御ユニットに携帯端末を接続して、前記アイドル回転速度よりも大きい値または小さい値を目標エンジン回転速度として設定できるように構成されている。これにより、アイドル回転速度を基準として目標エンジン回転速度を段階的に増減することによって、所望のトローリング推進状態が得られる。
特開2002−213290号公報
前記先行技術では、トローリング推進状態における目標エンジン回転速度は、アイドル回転速度を基準として上限値および下限値の間で増減されるに過ぎない。そのため、トローリング推進状態で得られる推進力は小さく、船舶を低速で定速航行させたり、潮の流れに抗して船舶を一定の位置に保持したりすることができるに過ぎない。しかし、より高速で定速航行させたい場合もあるため、先行技術によって提供されるトローリング推進機能は、必ずしも使い勝手がよくない。
この発明の一実施形態は、船舶に与えられる推進力の発生源としてのエンジンと、前記エンジンに供給される空気量を調整するためのスロットルバルブと、スロットル開度を調整するために操作者によって操作されるアクセル操作ユニットと、前記アクセル操作ユニットの操作量に応じて定まるスロットル開度がアイドル開度以外の一定値に保持されているときに、前記エンジンの出力を変動させる制御ユニットとを含む、船舶推進システムを提供する。
この構成によれば、アクセル操作ユニットの操作量に応じてスロットル開度が定まり、そのスロットル開度がアイドル開度以外の一定値に保持されているときに、制御ユニットの制御によって、エンジンの出力を変動させることができる。すなわち、アクセル操作ユニットの操作量を一定にしてスロットル開度をアイドル開度以外の一定値に保持させているときに、そのスロットル開度に対応したエンジン出力を基準として、そのエンジンの出力を変動させることができる。これにより、たとえば、アイドル回転速度域を離れた、より高回転速度域において、アクセル操作ユニットの操作によることなく、エンジン出力を変動させることができる。
この発明の一実施形態に係る船舶推進システムは、トローリング時の前記エンジンの出力を調整するために操作者によって操作されるトロール出力操作手段をさらに含む。そして、前記制御ユニットは、前記トロール出力操作手段の操作に応じて、前記エンジンの出力を変動させる。この構成によれば、アクセル操作ユニットの操作量を一定としてスロットル開度をアイドル開度以外の一定に保持しているときに、トロール出力操作手段を操作することによって、エンジン出力を変動させることができる。これにより、アイドル回転速度域を離れた回転速度域においても、エンジン出力を微調整しながら船舶を推進させることが可能となる。より具体的には、先行技術に比較して、より高速な回転速度域におけるトローリング推進機能を提供することができる。
この発明の一実施形態では、前記制御ユニットは、前記アクセル操作ユニットの操作量に対応する前記エンジンの出力を基準出力として、前記トロール出力操作手段の操作に応じて、前記エンジンの出力の前記基準出力からの変動量を設定する。この構成によれば、アクセル操作ユニットの操作量に対応するエンジン出力が基準とされ、トロール出力操作手段が操作されると、その操作に応じて、基準エンジン出力からの変動量が設定される。したがって、操作者は、アクセル操作ユニットを操作して基準エンジン出力を設定し、その後にトロール出力操作手段を操作することによって、エンジン出力を調整することができる。
この発明の一実施形態では、前記トロール出力操作手段は、操作者の操作に応じた複数段階の指令を出力するように構成されており、前記制御ユニットは、前記トロール出力操作手段が出力する指令に応じて、前記基準出力から複数段階に設定された変動量だけ前記エンジンの出力を変動させる。この構成によれば、トロール出力操作手段の操作に応じて、段階的に設定された変動量だけエンジン出力を微調整できる。したがって、エンジン出力の微調整を容易な操作で行うことができる。
この発明の一実施形態では、前記トロール出力操作手段は、前記エンジンの出力を増加させるための出力アップ操作子を含み、前記制御ユニットは、前記出力アップ操作子の操作に応答して、前記エンジンの出力を所定量だけ増加させる。また、この発明の一実施形態では、前記トロール出力操作手段は、前記エンジンの出力を減少させるための出力ダウン操作子を含み、前記制御ユニットは、前記出力ダウン操作子の操作に応答して、前記エンジンの出力を所定量だけ減少させる。これらの構成によれば、出力アップ操作子または出力ダウン操作子の操作に応答してエンジン出力が所定量だけ増加または減少する。したがって、トロール出力操作手段の操作は簡単であり、エンジン出力の微調整のための操作に困難が伴うことがない。したがって、使用者は、容易な操作でエンジン出力を微調整できる。
この発明の一実施形態では、前記制御ユニットが、前記エンジンの点火時期を変動させることによって、前記スロットル開度がアイドル開度以外の一定値に保持されているときの前記エンジンの出力を変動させる。この構成によれば、点火時期を変動させることによって、エンジンの出力が変動させることができる。したがって、特別な部品を追加する必要がないので、安価な構成で、高回転速度域におけるトローリング推進機能を提供できる。
この発明の一実施形態に係る船舶推進システムは、前記スロットルバルブをバイパスして前記エンジンに空気を供給するバイパス通路と、前記バイパス通路に配置された開度調整可能なアイドル開度調整バルブとをさらに含む。そして、前記制御ユニットが、前記アイドル開度調整バルブの開度を変動させることによって、前記スロットル開度がアイドル開度以外の一定値に保持されているときの前記エンジンの出力を変動させる。この構成によれば、スロットル開度がアイドル開度以外の一定値に保持されているときに、バイパス通路に配置されたアイドル開度調整バルブの開度を変動させることによって、エンジン出力が変動させられる。これにより、アイドル回転速度を制御するための構成を利用して、高回転速度域におけるトローリング推進機能を提供できる。すなわち、アイドル開度調整バルブを備えた船舶推進システムにおいては、新たな部品を追加することなく、高速回転速度域におけるトローリング推進機能を提供できる。
この発明の一実施形態では、前記制御ユニットは、前記アクセル操作ユニットの操作量に応じた基準目標エンジン回転速度を設定し、前記基準目標エンジン回転速度を基準に目標エンジン回転速度を変動させ、当該目標エンジン回転速度が達成されるように前記エンジンを制御する。この構成によれば、基準目標エンジン回転速度を基準として目標エンジン回転速度が定められ、その目標エンジン回転速度に基づいて、エンジン出力が制御される。したがって、エンジン出力を正確かつ適切に調整することができる。
この発明の一実施形態では、前記制御ユニットは、前記アクセル操作ユニットの操作量に対応するように前記エンジンの出力を制御する通常モードと、前記アクセル操作ユニットの操作量が一定値に保持されていても前記エンジンの出力を変動させるトロールモードとを含む複数の制御モードを有している。この構成によれば、制御ユニットは複数の制御モードを有し、それらの制御モードには通常モードとトロールモードとが含まれている。そして、トロールモードにおいては、トロール出力操作手段の操作に応じてエンジン出力が調整される。こうして、制御モードの切り換えによって、トローリング時におけるエンジン出力をトロール出力操作手段の操作に応じて変化させる一方で、通常航走時には、アクセル操作ユニットの操作に応じてエンジン出力を変動させることができる。
この発明の一実施形態では、前記制御ユニットは、前記トロールモードのときに、前記アクセル操作ユニットの操作量が所定操作量以上となったことに応答して、または前記アクセル操作ユニットの操作量が前記一定値から所定値以上変動したことに応答して、前記トロールモードを解除する。この構成によれば、アクセル操作ユニットの操作量が所定操作量以上となるか、またはアクセル操作ユニットの操作量が所定値以上変動すると、トロールモードが解除されて通常モードに戻る。したがって、アクセル操作ユニットを操作するだけで、制御モードをトロールモードから通常モードに移行させることができ、その後は、アクセル操作ユニットの操作に応じてエンジン出力が変動することになる。よって、使用者に違和感を与えることなく制御モードの切り換えを行える。
図1は、この発明の一実施形態に係る船舶推進システムが適用された船舶の構成を説明するための斜視図である。 図2は、前記船舶に備えられた操作パネルの構成例を示す拡大平面図である。 図3は、前記船舶の推進機である船外機の構成例を説明するための図である。 図4は、前記船外機に備えられたエンジンを含むエンジンシステムの構成を説明するための図である。 図5は、前記実施形態におけるトローリング制御の第1の具体例を説明するためのフローチャートである。 図6は、前記実施形態におけるトローリング制御の第2の具体例を説明するためのフローチャートである。 図7は、前記実施形態におけるトローリング制御の第3の具体例を説明するためのフローチャートである。 図8は、船舶の操作系の他の例を説明するための斜視図である。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、この発明の一実施形態に係る船舶の構成を説明するための斜視図である。船舶1は、船体2と、推進機としての船外機3とを備えている。船外機3は、船体2の船尾に取り付けられている。船外機3は、エンジン(内燃機関)を備えており、このエンジンの駆動力によって回転されるプロペラ(スクリュー)によって推進力を発生する。
船体2の前方部(船首側)には、操船席5が設けられている。操船席5には、ハンドル装置6と、リモコン装置7と、操作パネル8と、ゲージ9とが備えられている。
ハンドル装置6は、操船者によって回転操作されるステアリングハンドル6aを備えている。このステアリングハンドル6aの操作が、ステアリングケーブル(図示せず)によって、船尾に設けられた舵取り機構(図示せず)に機械的に伝達されるようになっている。この舵取り機構は、船外機3を左右に回動させて、その方向を変化させる。これにより、船外機3が発生する推進力の方向が変化し、それに応じて船舶1の進行方向を変更できる。むろん、ステアリングハンドル6aの操舵角を検出するセンサと、このセンサによって検出される操舵角に応じて駆動されるアクチュエータとを備えたパワーステアリング装置が採用されてもよい。この場合、ステアリングハンドル6aと舵取り機構との間には機械的な結合はなく、ハンドル操作に応じた制御信号によってアクチュエータが駆動され、その駆動力によって船外機3が転舵されることになる。
リモコン装置7は、アクセル操作ユニットの一例である。リモコン装置7は、前後に傾倒可能なレバー7aを備え、これのレバー7aの操作がスロットルケーブル14およびシフトケーブル15を介して船外機3に伝達されるようになっている。スロットルケーブル14は、船外機3に備えられたエンジンのスロットルバルブに結合されている。また、シフトケーブル15は、船外機3に備えられたシフト機構に結合されている。シフトケーブル15によってレバー7aの操作が伝達されることにより、レバー7aを所定の中立位置から所定のシフトイン位置まで前方に傾倒させることによって、船外機3のシフト位置が前進位置となる。これにより、船外機3から前進方向の推進力が発生される。また、レバー7aを前記中立位置から所定の後退シフトイン位置まで後方に傾倒させることによって、船外機3のシフト位置が後退位置となり、当該船外機3から後退方向の推進力が発生される。レバー7aが前進シフトイン位置と後退シフトイン位置との間にあれば、船外機3のシフト位置が中立位置となり、船外機3は推進力を発生しない。また、スロットルケーブル14によってレバー7aの操作が伝達されることにより、レバー7aの傾倒量に応じて、スロットル開度が変化し、船外機3の出力、すなわち、船外機3に備えられたエンジンのエンジン回転速度を変化させることができる。より具体的には、前進シフトイン位置よりもさらに前方にレバー7aを倒すことにより、スロットル開度を大きくして船外機3の出力を大きくし、船外機3から前進方向への大きな推進力を発生させることができる。同様に、後退シフトイン位置よりもさらに後方にレバー7aを倒すことにより、スロットル開度を大きくして船外機3の出力を大きくし、船外機3から後退方向への大きな推進力を発生させることができる。
船外機3においては、スロットル開度に応じて目標エンジン回転速度が設定される。具体的には、前記所定量の傾倒位置まで(前進シフトイン位置と後退シフトイン位置との間)は、スロットル開度は全閉であり、それに応じて目標エンジン回転速度はアイドル回転速度とされる。アイドル回転速度以下の回転速度域がアイドル回転速度域である。前進シフトイン位置を超えて前方に、または、後退シフトイン位置を超えて後方にレバー7aを傾倒させると、レバー傾倒量が大きいほどスロットル開度が大きくなり、それに応じて、目標エンジン回転速度が大きくなる。
ゲージ9は、船外機3の状態を表示する。より具体的には、船外機3の電源のオン/オフ、エンジン回転速度その他必要な情報を表示する。
操作パネル8は、図2に拡大して示すように、キースイッチ4と、始動/停止スイッチ81と、電源ランプ83と、トロール出力操作部84とを備えている。
キースイッチ4は、船外機3の電源を投入するために操作されるスイッチである。キースイッチ4は、対応するキー4aをキーシリンダに挿入することによって、オフ位置(OFF)とオン位置(ON)との間で操作することができる。オフ位置は、船外機3への電源供給を遮断するための操作位置である。オン位置は、船外機3に電源を投入するための操作位置である。電源ランプ83は、たとえばLEDランプで構成されており、船外機3の電源オン時に点灯し、電源オフ時に消灯するインジケータである。
始動/停止スイッチ81は、船外機3のエンジンを始動/停止するために操作されるスイッチであり、たとえば、モーメンタリスイッチで構成されている。エンジン停止状態で始動/停止スイッチ81を操作すると、船外機3のエンジンを始動するための始動指令を発生させることができる。また、エンジン運転中に始動/停止スイッチ81を操作すると、船外機3のエンジンを停止させるための停止指令を発生させることができる。
トロール出力操作部84は、エンジン出力を所定量だけ増加させるための出力アップスイッチ84Uと、エンジン出力を所定量だけ減少させるための出力ダウンスイッチ84Dとを含む。出力アップスイッチ84Uは出力アップ操作子の一例であり、出力ダウンスイッチ84Dは出力ダウン操作子の一例である。これらのスイッチ84U,84Dを操作することによって、アイドリング回転速度を基準目標回転速度として、段階的にエンジン回転速度を増減でき、それによってエンジン出力を微調整できる。トロール出力操作部84は、エンジン出力を一定に保持して船舶1を航走させたいとき、典型的にはトローリングを行うときに用いられる。トローリングとは、船舶1を定速で航行させたり、潮流や風に抗して船舶1を定点に保持したりすることをいう。
図3は、船外機3の構成例を説明するための図である。船外機3は、推進ユニット30と、この推進ユニット30を船体2に取り付ける取り付け機構31とを有している。取り付け機構31は、船体2の後尾板に着脱自在に固定されるクランプブラケット32と、このクランプブラケット32に水平回動軸としてのチルト軸33を中心に回動自在に結合されたスイベルブラケット34とを備えている。推進ユニット30は、スイベルブラケット34に、操舵軸35まわりに回動自在に取り付けられている。これにより、推進ユニット30を操舵軸35まわりに回動させることによって、操舵角(船体2の中心線に対して推進力の方向がなす方位角)を変化させることができる。また、スイベルブラケット34をチルト軸33まわりに回動させることによって、推進ユニット30のトリム角を変化させることができる。トリム角は、船体2に対する船外機3の取り付け角に対応する。
推進ユニット30のハウジングは、トップカウリング36とアッパケース37とロアケース38とで構成されている。トップカウリング36内には、駆動源となるエンジン39がそのクランク軸の軸線が上下方向となるように設置されている。エンジン39のクランク軸下端に連結される動力伝達用のドライブシャフト41は、上下方向にアッパケース37内を通ってロアケース38内にまで延びている。
ロアケース38の下部後側には、推進力発生部材としてのプロペラ40が回転自在に装着されている。ロアケース38内には、プロペラ40の回転軸であるプロペラシャフト42が水平方向に通されている。このプロペラシャフト42には、ドライブシャフト41の回転が、クラッチ機構としてのシフト機構43を介して伝達されるようになっている。
シフト機構43は、ドライブシャフト41の下端に固定されたベベルギヤからなる駆動ギヤ43aと、プロペラシャフト42上に回動自在に配置されたベベルギヤからなる前進ギヤ43bと、同じくプロペラシャフト42上に回動自在に配置されたベベルギヤからなる後退ギヤ43cと、前進ギヤ43bおよび後退ギヤ43cの間に配置されたドッグクラッチ43dとを有している。
前進ギヤ43bは前方側から駆動ギヤ43aに噛合しており、後退ギヤ43cは後方側から駆動ギヤ43aに噛合している。そのため、前進ギヤ43bおよび後退ギヤ43cは互いに反対方向に回転されることになる。
一方、ドッグクラッチ43dは、プロペラシャフト42にスプライン結合されている。すなわち、ドッグクラッチ43dは、プロペラシャフト42に対してその軸方向に摺動自在であるけれども、プロペラシャフト42に対する相対回動はできず、このプロペラシャフト42とともに回転する。
ドッグクラッチ43dは、ドライブシャフト41と平行に上下方向に延びるシフトロッド44の軸周りの回動によって、プロペラシャフト42上で摺動される。これにより、ドッグクラッチ43dは、前進ギヤ43bと結合した前進位置と、後退ギヤ43cと結合した後退位置と、前進ギヤ43bおよび後退ギヤ43cのいずれとも結合されない中立位置(ニュートラル位置)とのいずれかのシフト位置に制御される。
ドッグクラッチ43dが前進位置にあるとき、前進ギヤ43bの回転がドッグクラッチ43dを介してプロペラシャフト42に伝達される。これにより、プロペラ40は、一方向(前進方向)に回転し、船体2を前進させる方向の推進力を発生する。一方、ドッグクラッチ43dが後退位置にあるとき、後退ギヤ43cの回転がドッグクラッチ43dを介してプロペラシャフト42に伝達される。後退ギヤ43cは、前進ギヤ43bとは反対方向に回転するため、プロペラ40は、反対方向(後進方向)に回転し、船体2を後退させる方向の推進力を発生する。ドッグクラッチ43dが中立位置にあるとき、ドライブシャフト41の回転はプロペラシャフト42に伝達されない。すなわち、エンジン39とプロペラ40との間の駆動力伝達経路が遮断されるので、いずれの方向の推進力も生じない。
エンジン39に関連して、このエンジン39を始動させるためのスタータモータ45が配置されている。スタータモータ45は、制御ユニットとしてのECU(電子制御ユニット)20によって制御される。エンジン39には、さらに、クランク軸の回転を検出することによってエンジン39の回転速度を検出するためのエンジン回転速度センサ48が備えられている。
エンジン39の吸気経路には、スロットルバルブ46が配置されている。このスロットルバルブ46には、スロットルケーブル14が結合されている。シフトロッド44には、シフトケーブル15が結合されている。
さらに、推進ユニット30に固定された操舵ロッド47には、ハンドル装置6(図1参照)によって駆動される操舵機構53が結合されている。この操舵機構53によって、推進ユニット30が操舵軸35まわりに回動され、それによって舵取り操作を行うことができる。
また、クランプブラケット32とスイベルブラケット34との間には、たとえば液圧シリンダを含み、ECU20によって制御されるトリムアクチュエータ(チルトトリムアクチュエータ)54が設けられている。このトリムアクチュエータ54は、チルト軸33まわりにスイベルブラケット34を回動させることにより、推進ユニット30をチルト軸33まわりに回動させる。
図4は、エンジン39を含むエンジンシステムの構成を説明するための図である。エンジンシステムは、エンジン(内燃機関)39と、吸気系60と、燃料系70と、制御ユニットとしてのECU20とを含む。吸気系60は、エンジン39に空気を供給する。燃料系70は、エンジン39に燃料を供給する。エンジン39は、たとえば、ガソリンを燃料とする4ストローク機関(four-stroke cycle engine)であってもよい。
エンジン39に関連して、エンジン回転速度センサ48およびエンジン温度センサ50が設けられている。エンジン回転速度センサ48は、エンジン39のクランク軸56の回転に応じてパルス信号を生成するクランク角センサを含む。ECU50は、エンジン回転速度センサ48の出力信号に基づいて、エンジン回転速度(engine speed)を算出することができる。
吸気系60は、たとえば、サイレンサケース61と、スロットルボディ62と、サージタンク63と、エンジン39の気筒毎の吸気管64とを含み、これらは吸気通路を形成している。サイレンサケース61は、大気に開放された吸気口61aを有している。このサイレンサケース61にスロットルボディ62が接続されている。さらに、スロットルボディ62にサージタンク63が接続されている。サージタンク63から、気筒毎の吸気管64が延びており、エンジン39の各気筒の吸気口にそれぞれ接続されている。
スロットルボディ62は、内面が円筒状に形成された空気通路62aを有している。この空気通路62aにバタフライ式のスロットルバルブ46が設けられている。
スロットルボディ62には、後述するインジェクタ75の燃料噴射量を制御するための情報を収集するために、スロットル開度センサ65、吸気圧センサ66および吸気温センサ67が取り付けられている。スロットル開度センサ65は、スロットルバルブ46の開度を検出する。吸気圧センサ66は、空気通路62aを介して吸入される空気の圧力を検出する。吸気温センサ67は、空気通路62aを介して吸入される空気の温度を検出する。
スロットルボディ62には、バイパス通路68が一体的に設けられている。バイパス通路68は、空気通路62aのスロットルバルブ46に対して上流側と下流側とを接続している。換言すれば、バイパス通路68は、空気通路62aにおいてスロットルバルブ46よりもエンジン39に近い側を、スロットルバルブ46をバイパスして大気に連通させている。バイパス通路68には、アイドルスピードコントロール(ISC)バルブ69が介装されている。ISCバルブ69は、全開状態と全閉状態とそれらの間の中間開度に制御可能なバルブ、すなわち、開度調整が可能なアイドル開度調整バルブである。バイパス通路68は、たとえば、ISCバルブ69の開度調整によって、エンジン39のアイドル回転速度を維持するのに必要な流量の空気が流通するように設計されている。
燃料系70は、フィルタ71と、低圧燃料ポンプ72と、ベーパセパレータタンク73と、高圧燃料ポンプ74と、インジェクタ75と、ベーパ配管76(76a,76b)と、ベーパシャットバルブ(VSV)77と、燃料配管78(78a,78b)とを含む。
低圧燃料ポンプ72は、エンジン39によって駆動される。この低圧燃料ポンプ72と船体2に配置された燃料タンク80とが燃料配管78aによって接続されており、この燃料配管78aの途中にフィルタ71が介装されている。フィルタ71は、燃料中の異物を捕獲する。さらに、低圧燃料ポンプ72とベーパセパレータタンク73とが燃料配管78bによって接続されている。低圧燃料ポンプ72は、燃料タンク80から燃料を汲み出し、燃料配管78(78a,78b)を介してベーパセパレータタンク73へその燃料を供給する。
ベーパセパレータタンク73は、燃料タンク80から汲み上げられた燃料を貯留するとともに、燃料の蒸気(ベーパ)または空気と、液体の燃料とを分離する。ベーパセパレータタンク73は、ベーパセパレータタンク73内に貯留される燃料が一定の量に保たれるとともに、ベーパセパレータタンク73内の燃料の液面位置が所定の高さ位置に保たれるように構成されている。具体的には、ベーパセパレータタンク73内にニードルバルブ73bを有するフロート(浮き)73aが設けられている。フロート73aが燃料の液面高に応じて上下動し、それに応じて、ニードルバルブ73bが、燃料配管78bの吐出口を開閉する。これにより、ベーパセパレータタンク73内の燃料の液面位置が保持される。
高圧燃料ポンプ74は、ベーパセパレータタンク73内に配置されており、ベーパセパレータタンク73内の燃料をデリバリーパイプ79を介してインジェクタ75へと輸送する。インジェクタ75は、高圧燃料ポンプ74により所定の圧力で送り出された燃料を、エンジン39のシリンダ(図示せず)の吸気口の近傍に向けて、所定のタイミングで噴射する。
ベーパセパレータタンク73の上部は、ベーパ配管76を介してスロットルボディ62と接続されている。これにより、ベーパセパレータタンク73内のベーパがスロットルボディ62の空気通路62aに逃がされる。ベーパ配管76の途中に、ベーパシャットバルブ(VSV)77が介装されている。ベーパシャットバルブ77は、ベーパ配管76を開閉するオンオフバルブである。このベーパシャットバルブ77を制御することにより、ベーパを逃がすタイミングを制御することができる。
ECU20は、高圧燃料ポンプ74、インジェクタ75、ベーパシャットバルブ77、点火コイル57、ISCバルブ69、スタータモータ45などのアクチュエータ類を制御する。点火コイル57は、エンジン39に備えられた点火プラグ58に火花放電のためのエネルギーを供給する。点火プラグ58は、エンジン39の燃焼室内で火花放電するように配置されている。ECU20には、バッテリ12からの電力が、キースイッチ4を介して供給される。またECU20には、リモコン装置7からの操作信号、始動/停止スイッチ81の操作信号、トロール出力操作部84の操作信号などの操作信号が入力されている。さらに、ECU20には、エンジン回転速度センサ48、エンジン温度センサ50、スロットル開度センサ65、吸気圧センサ66、吸気温センサ67などのセンサ類の検出信号が入力されている。
ECU20は、スロットル開度センサ65、吸気圧センサ66、吸気温センサ67の検出結果に基づいて、インジェクタ75の燃料噴射量を制御する。また、ECU20は、スロットル開度センサ65によって検出されるスロットル開度が全閉(アイドル開度の一例)のときに、エンジン温度センサ50によって検出されるエンジン温度に基づいて目標エンジン回転速度を設定する。
ECU20は、エンジン39の停止時にはベーパシャットバルブ77を閉じる。また、ECU20は、エンジン39を始動するときに、ベーパシャットバルブ77を開く。ECU20は、エンジン39の始動が完了した後も、ベーパセパレータタンク73内の高温の燃料が燃料タンク80から供給される低温の燃料に入れ替わるまでの期間において、ベーパシャットバルブ77を開状態に保持する。
図5は、ECU20によるトローリング制御の第1の具体例を説明するためのフローチャートである。ECU20は、図5に示す処理を繰り返し実行する。ECU20は、複数の制御モードを有していて、それらの制御モードを切り換えながら船外機3を制御する。複数の制御モードは、トロールモードと、通常モードとを含む。トロールモードとは、スロットル開度が一定に保持されている状態で、トロール出力操作部84の操作に応じてエンジン出力を変動させる制御モードである。通常モードとは、リモコン装置7のレバー7aの操作に応じて、すなわち、スロットル開度に応じてエンジン出力を定め、トロール出力操作部84の操作には応答しない制御モードである。
ECU20は、スロットル開度センサ65の出力信号を参照して記録することにより、制御モードがトロールモードに入ってからのスロットル開度Thの変化量(絶対値)が所定の変動閾値A(A>0)未満かどうかを判断する(ステップS1)。スロットル開度Thの変化量が変動閾値Aに達すると、ECU20は、トロールモードを終了する(ステップS2)。すなわち、制御モードが通常モードに切り換わる。ステップS1における判断は、スロットル開度Thが所定のトロールモード解除閾値未満かどうかの判断に代えてもよい。すなわち、スロットル開度Thがトロールモード解除閾値に達すると、トロールモードを終了するようにしてもよい。
なお、この実施形態では、スロットルバルブ46はスロットルケーブル14によってリモコン装置7に機械的に結合されているので、スロットル開度センサ65が検出するスロットル開度Thは、リモコン装置7の操作量(アクセル操作量)に対応することになる。
この具体例では、トロールモードにおけるエンジン出力の変動が、点火プラグ58の点火時期の調整(より具体的には遅角制御)によって行われる。より具体的には、通常の点火タイミングから所定の遅角上限値B(0<B≦90度)までの範囲で遅角制御が行われる。この範囲内で、エンジン出力を減少させるときには遅角量を大きくすることによって点火時期が遅角させられ、エンジン出力を増加させるときには遅角量を小さくすることによって点火時期が進角させられる。トロールモードを終了するときには、点火時期が通常の点火タイミングに戻される。通常の点火タイミングとは、たとえば、上死点前10度のクランク角位置である。遅角量は、たとえば、通常の点火タイミングにおけるクランク角位置(たとえば上死点前10度)と、それに対してクランク軸の回転方向上流側に設定される点火位置との間のクランク軸の回転角によって表される。遅角上限値Bは、90度以下に設定されればよく、たとえば50度程度とされてもよい。
ECU20は、さらに、トロール出力操作部84の出力アップスイッチ84Uまたは出力ダウンスイッチ84Dが操作されたかどうかを判断する(ステップS3)。いずれのスイッチの操作も検出されなければ、ステップS1からの処理を繰り返す。いずれかのスイッチ84U,84Dの操作が検出されると(ステップS3:YES)、ECU20は、さらに、出力ダウンスイッチ84Dが操作されたかどうかを判断する(ステップS4)。出力ダウンスイッチ84Dが操作されたときには(ステップS4:YES)、現在の遅角量が遅角上限値B未満かどうかを判断する(ステップS5)。遅角量が遅角上限値Bに達していれば(ステップS5:NO)、それ以上の遅角はできないので、遅角量を維持して(ステップS6)、処理を終える。一方、遅角量が遅角上限値未満であれば(ステップS5:YES)、ECU20は、所定の遅角変量α(0<α。たとえばα=5度)だけ遅角量を増加させる(ステップS7)。そして、そのときの制御モードがトロールモードでなければ、ECU20は、制御モードをトロールモードに切り換える(ステップS8)。
ステップS4における判断が否定のときは、出力アップスイッチ84Uが操作されたことになる。そこで、ECU20は、現在の遅角量が遅角変量αよりも大きいかどうかを判断する(ステップS9)。すなわち、通常の点火タイミングを超えて進角しない範囲で進角させる余地があるかどうかを判断する。この判断が否定されると、もはやエンジン出力を増加させることができないので、ECU20は、遅角量を零として点火タイミングを通常の点火タイミングに戻し、トロールモードを終了して通常モードによる制御に復帰する(ステップS10)。一方、現在の遅角量が遅角変量α以下であれば、ECU20は、遅角変量αだけ点火時期を進角させる(ステップS11)。
このような処理が行われることにより、エンジン回転速度Nがアイドル回転速度域であるか否かによらずに、トロール出力操作部84が操作されるたびに、それに応答してエンジン出力が遅角変量αの分ずつ段階的に増減することになる。すなわち、操船者がリモコン装置7のレバー7aの操作によってスロットル開度を調節してエンジン出力を大まかに設定している状態から、トロール出力操作部84の操作によって、エンジン出力の微調整を行うことができる。これにより、スロットル開度がアイドル開度(たとえば全閉)以外の場合でも、一定に保持されている限りにおいて(ステップS1参照)、トロール出力操作部84の操作によって、エンジン出力の段階的な微調整が可能になる。その結果、エンジン回転速度が低い場合だけでなく、比較的高いエンジン回転速度領域においても、エンジン出力の微調整を行うことができる。したがって、使い勝手のよいトローリング機能を提供できる。
また、リモコン装置7のレバー7aの操作から、トロール出力操作部84の操作に切り換えることによって、制御モードが、通常モードからトロールモードに移行する。そして、リモコン装置7のレバー7aを操作してスロットル開度を変動閾値Aを超えて増減させることにより、トロールモードから通常モードへと移行する。したがって、操船者は、制御モードを意識する必要がないので、エンジン出力の調整のための操作が容易である。
図6は、ECU20によるトローリング制御の第2の具体例を説明するためのフローチャートである。図6において、前述の図5の各ステップと同様の処理が行われるステップは図5と同一の参照符号で示す。図5に示す第1の具体例では、一定の遅角変量αずつ点火時期を変化させている。これに対して、図6に示す第2の具体例では、トロール出力操作部84の操作に応答して、一定のエンジン回転速度変量ΔNずつエンジン回転速度が変動するように点火時期が調整される。
ECU20は、通常モードにおいて、スロットル開度に応じた目標エンジン回転速度Nを設定し、その目標エンジン回転速度Nが達成されるように燃料噴射量等を制御し、それによって、エンジン出力をスロットル開度に対応させる。一方、ECU20は、トロールモードにおいては、トロール出力操作部84の操作に応じて目標エンジン回転速度Nを変動させ、その目標エンジン回転速度Nが達成されるように点火プラグ58の点火時期を調整する。
具体的に説明すると、ECU20は、トロールモードを開始したときの目標エンジン回転速度Nを初期目標エンジン回転速度N として記憶している。出力ダウンスイッチ84Dが操作されると(ステップS4:YES)、ECU20は、初期目標エンジン回転速度N と現在の目標エンジン回転速度Nとの差が所定の閾値ΔN未満かどうかを判断する(ステップS21)。当該差が閾値ΔNに達していれば、ECU20は、現在の目標エンジン回転速度Nを維持する(ステップS22)。一方、前記差が閾値ΔNに達していなければ(ステップS21:YES)、ECU20は、目標エンジン回転速度Nを所定の変量ΔN(たとえばΔN=50rpm)だけ減少させる(ステップS24)。これに先だって、ECU20は、まだトロールモードに入っていないときには、制御モードをトロールモードに切り換え、さらに変更前の目標エンジン回転速度Nを初期目標エンジン回転速度N に設定する(ステップS23)。前記閾値ΔNは、点火時期の遅角によって減少させることができるエンジン回転速度変化量の上限値である。
一方、ステップS4における判断が否定のときは、出力アップスイッチ84Uが操作されたことになる。そこで、ECU20は、初期目標エンジン回転速度N と現在の目標エンジン回転速度Nとの差が前記変量ΔNよりも大きいかどうかを判断する(ステップS25)。すなわち、初期目標エンジン回転速度N を超えない範囲で目標エンジン回転速度Nを増加させる余地があるかどうかを判断する。この判断が否定されると、もはや目標エンジン回転速度Nを増加させることができないので、ECU20は、遅角量を零として点火タイミングを通常の点火タイミングに戻し、トロールモードを終了して通常モードによる制御に復帰する(ステップS27)。一方、目標エンジン回転速度Nを変量ΔNだけ増加させる余地があれば(ステップS25:YES)、ECU20は、目標エンジン回転速度Nを変量ΔNだけ増加させる(ステップS26)。
そして、ECU20は、前述のようにして増減される目標エンジン回転速度Nが達成されるように、エンジン回転速度検出部48の出力に基づいて、点火時期をフィードバック制御する(ステップS28)。
このような処理が行われることにより、エンジン回転速度Nがアイドル回転速度域であるか否かによらずに、トロール出力操作部84が操作されるたびに、その操作に応答してエンジン回転速度が所定の変量ΔNずつ増減することになる。すなわち、操船者がリモコン装置7のレバー7aの操作によってスロットル開度を調節してエンジン出力を大まかに設定している状態から、トロール出力操作部84を操作すると、そのときの目標エンジン回転速度Nが、初期目標エンジン回転速度N とされる。この初期目標エンジン回転速度N を基準目標エンジン回転速度として、トロール出力操作部84が操作されるたびに、段階的に目標エンジン回転速度が微調整される。これにより、スロットル開度がアイドル開度(たとえば全閉)以外の場合でも、一定に保持されている限りにおいて(ステップS1参照)、トロール出力操作部84の操作により、エンジン回転速度の段階的な微調整が可能になる。その結果、エンジン回転速度が低い場合だけでなく、比較的高いエンジン回転速度領域においても、エンジン回転速度の微調整を行うことができる。したがって、使い勝手のよいトローリング機能を提供できる。その他、第1の具体例と同様の効果を実現できる。
さらに、第2の具体例では、目標エンジン回転速度Nが所定の変量ΔNずつ変化するように点火時期が制御されるから、より正確にエンジン出力を調整することができる。これにより、さらに、使い勝手のよいトローリング機能を提供できる。
図7は、ECU20によるトローリング制御の第3の具体例を説明するためのフローチャートである。図7において、前述の図6の各ステップと同様の処理が行われるステップは図6と同一の参照符号で示す。第1および第2の具体例においては、トロールモードのときは、点火時期の遅角制御によって、エンジン出力が変動させられている。これに対して、この第3の具体例では、ISCバルブ69の開度を調整することにより、トロールモードにおけるエンジン出力の調整が行われる。
ECU20は、通常モードにおいて、スロットル開度に応じた目標エンジン回転速度Nを設定し、その目標エンジン回転速度Nが達成されるように燃料噴射量等を制御し、それによって、エンジン出力をスロットル開度に対応させる。一方、ECU20は、トロールモードにおいては、トロール出力操作部84の操作に応じて目標エンジン回転速度Nを変動させ、その目標エンジン回転速度Nが達成されるようにISCバルブ69の開度を調整する。
具体的に説明すると、ECU20は、トロールモードを開始したときの目標エンジン回転速度Nを初期目標エンジン回転速度N として記憶している。出力ダウンスイッチ84Dが操作されると(ステップS4:YES)、ECU20は、ISCバルブ69の開度(ISC開度)が調整下限値α(たとえばα=30%)よりも大きいかどうかを判断する(ステップS31)。ISCバルブ69の開度が調整下限値α以下であれば(ステップS31:NO)、ECU20は、現在の目標エンジン回転速度Nを維持する(ステップS32)。一方、ISCバルブ69の開度が調整下限値αよりも大きければ(ステップS31:YES)、ECU20は、目標エンジン回転速度Nを所定の変量ΔN1(たとえばΔN1=50rpm)だけ減少させる(ステップS34)。これに先だって、ECU20は、まだトロールモードに入っていないときには、制御モードをトロールモードに切り換え、さらに変更前の目標エンジン回転速度Nを初期目標エンジン回転速度N に設定する(ステップS33)。
一方、ステップS4における判断が否定のときは、出力アップスイッチ84Uが操作されたことになる。そこで、ECU20は、現在のISCバルブ69の開度が開度調整上限値β(β>α。たとえばβ=70%)未満かどうかを判断する(ステップS35)。この判断が否定されると、ECU20は、現在の目標エンジン回転速度Nを維持する(ステップS36)。一方、ISCバルブ69の開度が開度調整上限値β未満であれば(ステップS35:YES)、ECU20は、目標エンジン回転速度Nを変量ΔN1だけ増加させる(ステップS37)。
そして、ECU20は、前述のようにして増減される目標エンジン回転速度Nが達成されるように、エンジン回転速度検出部48の出力に基づいて、ISCバルブ69の開度をフィードバック制御する(ステップS38)。
このような処理が行われることにより、エンジン回転速度Nがアイドル回転速度域であるか否かによらずに、トロール出力操作部84が操作されるたびに、その操作に応答してエンジン回転速度が所定の変量ΔN1ずつ増減することになる。すなわち、操船者がリモコン装置7のレバー7aの操作によってスロットル開度を調節してエンジン出力を大まかに設定している状態から、トロール出力操作部84を操作すると、そのときの目標エンジン回転速度Nが、初期目標エンジン回転速度N とされる。この初期目標エンジン回転速度N を基準目標エンジン回転速度として、トロール出力操作部84が操作されるたびに、段階的に目標エンジン回転速度が微調整される。これにより、スロットル開度がアイドル開度(たとえば全閉)以外の場合でも、一定に保持されている限りにおいて(ステップS1参照)、トロール出力操作部84の操作により、エンジン回転速度の段階的な微調整が可能になる。その結果、エンジン回転速度が低い場合だけでなく、比較的高いエンジン回転速度領域においても、エンジン回転速度の微調整を行うことができる。したがって、使い勝手のよいトローリング機能を提供できる。その他、第1の具体例と同様の効果を実現できる。
トロールモード中にスロットル開度変化量が変動閾値Aを超えると(ステップS1:NO)、ECU20は、ISCバルブ69の開度を、トロールモードに入る直前の開度に制御して、トロールモードを終了する(ステップS39)。
以上、この発明の一実施形態について説明してきたが、この発明は、さらに他の形態で実施することもできる。たとえば、前述の実施形態では、出力ダウンスイッチ84Dおよび出力ダウンスイッチ84Dを備えたトロール出力操作部84について説明した。しかし、トロールモードにおけるエンジン出力微調整のためのトロール出力操作部は、回動操作可能な抓み(ダイヤル)等の他の操作部材によって構成することもできる。
さらに、前述の実施形態では、ハンドル装置6およびリモコン装置7を備えた操作系を示したが、図8に示すような操作系を備えた構成に対してもこの発明を適用できる。この例では、船外機3の操舵ロッド47(図3参照)にティラハンドル90が結合されている。操船者はティラハンドル90を左右に動かすことによって、船外機3を船体2に対して左右に回動させることができ、それによって、推進力の方向を変更して操舵を行うことができる。ティラハンドル90の先端部には、スロットルコントロールグリップ91が設けられている。スロットルコントロールグリップ91は、ティラハンドル90の軸部の回りに回動可能に設けられている。このスロットルコントロールグリップ91の回動操作が、スロットルバルブ46(図3参照)に機械的に伝達されるようになっている。また、ティラハンドル90において、スロットルコントロールグリップ91の近傍には、フリクションアジャスタ92が配置されている。フリクションアジャスタ92は、スロットルコントロールグリップ91を操作するときの摩擦抵抗を調整するための操作部材である。フリクションアジャスタ92による摩擦抵抗の調整によって、たとえば、スロットルコントロールグリップ91を任意の操作位置で固定しておくことができる。ティラハンドル90の根元部付近には、シフトレバー93が配置されている。シフトレバー93の操作は、シフトロッド44(図3参照)に機械的に伝達される。また、ティラハンドル90には、トロール出力操作部94が設けられていてもよい。トロール出力操作部94は、前述の実施形態のトロール出力操作部84と同様に、出力アップスイッチ94Uおよび出力ダウンスイッチ94Dを備えていることが好ましい。すなわち、これらのスイッチ94U,94Dの操作によって、アイドル回転速度を基準目標エンジン回転速度として目標エンジン回転速度を段階的に増減できるトローリング推進機能が提供されてもよい。
また、前述の実施形態では、アクセル操作ユニット(リモコン装置7、スロットルコントロールグリップ91)の操作が、スロットルバルブに機械的に伝達される構成について説明した。しかし、この発明は、アクセル操作ユニットの操作量をセンサによって検出し、そのセンサの出力信号に基づいてスロットルバルブをアクチュエータによって駆動する構成(いわゆる電子スロットル)に対しても適用可能である。
また、前述の実施形態では、船外機を例示したが、むろん、船外機以外の船舶推進機に対してこの発明を適用することもできる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 船舶
3 船外機
4 キースイッチ
7 リモコン装置
7a レバー
8 操作パネル
20 ECU
30 推進ユニット
39 エンジン
40 プロペラ
43 シフト機構
46 スロットルバルブ
48 エンジン回転速度センサ
56 クランク軸
57 点火コイル
58 点火プラグ
60 吸気系
61 サイレンサケース
62 スロットルボディ
63 サージタンク
64 吸気管
65 スロットル開度センサ
66 吸気圧センサ
67 吸気温センサ
68 バイパス通路
69 アイドルスピードコントロールバルブ
70 燃料系
72 低圧燃料ポンプ
74 高圧燃料ポンプ
75 インジェクタ
80 燃料タンク
81 始動/停止スイッチ
84 トロール出力操作部
84U 出力アップスイッチ
84D 出力ダウンスイッチ
90 ティラハンドル
91 スロットルコントロールグリップ
92 フリクションアジャスタ
93 シフトレバー
94 トロール出力操作部
94U 出力アップスイッチ
94D 出力ダウンスイッチ

Claims (11)

  1. 船舶に与えられる推進力の発生源としてのエンジンと、
    前記エンジンに供給される空気量を調整するためのスロットルバルブと、
    スロットル開度を調整するために操作者によって操作されるアクセル操作ユニットと、
    前記アクセル操作ユニットの操作量に応じて定まるスロットル開度がアイドル開度以外の一定値に保持されているときに、前記エンジンの出力を変動させる制御ユニットとを含む、船舶推進システム。
  2. トローリング時の前記エンジンの出力を調整するために操作者によって操作されるトロール出力操作手段をさらに含み、
    前記制御ユニットは、前記トロール出力操作手段の操作に応じて、前記エンジンの出力を変動させる、請求項1に記載の船舶推進システム。
  3. 前記制御ユニットは、前記アクセル操作ユニットの操作量に対応する前記エンジンの出力を基準出力として、前記トロール出力操作手段の操作に応じて、前記エンジンの出力の前記基準出力からの変動量を設定する、請求項2に記載の船舶推進システム。
  4. 前記トロール出力操作手段は、操作者の操作に応じた複数段階の指令を出力するように構成されており、
    前記制御ユニットは、前記トロール出力操作手段が出力する指令に応じて、前記基準出力から複数段階に設定された変動量だけ前記エンジンの出力を変動させる、請求項3に記載の船舶推進システム。
  5. 前記トロール出力操作手段は、前記エンジンの出力を増加させるための出力アップ操作子を含み、
    前記制御ユニットは、前記出力アップ操作子の操作に応答して、前記エンジンの出力を所定量だけ増加させる、請求項2〜4のいずれか一項に記載の船舶推進システム。
  6. 前記トロール出力操作手段は、前記エンジンの出力を減少させるための出力ダウン操作子を含み、
    前記制御ユニットは、前記出力ダウン操作子の操作に応答して、前記エンジンの出力を所定量だけ減少させる、請求項2〜5のいずれか一項に記載の船舶推進システム。
  7. 前記制御ユニットが、前記エンジンの点火時期を変動させることによって、前記スロットル開度がアイドル開度以外の一定値に保持されているときの前記エンジンの出力を変動させる、請求項1〜6のいずれか一項に記載の船舶推進システム。
  8. 前記スロットルバルブをバイパスして前記エンジンに空気を供給するバイパス通路と、前記バイパス通路に配置された開度調整可能なアイドル開度調整バルブとをさらに含み、
    前記制御ユニットが、前記アイドル開度調整バルブの開度を変動させることによって、前記スロットル開度がアイドル開度以外の一定値に保持されているときの前記エンジンの出力を変動させる、請求項1〜6のいずれか一項に記載の船舶推進システム。
  9. 前記制御ユニットは、前記アクセル操作ユニットの操作量に応じた基準目標エンジン回転速度を設定し、前記基準目標エンジン回転速度を基準に目標エンジン回転速度を変動させ、当該目標エンジン回転速度が達成されるように前記エンジンを制御する、請求項1〜8のいずれか一項に記載の船舶推進システム。
  10. 前記制御ユニットは、前記アクセル操作ユニットの操作量に対応するように前記エンジンの出力を制御する通常モードと、前記アクセル操作ユニットの操作量が一定値に保持されていても前記エンジンの出力を変動させるトロールモードとを含む複数の制御モードを有している、請求項1〜9のいずれか一項に記載の船舶推進システム。
  11. 前記制御ユニットは、前記トロールモードのときに、前記アクセル操作ユニットの操作量が所定操作量以上となったことに応答して、または前記アクセル操作ユニットの操作量が前記一定値から所定値以上変動したことに応答して、前記トロールモードを解除する、請求項10に記載の船舶推進システム。
JP2012150727A 2012-07-04 2012-07-04 船舶推進システム Pending JP2014012460A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012150727A JP2014012460A (ja) 2012-07-04 2012-07-04 船舶推進システム
US13/928,457 US9586664B2 (en) 2012-07-04 2013-06-27 Vessel propulsion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150727A JP2014012460A (ja) 2012-07-04 2012-07-04 船舶推進システム

Publications (1)

Publication Number Publication Date
JP2014012460A true JP2014012460A (ja) 2014-01-23

Family

ID=49879144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150727A Pending JP2014012460A (ja) 2012-07-04 2012-07-04 船舶推進システム

Country Status (2)

Country Link
US (1) US9586664B2 (ja)
JP (1) JP2014012460A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011105382B4 (de) 2011-06-27 2016-06-30 Toyota Jidosha Kabushiki Kaisha Drossel und Herstellungsverfahren dafür
DK2990327T3 (en) * 2014-08-29 2018-06-06 Caterpillar Propulsion Production Ab Marine Vessel Power System and Procedure
CN109334894B (zh) * 2018-11-02 2023-09-12 中国船舶重工集团公司第七0三研究所 一种船用智能型数字式调速器
JP2023094870A (ja) * 2021-12-24 2023-07-06 ヤマハ発動機株式会社 船舶推進システムおよび船舶

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680306B2 (ja) 1984-07-02 1994-10-12 日本電装株式会社 内燃機関の点火時期制御装置
JP3279032B2 (ja) * 1993-12-16 2002-04-30 スズキ株式会社 船外機のエンジン回転数制御装置
JPH0828416A (ja) * 1994-07-13 1996-01-30 Sanshin Ind Co Ltd エンジンの点火時期制御装置
JP3707577B2 (ja) * 1996-12-18 2005-10-19 ヤマハマリン株式会社 船舶用エンジンの運転制御装置
JP3860343B2 (ja) * 1997-11-25 2006-12-20 株式会社ケーヒン 船舶搭載エンジンの制御装置
US6539299B2 (en) * 2000-02-18 2003-03-25 Optimum Power Technology Apparatus and method for calibrating an engine management system
JP2002213290A (ja) 2001-01-19 2002-07-31 Sanshin Ind Co Ltd 小型船舶における内燃機関のエンジン回転数調整装置
JP4666492B2 (ja) * 2005-10-07 2011-04-06 ヤマハ発動機株式会社 船舶
JP4553956B2 (ja) * 2008-05-16 2010-09-29 三菱電機株式会社 アイドル回転速度制御装置

Also Published As

Publication number Publication date
US9586664B2 (en) 2017-03-07
US20140012440A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
US7647143B2 (en) Speed control device for water jet propulsion boat
US7364480B2 (en) Engine output control system for water jet propulsion boat
US20040065300A1 (en) Engine speed control system for outboard motor
JPH10176560A (ja) 船舶用エンジンの運転制御装置
US9586664B2 (en) Vessel propulsion system
JP2002213290A (ja) 小型船舶における内燃機関のエンジン回転数調整装置
JP2006194169A (ja) エンジン制御装置
JP4462682B2 (ja) 小型船舶用推進機
US9200586B2 (en) Engine system
JP4553956B2 (ja) アイドル回転速度制御装置
US8944864B2 (en) Outboard motor control apparatus
JP2001113987A (ja) 船舶用推進機
US7056165B2 (en) Control system for outboard motor
JP2005016354A (ja) 水ジェット推進艇のエンジン出力制御装置
US9574503B2 (en) Engine and outboard motor
US9290253B2 (en) Outboard motor control apparatus
US8858281B2 (en) Outboard motor control apparatus
US20110318977A1 (en) Marine vessel propulsion apparatus
JP2001152895A (ja) 船外機用エンジンの運転制御方法
US20110294376A1 (en) Outboard motor control apparatus
US9676461B2 (en) Fuel supply device and outboard motor
JP5449028B2 (ja) 船外機
US9416737B2 (en) Boat propulsion device and float position determining method
US8555856B2 (en) Engine speed control apparatus for outboard motor
US8366500B2 (en) Outboard motor control apparatus