JP2014011497A - 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム - Google Patents

画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム Download PDF

Info

Publication number
JP2014011497A
JP2014011497A JP2012144543A JP2012144543A JP2014011497A JP 2014011497 A JP2014011497 A JP 2014011497A JP 2012144543 A JP2012144543 A JP 2012144543A JP 2012144543 A JP2012144543 A JP 2012144543A JP 2014011497 A JP2014011497 A JP 2014011497A
Authority
JP
Japan
Prior art keywords
unit
region
frame
depth
basic matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012144543A
Other languages
English (en)
Other versions
JP5953142B2 (ja
Inventor
Kosuke Matsubara
浩輔 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2012144543A priority Critical patent/JP5953142B2/ja
Publication of JP2014011497A publication Critical patent/JP2014011497A/ja
Application granted granted Critical
Publication of JP5953142B2 publication Critical patent/JP5953142B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)

Abstract

【課題】演算量を減らしつつ高精度の基礎行列が得られる画像処理装置を提供する。
【解決手段】特徴点検出部124及び特徴量算出部126はNフレーム目とN+1フレーム目の画像の特徴点を決定し、マッチング算出部128はそれら特徴点の対応関係を取得する。基礎行列算出部142は、対応関係が得られた特徴点に基づいて基礎行列を算出する。基本行列算出部144は基礎行列に基づいて基本行列を算出し、回転・並進算出部146は基礎行列に基づいてNフレーム目からN+1フレーム目までの間の撮像部の変位を算出する。補正部150は、この変位に基づいてNフレーム目とN+1フレーム目との間の画像のブレを除去する。奥行算出部148は、基礎行列に基づいて特徴点の奥行を算出する。マッチング設定部127は、この奥行に基づいてマッチング算出部128で対応関係を得る特徴点数を、奥行ごとにほぼ等しくなるように削減させる。
【選択図】図2

Description

本発明は、画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラムに関する。
一般に、同一被写体を異なる方向から撮像した複数の画像について、これら画像を取得したカメラの画像を取得した際の位置及び姿勢の違いは、その画像に基づいて得られることが知られている。すなわち、画像間の差異に基づいて基礎行列が得られ、この基礎行列に基づいて上述のカメラの位置及び姿勢の関係が算出されることが知られている。例えば特許文献1には、複数の画像から算出された基礎行列及びその基礎行列から算出された基本行列に基づいて、これら画像間の動き情報を算出し、算出した動き情報に基づいて、画像の防振補正を行う技術が開示されている。ここで基礎行列は、対象とする画像間で互いに対応する対応点に基づいて算出されている。また、特許文献1には、演算量を削減するために、検出された特徴点の周辺では特徴点を検出しないことが開示されている。
特開2008−259076号公報
基礎行列を高精度に得るためには、基礎行列の算出に用いる対応点の選択が重要な役割を果たすことが知られている。例えば、その被写体が存在する空間に対応する奥行がなくて平面上に位置する点が対応点として選択された場合、基礎行列は算出され得ない。また、この奥行が小さい場合、算出される基礎行列の精度は低くなる。
特許文献1に開示されている技術では、特徴点の点数を減らすことで演算量を減らすことは考慮されている。しかしながら、上述の基礎行列の精度のことは考慮されていない。例えば、奥行に偏りがある被写体の場合、特徴点の点数を削減することで得られる基礎行列の精度が低下する恐れがある。
そこで本発明は、演算量を減らしつつ、精度が高い基礎行列を得ることができる画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラムを提供することを目的とする。
前記目的を果たすため、本発明の一態様によれば、画像処理装置は、動画像を取得する画像取得部と、前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定する領域設定部と、前記第1の領域と前記第2の領域との各々の対応関係を算出するマッチング取得部と、複数の前記対応関係に基づいて基礎行列を算出する基礎行列算出部と、前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出する奥行算出部と、前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を前記領域設定部に削減させる設定変更部と、を具備することを特徴とする。
前記目的を果たすため、本発明の一態様によれば、撮像装置は、動画像を撮像する撮像部と、前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定する領域設定部と、前記第1の領域と前記第2の領域との各々の対応関係を算出するマッチング取得部と、複数の前記対応関係に基づいて基礎行列を算出する基礎行列算出部と、前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出する奥行算出部と、前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を前記領域設定部に削減させる設定変更部と、前記基礎行列に基づいて算出される基本行列に基づいて、前記第1のフレームと前記第2のフレームとの間に存在するブレを補正する補正部と、を具備することを特徴とする。
前記目的を果たすため、本発明の一態様によれば、画像処理方法は、動画像を取得することと、前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定することと、前記第1の領域と前記第2の領域との各々の対応関係を算出することと、複数の前記対応関係に基づいて基礎行列を算出することと、前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出することと、前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を削減させることと、を具備することを特徴とする。
前記目的を果たすため、本発明の一態様によれば、画像処理プログラムは、動画像を取得することと、前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定することと、前記第1の領域と前記第2の領域との各々の対応関係を算出することと、複数の前記対応関係に基づいて基礎行列を算出することと、前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出することと、前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を削減させることと、をコンピュータに実行させる。
本発明によれば、奥行に基づいて、基礎行列の算出に用いる領域の数を削減させるので、演算量を減らしつつ、精度が高い基礎行列を得ることができる画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラムを提供できる。
第1の実施形態に係る画像処理装置の構成例を示すブロック図。 第1の実施形態に係るブレ補正部の構成例を示すブロック図。 第1の実施形態に係る基礎行列算出部の構成例を示すブロック図。 第1の実施形態に係るブレ補正処理の一例を示すフローチャート。 第1の実施形態に係る特徴点追跡処理の一例を示すフローチャート。 第1の実施形態に係る特徴点追跡処理を説明するための図であって、処理対象の画像例を示す模式図。 第1の実施形態に係る特徴点追跡処理を説明するための図であって、処理対象の画像における特徴点の一例を示す模式図。 第1の実施形態に係る特徴点追跡処理を説明するための図であって、処理対象の画像における特徴点の対応の一例を示す模式図。 第1の実施形態に係る姿勢推定処理の一例を示すフローチャート。 第1の実施形態に係る基礎行列算出処理の一例を示すフローチャート。 第1の実施形態に係るインライア個数算出処理の一例を示すフローチャート。 第1の実施形態に係る点数削減特徴点追跡処理の一例を示すフローチャート。 第1の実施形態に点数削減特徴点追跡処理を説明するための図であって、処理対象の画像例を示す模式図。 第1の実施形態に係る点数削減特徴点追跡処理を説明するための図であって、特徴点追跡処理によって得られる特徴点の一例を示す模式図。 第1の実施形態に係る点数削減特徴点追跡処理を説明するための図であって、点数削減特徴点追跡処理で得られる特徴点の一例を示す模式図。 第1の実施形態に係る点数削減特徴点追跡処理を説明するための図であって、比較例の処理で得られる特徴点の一例を示す模式図。 第1の実施形態に係る点数削減特徴点追跡処理を説明するための図であって、奥行と特徴点数との関係を説明するための図。 第2の実施形態に係るブレ補正部の構成例を示すブロック図。 第2の実施形態に係る点数削減特徴点追跡処理の一例を示すフローチャート。 第3の実施形態に係るブレ補正部の構成例を示すブロック図。 第3の実施形態に係る点数削減特徴点追跡処理の一例を示すフローチャート。 第3の実施形態に係る点数削減特徴点追跡処理で得られる特徴点の一例を示す模式図。 第4の実施形態に係るブレ補正部の構成例を示すブロック図。 第4の実施形態に係るブレ補正処理の一例を示すフローチャート。 第4の実施形態に係るブロックマッチング処理の一例を示すフローチャート。 第4の実施形態に係る点数削減ブロックマッチング処理の一例を示すフローチャート。 第5の実施形態に係る画像処理装置を備えたデジタルカメラの構成例を示すブロック図。
[第1の実施形態]
本発明の第1の実施形態について図面を参照して説明する。本実施形態に係る画像処理装置10の構成例の概略を図1に示す。画像処理装置10は、入力された動画像に対してブレを除去する処理を施し、ブレが除去された動画像を出力する装置である。画像処理装置10は、ブレ補正部100と、制御部11と、画像取得部12と、圧縮伸長部13と、第1の記憶部14と、第2の記憶部15と、画像出力部16とを備える。各部は、バス17を介して互いに接続されている。
ブレ補正部100は、後に詳述するとおりブレを除去する処理の中心を担う。ブレ補正部100は、対応点取得部110と、姿勢推定部140と、補正部150とを有する。制御部11は、例えばCPUを含み、画像処理装置10の各部の動作を制御し、また各種演算を行う。画像取得部12は、画像処理装置10で処理する動画像を取得する。圧縮伸長部13は、画像の圧縮及び伸長を行う。第1の記憶部14は、例えばRAMを含み、各種処理及び演算に必要な一時記憶を行う。第2の記憶部15は、例えばROMを含み、画像処理装置10の制御や演算に必要な各種プログラム等を記憶する。画像出力部16は、ブレを除去した動画像を出力する。なお、本実施形態においては、第1の記憶部14と第2の記憶部15とは別の構成としているが、1つの記憶部として構成されてもよい。
ブレ補正部100の構成例の詳細を図2に示す。この図に示すように、ブレ補正部100は、対応点取得部110と、姿勢推定部140と、補正部150とを備える。本実施形態では対応点取得部110は、特徴点に基づいて対応点を取得する特徴点追跡部120を含む。特徴点追跡部120は、特徴点検出部124と、特徴量算出部126と、マッチング設定部127と、マッチング算出部128とを有する。特徴点検出部124は、画像取得部12で取得され、バス17を介してブレ補正部100に入力された動画像のNフレーム目の画像とN+1フレーム目の画像(連続する画像間)とのそれぞれの特徴点の候補を検出する。特徴量算出部126は、特徴点検出部124で検出された特徴点の候補の特徴量を算出し、特徴量の高い点を特徴点として決定する。マッチング設定部127は、特徴量算出部126で決定された特徴点の奥行に応じて、以降の処理で用いる特徴点の点数を削減する。マッチング算出部128は、Nフレーム目の特徴点とN+1フレーム目の特徴点との対応関係を取得する。対応関係が取得された特徴点を第1の対応点と称することにする。
姿勢推定部140は、基礎行列算出部142と、基本行列算出部144と、回転・並進算出部146と、奥行算出部148とを有する。基礎行列算出部142の構成例の詳細を図3に示す。この図に示すように、基礎行列算出部142は、対応点抽出部1421と、仮基礎行列算出部1422と、インライア算出部1423と、繰り返し判定部1424と、基礎行列決定部1425とを有する。対応点抽出部1421は、対応点取得部110が取得した第1の対応点のうちから、例えば8点をランダムに抽出する。仮基礎行列算出部1422は、対応点抽出部1421により抽出された8点の第1の対応点に基づいて、基礎行列を算出する。ここで、ランダムに抽出された8点から算出された基礎行列を仮基礎行列と称することにする。インライア算出部1423は、対応点取得部110が取得した各第1の対応点について、仮基礎行列算出部1422が算出した仮基礎行列に基づいてエピポーラ線を算出し、このエピポーラ線と当該第1の対応点との距離を算出する。インライア算出部1423は、第1の対応点のそれぞれに対し、エピポーラ線との距離が所定の閾値より小さいか否かを判断し、所定の閾値未満(以下でもよい)の対応点をインライア対応点とし、第1の対応点のうちインライア対応点となる対応点の数を数える。繰り返し判定部1424は、各仮基礎行列に対応するインライア対応点の数の算出、つまり対応点抽出部1421の処理からインライア算出部1423までの処理を、所定の回数又は所定の条件を満たすまで繰り返させ、複数の仮基礎行列と当該仮基礎行列に対するインライア対応点の数を取得する。基礎行列決定部1425は、仮基礎行列に対するインライア対応点の数を比較し、最もインライア対応点の数が多い仮基礎行列を基礎行列として決定する。
図2に示される基本行列算出部144は、基礎行列算出部142によって算出された基礎行列に基づいて、基本行列を算出する。回転・並進算出部146は、基本行列算出部144によって算出された基本行列に基づいて、Nフレーム目を撮影した撮像装置に対するN+1フレーム目を撮影した撮像装置の回転及び並進を算出する。奥行算出部148は、基礎行列に基づいて、インライア算出部1423によってインライア対応点と判断された特徴点の3次元座標を算出し、その結果をマッチング設定部127に出力する。補正部150は、姿勢推定部140が算出した撮像装置の回転及び並進に基づいて、Nフレーム目の画像とN+1フレーム目の画像との間にあるブレを除去する補正を行う。
次に、本実施形態に係る画像処理装置によるブレの除去に係る動作を説明する。画像処理装置10におけるブレ補正処理を、図4に示すフローチャートを参照して説明する。画像取得部12により取得された画像データ(動画像データ)が、バス17を介してブレ補正部100に入力される。ステップS101において、ブレ補正部100は、動画像を取得し、フレームの番号を表す変数Nを1にする。ステップS102において、ブレ補正部100の特徴点追跡部120は、Nフレーム目とN+1フレーム目との間の特徴点の追跡を行う特徴点追跡処理を行う。
特徴点追跡処理を図5に示すフローチャート及び図6乃至8に示す模式図を参照して説明する。ここで図6(a)はNフレーム目の画像を示し、図6(b)はN+1フレーム目の画像を示す。この図は、手前に花があり、奥に家があり、飛行機が飛んでいる場面の画像である。この図6の場合、Nフレーム目の画像に対してN+1フレーム目の画像は、これら画像を撮影した撮像部が右奥方向に回り込んで撮影されている。
図5に示されるように、本発明の特徴点追跡処理では、まず、ステップS201において、特徴点追跡部120内の特徴点検出部124が、Nフレーム目の特徴点の候補の検出を行う。特徴点検出部124は、例えば画像における物体の角や線の交わり(コーナー)等を特徴点の候補として検出する。この特徴点の候補の検出には、例えば一般的に知られているHarrisオペレータを用いた方法が利用される。また、例えばエッジを検出するSUSAN(Smallest Univalue Segment Assimilating Nucleus)オペレータを用いた方法が利用されてもよい。HarrisオペレータやSUSANオペレータは一例であり、他の手法も用いられ得る。
ステップS202において、特徴点追跡部120内の特徴量算出部126は、ステップS201で特徴点検出部124によって検出された各特徴点の候補の特徴量を算出する。ここで、特徴量は、例えば一般に知られているSIFT(Scale Invariant Feature Transform)やSURF(Speeded Up Robust Features)を用いて算出される。SIFTやSURFは一例であり、他の手法も用いられ得る。特徴量算出部126は、特徴量に基づいて、特徴点の候補のうちから確からしい点を特徴点として決定する。例えばNフレーム目の画像が図6(a)に示された画像の場合、ステップS202の結果、例えば図7(a)に模式的に○印で示されるような特徴点が決定される。なお、通常であれば、特徴点の量は数千点にも及ぶことがあるが、ここでは説明を簡単にするため、数点の特徴点のみを例示する。
ステップS203において、特徴点追跡部120内の特徴点検出部124は、N+1フレーム目の特徴点の候補の検出を、ステップS201の場合と同様に行う。ステップS204において、特徴点追跡部120内の特徴量算出部126は、ステップS202の場合と同様にN+1フレーム目の特徴点の候補の特徴量を算出し、特徴点を決定する。例えばN+1フレーム目の画像が図6(b)に示された画像の場合、ステップS204の結果、例えば図7(b)に模式的に△印で示されるような特徴点が決定される。
これらNフレームの特徴点とN+1フレームの特徴点が決定された後、次に、ステップS205において、特徴点追跡部120内のマッチング算出部128は、Nフレーム目とN+1フレーム目との特徴点及びそれらの特徴量を用いて、Nフレーム目とN+1フレーム目との特徴点の対応関係を決定する。つまり、画像間で被写体同一点となる関係にある対応点を決定する。例えば図6に示されたNフレーム目の画像とN+1フレーム目の画像との場合、対応関係をN+1フレーム目の画像にベクトル表示すると、図8の模式図のようになる。このようにして決定されたNフレーム目とN+1フレーム目との対応関係が得られた特徴点を第1の対応点と称することにする。ステップS205の後、処理は第1の対応点を戻り値として図4を参照して説明しているブレ補正処理に戻る。
図4に戻って説明を続ける。ステップS103において、ブレ補正部100の姿勢推定部140は、Nフレーム目に対するN+1フレーム目の姿勢を推定する姿勢推定処理を行う。姿勢推定処理を図9に示すフローチャートを参照して説明する。ステップS301において、姿勢推定部140の基礎行列算出部142は、基礎行列算出処理を行う。この処理は、例えばRANSAC(RANdom SAmple Consensus)を用いた方法で行われる。
この基礎行列算出処理を図10に示すフローチャートを参照して説明する。ステップS401において、基礎行列算出部142の対応点抽出部1421は、特徴点追跡処理で決定された第1の対応点のうち、複数点(本実施形態では8点)の第1の対応点をランダムに抽出する。ステップS402において、基礎行列算出部142の仮基礎行列算出部1422は、抽出した8点の第1の対応点に基づいて、例えば公知の8点アルゴリズムを用いて基礎行列を算出する。ここで算出された基礎行列を仮基礎行列と称することにする。
ステップS403において、基礎行列算出部142のインライア算出部1423は、インライア個数算出処理を行う。インライア個数算出処理では、Nフレーム目とN+1フレーム目の2枚の画像に係るエピポーラ幾何を考える。このとき、特徴点追跡処理で求まった各第1の対応点について、仮基礎行列から求まるエピポーラ線(評価線)との距離が所定の閾値より小さいとき、その対応点をインライア(評価が高い)とする。基礎行列算出処理では、複数の第1の対応点のうちインライアである対応点の個数が求められる。
インライア個数算出処理を図11に示すフローチャートを参照して説明する。ステップS501において、インライア算出部1423は、インライアの個数を表す変数Iを8に設定する。これは、本実施形態では仮基礎行列の算出に用いた特徴点をインライアとしてカウントするためである。
続いて特徴点追跡処理で求まった全ての第1の対応点について以下の処理を行う。ステップS502において、インライア算出部1423は、仮基礎行列から求まるエピポーラ線と対象とする第1の対応点との距離を算出する。ステップS503において、インライア算出部1423は、ステップS502で算出されたエピポーラ線との距離が所定の閾値未満(以下でもよい)であるか否かを判定する。距離が閾値未満であると判定されたとき、ステップS504において、インライア算出部1423は、インライアの個数を表す変数Iを1増加させる。第1の対応点のうち、エピポーラ線との距離が所定の閾値未満である対応点をインライア対応点と称することにする。その後処理はステップS505に進む。ステップS503の判定で距離が所定の閾値以上であると判定されたとき処理はステップS505に進む。
ステップS505において、インライア算出部1423は、全ての第1の対応点についてステップS502乃至ステップS504の処理がなされたか否かを判定する。処理がなされていないと判定されたとき、処理はステップS502に戻り、次の第1の対応点について同様の処理を行う。ステップS505の判定において、処理がなされたと判定されたとき、変数Iを戻り値として、処理は第1の基礎行列算出処理に戻る。
このようにして、全ての第1の対応点のうち第1の仮基礎行列に対してインライアである第1の対応点の個数Iが算出される。ここで、インライア対応点の個数が多い仮基礎行列ほど、Nフレーム目の画像とN+1フレーム目の画像との関係を適切に表す基礎行列であるといえる。
図10に戻って説明を続ける。ステップS404において、基礎行列算出部142の繰り返し判定部1424は、ステップS401乃至ステップS403の処理が所定回数行われたか否かを判定する。所定の回数行われていないとき、処理はステップS401に戻る。ステップS404において所定の回数処理が行われたと判定されたとき、処理はステップS405に進む。ステップS405において、基礎行列算出部142の基礎行列決定部1425は、インライア対応点の個数Iが最も大きい仮基礎行列を基礎行列として決定する。この第1の基礎行列におけるインライア対応点は、例えば図6における飛行機のような動体に対応する対応点は削除され、静止物体である家及び花の対応点が抽出されることになる。
ここでは、ステップS404の判断によるインライア対応点の個数を算出する仮基礎行列の数を所定数としている。しかしながらこれに限らず、所定の終了条件が満たされるまで、仮基礎行列についてインライア対応点の個数を算出するようにしてもよい。ステップS405の後、処理は基礎行列を戻り値として姿勢推定処理に戻る。
図9に戻って説明を続ける。ステップS302において、姿勢推定部140の基本行列算出部144は、基礎行列算出部142によって算出された基礎行列に基づいて、基本行列を算出する。基礎行列から基本行列を算出するには、一般に知られている手法が用いられる。ステップS303において、姿勢推定部140の回転・並進算出部146は、ステップS302で基本行列算出部144によって算出された基本行列に基づいて、回転行列及び並進ベクトルを算出する。ここで、この回転行列及び並進ベクトルは、Nフレーム目の画像を取得したカメラの位置及び姿勢とN+1フレーム目の画像を取得したカメラの位置及び姿勢との差を表す。すなわち、この回転行列及び並進ベクトルは、Nフレーム目の画像を取得してからN+1フレーム目の画像を取得するまでのそれら画像を取得したカメラのブレ量を表す。
ステップS304において、姿勢推定部140の奥行算出部148は、基礎行列に基づいて、インライア算出部1423によってインライア対応点と判断された第1の対応点の3次元の座標の復元を行う。一般に基礎行列を用いると、画像中の各点の被写体が存在する空間に対応する3次元座標が求まることが知られている。奥行算出部148は、算出した第1の対応点の3次元座標に係る情報をマッチング設定部127に出力する。その後、処理は図4を参照して説明しているブレ補正処理に戻る。
図4に戻って説明を続ける。ステップS104において、ブレ補正部100の補正部150は、姿勢推定処理で算出された回転行列及び並進ベクトルに基づいてブレの補正量を算出する。すなわち、補正部150は、回転行列及び並進ベクトルとして求まったNフレーム目とN+1フレーム目との間に生じたカメラのブレを相殺するために適切な画像の補正量を算出する。この際、例えばローパスフィルタ等を用いて、急激な補正が行われず滑らかな補正となるように補正量は決定される。ステップS105において、ブレ補正部100の補正部150は、ステップS104で算出した補正量に基づいて画像変換を行い、画像のブレを除去する。このようにして、Nフレーム目とN+1フレーム目との間に生じたブレが除去される。ステップS106において、ブレ補正部100は、変数NにN+1を代入する。
ステップS107において、ブレ補正部100の特徴点追跡部120は、Nフレーム目とN+1フレーム目との間の特徴点の追跡を行う。ここでは、特徴点追跡部120は、Nフレーム目の特徴点の数を減らして演算量を減らしつつ、後の処理の精度を低下させない点数削減特徴点追跡処理を行う。点数削減特徴点追跡処理を図12に示すフローチャートを参照して説明する。
ステップS601において、特徴点追跡部120は、先に算出しているNフレーム目の特徴点及び特徴量を読み出す。ステップS602において、特徴点追跡部120内の特徴点検出部124は、N+1フレーム目の特徴点の候補の検出を、ステップS203の場合と同様に行う。ステップS603において、特徴点追跡部120内の特徴量算出部126は、ステップS204の場合と同様にステップS602で検出されたN+1フレーム目の特徴点の候補の特徴量を算出し、特徴点を決定する。
ステップS604において、特徴点追跡部120のマッチング設定部127は、Nフレーム目のインライア対応点の3次元座標を姿勢推定部140の奥行算出部148から読み出す。ステップS605において、マッチング設定部127は、Nフレーム目の特徴点の数を、読み出したインライア対応点の3次元座標に基づいて削減する。
特徴点の削減方法について図13乃至16を参照して説明する。Nフレーム目の画像として、例えば図13に示されるような画像が対象となっている場合を考える。ここで、図13において、実線で表されている部分は手前側の被写体であり、破線で表されている部分は奥側の被写体であるものとする。特徴点検出部124及び特徴量算出部126によってNフレーム目の特徴点として例えば図14に黒丸及び黒三角で示されたような点が検出されるとする。ここで、黒丸は手前の被写体の特徴点を示し、黒三角は奥の被写体の特徴点を示すものとする。本実施形態では、マッチング設定部127は、図14に示されたような特徴点の数を削減し、例えば図15に示されるような特徴点を残す。すなわち、本実施形態では、手前の被写体の特徴点の数と奥の被写体の特徴点の数とをほぼ等しくする。ここで、インライアでない(アウトライア)特徴点も除外される。
ステップS606において、特徴点追跡部120内のマッチング算出部128は、ステップS605で削減したNフレーム目の特徴点と、ステップS603で算出したN+1フレーム目の特徴点との対応関係を決定し、第1の対応点を決定する。ステップS606の後、処理は図4を参照して説明しているブレ補正処理に戻る。
ステップS108において、姿勢推定部は、図9乃至11を参照して説明した姿勢推定処理を行う。ステップS109において、補正部150は、ステップS104と同様に補正量を算出する。ステップS110において、補正部150は、ステップS105と同様に画像変換を行う。
ステップS111において、ブレ補正部100は、次フレームがあるか否かを判定する。次フレームがあると判定されたとき、ステップS112において、ブレ補正部100は、変数NにN+1を代入する。その後処理はステップS107に戻る。ステップS111の判定で次フレームがないと判定されたとき、ブレ補正処理は終了する。ブレが除去された画像は、画像出力部16を介して出力される。なお、上記のブレ除去処理は、画像取得部12から入力されたフレームごとに順次行われ、ブレが除去された画像が順次画像出力部16から出力されてもよい。
このように、例えば画像取得部12は、動画像を取得する画像取得部として機能する。例えば特徴点検出部124は、前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定する領域設定部として機能する。例えばNフレーム目の特徴点は第1の領域に相当し、N+1フレーム目の特徴点は第2の領域に相当する。例えばマッチング算出部128は、前記第1の領域と前記第2の領域との各々の対応関係を算出するマッチング取得部として機能する。例えば基礎行列算出部142は、複数の前記対応関係に基づいて基礎行列を算出する基礎行列算出部として機能する。例えば奥行算出部148は、前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出する奥行算出部として機能する。例えばマッチング設定部127は、前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を前記領域設定部に削減させる設定変更部として機能する。この設定変更部は、前記領域設定部に、前記奥行ごとの前記第1の領域の数の差が小さくなるように前記第1の領域を削減させる。
本実施形態によれば画像処理装置10は、入力された動画像のブレを除去し、ブレのない画像を出力することができる。本実施形態では、入力画像のみに基づいてブレの除去が行われるので、例えば手振れ補正機構として画像処理装置10がデジタルカメラに実装される場合などに、他のセンサや駆動機構などを必要としない。
本実施形態では、点数削減特徴点追跡処理において、ステップS605でNフレーム目の特徴点の数を減らし、ステップS606において削減したNフレーム目の特徴点とN+1フレーム目の特徴点とのマッチングを算出している。このような本実施形態によれば、特徴点のマッチングの演算が減らされる。また、第1の対応点の数が減るので、以降の演算量も減少する。
演算を減らすために特徴点の数を削減する方法として、例えば、画像を小領域に区分けして、各小領域内の特徴点数が同一になるように特徴点を削減する等、画像における特徴点数を一様に削減する方法も考えられる。その結果を模式的に表すと、例えば図16のようになる。このように特徴点数を削減するとマッチングを算出する演算量は減る。しかしながら例えば図13に示されるように画像において手前の被写体が占める面積と奥の被写体が占める面積とが大きく異なるとき、面積が狭い方の特徴点数の割合が低くなる。例えば図13の例では手前側の被写体の特徴点数が少なくなる。すなわち、手前側の被写体の第1の対応点の数が少なくなる。
奥行とその奥行にある特徴点の数とを表す模式図を図17に示す。例えば図14に示されるような特徴点分布の場合、奥行と特徴点との関係は例えば図17(a)に示されるようになる。図16に示されるように画像内の特徴点を一様に削減すると、奥行と特徴点との関係は例えば図17(b)に示されるようになる。これに対して図15に示された本実施形態のように、特徴点の奥行に応じて特徴点数を削減すると、奥行と特徴点との関係は例えば図17(c)に示されるようになる。
一般に、基礎行列算出処理において基礎行列が算出されるとき、奥行の差が大きな第1の対応点が用いられた場合の方が求まる基礎行列の精度は高くなる。一方、例えば手前の第1の対応点のみのように、奥行の差が小さい第1の対応点に基づいて基礎行列が算出された場合、求まる基礎行列の精度は低下する。
図16及び図17(b)に示されるように、画像内の特徴点が一様に削減された場合、基礎行列算出処理のステップS401においてランダムに第1の対応点が抽出されたとき、奥の第1の対応点と手前の第1の対応点とが選択される確率は低下する。したがって、図16及び図17(b)に示されるような第1の対応点に基づいて基礎行列が算出されるとき、得られる基礎行列の精度は低くなる。これに対して、図15及び図17(c)に示されるような第1の対応点に基づいて基礎行列が算出されるとき、演算において奥の特徴点と手前の特徴点とが選択される確率が増加するので、得られる基礎行列の精度は高くなる。本実施形態によれば、得られる基礎行列は高い精度が維持されたまま、特徴点マッチングにおいて行われる演算量は減らされる。
本実施形態では、奥行ごとに特徴点の数がほぼ一定数となるように調整されているが、奥側と手前側との特徴点の数がほぼ等しくなるように調整され、奥側と手前側との間では特徴点数が減らされるようにされたり含まれないようにされたりしてもよい。
なお、本実施形態では、Nフレーム目とN+1フレーム目との間の、すなわち隣接するフレーム間の画像の差異に基づいてブレを除去する例が示されている。しかしながらこれに限らず、数フレーム離れた画像の方が、その差異を精度よく抽出できる場合など、数フレーム離れたフレーム間の画像の差異に基づいてブレを除去してもよい。
[第2の実施形態]
本発明の第2の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態では、図18に示すように、特徴点追跡部120はマッチング設定部127を有していないが、特徴点検出部124の前段に検出感度設定部123が設けられている。本実施形態では、点数削減特徴点追跡処理が第1の実施形態の点数削減特徴点追跡処理と異なる。その他は、第1の実施形態の場合と同様である。
本実施形態に係る点数削減特徴点追跡処理を図19に示されたフローチャートを参照して説明する。ステップS701において、特徴点追跡部120は、ステップS601の場合と同様に、先に算出しているNフレーム目の特徴点及び特徴量を読み出す。ステップS702において、特徴点追跡部120内の検出感度設定部123は、Nフレーム目のインライア対応点の3次元座標を姿勢推定部140の奥行算出部148から読み出す。ステップS703において、検出感度設定部123は、読み出した3次元座標に基づいて、N+1フレーム目の特徴点の検出の感度を設定する。
特徴点検出感度の設定は、以下のように行う。Nフレーム目とN+1フレーム目とは隣接するフレームであるので、画像の差は小さいと仮定できる。そこで本実施形態では、画像内を小領域に区切り、Nフレーム目のインライア対応点の3次元座標に基づいて小領域ごとにその領域の奥行を決定する。そして、この奥行ごとに特徴点の個数が均一になるように特徴点検出感度を設定する。すなわち、例えば画像中に広い面積を有する奥行に相当する領域では、特徴点の検出感度を低くする。逆に画像中の面積が狭い奥行に相当する領域では、特徴点の検出感度を高くする。また、例えば、特徴点数の多い奥行きに相当する領域では、特徴点の検出感度を低くし、逆に特徴点数の少ない奥行きに相当する領域では、特徴点の検出感度を高くするようにし、奥行きごとの特徴点の個数が均一になるようにしてもよい。
ステップS704において、特徴点追跡部120内の特徴点検出部124は、ステップS703で検出感度設定部123によって設定された検出感度に従って、N+1フレーム目の画像の特徴点の検出を行う。ステップS705において、特徴点追跡部120内の特徴量算出部126は、ステップS603の場合と同様にN+1フレーム目の特徴点の候補の特徴量を算出し、特徴点を決定する。検出感度が調節されているので、奥行ごとに検出される特徴点の個数はほぼ等しくなる。すなわち、奥行と特徴点数との関係の概要は、例えば図17(c)に示すようになる。ステップS706において、特徴点追跡部120内のマッチング算出部128は、Nフレーム目の特徴点とN+1フレーム目の特徴点との対応関係を決定し、第1の対応点を決定する。ステップS706の後、処理はブレ補正処理に戻る。
このように、例えば検出感度設定部123は、奥行に基づいて、以後に行う基礎行列の算出に用いる第1の領域又は第2の領域の数を領域設定部に削減させる設定変更部として機能する。この設定変更部は、前記領域設定部に、前記奥行ごとの前記第2の領域の数の差が小さくなるように、前記第2のフレーム内の領域ごとに前記第2の領域の設定を変更させる。また、この設定変更部は、前記領域設定部に、前記奥行ごとの前記第2の領域の数の差が小さくなるように、前記第2のフレーム内の領域ごとに前記第2の領域を設定する検出感度を変更させる。
本実施形態によれば、N+1フレーム目において検出される特徴点の個数が調整されるので、ステップS705のN+1フレーム目の特徴量の算出以降の処理において演算量が減少する。一方で奥行ごとに特徴点の個数がほぼ等しいで、基礎行列算出処理で算出される基礎行列の精度は高く維持される。以上のように本実施形態によれば、得られる基礎行列は高い精度が維持されたまま、特徴点マッチングにおいて行われる演算量は減らされ得る。
なお、本実施形態では、検出感度設定部123は、奥行のみならず画像におけるボケやブレも考慮して検出感度を設定してもよい。すなわち、検出感度設定部123は、画像におけるボケやブレが多い領域では、検出感度を高くしてもよい。このため、検出感度設定部123は、ボケ量やブレ量、合焦情報、被写界深度情報、露光時間等を取得し、これらの値を考慮しながら特徴点の検出感度を設定することができる。このようにすれば、ボケなどにより特徴点が得られない領域が生じることを防ぐことができる。
また、本実施形態では、Nフレーム目について得られた3次元座標に基づいて、N+1フレーム目の画像の領域ごとの奥行を仮定している。しかしながらこれに限定されない。例えば、Nフレーム目の3次元座標に基づいて、N+2フレーム目やN+3フレーム目の奥行を仮定してもよいし、Nフレーム目の3次元座標に基づいて、N+1乃至N+Mフレーム目(ここでMは任意の自然数)の複数のフレームの奥行を仮定してもよい。
[第3の実施形態]
本発明の第3の実施形態について説明する。ここでは、第2の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態の特徴点追跡部120は、図20に示すように、第2の実施形態の検出感度設定部123の代わりに検出領域設定部122を備える。本実施形態では、点数削減特徴点追跡処理が第2の実施形態の点数削減特徴点追跡処理と異なる。その他は、第1の実施形態の場合と同様である。
本実施形態に係る点数削減特徴点追跡処理を図21に示されたフローチャートを参照して説明する。ステップS801において、特徴点追跡部120は、ステップS701の場合と同様に、先に算出しているNフレーム目の特徴点及び特徴量を読み出す。ステップS802において、特徴点追跡部120は、Nフレーム目のインライア対応点の3次元座標を姿勢推定部140の奥行算出部148から読み出す。ステップS803において、特徴点追跡部120内の検出領域設定部122は、インライア対応点の3次元座標に基づいて、N+1フレーム目の特徴点の検出領域を設定する。
特徴点検出領域の設定は、以下のように行う。奥行が浅い被写体の周辺の奥行が深い部分の被写体は、次フレームにおいて手前側の被写体によって隠されて、フレーム間の対応関係が得られない恐れがある。そこで、本実施形態では、検出領域設定部122は、手前側であることが明らかになっている領域の周辺領域については、特徴点検出を行わないように特徴点検出領域を設定する。
ステップS804において、特徴点追跡部120内の特徴点検出部124は、ステップS803で設定された検出領域において特徴点の検出を行う。その結果、例えば図22に示すように、手前側の被写体の周辺については、特徴点が検出されない。ステップS805において、特徴点追跡部120内の特徴量算出部126は、ステップS705の場合と同様にN+1フレーム目の特徴点の候補の特徴量を算出し、特徴点を決定する。ステップS806において、特徴点追跡部120内のマッチング算出部128は、Nフレーム目の特徴点とN+1フレーム目の特徴点との対応関係を決定し、第1の対応点を決定する。ステップS806の後、処理はブレ補正処理に戻る。
このように、例えば検出領域設定部122は、前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を前記領域設定部に削減させる設定変更部として機能する。この設定変更部は、前記領域設定部に、前記奥行が手前側である領域の周辺には前記第2の領域を設定させない。
本実施形態によれば、対応が見つけられないおそれがある手前側の被写体周辺についてN+1フレーム目において特徴点が検出されないので、ステップS804のN+1フレーム目の特徴点の検出以降の演算量が減少する。上記の本実施形態では、手前側の被写体周辺について特徴点検出を行わないものとしたが、手前側の被写体周辺について、第2の実施形態のように特徴点検出の感度を低下させてもよい。この場合も、本実施形態と同様に、ステップS804のN+1フレーム目の特徴点の検出以降の演算量が減少する。
なお、第1乃至第3の実施形態は組み合わせて用いられ得る。例えば、特徴点追跡部120は、マッチング設定部127と検出感度設定部123とを備えていてもよいし、さらに検出領域設定部122を備えていてもよい。また、特徴点追跡部120は、検出感度設定部123と検出領域設定部122とを備えていても、マッチング設定部127と検出領域設定部122とを備えていてもよい。
[第4の実施形態]
本発明の第4の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態では、対応点取得部110は、特徴点追跡部120ではなく、ブロックマッチングによって対応点を取得するブロックマッチング部130を備える。ブロックマッチング部130は、代表点設定部132と、ブロックマッチング実行部134とを有する。
本実施形態に係るブレ補正処理の一例のフローチャートを図24に示す。この図に示すように、本実施形態に係るブレ補正処理では、図4を参照して説明した第1の実施形態に係るブレ補正処理の特徴点追跡処理がブロックマッチング処理に置換され、点数削減特徴点追跡処理が点数削減ブロックマッチング処理に置換されている。
すなわち、ステップS901において、ステップS101と同様に画像が取得されて変数Nに1が代入され、ステップS902において、ブロックマッチング処理が実行される。ブロックマッチング処理は公知のブロックマッチングを用いてNフレーム目の画像とN+1フレーム目の画像との対応点を第1の対応点として特定する処理である。ブロックマッチング処理の一例を図25に示すフローチャートを参照して簡単に説明する。ステップS1001において、ブロックマッチング部130の代表点設定部132は、Nフレーム目の画像の代表点を設定する。ステップS1002において、ブロックマッチング実行部134は、Nフレーム目の画像の代表点とN+1フレーム目の探索画像との間の相関演算を実施する。ステップS1003において、ブロックマッチング実行部134は、ステップS1002の演算結果に基づいて、相関値が最小となる位置に基づき、Nフレーム目の画像の代表点に対応するN+1フレーム目の画像の対応点を第1の対応点として決定する。ステップS1004において、ブロックマッチング部130は、Nフレーム目の画像の全代表点について第1の対応点を決定されたか否かを判定する。全代表点について第1の対応点を決定されていないと判定されたとき、処理はステップS1002に戻る。一方、全代表点について第1の対応点が決定されたと判定されたとき、処理はブレ補正処理に戻る。
ブレ補正処理のステップS903においてステップS103と同様に姿勢推定処理がなされ、ステップS904においてステップS104と同様に補正量が算出され、ステップS905においてステップS105と同様に画像変換がなされる。その後、変数NにN+1が代入される。
ステップS907において、ブロックマッチング部130は、点数削減ブロックマッチング処理を行う。点数削減ブロックマッチング処理の一例を図26に示すフローチャートを参照して簡単に説明する。ステップS1101において、代表点設定部132は、姿勢推定部140の奥行算出部148からNフレーム目の画像の3次元座標に係る情報を読み出す。ステップS1102において、代表点設定部132は、読み出した3次元座標に基づいて、Nフレーム目の画像の代表点を設定する。ここで代表点設定部132は、例えば奥行ごとに代表点の数を検討したときに、点数が多い奥行の代表点の数を削減して、奥行ごとの代表点の数がほぼ等しくなるようにする。また、合わせて奥行が浅い被写体の周辺に位置する代表点を削除してもよい。
ステップS1103において、ブロックマッチング実行部134は、Nフレーム目の画像の代表点とN+1フレーム目の探索画像との間の相関演算を実施する。ステップS1104において、ブロックマッチング実行部134は、ステップS1103の演算結果に基づいて、相関値が最小となる位置に基づき、Nフレーム目の画像の代表点に対応するN+1フレーム目の画像の対応点を第1の対応点として決定する。ステップS1105において、ブロックマッチング部130は、Nフレーム目の画像の全代表点について第1の対応点が決定されたか否かを判定する。全代表点について第1の対応点が決定されていないと判定されたとき、処理はステップS1103に戻る。一方、全代表点について第1の対応点が決定されたと判定されたとき、処理はブレ補正処理に戻る。
ブレ補正処理のステップS908において、ステップS108と同様に姿勢推定処理がなされ、ステップS909においてステップS109と同様に補正量が算出され、ステップS910においてステップS110と同様に画像変換がなされ、ステップS911においてステップS111と同様に次フレームがあるか否かが判定される。次フレームがあると判定されたとき、ステップS912において変数NにN+1が代入され処理はステップS907に戻る。一方、次フレームがないと判定されたとき、処理は終了する。
このように、例えばブロックマッチング実行部134は、前記第1の領域と前記第2の領域との各々の対応関係を算出するマッチング取得部として機能する。このマッチング取得部は、前記第1の領域としての代表点に対応する前記第2の領域を前記第2のフレームからブロックマッチングによって決定する。例えば代表点設定部132は、前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を前記領域設定部に削減させる設定変更部として機能する。この設定変更部は、前記領域設定部に、前記奥行ごとの前記第1の領域の数の差が小さくなるように前記第1の領域を削減させる。
本実施形態によれば、点数削減ブロックマッチング処理において、Nフレーム目の画像における3次元座標に基づいて、ブロックマッチングを行う代表点の数が削減されるので、ブロックマッチングにおいて相関演算の回数が減少し、演算量が削減される。その他、本実施形態によっても第1乃至第3の実施形態と同様の効果が得られる。
[第5の実施形態]
本発明の第5の実施形態について説明する。ここでは、第1乃至第4の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態は、第1乃至第4の実施形態の何れかの画像処理装置10を備えるデジタルカメラ1に係る。本実施形態に係るデジタルカメラ1の構成例を図27に示す。デジタルカメラ1は、ブレ補正部100を有する画像処理装置10を備える。また、デジタルカメラ1は、CPU20と、撮像光学系22と、撮像素子24と、AFE(Analog Front End)26と、信号画像処理部28と、圧縮伸長部30と、RAM(Random Access Memory)32と、ROM(Read Only Memory)34と、操作部36と、記録部38と、表示処理部40と、表示部42とを備える。
CPU20は、制御部として機能し、デジタルカメラ1の各部を制御する。撮像光学系22は、レンズや絞り等を含み、被写体像を撮像素子24に導く。撮像素子24は、撮像光学系22を介して導かれた被写体像を電気信号に変換する。AFE26は、相関二重サンプリング、アナログゲインコントロール、A/D変換等のアナログ信号処理を行う。信号画像処理部28は、AFEから出力されたデジタル画像信号に対して、色分解、ホワイトバランス、ガンマ変換等の画像処理を行う。圧縮伸長部30は、画像の圧縮や伸長等を行う。RAM32は、各種処理及び演算に必要な一時記憶を行う。ROM34は、デジタルカメラ1の制御や演算に必要な各種プログラム等を記憶する。操作部36は、ユーザからのデジタルカメラ1の操作に係る指示の入力を受け付ける。記録部38は、例えばデジタルカメラ1に取り外し可能に接続されており、デジタルカメラ1で取得した画像を記録する。表示処理部40は、表示部42に表示させるための画像処理を行う。表示部42は、例えば液晶ディスプレイを含み、表示処理部40で処理された画像を表示する。
撮像光学系22を介して撮像素子24に入射して電気信号に変換された画像信号は、AFE26及び信号画像処理部28で画像処理される。これら画像処理された信号は、画像処理装置10に順次入力される。画像処理装置10は、入力された画像に対して順次第1の実施形態で説明したブレ補正処理を行う。ブレの除去がなされた画像の信号は、画像処理装置10から出力される。このブレが除去された画像の信号は、表示処理部40を介して表示部42に表示される。また、ブレが除去された画像信号は、記録部38に記録される。
本実施形態によれば、画像処理装置10において第1乃至第4の実施形態で説明したとおりブレの除去が行われる。したがって、デジタルカメラ1を操作するユーザの手振れ等による画像のブレが除去され、記録部38に記録される画像や、表示部42に表示される画像は、画像処理装置10を備えないカメラで取得された画像よりも品質が高い。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても、発明が解決しようとする課題の欄で述べられた課題が解決でき、かつ、発明の効果が得られる場合には、この構成要素が削除された構成も発明として抽出され得る。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1…デジタルカメラ、10…画像処理装置、11…制御部、12…画像取得部、13…圧縮伸長部、14…第1の記憶部、15…第2の記憶部、16…画像出力部、17…バス、20…CPU、22…撮像光学系、24…撮像素子、26…AFE、28…信号画像処理部、30…圧縮伸長部、32…RAM、34…ROM、36…操作部、38…記録部、40…表示処理部、42…表示部、100…ブレ補正部、110…対応点取得部、120…特徴点追跡部、122…検出領域設定部、123…検出感度設定部、124…特徴点検出部、126…特徴量算出部、127…マッチング設定部、128…マッチング算出部、130…ブロックマッチング部、132…代表点設定部、134…ブロックマッチング実行部、140…姿勢推定部、142…基礎行列算出部、1421…対応点抽出部、1422…仮基礎行列算出部、1423…インライア算出部、1424…判定部、1425…基礎行列決定部、144…基本行列算出部、146…回転・並進算出部、148…次元座標算出部、150…補正部。

Claims (11)

  1. 動画像を取得する画像取得部と、
    前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定する領域設定部と、
    前記第1の領域と前記第2の領域との各々の対応関係を算出するマッチング取得部と、
    複数の前記対応関係に基づいて基礎行列を算出する基礎行列算出部と、
    前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出する奥行算出部と、
    前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を前記領域設定部に削減させる設定変更部と、
    を具備することを特徴とする画像処理装置。
  2. 前記設定変更部は、前記領域設定部に、前記奥行ごとの前記第1の領域の数の差が小さくなるように前記第1の領域を削減させ、
    前記マッチング取得部は、削減された前記第1の領域と前記第2の領域とに基づいて前記対応関係を算出する
    ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記設定変更部は、前記領域設定部に、前記奥行ごとの前記第2の領域の数の差が小さくなるように、前記第2のフレーム内の領域ごとに前記第2の領域の設定を変更させる
    ことを特徴とする請求項1に記載の画像処理装置。
  4. 前記設定変更部は、前記領域設定部に、前記奥行が手前側である領域の周辺には前記第2の領域を設定させない
    ことを特徴とする請求項1に記載の画像処理装置。
  5. 前記領域設定部は、前記第1のフレームの特徴点に基づいて前記第1の領域を設定し、前記第2のフレームの特徴点に基づいて前記第2の領域を設定する
    ことを特徴とする請求項1乃至4のうち何れか1項に記載の画像処理装置。
  6. 前記領域設定部は、前記第1のフレームの特徴点に基づいて前記第1の領域を設定し、前記第2のフレームの特徴点に基づいて前記第2の領域を設定し、
    前記設定変更部は、前記領域設定部に、前記奥行ごとの前記第2の領域の数の差が小さくなるように、前記第2のフレーム内の領域ごとに前記第2の領域を設定する検出感度を変更させる
    ことを特徴とする請求項3に記載の画像処理装置。
  7. 前記マッチング取得部は、前記第1の領域としての代表点に対応する前記第2の領域を前記第2のフレームからブロックマッチングによって決定し、
    前記設定変更部は、前記領域設定部に、前記奥行ごとの前記第1の領域の数の差が小さくなるように前記第1の領域を削減させる
    ことを特徴とする請求項1に記載の画像処理装置。
  8. 前記マッチング取得部は、前記第1の領域としての代表点に対応する前記第2の領域を前記第2のフレームからブロックマッチングによって決定し、
    前記設定変更部は、前記領域設定部に、前記奥行が手前側である領域の周辺には前記第1の領域を設定させない
    ことを特徴とする請求項1に記載の画像処理装置。
  9. 動画像を撮像する撮像部と、
    前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定する領域設定部と、
    前記第1の領域と前記第2の領域との各々の対応関係を算出するマッチング取得部と、
    複数の前記対応関係に基づいて基礎行列を算出する基礎行列算出部と、
    前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出する奥行算出部と、
    前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を前記領域設定部に削減させる設定変更部と、
    前記基礎行列に基づいて算出される基本行列に基づいて、前記第1のフレームと前記第2のフレームとの間に存在するブレを補正する補正部と、
    を具備することを特徴とする撮像装置。
  10. 動画像を取得することと、
    前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定することと、
    前記第1の領域と前記第2の領域との各々の対応関係を算出することと、
    複数の前記対応関係に基づいて基礎行列を算出することと、
    前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出することと、
    前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を削減させることと、
    を具備することを特徴とする画像処理方法。
  11. 動画像を取得することと、
    前記動画像の第1のフレームにおいて複数の第1の領域を設定し、第2のフレームにおいて複数の第2の領域を設定することと、
    前記第1の領域と前記第2の領域との各々の対応関係を算出することと、
    複数の前記対応関係に基づいて基礎行列を算出することと、
    前記基礎行列に基づいて複数の前記第1の領域と複数の前記第2の領域とのうち少なくとも一部の領域の奥行を算出することと、
    前記奥行に基づいて、以後に行う前記基礎行列の算出に用いる前記第1の領域又は前記第2の領域の数を削減させることと、
    をコンピュータに実行させるためのプログラム。
JP2012144543A 2012-06-27 2012-06-27 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム Expired - Fee Related JP5953142B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144543A JP5953142B2 (ja) 2012-06-27 2012-06-27 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144543A JP5953142B2 (ja) 2012-06-27 2012-06-27 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム

Publications (2)

Publication Number Publication Date
JP2014011497A true JP2014011497A (ja) 2014-01-20
JP5953142B2 JP5953142B2 (ja) 2016-07-20

Family

ID=50107850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144543A Expired - Fee Related JP5953142B2 (ja) 2012-06-27 2012-06-27 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム

Country Status (1)

Country Link
JP (1) JP5953142B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003930A (ja) * 2014-06-16 2016-01-12 日本電信電話株式会社 画像処理装置、画像処理方法および画像処理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194027A (ja) * 1998-01-07 1999-07-21 Nec Corp 三次元座標計測装置
JP2008259076A (ja) * 2007-04-06 2008-10-23 Canon Inc 画像防振装置、撮像装置及び画像防振方法
JP2010085240A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 車両用画像処理装置
JP2011134221A (ja) * 2009-12-25 2011-07-07 Casio Computer Co Ltd 撮像装置、3dモデリングデータ生成方法、および、プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194027A (ja) * 1998-01-07 1999-07-21 Nec Corp 三次元座標計測装置
JP2008259076A (ja) * 2007-04-06 2008-10-23 Canon Inc 画像防振装置、撮像装置及び画像防振方法
JP2010085240A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 車両用画像処理装置
JP2011134221A (ja) * 2009-12-25 2011-07-07 Casio Computer Co Ltd 撮像装置、3dモデリングデータ生成方法、および、プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003930A (ja) * 2014-06-16 2016-01-12 日本電信電話株式会社 画像処理装置、画像処理方法および画像処理プログラム

Also Published As

Publication number Publication date
JP5953142B2 (ja) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5977591B2 (ja) 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体
JP7003238B2 (ja) 画像処理方法、装置、及び、デバイス
US9607240B2 (en) Image processing apparatus, image capturing apparatus, image processing method, image capturing method, and non-transitory computer-readable medium for focus bracketing
JP5901447B2 (ja) 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム
JP2013062741A (ja) 画像処理装置および撮像装置、ならびに画像処理方法
US9536169B2 (en) Detection apparatus, detection method, and storage medium
CN111476812A (zh) 地图分割方法、装置、位姿估计方法和设备终端
JP6395429B2 (ja) 画像処理装置、その制御方法及び記憶媒体
JP6429483B2 (ja) 情報処理装置、撮像装置、情報処理システム、情報処理方法およびプログラム
JP6409769B2 (ja) 3次元形状計測装置、3次元形状計測方法及び3次元形状計測プログラム
JP6576179B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP5953142B2 (ja) 画像処理装置及びそれを備えた撮像装置、画像処理方法、並びに画像処理プログラム
JP2019191661A (ja) 画像処理装置、撮像装置、画像処理方法、及びプログラム
JP6381212B2 (ja) 撮像装置及びその制御方法
JP7324066B2 (ja) 画像処理装置およびその制御方法、ならびに撮像装置
CN108830936B (zh) 3d模型抖动预防方法及装置
JP2009042909A (ja) 特徴点検出装置、およびそれを搭載した動画像処理装置
JP6000809B2 (ja) 追尾装置、追尾方法及びプログラム
JP6525693B2 (ja) 画像処理装置及び画像処理方法
JP5869833B2 (ja) 手振れ補正処理装置および手振れ補正処理方法
CN118158520A (zh) 影像捕捉装置及相关方法
JP2023080290A (ja) 情報処理装置、情報処理装置の制御方法およびプログラム
CN116843752A (zh) 一种视频路线信息的确定方法、装置和设备
CN112132895A (zh) 基于图像的位置确定方法、电子设备及存储介质
JP2019047218A (ja) 画像処理装置、画像処理方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R151 Written notification of patent or utility model registration

Ref document number: 5953142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees