JP2014009111A - Silicon nitride powder for mold-releasing agent - Google Patents

Silicon nitride powder for mold-releasing agent Download PDF

Info

Publication number
JP2014009111A
JP2014009111A JP2012145269A JP2012145269A JP2014009111A JP 2014009111 A JP2014009111 A JP 2014009111A JP 2012145269 A JP2012145269 A JP 2012145269A JP 2012145269 A JP2012145269 A JP 2012145269A JP 2014009111 A JP2014009111 A JP 2014009111A
Authority
JP
Japan
Prior art keywords
maximum value
silicon nitride
nitride powder
silicon
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012145269A
Other languages
Japanese (ja)
Other versions
JP5901448B2 (en
Inventor
Fumihiro Kurokawa
史裕 黒川
Yuzo Nakamura
祐三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50106128&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014009111(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2012145269A priority Critical patent/JP5901448B2/en
Publication of JP2014009111A publication Critical patent/JP2014009111A/en
Application granted granted Critical
Publication of JP5901448B2 publication Critical patent/JP5901448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride powder for a mold-releasing agent, which has an improved adhesive force to the inner wall of a melting crucible and thereby, can reduce the contamination of impurities and improve yield when a polycrystalline silicon ingot is manufactured.SOLUTION: The silicon nitride powder for a mold-releasing agent has a 90% particle diameter by a laser diffraction scattering method of 3.0-10 μm, a ratio of α-phase of 20-60%, and an iron content of 100 ppm or less, and is characterized in that the particle size distribution has two maximum values; one maximum value is in the range of 0.2 μm or more and less than 1.0 μm (maximum value 1) and another maximum value is in the range of 1.0-8.0 μm (maximum value 2); the ratio of the frequency of the maximum value 2 to the frequency of the maximum value 1 {(frequency of maximum value 2)/(frequency of maximum value 1)} is 1.0-5.0, and the interval between the maximum values 1 and 2 is 0.8-7.8 μm.

Description

本発明は、離型剤として好適な窒化ケイ素粉末に関する。   The present invention relates to a silicon nitride powder suitable as a release agent.

太陽電池は、近年クリーンなエネルギー源として期待されており、大幅な需要増加が見込まれている。太陽電池の種類としては単結晶シリコン型太陽電池、多結晶シリコン型太陽電池、アモルファスシリコン型太陽電池、化合物系太陽電池等が挙げられるが、比較的低コストの多結晶シリコン型太陽電池が現在の主流である。   Solar cells are expected as a clean energy source in recent years, and a significant increase in demand is expected. Examples of solar cells include single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, compound solar cells, etc., but relatively low cost polycrystalline silicon solar cells are currently available Mainstream.

多結晶型シリコン太陽電池に用いる多結晶シリコン基板は、一般にキャスティング法と呼ばれる方法で製造されている。このキャスティング法は、石英ルツボや黒鉛ルツボ中に原料シリコンを投入し、不活性雰囲気中において、1500℃付近で加熱溶融し、多結晶シリコンインゴットを形成する方法である。このシリコンインゴットの端部を除去し、所望の大きさに切断して切出し、切出したシリコンインゴットを所望の厚みにスライスして太陽電池を形成するための多結晶シリコン基板を得ている。   A polycrystalline silicon substrate used for a polycrystalline silicon solar cell is generally manufactured by a method called a casting method. This casting method is a method in which raw material silicon is put into a quartz crucible or a graphite crucible and heated and melted at about 1500 ° C. in an inert atmosphere to form a polycrystalline silicon ingot. The end of the silicon ingot is removed, cut into a desired size, cut out, and the cut silicon ingot is sliced to a desired thickness to obtain a polycrystalline silicon substrate for forming a solar cell.

キャスティング法にてシリコンインゴットを作製する際、ルツボからの離型性を良くするために、ルツボ内面に離型剤が塗布される。この離型剤には、不純物混入防止の観点から、シリコンを主成分とし、かつ高温で化学的に安定な成分を含む粉末が望ましく、この条件を満たすものとして窒化ケイ素等が挙げられる。   When producing a silicon ingot by the casting method, a release agent is applied to the inner surface of the crucible in order to improve releasability from the crucible. The mold release agent is preferably a powder containing silicon as a main component and a component that is chemically stable at a high temperature from the viewpoint of preventing impurities from being mixed.

太陽電池用多結晶シリコンインゴット製造時に窒化ケイ素粉末を離型剤として用いた例は既に報告されている(特許文献1)。しかし単に窒化ケイ素粉末を用いたのみでは、窒化ケイ素に含有する不純物がシリコンインゴットを汚染し、そのシリコンインゴットを用いて作製された太陽電池の発電効率が悪化する。更に離型剤の塗膜強度及び塗布性は使用する窒化ケイ素によって異なる。   An example of using silicon nitride powder as a mold release agent at the time of producing a polycrystalline silicon ingot for a solar cell has already been reported (Patent Document 1). However, if silicon nitride powder is simply used, impurities contained in silicon nitride contaminate the silicon ingot, and the power generation efficiency of a solar cell manufactured using the silicon ingot deteriorates. Furthermore, the coating strength and coating properties of the release agent vary depending on the silicon nitride used.

高純度シリコンの加工屑を粉砕して、50%粒度が0.7μm以下、90%粒度が2μm以下の高純度窒化ケイ素微粉末が報告されている(特許文献2)。しかし特許文献2には、離型剤として使用することによって、太陽電池用のシリコンインゴットへの不純物混入を防止することや塗布性の向上については記載されていない。   A high-purity silicon nitride fine powder having a 50% particle size of 0.7 μm or less and a 90% particle size of 2 μm or less by pulverizing high-purity silicon processing waste has been reported (Patent Document 2). However, Patent Document 2 does not describe preventing impurities from being mixed into a silicon ingot for a solar cell or improving applicability by using it as a mold release agent.

またシリコンインゴットへの不純物拡散量が少ない離型剤用窒化ケイ素粉末として特許文献3が報告されている。しかしながら離型剤として用いた場合の密着性や塗布性については記載されていない。 Patent Document 3 has been reported as a silicon nitride powder for a release agent with a small amount of impurity diffusion into a silicon ingot. However, it does not describe the adhesion and coating properties when used as a release agent.

特許文献4では、平均粒子径5μm以下、鉄含有量20ppm以下の窒化ケイ素粉末を用いた離型剤について記載されており、平均粒子径5μm以下の窒化ケイ素粉末を用いることで、離型剤層の強度を高めることが報告されている。しかし平均粒子径5μm以下のみでは、合成方法や粉砕方法により強度の異なる離型剤が作製されるため、この定義のみでは不十分である。   Patent Document 4 describes a mold release agent using a silicon nitride powder having an average particle diameter of 5 μm or less and an iron content of 20 ppm or less. By using a silicon nitride powder having an average particle diameter of 5 μm or less, a release agent layer is used. It has been reported to increase the strength. However, when the average particle size is only 5 μm or less, release agents having different strengths are produced depending on the synthesis method or the pulverization method, so this definition alone is insufficient.

特開平07−206419号公報Japanese Patent Application Laid-Open No. 07-206419 特開2011−051856号公報JP 2011-051856 A 特開2012−001385号公報JP 2012-001385 A 特開2007−261832号公報JP 2007-261832 A

本発明は、多結晶シリコンインゴット製造時に用いられる離型剤について、塗布時の作業性を改善し、かつ離型剤の剥がれを抑制することで多結晶シリコンインゴットへの不純物混入を低減した離型剤用窒化ケイ素粉末を提供するものである。   The present invention relates to a mold release agent used at the time of producing a polycrystalline silicon ingot, which improves the workability at the time of application and reduces the contamination of the polycrystalline silicon ingot by mixing impurities by suppressing the release of the mold release agent. A silicon nitride powder for an agent is provided.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)レーザー回折散乱法による90%粒子径が3.0〜10μm、α相の比率が20〜60%、鉄の含有量が100ppm以下である窒化ケイ素粉末であり、粒度分布が2つの極大値を有し、ひとつが0.2μm以上1.0μm未満(極大値1)、もうひとつが1.0μm以上8.0μm以下(極大値2)にあり、かつ極大値1と2の各頻度の比率{(極大値2の頻度)/(極大値1の頻度)}が1.0〜5.0、極大値1と2の間隔が0.8〜7.8μmであることを特徴とする離型剤用窒化ケイ素粉末。
(2)前記(1)に記載の離型剤用窒化ケイ素粉末を離型剤として用いた溶融ルツボ。
The present invention employs the following means in order to solve the above problems.
(1) A silicon nitride powder having a 90% particle diameter of 3.0 to 10 μm, an α-phase ratio of 20 to 60%, and an iron content of 100 ppm or less by laser diffraction scattering method, and has two maximum particle size distributions. One value is 0.2 μm or more and less than 1.0 μm (maximum value 1), the other is 1.0 μm or more and 8.0 μm or less (maximum value 2), and each frequency of the maximum values 1 and 2 The ratio {(frequency of local maximum value 2) / (frequency of local maximum value 1)} is 1.0 to 5.0, and the distance between local maximum values 1 and 2 is 0.8 to 7.8 μm. Silicon nitride powder for molds.
(2) A melting crucible using the silicon nitride powder for a release agent according to (1) as a release agent.

本発明の窒化ケイ素粉末を離型剤として用いると、溶融ルツボからの多結晶シリコンインゴットへの不純物の混入を低減することができる。また、離型剤の塗布性が改善され、塗布時の作業性が向上する。   When the silicon nitride powder of the present invention is used as a mold release agent, it is possible to reduce the mixing of impurities from the molten crucible into the polycrystalline silicon ingot. Moreover, the applicability of the release agent is improved, and the workability during application is improved.

以下、本発明を詳細に説明する。
窒化ケイ素の製造方法は、直接窒化法やイミド熱分解法が挙げられる。プロセスは特に問わないが、本発明の窒化ケイ素粒子を得るためには直接窒化法が好ましい。その理由は、窒化後の粉砕工程にて粒度の調整が容易であるためである。なお粒度の調整が必要である理由は、作製したスラリーの特性に影響するためである。
Hereinafter, the present invention will be described in detail.
Examples of the method for producing silicon nitride include a direct nitriding method and an imide pyrolysis method. The process is not particularly limited, but a direct nitriding method is preferable for obtaining the silicon nitride particles of the present invention. The reason is that the particle size can be easily adjusted in the pulverization step after nitriding. The reason why the particle size needs to be adjusted is because it affects the properties of the prepared slurry.

本発明の窒化ケイ素粉末は鉄含有量が少ないことが特徴である。鉄、クロム、ニッケル、銅、タングステン、モリブデン等の遷移金属は、多結晶シリコン中に存在すると太陽電池の発電効率を低下させることが知られている。特に鉄は様々な要因で混入しやすいため、いかに鉄の混入量を少なくするかがポイントである。鉄の混入量を少なくする方法としては、(1)鉄混入量の少ないシリコン原料を用いる、(2)硝酸等の酸を用いて混入した鉄を溶解除去する、等が考えられるが、プロセスの煩雑化を考慮すれば、(1)の鉄混入量の少ない高純度シリコン原料を用いることが好ましい。   The silicon nitride powder of the present invention is characterized by a low iron content. It is known that transition metals such as iron, chromium, nickel, copper, tungsten, and molybdenum reduce the power generation efficiency of solar cells when present in polycrystalline silicon. In particular, iron is likely to be mixed due to various factors, so the point is how to reduce the amount of iron mixed. As a method for reducing the amount of iron, (1) using a silicon raw material with a small amount of iron, (2) dissolving and removing iron mixed with an acid such as nitric acid, etc. can be considered. In view of complication, it is preferable to use the high purity silicon raw material (1) with a small amount of iron contamination.

一般的な金属シリコンでは、通常鉄を数百〜数千ppmレベルで混入しているため、本発明の窒化ケイ素粉末の原料としては不適である。例えば半導体用途のシリコンから加工、研磨時に得られるシリコン屑は高純度であるから、原料として好ましい。なお原料に含まれる鉄の量は100ppm以下、好ましくは10ppm以下である。   In general metal silicon, iron is usually mixed at a level of several hundred to several thousand ppm, so that it is not suitable as a raw material for the silicon nitride powder of the present invention. For example, silicon scrap obtained at the time of processing and polishing from silicon for semiconductor use is preferable as a raw material because of high purity. The amount of iron contained in the raw material is 100 ppm or less, preferably 10 ppm or less.

本発明の窒化ケイ素粉末の更なる特徴は、α相の比率が20〜60%である点である。窒化ケイ素には低温安定型のα相と高温安定型のβ相が存在し、α相からβ相への転位は不可逆性である。またα相からβ相へはいわゆる溶解再析出機構により転位が起こるため、粒成長を伴う。つまり粒子径は一般的にα相よりβ相の方が大きい。
α相の比率は20〜60%、好ましくは30〜40%である。α相の比率が60%を超えると微粉が増加し、2つの極大値を有する粒度分布を持たなくなるか、極大値の比率が1未満となる。α相の比率が20%未満となると粗粉が増加し、2つの極大値を有する粒度分布を持たなくなる。
A further feature of the silicon nitride powder of the present invention is that the α phase ratio is 20 to 60%. Silicon nitride has a low temperature stable α phase and a high temperature stable β phase, and the rearrangement from the α phase to the β phase is irreversible. Further, since dislocation occurs from the α phase to the β phase by a so-called dissolution reprecipitation mechanism, it is accompanied by grain growth. That is, the particle size is generally larger in the β phase than in the α phase.
The proportion of the α phase is 20 to 60%, preferably 30 to 40%. When the ratio of the α phase exceeds 60%, the fine powder increases and the particle size distribution having the two maximum values is lost or the ratio of the maximum values is less than 1. When the α phase ratio is less than 20%, the coarse powder increases and the particle size distribution having the two maximum values is lost.

さらにα相の比率が20%未満となる生成雰囲気では、β相粒子が成長し柱状になり易くなる。この柱状β相粒子は、作製したスラリーの流動性を悪化させ、塗りムラが多くなる等、塗布性能を悪化させる。
柱状β相粒子の多くは、長径10μm程度、アスペクト比(例えば、電子顕微鏡写真より柱状粒子を選び、長径と短径を測定し、(長径)/(短径)より算出する)3〜6程度である。またα相の比率が20%未満ではこれら粒子が10%以上存在し、上述の通り、スラリーの塗布性能を悪化させる。
Furthermore, in the production atmosphere in which the α-phase ratio is less than 20%, β-phase particles tend to grow and become columnar. These columnar β-phase particles deteriorate the fluidity of the prepared slurry and deteriorate the coating performance such as coating unevenness.
Most of the columnar β-phase particles have a major axis of about 10 μm, an aspect ratio (for example, select columnar particles from an electron micrograph, measure the major axis and minor axis, and calculate from (major axis) / (minor axis)) of about 3 to 6 It is. Further, when the α phase ratio is less than 20%, these particles are present in an amount of 10% or more, and as described above, the coating performance of the slurry is deteriorated.

本発明の窒化ケイ素粉末の鉄の含有量は100ppm以下であり、20ppm以下であることが好ましい。この範囲外では、シリコンインゴット中に離型剤から不純物の拡散が起こり易くなり、シリコンインゴットの品質低下、収率低下につながる場合がある。   The iron content of the silicon nitride powder of the present invention is 100 ppm or less, preferably 20 ppm or less. Outside this range, impurities may easily diffuse from the release agent in the silicon ingot, which may lead to a decrease in quality and yield of the silicon ingot.

本発明の窒化ケイ素粉末の特徴は、離型剤として用いた際に塗布時の作業性を改善し、かつ離型剤の剥がれの抑制により多結晶シリコンインゴットへの不純物混入を低減した点である。このためにはα相、β相それぞれの粒子径及びα相とβ相の比率を適正化する必要がある。そしてこれらは粒度分布に反映されるため、粒度分布の適正化が重要である。   The feature of the silicon nitride powder of the present invention is that when used as a mold release agent, the workability at the time of application is improved and the contamination of the polycrystalline silicon ingot is reduced by suppressing the release of the mold release agent. . For this purpose, it is necessary to optimize the particle diameters of the α phase and the β phase and the ratio of the α phase and the β phase. Since these are reflected in the particle size distribution, it is important to optimize the particle size distribution.

本発明の窒化ケイ素粉末は、レーザー回折散乱法による90%粒子径が3.0〜10μmである必要があり、好ましくは3.0〜6.0μmである。3.0μm未満では作製した離型剤の密着力が悪化し、10μmを超えると塗布性が悪化し、塗りムラが生じ易くなる。   The silicon nitride powder of the present invention needs to have a 90% particle size of 3.0 to 10 [mu] m, preferably 3.0 to 6.0 [mu] m, as measured by a laser diffraction scattering method. When the thickness is less than 3.0 μm, the adhesion of the produced release agent is deteriorated. When the thickness exceeds 10 μm, the coating property is deteriorated and coating unevenness is likely to occur.

粒度分布には2つの極大値を有する必要がある。極大値が1の粒度分布は大部分がα相もしくはβ相であり、これら窒化ケイ素粉末を離型剤に用いた場合、塗布性の悪化もしくは密着力が不十分となる。   The particle size distribution needs to have two maxima. The particle size distribution with a maximum value of 1 is mostly α phase or β phase, and when these silicon nitride powders are used as a release agent, the applicability is deteriorated or the adhesion is insufficient.

2つの極大値のうち低粒子径側の極大値(極大値1)は0.2μm以上1.0μm未満である必要があり、好ましくは0.6~0.8μmである。0.2μm未満であると離型剤の増粘が激しく塗布が困難となり、1.0μm以上であると微粒子が不足するため塗布時に塗りムラが生じ易くなる。なお、極大値とは、粒度分布における粒子の頻度(体積%)がピーク(山の頂上)になったときの粒子径である。   Of the two maximum values, the maximum value on the low particle diameter side (maximum value 1) needs to be 0.2 μm or more and less than 1.0 μm, preferably 0.6 to 0.8 μm. If the thickness is less than 0.2 μm, the thickening of the release agent is severe and difficult to apply, and if it is 1.0 μm or more, the fine particles are insufficient, and coating unevenness is likely to occur during application. The maximum value is the particle diameter when the frequency (volume%) of particles in the particle size distribution reaches a peak (top of a mountain).

2つの極大値のうち高粒子径側の極大値(極大値2)は1.0μm以上8.0μm以下である必要があり、好ましくは2.0〜4。0μmである。1.0μm未満であると離型剤の増粘が激しく塗布が困難となり、8.0μmを超えると粗粒子が大きくなり過ぎ微粒子との最密充填を形成しなくなるため、密着性が悪化する。   Of the two maximum values, the maximum value on the high particle diameter side (maximum value 2) needs to be 1.0 μm or more and 8.0 μm or less, and preferably 2.0 to 4.0 μm. If the thickness is less than 1.0 μm, the thickening of the release agent is severe and application becomes difficult, and if it exceeds 8.0 μm, coarse particles become too large to form close-packed packing with fine particles, resulting in poor adhesion.

極大値1と2の各頻度の比率{(極大値2の頻度)/(極大値1の頻度)}は1.0〜5.0である必要があり、好ましくは1.5〜3.0である。1.0未満では離型剤の増粘が激しく塗布が困難となり、5.0を超えると粗粒子、微粒子による最密充填を形成しなくなるため、密着性が悪化する。   The ratio of the frequencies of the maximum values 1 and 2 {(frequency of the maximum value 2) / (frequency of the maximum value 1)} needs to be 1.0 to 5.0, preferably 1.5 to 3.0. It is. If it is less than 1.0, the viscosity of the mold release agent is so strong that it becomes difficult to apply. If it exceeds 5.0, close-packing with coarse particles and fine particles is not formed, and adhesion is deteriorated.

極大値1と2の間隔は0.8〜7.6μmである必要があり、好ましくは2.0〜4.0μmである。0.8μm未満ではもはや極大値が1の粒度分布と変わらず、上述の通り塗布性の悪化もしくは密着力が不十分となる。7.6μmを超えると素粒子、微粒子による最密充填を形成しなくなるため、密着性が悪化する。   The interval between the maximum values 1 and 2 needs to be 0.8 to 7.6 μm, preferably 2.0 to 4.0 μm. If it is less than 0.8 μm, the maximum value is no longer different from the particle size distribution of 1, and as described above, the applicability is deteriorated or the adhesion is insufficient. If it exceeds 7.6 μm, close-packing with elementary particles and fine particles will not be formed, and adhesion will deteriorate.

本発明の窒化ケイ素粉末は、例えば水分散スラリーを作製して、ヘラや刷毛などで塗布したり、スプレー処理したりして、ルツボ内壁に塗布する。スラリーにはアクリル系、セルロール系、ポリビニルアルコール系等の有機バインダーを添加しても問題なく、むしろ初期の密着力は有機バインダー添加により向上する。   The silicon nitride powder of the present invention is applied to the inner wall of the crucible, for example, by preparing a water-dispersed slurry and applying it with a spatula or a brush or spraying. There is no problem even if an organic binder such as acrylic, cellulose or polyvinyl alcohol is added to the slurry, but the initial adhesion is improved by adding the organic binder.

以下、実施例、比較例をあげて本発明を更に具体的に説明する。
実施例1
半導体製造におけるバックグラインド工程より発生する金属シリコンスラッジを乾燥後、解砕することで平均粒子径2〜3μmの金属シリコン粉末を得た。この金属シリコン粉末5kgを炭化ケイ素と窒化ケイ素の複合焼結体製の容器に充填し、それをバッチ式窒化炉に入れ、窒素雰囲気に置換した後、窒素雰囲気下、100℃/hrで昇温した。1150℃に達した時点で炉内の窒素雰囲気ガスの一部をアルゴンで置換し、昇温速度を10℃/hrに変更し1300℃まで昇温させた後、1300℃で保持させた。これにより反応速度を最大2.4%/hまで徐々に高めていった。累積窒化率が75%に達した後、昇温速度10℃/hrで1450℃まで昇温させた後、1450℃で3hr保持させた。
室温まで冷却後に窒化インゴットを取り出し、ジョークラッシャー及びロールクラッシャーで粗粉砕、ジェットミルで微粉砕を行い、窒化ケイ素粉末を製造した。
得られた窒化ケイ素粉末を、撹拌しながら水に添加し、30質量%のスラリー(粘度10cP)を調製した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
Example 1
The metal silicon sludge generated from the back grinding process in semiconductor production was dried and then crushed to obtain metal silicon powder having an average particle diameter of 2 to 3 μm. 5 kg of this metal silicon powder is filled into a container made of a composite sintered body of silicon carbide and silicon nitride, placed in a batch type nitriding furnace and replaced with a nitrogen atmosphere, and then heated at 100 ° C./hr in a nitrogen atmosphere. did. When the temperature reached 1150 ° C., a part of the nitrogen atmosphere gas in the furnace was replaced with argon, the temperature increase rate was changed to 10 ° C./hr, the temperature was raised to 1300 ° C., and then held at 1300 ° C. As a result, the reaction rate was gradually increased to a maximum of 2.4% / h. After the cumulative nitriding rate reached 75%, the temperature was raised to 1450 ° C. at a rate of temperature rise of 10 ° C./hr, and then held at 1450 ° C. for 3 hours.
After cooling to room temperature, the nitride ingot was taken out, coarsely pulverized with a jaw crusher and roll crusher, and finely pulverized with a jet mill to produce silicon nitride powder.
The obtained silicon nitride powder was added to water with stirring to prepare a 30% by mass slurry (viscosity 10 cP).

実施例2
半導体製造におけるインゴット切断工程より排出される金属シリコン屑を粉砕することで平均粒子径6〜7μmの金属シリコン粉末を得た。これ以降の工程は実施例1と同じである。
Example 2
Metallic silicon powder having an average particle size of 6 to 7 μm was obtained by pulverizing metallic silicon waste discharged from the ingot cutting step in semiconductor manufacturing. The subsequent steps are the same as those in the first embodiment.

実施例3
半導体製造におけるバックグラインド工程より発生する金属シリコンスラッジを乾燥後、ボールミルで粉砕することで平均粒子径1〜1.5μmの金属シリコン粉末を得た。これ以降の工程は実施例1と同じである。
Example 3
The metal silicon sludge generated from the back grinding process in semiconductor production was dried and then pulverized with a ball mill to obtain a metal silicon powder having an average particle diameter of 1 to 1.5 μm. The subsequent steps are the same as those in the first embodiment.

実施例4
反応速度を最大1.2%/hに調整した以外は、実施例1と同じである。
Example 4
The same as Example 1, except that the reaction rate was adjusted to 1.2% / h at maximum.

実施例5
反応速度を最大3.6%/hに調整した以外は、実施例1と同じである。
Example 5
The same as Example 1, except that the reaction rate was adjusted to 3.6% / h at the maximum.

実施例6〜12
実施例1〜5で作製した窒化ケイ素粉末を、分級機(日清エンジニアリング社製商品名「エアロファインクラシファイア」、セイシン企業社製商品名「クラッシール」)を用いて、もしくは異なる分級粉末同士を所定割合混合することで、表1の物性を満たす窒化ケイ素粉末を作製した。
Examples 6-12
The silicon nitride powder produced in Examples 1 to 5 was classified using a classifier (trade name “Aero Fine Classifier” manufactured by Nissin Engineering Co., Ltd., product name “Crusheal” manufactured by Seishin Enterprise Co., Ltd.), or different classified powders. By mixing at a predetermined ratio, silicon nitride powder satisfying the physical properties shown in Table 1 was produced.

比較例1
半導体製造におけるインゴット切断工程より排出される金属シリコン屑を粉砕することで平均粒子径10〜11μmの金属シリコン粉末を得た。これ以降の工程は実施例1と同じである。
Comparative Example 1
Metallic silicon powder having an average particle diameter of 10 to 11 μm was obtained by pulverizing metallic silicon waste discharged from the ingot cutting step in semiconductor manufacturing. The subsequent steps are the same as those in the first embodiment.

比較例2
半導体製造におけるバックグラインド工程より発生する金属シリコンスラッジを乾燥後、ボールミルで粉砕することで平均粒子径1〜1.5μmの金属シリコン粉末を得た。これ以降の工程は実施例1と同じである。
Comparative Example 2
The metal silicon sludge generated from the back grinding process in semiconductor production was dried and then pulverized with a ball mill to obtain a metal silicon powder having an average particle diameter of 1 to 1.5 μm. The subsequent steps are the same as those in the first embodiment.

比較例3
反応速度を最大0.8%/hに調整した以外は、実施例1と同じである。
Comparative Example 3
The same as Example 1, except that the reaction rate was adjusted to 0.8% / h at maximum.

比較例4
反応速度を最大4.0%/hに調整した以外は、実施例1と同じである。
Comparative Example 4
The same as Example 1, except that the reaction rate was adjusted to 4.0% / h at the maximum.

比較例5〜12
実施例1〜5及び比較例1〜4で作製した窒化ケイ素粉末を、分級機(日清エンジニアリング社製商品名「エアロファインクラシファイア」、セイシン企業社製商品名「クラッシール」)を用いて、もしくは異なる分級粉末同士を所定割合混合することで、表1の物性を満たす窒化ケイ素粉末を作製した。
Comparative Examples 5-12
Using the silicon nitride powder produced in Examples 1 to 5 and Comparative Examples 1 to 4, using a classifier (trade name “Aero Fine Classifier” manufactured by Nissin Engineering Co., Ltd., product name “Crusheal” manufactured by Seishin Enterprise Co., Ltd.) Or the silicon nitride powder which satisfy | fills the physical property of Table 1 was produced by mixing different classification powders by a predetermined ratio.

比較例13
実施例1で作製した窒化ケイ素粉末を、鉄ボールを充填したボールミルで30分混合し、表を満たす窒化ケイ素粉末を作製した。
Comparative Example 13
The silicon nitride powder produced in Example 1 was mixed with a ball mill filled with iron balls for 30 minutes to produce a silicon nitride powder satisfying the table.

<測定方法>
90%粒子径、粒度分布 :純水200ml中にヘキサンメタリン酸ナトリウム20%水溶液2mlと測定サンプル60mgを添加し、超音波ホモジナイザー(日本精機製作所製、商品名「US−300T」)で3分間分散させた後、マイクロトラック(日機装製、商品名「MT3300EXII」)により測定した。90%粒子径、粒度分布は、粒子の体積(%)を基準に測定を行った。
α相 :粉末X線回折装置(リガク製 、商品名「UltimaIV」)にて2θ=32〜38°の範囲で測定し、その間に現れるピークの強度より次式にて算出した。
α化率={(Ia102+Ia210)/(Ia102+Ia210+Ib101+Ib210)}
a102:α相(102)面のピーク強度
a210:α相(210)面のピーク強度
b101:β相(101)面のピーク強度
b210:β相(210)面のピーク強度
鉄含有量 :蛍光X線分析装置(リガク製、商品名「ZSX−PrimusII」)にて測定した。
<Measurement method>
90% particle size and particle size distribution: 2 ml of 20% aqueous solution of sodium hexanemetaphosphate and 60 mg of measurement sample are added to 200 ml of pure water, and dispersed for 3 minutes with an ultrasonic homogenizer (trade name “US-300T” manufactured by Nippon Seiki Seisakusho). Then, measurement was performed with a microtrack (manufactured by Nikkiso, trade name “MT3300EXII”). The 90% particle size and particle size distribution were measured based on the volume (%) of the particles.
α phase: Measured in a range of 2θ = 32 to 38 ° with a powder X-ray diffractometer (trade name “Ultima IV” manufactured by Rigaku), and calculated from the intensity of the peak appearing in the range by the following equation.
α conversion rate = {(I a102 + I a210 ) / (I a102 + I a210 + I b101 + I b210 )}
I a102 : Peak intensity of α phase (102) plane I a210 : Peak intensity of α phase (210) plane I b101 : Peak intensity of β phase (101) plane I b210 : Peak intensity iron content of β phase (210) plane Amount: Measured with a fluorescent X-ray analyzer (trade name “ZSX-Primus II” manufactured by Rigaku).

<塗膜特性評価方法>
ステンレス製(SUS304)の板に30mmの幅で300mm塗布した後、塗膜を120℃×1時間乾燥した。
(塗布性)
塗膜の塗りムラ状態を目視にて評価した。
◎:塗りムラが見られない
○:塗りムラが塗布面積全体の10%以下
△:塗りムラが塗布面積全体の50%以下
×:塗りムラが塗布面積全体の50%を超える
(密着性)
塗膜の密着性(ひび割れ、はがれ)を目視にて評価した。
○:ひび割れ、はがれが見られない
×:ひび割れ、はがれが見られる
<シリコンインゴット不純物混入量>
上述の30質量%スラリーを、底面220×220mm、高さ300mmの石英ルツボの内壁に、乾燥後の厚みが0.3mmとなるようにスプレー塗布し、120℃×1時間の条件で加熱乾燥した。
その後、高純度シリコン粉末(純度7N)を10kg投入し、アルゴン雰囲気中で1480℃×10時間維持した後冷却した。
生成した高純度シリコンインゴットを取り出した後、特に不純物が混入するインゴット上面について、以下の式より不純物混入率を算出した。
不純物混入率(%)={(不純物混入部分の面積)/(シリコンインゴット上部面積)}×100
なお、不純物の大部分は、シリコン粉末の溶解収縮時に石英ルツボ内壁より脱落した離型剤から由来したものであることを確認済みである。
結果を表1に示す。表1の実施例と比較例から、本発明の窒化ケイ素粉末を離型剤として用いると、石英ルツボからの多結晶シリコンインゴットへの不純物の混入を低減することができた。また、石英ルツボへの離型剤の塗布性が改善され、塗布時の作業性が向上した。
<Method for evaluating coating film properties>
After coating 300 mm with a width of 30 mm on a stainless steel (SUS304) plate, the coating film was dried at 120 ° C. for 1 hour.
(Applicability)
The coating unevenness state of the coating film was visually evaluated.
◎: Uneven coating is not observed ○: Uneven coating is 10% or less of the entire coating area Δ: Uneven coating is 50% or less of the entire coating area ×: Uneven coating exceeds 50% of the entire coating area (adhesiveness)
The adhesion (cracking and peeling) of the coating film was visually evaluated.
○: No cracking or peeling is observed ×: Cracking or peeling is observed <Amount of silicon ingot impurity mixed>
The above 30% by mass slurry was spray-coated on the inner wall of a quartz crucible having a bottom surface of 220 × 220 mm and a height of 300 mm so that the thickness after drying would be 0.3 mm, and dried by heating at 120 ° C. for 1 hour. .
Thereafter, 10 kg of high-purity silicon powder (purity 7N) was added, and after maintaining at 1480 ° C. for 10 hours in an argon atmosphere, it was cooled.
After the produced high-purity silicon ingot was taken out, the impurity mixing rate was calculated from the following formula, particularly for the upper surface of the ingot where impurities were mixed.
Impurity contamination rate (%) = {(area of impurity contamination portion) / (top area of silicon ingot)} × 100
It has been confirmed that most of the impurities are derived from a release agent that has fallen off the inner wall of the quartz crucible when the silicon powder is melted and contracted.
The results are shown in Table 1. From the examples and comparative examples in Table 1, when the silicon nitride powder of the present invention was used as a release agent, it was possible to reduce the contamination of impurities from the quartz crucible into the polycrystalline silicon ingot. In addition, the applicability of the release agent to the quartz crucible was improved, and the workability during application was improved.

Figure 2014009111
Figure 2014009111

Claims (2)

レーザー回折散乱法による90%粒子径が3.0〜10μm、α相の比率が20〜60%、鉄の含有量が100ppm以下である窒化ケイ素粉末であり、粒度分布が2つの極大値を有し、ひとつが0.2μm以上1.0μm未満(極大値1)、もうひとつが1.0μm以上8.0μm以下(極大値2)にあり、かつ極大値1と2の各頻度の比率{(極大値2の頻度)/(極大値1の頻度)}が1.0〜5.0、極大値1と2の間隔が0.8〜7.8μmであることを特徴とする離型剤用窒化ケイ素粉末。 This is a silicon nitride powder with a 90% particle diameter of 3.0 to 10 μm, an α-phase ratio of 20 to 60%, and an iron content of 100 ppm or less by laser diffraction scattering method, and the particle size distribution has two maximum values. One is 0.2 μm or more and less than 1.0 μm (maximum value 1), the other is 1.0 μm or more and 8.0 μm or less (maximum value 2), and the ratio of each frequency between the maximum values 1 and 2 {( The frequency of the maximum value 2) / (the frequency of the maximum value 1)} is 1.0 to 5.0, and the interval between the maximum values 1 and 2 is 0.8 to 7.8 μm. Silicon nitride powder. 請求項1に記載の離型剤用窒化ケイ素粉末を離型剤として用いた溶融ルツボ。
A melting crucible using the silicon nitride powder for a release agent according to claim 1 as a release agent.
JP2012145269A 2012-06-28 2012-06-28 Silicon nitride powder for mold release agent Active JP5901448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012145269A JP5901448B2 (en) 2012-06-28 2012-06-28 Silicon nitride powder for mold release agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012145269A JP5901448B2 (en) 2012-06-28 2012-06-28 Silicon nitride powder for mold release agent

Publications (2)

Publication Number Publication Date
JP2014009111A true JP2014009111A (en) 2014-01-20
JP5901448B2 JP5901448B2 (en) 2016-04-13

Family

ID=50106128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145269A Active JP5901448B2 (en) 2012-06-28 2012-06-28 Silicon nitride powder for mold release agent

Country Status (1)

Country Link
JP (1) JP5901448B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003157A (en) * 2014-06-16 2016-01-12 宇部興産株式会社 Silicon nitride powder for mold release agent of mold for molding polycrystalline silicon ingot and manufacturing method therefor, silicon nitride powder-containing slurry for mold release agent of mold for molding polycrystalline silicon ingot, and mold for molding polycrystalline silicone ingot and manufacturing method therefor
JPWO2015122388A1 (en) * 2014-02-12 2017-03-30 宇部興産株式会社 Silicon nitride powder for slurry and production method thereof, silicon nitride powder slurry for release material and production method thereof, silicon nitride powder for release material, release material, and casting mold for polycrystalline silicon and production method thereof
WO2018110567A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder, mold release agent for polycrystalline silicon ingots, and method for producing polycrystalline silicon ingots
CN110062745A (en) * 2016-12-12 2019-07-26 宇部兴产株式会社 The manufacturing method of alpha-silicon nitride powders, polycrystalline silicon ingot casting release agent and polycrystalline silicon ingot casting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162608A (en) * 1986-01-09 1987-07-18 Mitsue Koizumi Production of silicon nitride fine powder
JPH0664906A (en) * 1992-08-21 1994-03-08 Denki Kagaku Kogyo Kk Powdery silicon nitride
JPH0753268A (en) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol Coated high pressure type boron nitride sintered body and its production
JPH08104505A (en) * 1994-08-12 1996-04-23 Ube Ind Ltd Silicon nitride powder
JP2009510387A (en) * 2005-10-06 2009-03-12 ベスビウス クルーシブル カンパニー Crucible for crystallization of silicon and method for producing the same
JP2011051856A (en) * 2009-09-03 2011-03-17 Denki Kagaku Kogyo Kk Method for producing high-purity silicon nitride fine powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162608A (en) * 1986-01-09 1987-07-18 Mitsue Koizumi Production of silicon nitride fine powder
JPH0664906A (en) * 1992-08-21 1994-03-08 Denki Kagaku Kogyo Kk Powdery silicon nitride
JPH0753268A (en) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol Coated high pressure type boron nitride sintered body and its production
JPH08104505A (en) * 1994-08-12 1996-04-23 Ube Ind Ltd Silicon nitride powder
JP2009510387A (en) * 2005-10-06 2009-03-12 ベスビウス クルーシブル カンパニー Crucible for crystallization of silicon and method for producing the same
JP2011051856A (en) * 2009-09-03 2011-03-17 Denki Kagaku Kogyo Kk Method for producing high-purity silicon nitride fine powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015122388A1 (en) * 2014-02-12 2017-03-30 宇部興産株式会社 Silicon nitride powder for slurry and production method thereof, silicon nitride powder slurry for release material and production method thereof, silicon nitride powder for release material, release material, and casting mold for polycrystalline silicon and production method thereof
JP2016003157A (en) * 2014-06-16 2016-01-12 宇部興産株式会社 Silicon nitride powder for mold release agent of mold for molding polycrystalline silicon ingot and manufacturing method therefor, silicon nitride powder-containing slurry for mold release agent of mold for molding polycrystalline silicon ingot, and mold for molding polycrystalline silicone ingot and manufacturing method therefor
WO2018110567A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder, mold release agent for polycrystalline silicon ingots, and method for producing polycrystalline silicon ingots
JPWO2018110567A1 (en) * 2016-12-12 2019-06-24 宇部興産株式会社 Silicon nitride powder, mold release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
CN110049946A (en) * 2016-12-12 2019-07-23 宇部兴产株式会社 The manufacturing method of alpha-silicon nitride powders, polycrystalline silicon ingot casting release agent and polycrystalline silicon ingot casting
CN110062745A (en) * 2016-12-12 2019-07-26 宇部兴产株式会社 The manufacturing method of alpha-silicon nitride powders, polycrystalline silicon ingot casting release agent and polycrystalline silicon ingot casting

Also Published As

Publication number Publication date
JP5901448B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
JP5901448B2 (en) Silicon nitride powder for mold release agent
TW201118190A (en) Sintered CU-GA sputtering target and method for producing the target
JP5165100B1 (en) Sputtering target and manufacturing method thereof
CN110578070B (en) Method for improving oxidation resistance of copper by using authigenic non-metallic oxide composite film
JP4957969B2 (en) Method for producing Cu-In-Ga ternary sintered alloy sputtering target
EP2772327B1 (en) High-purity titanium ingots, manufacturing method therefor, and titanium sputtering target
JP4957968B2 (en) Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same
JP5768446B2 (en) Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target
CN104704139B (en) Cu Ga alloy sputtering targets and its manufacture method
JP5571196B2 (en) Titanium target for sputtering
JP5144576B2 (en) Titanium target for sputtering
JP5617723B2 (en) Cu-Ga alloy sputtering target
JP2005029862A (en) Sputtering target for thin film deposition
JP2013142175A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
JP5630416B2 (en) Method for producing Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy powder
WO2013115289A1 (en) Polycrystalline silicon sputtering target
JP2015045060A (en) MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME
CN113373340A (en) Preparation method of Al-Nb-B refiner master alloy for casting aluminum-silicon alloy
Zhou et al. Using grain refiner Al–3Ti–0.3 C to improve Al-water reaction rate and yield
JP2012072467A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
TW200946692A (en) Sb-te alloy powder for sintering, process for production of the powder, and sintered target
CN109295340A (en) One Albatra metal and its application
JP2014210943A (en) Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME
TWI433953B (en) Sputtering titanium target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250