JP2014007132A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014007132A
JP2014007132A JP2012144116A JP2012144116A JP2014007132A JP 2014007132 A JP2014007132 A JP 2014007132A JP 2012144116 A JP2012144116 A JP 2012144116A JP 2012144116 A JP2012144116 A JP 2012144116A JP 2014007132 A JP2014007132 A JP 2014007132A
Authority
JP
Japan
Prior art keywords
electrode body
secondary battery
positive electrode
amount
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012144116A
Other languages
Japanese (ja)
Other versions
JP5929551B2 (en
Inventor
Ryuji Oide
竜二 大井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012144116A priority Critical patent/JP5929551B2/en
Publication of JP2014007132A publication Critical patent/JP2014007132A/en
Application granted granted Critical
Publication of JP5929551B2 publication Critical patent/JP5929551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonaqueous electrolyte secondary battery by which gas generation can be suppressed while suppressing the increase in battery resistance.SOLUTION: A method for manufacturing a nonaqueous electrolyte secondary battery according to the invention comprises the steps of: forming an electrode body having a positive electrode including a positive-electrode active material, a negative electrode including a negative-electrode active material, and a separator disposed between the positive and negative electrodes; housing the electrode body in a battery container; and charging a nonaqueous electrolyte into the battery container, provided that the nonaqueous electrolyte includes lithium hexafluorophosphate, to which lithium difluorophosphate is added so as to have a density of 0.025-0.05 M. In this step, the adjustment is made so that the logarithm of the ratio R (R=A/B) of a content A(mol) of the added lithium difluorophosphate to a content B(mol) of moisture included in the electrode body before charging the nonaqueous electrolyte satisfies the following condition: -0.10<logR<0.

Description

本発明は非水電解液二次電池の製造方法に関する。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery.

非水電解液二次電池の一つにリチウムイオン二次電池がある。リチウムイオン二次電池は、リチウムイオンを吸蔵・放出する正極および負極の間を、非水電解液中のリチウムイオンが移動することで充放電可能な二次電池である。   One non-aqueous electrolyte secondary battery is a lithium ion secondary battery. A lithium ion secondary battery is a secondary battery that can be charged and discharged by moving lithium ions in a non-aqueous electrolyte between a positive electrode and a negative electrode that occlude and release lithium ions.

特許文献1には、非水電解液二次電池の非水電解液にジフルオロリン酸リチウムを0.01重量%〜5重量%添加し、正極および負極の界面に皮膜を形成することで、電池の保存特性を向上させる技術が開示されている。つまり、特許文献1にかかる技術では、正極および負極の界面に皮膜を形成することで、充電状態の活物質と非水電解液とが直接接触することを抑制している。このようにすることで、非水電解液の分解を抑制し、電池の保存特性を向上させている。   In Patent Document 1, 0.01% by weight to 5% by weight of lithium difluorophosphate is added to a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery, and a film is formed at the interface between the positive electrode and the negative electrode. Techniques for improving the storage characteristics of the are disclosed. That is, in the technique according to Patent Document 1, a film is formed at the interface between the positive electrode and the negative electrode to suppress direct contact between the charged active material and the non-aqueous electrolyte. By doing in this way, decomposition | disassembly of a non-aqueous electrolyte is suppressed and the storage characteristic of a battery is improved.

特開平11−067270号公報Japanese Patent Application Laid-Open No. 11-067270

非水電解液にジフルオロリン酸リチウムを添加すると正極表面に皮膜が形成される。このように正極表面に皮膜が形成されると、正極表面での非水電解液の酸化還元反応を抑制することができ、正極から発生するガスの量を低減させることができる。   When lithium difluorophosphate is added to the non-aqueous electrolyte, a film is formed on the surface of the positive electrode. When a film is formed on the surface of the positive electrode in this way, the redox reaction of the nonaqueous electrolytic solution on the surface of the positive electrode can be suppressed, and the amount of gas generated from the positive electrode can be reduced.

しかしながら、ジフルオロリン酸リチウムを添加したとしても、正極、負極およびセパレータで構成される電極体に含まれる水分量によっては、非水電解液と水との反応が促進されて電池特性が低下するおそれがある。具体的には、六フッ化リン酸リチウムを含む非水電解液を用いた場合、電極体に含まれる水分量によっては六フッ化リン酸リチウムと水との反応が促進されてフッ化水素が生成されて、電池抵抗が増加するという問題がある。   However, even if lithium difluorophosphate is added, depending on the amount of water contained in the electrode body composed of the positive electrode, the negative electrode, and the separator, the reaction between the non-aqueous electrolyte and water may be promoted and the battery characteristics may deteriorate. There is. Specifically, when a non-aqueous electrolyte containing lithium hexafluorophosphate is used, depending on the amount of water contained in the electrode body, the reaction between lithium hexafluorophosphate and water is promoted and hydrogen fluoride is generated. As a result, the battery resistance increases.

上記課題に鑑み本発明の目的は、ガスの発生を抑制すると共に、電池抵抗の増加を抑制することができる非水電解液二次電池の製造方法を提供することである。   In view of the above problems, an object of the present invention is to provide a method for manufacturing a non-aqueous electrolyte secondary battery that can suppress the generation of gas and suppress an increase in battery resistance.

本発明の一態様にかかる非水電解液二次電池の製造方法は、正極活物質を備える正極と、負極活物質を備える負極と、前記正極と前記負極との間に配置されたセパレータと、を有する電極体を形成する工程と、前記電極体を電池容器内に収容する工程と、六フッ化リン酸リチウムを含み、0.025M以上0.05M以下の濃度となるようにジフルオロリン酸リチウムが添加された非水電解液を前記電池容器内に注入する工程と、を備える。そして、前記添加されたジフルオロリン酸リチウムの量A(mol)と、前記非水電解液を注入する前の前記電極体に含まれる水分量B(mol)との比R(R=A/B)の対数が−0.10<logR<0を満たす様調整される。   A method for producing a non-aqueous electrolyte secondary battery according to one embodiment of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, A step of forming an electrode body comprising: a step of housing the electrode body in a battery container; and lithium difluorophosphate so as to have a concentration of 0.025 M or more and 0.05 M or less, including lithium hexafluorophosphate. And a step of injecting the non-aqueous electrolyte to which is added into the battery container. And ratio R (R = A / B) of the amount A (mol) of the added lithium difluorophosphate and the amount of water B (mol) contained in the electrode body before injecting the non-aqueous electrolyte ) Is adjusted to satisfy −0.10 <logR <0.

上記非水電解液二次電池の製造方法において、前記正極活物質はニッケルコバルトマンガン酸リチウムを含んでいてもよい。   In the method for manufacturing a non-aqueous electrolyte secondary battery, the positive electrode active material may contain lithium nickel cobalt manganate.

上記非水電解液二次電池の製造方法は、前記電極体に含まれる水分量を調整する工程を更に備えていてもよい。   The method for manufacturing a non-aqueous electrolyte secondary battery may further include a step of adjusting the amount of water contained in the electrode body.

上記非水電解液二次電池の製造方法において、前記電極体を収容した前記電池容器の一部を開放し、前記電池容器を所定の温度および所定の湿度の環境下で所定の時間放置することで前記電極体に含まれる水分量を調整してもよい。   In the method for manufacturing a non-aqueous electrolyte secondary battery, a part of the battery container containing the electrode body is opened, and the battery container is left in a predetermined temperature and predetermined humidity environment for a predetermined time. The amount of water contained in the electrode body may be adjusted.

上記非水電解液二次電池の製造方法において、前記電極体として水分を含む電極体を形成し、当該水分を含む電極体を所定の温度および所定の湿度の環境下で所定の時間乾燥することで前記電極体に含まれる水分量を調整してもよい。   In the method for manufacturing a non-aqueous electrolyte secondary battery, an electrode body containing moisture is formed as the electrode body, and the electrode body containing moisture is dried for a predetermined time in an environment of a predetermined temperature and a predetermined humidity. The amount of water contained in the electrode body may be adjusted.

上記非水電解液二次電池の製造方法において、前記非水電解液を注入した後、前記非水電解液二次電池を所定の容量まで充電し、所定の時間放置することで活性化処理を実施してもよい。   In the method for manufacturing a non-aqueous electrolyte secondary battery, after injecting the non-aqueous electrolyte, the non-aqueous electrolyte secondary battery is charged to a predetermined capacity and left to stand for a predetermined time to perform an activation treatment. You may implement.

上記非水電解液二次電池の製造方法において、前記六フッ化リン酸リチウムは、前記正極に含まれる水と反応してジフルオロリン酸リチウムを生成し、前記正極の表面に皮膜を形成してもよい。   In the method for manufacturing a non-aqueous electrolyte secondary battery, the lithium hexafluorophosphate reacts with water contained in the positive electrode to generate lithium difluorophosphate, and forms a film on the surface of the positive electrode. Also good.

上記非水電解液二次電池の製造方法において、前記電極体は、前記正極と前記セパレータと前記負極とを互いに積層して捲回することで形成した捲回電極体であってもよい。   In the method for manufacturing a non-aqueous electrolyte secondary battery, the electrode body may be a wound electrode body formed by laminating and winding the positive electrode, the separator, and the negative electrode.

本発明により、ガスの発生を抑制すると共に、電池抵抗の増加を抑制することができる非水電解液二次電池の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a non-aqueous electrolyte secondary battery that can suppress generation of gas and suppress increase in battery resistance.

添加されたジフルオロリン酸リチウム(添加剤)の濃度に対するガス発生量と初期IV抵抗値とを示す図である。It is a figure which shows the gas generation amount with respect to the density | concentration of the added lithium difluorophosphate (additive), and initial stage IV resistance value. 電極体に含まれる水分量に対するガス発生量を示す図である。It is a figure which shows the gas generation amount with respect to the moisture content contained in an electrode body. 電極体に含まれる水分量に対する初期IV抵抗値を示す図である。It is a figure which shows the initial stage IV resistance value with respect to the moisture content contained in an electrode body. 添加されたジフルオロリン酸リチウム(添加剤)の濃度と電極体に含まれる水分量との比の対数に対する、ガス発生量と初期IV抵抗値とを示す図である。It is a figure which shows the gas generation amount and the initial IV resistance value with respect to the logarithm of the ratio of the density | concentration of the added lithium difluorophosphate (additive) and the moisture content contained in an electrode body.

以下、本発明の実施の形態について説明する。
本実施の形態にかかる非水電解液二次電池(以下、リチウムイオン二次電池を例として説明する)の製造方法では、まず、正極活物質を備える正極と、負極活物質を備える負極と、正極と負極との間に配置されたセパレータと、を有する電極体を形成する。その後、電極体を電池容器内に収容し、六フッ化リン酸リチウムを含み、0.025M以上0.05M以下の濃度となるようにジフルオロリン酸リチウムが添加された非水電解液を電池容器内に注入する。以下、リチウムイオン二次電池の製造方法について詳細に説明する。
Embodiments of the present invention will be described below.
In the method for producing a non-aqueous electrolyte secondary battery according to the present embodiment (hereinafter described as an example of a lithium ion secondary battery), first, a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, An electrode body having a separator disposed between the positive electrode and the negative electrode is formed. Thereafter, the electrode body is accommodated in the battery container, and the nonaqueous electrolytic solution containing lithium hexafluorophosphate and containing lithium difluorophosphate added to a concentration of 0.025M or more and 0.05M or less is used in the battery container. Inject into. Hereinafter, the manufacturing method of a lithium ion secondary battery is demonstrated in detail.

リチウムイオン二次電池の正極は正極活物質を有する。正極活物質は、リチウムを吸蔵・放出可能な材料であり、例えばコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、これらの混合物であるニッケルコバルトマンガン酸リチウムを用いることができる。ニッケルコバルトマンガン酸リチウムの組成としては、例えば各金属元素を等しい割合で混合して焼成したLiNi1/3Co1/3Mn1/3が挙げられる。 The positive electrode of the lithium ion secondary battery has a positive electrode active material. The positive electrode active material is a material capable of inserting and extracting lithium, for example, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and nickel cobalt that is a mixture thereof. Lithium manganate can be used. An example of the composition of lithium nickel cobalt manganate is LiNi 1/3 Co 1/3 Mn 1/3 O 2 in which each metal element is mixed and fired at an equal ratio.

また、正極は、導電材を含んでいてもよい。導電材としては、例えばアセチレンブラック(AB)、ケッチェンブラック等のカーボンブラック、黒鉛(グラファイト)を用いることができる。   The positive electrode may contain a conductive material. As the conductive material, for example, carbon black such as acetylene black (AB) and ketjen black, and graphite (graphite) can be used.

正極は、例えば、正極活物質と、導電材と、溶媒と、結着剤(バインダー)とを混練し、混練後の正極合剤を正極集電体に塗布して乾燥することによって作製することができる。ここで、溶媒としては、例えばNMP(N−メチル−2−ピロリドン)溶液を用いることができる。また、バインダーとしては、例えば、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等を用いることができる。また、正極集電体として、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。   The positive electrode is prepared by, for example, kneading a positive electrode active material, a conductive material, a solvent, and a binder (binder), applying the kneaded positive electrode mixture to a positive electrode current collector, and drying. Can do. Here, as the solvent, for example, an NMP (N-methyl-2-pyrrolidone) solution can be used. As the binder, for example, polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), or the like can be used. As the positive electrode current collector, aluminum or an alloy containing aluminum as a main component can be used.

リチウムイオン二次電池の負極は負極活物質を有する。負極活物質は、リチウムを吸蔵・放出可能な材料であり、例えば、黒鉛(グラファイト)等からなる粉末状の炭素材料や、天然黒鉛を非晶質炭素で被覆した非晶質炭素被覆天然黒鉛等を用いることができる。そして、正極と同様に、負極活物質と、溶媒と、バインダーとを混練し、混練後の負極合剤を負極集電体に塗布して乾燥することによって負極を作製することができる。ここで、負極集電体として、例えば銅やニッケルあるいはそれらの合金を用いることができる。   The negative electrode of the lithium ion secondary battery has a negative electrode active material. The negative electrode active material is a material capable of inserting and extracting lithium, for example, a powdery carbon material made of graphite or the like, an amorphous carbon-coated natural graphite in which natural graphite is coated with amorphous carbon, or the like Can be used. Then, similarly to the positive electrode, the negative electrode can be produced by kneading the negative electrode active material, the solvent, and the binder, applying the kneaded negative electrode mixture to the negative electrode current collector, and drying. Here, as the negative electrode current collector, for example, copper, nickel, or an alloy thereof can be used.

セパレータとしては、例えば、多孔性ポリエチレン膜、多孔性ポリプロピレン膜、多孔性ポリオレフィン膜、多孔性ポリ塩化ビニル膜等の多孔性ポリマー膜を、単独、又は組み合わせて使用することができる。   As the separator, for example, a porous polymer film such as a porous polyethylene film, a porous polypropylene film, a porous polyolefin film, or a porous polyvinyl chloride film can be used alone or in combination.

上記のようにして形成した正極と負極との間にセパレータを介在させ、これらの積層体を捲回することで電極体(捲回電極体)を形成する。このとき、積層体を捲回することで形成された電極体を側面方向から押しつぶして扁平状の捲回電極体としてもよい。   A separator is interposed between the positive electrode and the negative electrode formed as described above, and an electrode body (rolled electrode body) is formed by winding these laminates. At this time, the electrode body formed by winding the laminate may be crushed from the side surface direction to form a flat wound electrode body.

その後、電極体を電池容器内に収容する。例えば、電池容器は、上端が開放された扁平な直方体状の電池容器本体と、その開口部を塞ぐ蓋体とを備える。電池容器を構成する材料としては、アルミニウム、スチール等の金属材料が好ましい。または、ポリフェニレンサルファイド樹脂(PPS)、ポリイミド樹脂等の樹脂材料を成形した容器であってもよい。電池容器の上面(つまり、蓋体)には、捲回電極体の正極と電気的に接続される正極端子および捲回電極体の負極と電気的に接続される負極端子が設けられている。   Thereafter, the electrode body is accommodated in the battery container. For example, the battery container includes a flat rectangular parallelepiped battery container main body whose upper end is opened, and a lid that closes the opening. The material constituting the battery container is preferably a metal material such as aluminum or steel. Or the container which shape | molded resin materials, such as polyphenylene sulfide resin (PPS) and a polyimide resin, may be sufficient. A positive electrode terminal electrically connected to the positive electrode of the wound electrode body and a negative electrode terminal electrically connected to the negative electrode of the wound electrode body are provided on the upper surface (that is, the lid) of the battery container.

そして、捲回電極体の両端部の正極および負極が露出した部分(正極合剤層および負極合剤層がない部分)に、正極リード端子および負極リード端子をそれぞれ設け、上述の正極端子および負極端子とそれぞれ電気的に接続する。その後、捲回電極体を容器本体に収容し、蓋体を用いて容器本体の開口部を封止する。その後、蓋体に設けられた注液孔から非水電解液を注入し、注液孔を封止キャップで閉塞することによりリチウムイオン二次電池を作製することができる。   And the positive electrode lead terminal and the negative electrode lead terminal are respectively provided in the portion where the positive electrode and the negative electrode are exposed at both ends of the wound electrode body (the portion where the positive electrode mixture layer and the negative electrode mixture layer are not present). Connect each terminal electrically. Thereafter, the wound electrode body is accommodated in the container body, and the opening of the container body is sealed using the lid. Thereafter, a non-aqueous electrolyte is injected from a liquid injection hole provided in the lid, and the lithium ion secondary battery can be manufactured by closing the liquid injection hole with a sealing cap.

非水電解液は、非水溶媒に支持塩が含有された組成物である。ここで、非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種または二種以上の材料を用いることができる。また、支持塩としては、六フッ化リン酸リチウム(LiPF)を用いることができる。 The nonaqueous electrolytic solution is a composition in which a supporting salt is contained in a nonaqueous solvent. Here, as the non-aqueous solvent, one or two selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. More than one type of material can be used. Further, lithium hexafluorophosphate (LiPF 6 ) can be used as the supporting salt.

そして、本実施の形態にかかるリチウムイオン二次電池の製造方法では、非水電解液中のジフルオロリン酸リチウム(LiPO)の濃度が0.025以上0.05M以下となるように、非水電解液にジフルオロリン酸リチウムを添加する。ジフルオロリン酸リチウムの構造式を下記に示す。

Figure 2014007132
And in the manufacturing method of the lithium ion secondary battery according to the present embodiment, the concentration of lithium difluorophosphate (LiPO 2 F 2 ) in the non-aqueous electrolyte is 0.025 or more and 0.05 M or less. Lithium difluorophosphate is added to the non-aqueous electrolyte. The structural formula of lithium difluorophosphate is shown below.
Figure 2014007132

このとき、添加されたジフルオロリン酸リチウム(以下、添加剤とも記載する)の量A(物質量であって、単位はmol)と、非水電解液を注入する前の電極体(つまり、正極、負極、およびセパレータ)に含まれる水分量B(物質量であって、単位はmol)との比R(R=A/B)の対数(常用対数)が−0.10<logR<0を満たすようにする。電極体に含まれる水分量Bは、カールフィッシャー法を用いて測定することができる。   At this time, the amount of lithium difluorophosphate added (hereinafter also referred to as additive) A (substance amount, unit is mol), and the electrode body before injecting the non-aqueous electrolyte (that is, the positive electrode) , Negative electrode, and separator), the logarithm (common logarithm) of the ratio R (R = A / B) to the amount of water B (substance in mol, the unit is mol) is −0.10 <logR <0. Try to meet. The amount of water B contained in the electrode body can be measured using the Karl Fischer method.

添加剤の量Aと電極体に含まれる水分量Bとの比Rは、添加剤の添加量Aを調整することで、または電極体に含まれる水分量Bを調整することで変更することができる。例えば、添加剤の添加量Aは非水電解液中の添加剤の濃度を調整することで変更することができる。   The ratio R between the amount A of additive and the amount of water B contained in the electrode body can be changed by adjusting the amount of additive A added or by adjusting the amount of water B contained in the electrode body. it can. For example, the additive amount A can be changed by adjusting the concentration of the additive in the non-aqueous electrolyte.

電極体に含まれる水分量Bを調整する場合は、電極体に含まれる水分量Bを調整する工程を更に設けてもよい。例えば、電極体を収容した電池容器の一部を開放し、電池容器を所定の温度・所定の湿度の環境下で所定の時間放置することで電極体に含まれる水分量Bを調整してもよい。また、電極体を形成した後、電極体を電池容器に収容する前に、電極体を所定の温度・所定の湿度の環境下で所定の時間放置することで電極体に含まれる水分量Bを調整してもよい。   When adjusting the water content B contained in the electrode body, a step of adjusting the water content B contained in the electrode body may be further provided. For example, even if the amount of moisture B contained in the electrode body is adjusted by opening a part of the battery container containing the electrode body and leaving the battery container in a predetermined temperature and humidity environment for a predetermined time. Good. In addition, after the electrode body is formed and before the electrode body is accommodated in the battery container, the electrode body is allowed to stand for a predetermined time in an environment of a predetermined temperature and a predetermined humidity so that the amount of water B contained in the electrode body is You may adjust.

また、正極および負極を形成する際に、正極合剤および負極合剤に所定の量の水を混合して水分を含む電極体を形成し、当該水分を含む電極体を所定の温度・所定の湿度の環境下で所定の時間乾燥することで電極体に含まれる水分量を調整してもよい。   Further, when forming the positive electrode and the negative electrode, a predetermined amount of water is mixed with the positive electrode mixture and the negative electrode mixture to form a water-containing electrode body, and the water-containing electrode body is formed at a predetermined temperature and a predetermined temperature. The amount of water contained in the electrode body may be adjusted by drying for a predetermined time in a humidity environment.

また、本実施の形態にかかるリチウムイオン二次電池の製造方法では、非水電解液を注入した後に活性化処理を実施してもよい。活性化処理は、リチウムイオン二次電池を所定の容量まで充電し、所定の時間放置することで実施することができる。具体例を挙げると、リチウムイオン二次電池を満充電(つまり、SOCを100%)することでコンディショニング処理を実施し、その後、SOCを100%に保持したまま60℃の環境下で一定期間保存することでエージング処理を実施して、活性化処理を実施することができる。   Moreover, in the manufacturing method of the lithium ion secondary battery concerning this Embodiment, you may implement an activation process, after inject | pouring a non-aqueous electrolyte. The activation process can be performed by charging the lithium ion secondary battery to a predetermined capacity and leaving it for a predetermined time. As a specific example, the lithium ion secondary battery is fully charged (that is, the SOC is 100%), and then the conditioning process is performed. Thereafter, the SOC is kept at 100% and stored in a 60 ° C. environment for a certain period. Thus, the aging process can be performed and the activation process can be performed.

本実施の形態にかかるリチウムイオン二次電池の製造方法では、非水電解液おけるジフルオロリン酸リチウムの濃度が0.025以上0.05M以下となるように、非水電解液にジフルオロリン酸リチウムを添加している。このように、非水電解液にジフルオロリン酸リチウムを添加すると正極表面に皮膜が形成される。そして、正極表面に皮膜が形成されると、正極表面での非水電解液の酸化還元反応を抑制することができ、正極から発生するガスの量を低減させることができる。このとき、非水電解液中のジフルオロリン酸リチウムの濃度が高くなるほど、正極表面に形成される皮膜の厚さが厚くなるため、正極から発生するガスの量をより低減することができる。   In the method for manufacturing a lithium ion secondary battery according to the present embodiment, lithium difluorophosphate is added to the non-aqueous electrolyte so that the concentration of lithium difluorophosphate in the non-aqueous electrolyte is 0.025 to 0.05M. Is added. Thus, when lithium difluorophosphate is added to the non-aqueous electrolyte, a film is formed on the surface of the positive electrode. And if a film | membrane is formed on the positive electrode surface, the oxidation-reduction reaction of the nonaqueous electrolyte solution on the positive electrode surface can be suppressed, and the amount of gas generated from the positive electrode can be reduced. At this time, as the concentration of lithium difluorophosphate in the non-aqueous electrolyte increases, the thickness of the coating formed on the surface of the positive electrode increases, so that the amount of gas generated from the positive electrode can be further reduced.

一方、ジフルオロリン酸リチウムを添加したとしても、正極、負極およびセパレータで構成される電極体に含まれる水分量によっては、六フッ化リン酸リチウムと水との反応が促進されてフッ化水素が生成され、電池抵抗が増加するという問題があった。六フッ化リン酸リチウムと水との反応を下記に示す。
LiPF+2HO → LiPO+4HF ・・・(1)
On the other hand, even if lithium difluorophosphate is added, depending on the amount of water contained in the electrode body composed of the positive electrode, the negative electrode, and the separator, the reaction between lithium hexafluorophosphate and water is promoted and hydrogen fluoride is generated. As a result, the battery resistance increases. The reaction of lithium hexafluorophosphate with water is shown below.
LiPF 6 + 2H 2 O → LiPO 2 F 2 + 4HF (1)

このように、六フッ化リン酸リチウムは水と反応してジフルオロリン酸リチウムとフッ化水素を生成する。六フッ化リン酸リチウムと水との反応が促進されてジフルオロリン酸リチウムの量が増えると、正極に形成されるジフルオロリン酸リチウム皮膜の量が増えるため、正極から発生するガスの量が低減する。しかしながら、この反応が促進されると、非水電解液おけるフッ化水素の濃度も増加する。非水電解液中のフッ化水素の濃度が増加すると、フッ化水素による正極や負極の化学的浸食が進み、正極や負極の劣化や分解が進むため、電池抵抗が増加する。   Thus, lithium hexafluorophosphate reacts with water to produce lithium difluorophosphate and hydrogen fluoride. When the reaction between lithium hexafluorophosphate and water is promoted and the amount of lithium difluorophosphate increases, the amount of lithium difluorophosphate film formed on the positive electrode increases, so the amount of gas generated from the positive electrode decreases. To do. However, when this reaction is promoted, the concentration of hydrogen fluoride in the non-aqueous electrolyte also increases. As the concentration of hydrogen fluoride in the non-aqueous electrolyte increases, chemical erosion of the positive electrode and the negative electrode by hydrogen fluoride proceeds, and deterioration and decomposition of the positive electrode and the negative electrode proceed, so that battery resistance increases.

そこで本実施の形態にかかるリチウムイオン二次電池の製造方法では、非水電解液に添加するジフルオロリン酸リチウムの量A(mol)と、非水電解液を注入する前の電極体(つまり、正極、負極、およびセパレータ)に含まれる水分量B(mol)との比R(R=A/B)の対数が、−0.10<logR<0を満たすようにしている。このように、ジフルオロリン酸リチウムの量A(mol)と電極体に含まれる水分量B(mol)とを上記のように調整することで、反応式(1)の反応を効率よく進行させることができ、非水電解液の酸化還元反応に伴うガスの発生を抑制すると共に、電池抵抗の増加を抑制することができる。(図4参照。図4の矢印で示す範囲が本発明の効果が得られる範囲である。)   Therefore, in the method of manufacturing a lithium ion secondary battery according to the present embodiment, the amount A (mol) of lithium difluorophosphate added to the non-aqueous electrolyte and the electrode body before injecting the non-aqueous electrolyte (that is, The logarithm of the ratio R (R = A / B) to the amount of water B (mol) contained in the positive electrode, the negative electrode, and the separator is set to satisfy −0.10 <logR <0. Thus, by adjusting the amount A (mol) of lithium difluorophosphate and the amount of water B (mol) contained in the electrode body as described above, the reaction of the reaction formula (1) can be efficiently advanced. It is possible to suppress the generation of gas accompanying the oxidation-reduction reaction of the non-aqueous electrolyte, and it is possible to suppress an increase in battery resistance. (See FIG. 4. The range indicated by the arrow in FIG. 4 is the range where the effect of the present invention can be obtained.)

すなわち、logRの値が小さい場合は、電極体に含まれる水分の割合が高く、添加剤の割合が低い。この場合は、電極体に含まれる水分の割合が高いので、反応式(1)の反応が促進されてフッ化水素の生成量が増加し、電池抵抗が増加する。このとき、反応式(1)の反応によりジフルオロリン酸リチウムも生成される。反応式(1)の反応では電極体の表面に存在する水分が用いられるため、反応式(1)の反応によって生成されたジフルオロリン酸リチウムは、電極体の表面に偏在する。   That is, when the value of logR is small, the proportion of moisture contained in the electrode body is high and the proportion of additive is low. In this case, since the ratio of the moisture contained in the electrode body is high, the reaction of the reaction formula (1) is promoted, the amount of hydrogen fluoride generated increases, and the battery resistance increases. At this time, lithium difluorophosphate is also produced by the reaction of the reaction formula (1). Since water present on the surface of the electrode body is used in the reaction of the reaction formula (1), the lithium difluorophosphate generated by the reaction of the reaction formula (1) is unevenly distributed on the surface of the electrode body.

ここで、正極に形成されるジフルオロリン酸リチウム皮膜は、主として、非水電解液に添加されたジフルオロリン酸リチウムに由来する皮膜(皮膜A)と、正極表面に存在する水分と六フッ化リン酸リチウムとが反応することで生成(反応式(1)参照)された皮膜(皮膜B)とがある。そして、皮膜Bは、正極の表面に存在する水分を用いて生成されるため、皮膜Bの方が正極表面に効率的に(つまり正極表面に偏在するように)形成することができる。   Here, the lithium difluorophosphate film formed on the positive electrode is mainly composed of a film derived from lithium difluorophosphate added to the non-aqueous electrolyte (film A), moisture present on the positive electrode surface, and phosphorus hexafluoride. There is a film (coating B) generated by reacting with lithium acid (see reaction formula (1)). And since the membrane | film | coat B is produced | generated using the water | moisture content which exists on the surface of a positive electrode, the direction of the membrane | film | coat B can be formed in the positive electrode surface more efficiently (that is, it is unevenly distributed in the positive electrode surface).

よって、logRの値が小さい場合は添加剤の割合が低いが、正極表面に反応式(1)に由来するジフルオロリン酸リチウム皮膜(皮膜B)を効率的に形成することができるため、非水電解液の酸化還元反応に伴うガスの発生を抑制することができる(図4参照)。   Therefore, when the value of logR is small, the proportion of the additive is low, but since the lithium difluorophosphate film (film B) derived from the reaction formula (1) can be efficiently formed on the positive electrode surface, Generation of gas accompanying the oxidation-reduction reaction of the electrolytic solution can be suppressed (see FIG. 4).

一方、logRの値が大きい場合は、電極体に含まれる水分の割合が低く、添加剤の割合が高い。この場合、電極体に含まれる水分の割合が低いので、反応式(1)の反応があまり進まずフッ化水素の生成量が少ないため電池抵抗の増加を抑制することができる。また、この場合は、添加剤の割合が高いため、正極表面に形成される皮膜は、主として、非水電解液に添加されたジフルオロリン酸リチウムに由来する皮膜(皮膜A)となる。ここで、非水電解液に添加されたジフルオロリン酸リチウムに由来する皮膜(皮膜A)は、正極表面に存在する水分と六フッ化リン酸リチウムとが反応することで生成された皮膜(皮膜B)よりも生成効率が低い。よって、logRの値が大きい場合は添加剤の割合が高いが、正極表面にジフルオロリン酸リチウム皮膜を効率的に形成することができないために、ガスの発生量が増加する(図4参照)。   On the other hand, when the value of logR is large, the proportion of moisture contained in the electrode body is low and the proportion of additive is high. In this case, since the ratio of the moisture contained in the electrode body is low, the reaction of the reaction formula (1) does not proceed so much and the production amount of hydrogen fluoride is small, so that an increase in battery resistance can be suppressed. In this case, since the ratio of the additive is high, the film formed on the positive electrode surface is mainly a film (film A) derived from lithium difluorophosphate added to the non-aqueous electrolyte. Here, the film (film A) derived from lithium difluorophosphate added to the non-aqueous electrolyte is a film (film formed by reacting water present on the positive electrode surface with lithium hexafluorophosphate. The production efficiency is lower than in B). Therefore, when the value of logR is large, the ratio of the additive is high, but since the lithium difluorophosphate film cannot be efficiently formed on the positive electrode surface, the amount of gas generated increases (see FIG. 4).

上記点を考慮して、本実施の形態にかかるリチウムイオン二次電池の製造方法では、非水電解液に添加するジフルオロリン酸リチウムの量A(mol)と、非水電解液を注入する前の電極体に含まれる水分量B(mol)との比R(R=A/B)の対数が、−0.10<logR<0を満たすようにしている。このように、ジフルオロリン酸リチウムの量A(mol)と電極体に含まれる水分量B(mol)との割合を最適な割合とすることで、反応式(1)の反応を効率よく進行させることができ、非水電解液の酸化還元反応に伴うガスの発生を抑制すると共に、電池抵抗の増加を抑制することができる。   Considering the above points, in the method of manufacturing a lithium ion secondary battery according to the present embodiment, the amount A (mol) of lithium difluorophosphate added to the non-aqueous electrolyte and before injecting the non-aqueous electrolyte The logarithm of the ratio R (R = A / B) to the water content B (mol) contained in the electrode body satisfies −0.10 <logR <0. Thus, the reaction of the reaction formula (1) is efficiently advanced by setting the ratio of the amount A (mol) of lithium difluorophosphate and the amount of water B (mol) contained in the electrode body to an optimum ratio. It is possible to suppress the generation of gas accompanying the oxidation-reduction reaction of the non-aqueous electrolyte, and it is possible to suppress an increase in battery resistance.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

<リチウムイオン二次電池の作製>
正極は、正極活物質を含む正極合剤を正極集電体に塗布して乾燥することで作製した。正極活物質として89重量%のLiNi1/3Co1/3Mn1/3を、バインダーとして8重量%のポリフッ化ビニリデン(PVdF)を、導電材として3重量%のアセチレンブラック(AB)をそれぞれ混練して正極合剤を作製した。その後、この正極合剤をアルミニウム箔上に塗布して乾燥した後、所望の厚さと幅に加工した。
<Production of lithium ion secondary battery>
The positive electrode was produced by applying a positive electrode mixture containing a positive electrode active material to a positive electrode current collector and drying it. 89% by weight of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, 8% by weight of polyvinylidene fluoride (PVdF) as a binder, and 3% by weight of acetylene black (AB) as a conductive material Were respectively kneaded to prepare a positive electrode mixture. Thereafter, the positive electrode mixture was applied onto an aluminum foil and dried, and then processed into a desired thickness and width.

負極は、負極活物質を含む負極合剤を負極集電体に塗布して乾燥することで作製した。負極活物質として98重量%の黒鉛を、バインダーとして1重量%のスチレンブタジエンラバー(SBR)を、増粘剤として1重量%のカルボキシメチルセルロース(CMC)をそれぞれ混練して負極合剤を作製した。その後、この負極合剤を銅箔上に塗布して乾燥した後、所望の厚さと幅に加工した。   The negative electrode was produced by applying a negative electrode mixture containing a negative electrode active material to a negative electrode current collector and drying it. A negative electrode mixture was prepared by kneading 98% by weight of graphite as a negative electrode active material, 1% by weight of styrene butadiene rubber (SBR) as a binder, and 1% by weight of carboxymethyl cellulose (CMC) as a thickener. Then, after apply | coating this negative electrode mixture on copper foil and drying, it processed into the desired thickness and width | variety.

上記のようにして形成した正極と負極との間にセパレータを介在させ、これらの積層体を捲回することで電極体(捲回電極体)を形成した。そして、電極体の両端部の正極および負極が露出した部分(正極合剤層および負極合剤層がない部分)に、正極リード端子および負極リード端子をそれぞれ設け、電池容器の蓋体に設けられている正極端子および負極端子とそれぞれ電気的に接続した。その後、電極体を電池容器内に収容し蓋体で封止した。   A separator was interposed between the positive electrode and the negative electrode formed as described above, and an electrode body (rolled electrode body) was formed by winding these laminates. Then, a positive electrode lead terminal and a negative electrode lead terminal are respectively provided in a portion where the positive electrode and the negative electrode are exposed at both ends of the electrode body (a portion where the positive electrode mixture layer and the negative electrode mixture layer are not provided), and provided on the lid of the battery container. The positive electrode terminal and the negative electrode terminal are electrically connected to each other. Thereafter, the electrode body was accommodated in a battery container and sealed with a lid.

そして、上記のようにして作製した電極体に含まれる水分量を調整するために、注液孔を開放した状態で、温度25℃、湿度75%の高湿槽に所定の時間放置した。その後、カールフィッシャー法を用いて正極、負極およびセパレータの水分量を測定し、この測定された水分量を電極体に含まれる水分量とした。なお、カールフィッシャー法による測定は破壊検査であるため、複数のサンプルを準備し、これらのうちの一つのサンプルを用いて電極体に含まれる水分量を測定した。下記の表1に、高湿槽に放置した時間と電極体に含まれる水分量との関係を示す。表1に示すように、高湿槽に放置した時間が長くなる程、電極体に含まれる水分量が増加した。   Then, in order to adjust the amount of water contained in the electrode body produced as described above, it was left in a high-humidity tank having a temperature of 25 ° C. and a humidity of 75% for a predetermined time with the injection hole opened. Then, the moisture content of the positive electrode, the negative electrode, and the separator was measured using the Karl Fischer method, and this measured moisture content was used as the moisture content contained in the electrode body. Since the measurement by the Karl Fischer method is a destructive inspection, a plurality of samples were prepared, and the moisture content contained in the electrode body was measured using one of these samples. Table 1 below shows the relationship between the time left in the high-humidity tank and the amount of water contained in the electrode body. As shown in Table 1, the amount of water contained in the electrode body increased as the time left in the high humidity tank increased.

Figure 2014007132
Figure 2014007132

その後、蓋体に設けられた注液孔から非水電解液を注入し、注液孔を封止キャップで閉塞した。非水電解液には、ECとDMCとEMCとをそれぞれ30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1M(mol/L)の濃度で含有させたものを使用した。また、非水電解液に所定の量のジフルオロリン酸リチウム(添加剤)を添加した。 Thereafter, a non-aqueous electrolyte was injected from a liquid injection hole provided in the lid, and the liquid injection hole was closed with a sealing cap. In the non-aqueous electrolyte, LiPF 6 as a supporting salt was contained at a concentration of 1.1 M (mol / L) in a mixed solvent containing EC, DMC, and EMC at a volume ratio of 30:40:30, respectively. I used something. A predetermined amount of lithium difluorophosphate (additive) was added to the non-aqueous electrolyte.

リチウムイオン二次電池を作製した後、活性化処理を実施した。活性化処理は、リチウムイオン二次電池を満充電(SOC=100%)することでコンディショニング処理をし、その後、SOC=100%に保持したまま60℃の環境下で一定期間保存することでエージング処理をして実施した。活性化処理を実施した後、内圧センサを取り付けた。   After producing a lithium ion secondary battery, activation treatment was performed. In the activation process, the lithium ion secondary battery is fully charged (SOC = 100%), then the conditioning process is performed, and then the SOC is maintained at 100% and stored in a 60 ° C. environment for a certain period of time. Processed and carried out. After performing the activation process, an internal pressure sensor was attached.

<初期IV抵抗値の測定>
上記のようにして作製したリチウムイオン二次電池の初期IV抵抗値(−30℃)を測定した。つまり、保存試験を行なう前に、リチウムイオン二次電池のSOCを15%に調整し、雰囲気温度を−30℃に設定して各電池を3時間放置した。その後、−30℃にて2Cで10秒間の放電を行い、放電開始から10秒後の電圧値をプロットし、−30℃における初期IV抵抗値(mΩ)を求め、これを電池抵抗とした。
<Measurement of initial IV resistance value>
The initial IV resistance value (−30 ° C.) of the lithium ion secondary battery produced as described above was measured. That is, before conducting the storage test, the SOC of the lithium ion secondary battery was adjusted to 15%, the ambient temperature was set to −30 ° C., and each battery was left for 3 hours. Thereafter, discharging was performed at 2C at -30 ° C for 10 seconds, and the voltage value 10 seconds after the start of discharge was plotted to obtain an initial IV resistance value (mΩ) at -30 ° C, which was defined as battery resistance.

<ガス発生量の測定>
初期IV抵抗値を測定した後、リチウムイオン二次電池を60℃の雰囲気で50日間保存した時点でのガス発生量(50日後のガス発生量)を測定した。ガス発生量は、内圧センサで求めた電池容器内の内圧を用いて求めた。
<Measurement of gas generation amount>
After measuring the initial IV resistance value, the gas generation amount (gas generation amount after 50 days) when the lithium ion secondary battery was stored in an atmosphere at 60 ° C. for 50 days was measured. The amount of gas generated was determined using the internal pressure in the battery container determined by the internal pressure sensor.

<試験1>
ジフルオロリン酸リチウムの添加量とガスの発生量との関係を調べるために、非水電解液中のジフルオロリン酸リチウムの濃度が0.025MであるサンプルAと、0.05MであるサンプルBとを準備した。このとき、電極体に含まれる水分量は100mgとした。つまり、高湿槽に18時間放置したリチウムイオン二次電池を用いた。下記の表2に、各サンプルの電解液組成、電極体に含まれる水分量、ジフルオロリン酸リチウムの濃度との関係を示す。
<Test 1>
In order to investigate the relationship between the amount of lithium difluorophosphate added and the amount of gas generated, sample A in which the concentration of lithium difluorophosphate in the non-aqueous electrolyte is 0.025M, and sample B which is 0.05M Prepared. At this time, the amount of water contained in the electrode body was 100 mg. That is, a lithium ion secondary battery left for 18 hours in a high humidity tank was used. Table 2 below shows the relationship between the electrolyte composition of each sample, the amount of water contained in the electrode body, and the concentration of lithium difluorophosphate.

Figure 2014007132
Figure 2014007132

<試験結果1>
上記のようにして準備したサンプルA、Bの初期IV抵抗値(−30℃)の測定結果とガス発生量(50日後のガス発生量)の測定結果を図1および表3に示す。

Figure 2014007132
<Test result 1>
FIG. 1 and Table 3 show the measurement results of the initial IV resistance values (−30 ° C.) and the gas generation amounts (gas generation amounts after 50 days) of Samples A and B prepared as described above.
Figure 2014007132

図1および表3に示すように、ジフルオロリン酸リチウムの濃度が増加すると、ガス発生量が低下した。つまり、非水電解液中のジフルオロリン酸リチウムの濃度が増加すると、正極表面に形成される皮膜の量が増えて、正極から発生するガスの量がより低減されたと考えられる。よって、添加剤起因で形成される正極皮膜のガス発生抑制効果が確認できた。また、ジフルオロリン酸リチウムの濃度が増加するほど、初期IV抵抗値(−30℃)が低下した。   As shown in FIG. 1 and Table 3, as the concentration of lithium difluorophosphate increased, the amount of gas generated decreased. That is, it is considered that when the concentration of lithium difluorophosphate in the non-aqueous electrolyte increases, the amount of the film formed on the surface of the positive electrode increases, and the amount of gas generated from the positive electrode is further reduced. Therefore, the gas generation | occurrence | production suppression effect of the positive electrode membrane | film | coat formed by the additive origin was confirmed. Moreover, the initial IV resistance value (−30 ° C.) decreased as the concentration of lithium difluorophosphate increased.

<試験2>
添加剤であるジフルオロリン酸リチウムに対する水分の影響を調べるために、電極体に含まれる水分量が70mgのサンプルC、水分量が100mgのサンプルD、水分量が120mgのサンプルE、水分量が150mgのサンプルF、および水分量が180mgのサンプルGをそれぞれ準備した。このとき、非水電解液中のジフルオロリン酸リチウムの濃度は0.05Mとした。下記の表4に、各サンプルの電解液組成、ジフルオロリン酸リチウムの濃度、電極体に含まれる水分量との関係を示す。
<Test 2>
In order to investigate the influence of moisture on lithium difluorophosphate as an additive, sample C containing 70 mg of water, sample D containing 100 mg of water, sample E containing 120 mg of water, and 150 mg of water Sample F and Sample G with a water content of 180 mg were prepared. At this time, the concentration of lithium difluorophosphate in the non-aqueous electrolyte was 0.05M. Table 4 below shows the relationship between the electrolytic solution composition of each sample, the concentration of lithium difluorophosphate, and the amount of water contained in the electrode body.

Figure 2014007132
Figure 2014007132

<試験結果2>
上記のようにして準備したサンプルC〜Gの初期IV抵抗値(−30℃)の測定結果とガス発生量(50日後のガス発生量)の測定結果を図2、図3および表5に示す。

Figure 2014007132
<Test result 2>
The measurement results of the initial IV resistance value (−30 ° C.) and the gas generation amount (gas generation amount after 50 days) of the samples C to G prepared as described above are shown in FIG. 2, FIG. 3 and Table 5. .
Figure 2014007132

図2および表5に示すように、電極体に含まれる水分量が増加するほど、ガス発生量が低下した。これは、電極体に含まれる水分量が増えると、正極に含まれる水と非水電解質に含まれる六フッ化リン酸リチウムとの反応(反応式(1)参照)が促進され、正極に形成されるジフルオロリン酸リチウム皮膜の量が増えたからである。   As shown in FIG. 2 and Table 5, the amount of gas generation decreased as the amount of water contained in the electrode body increased. This is because when the amount of water contained in the electrode body increases, the reaction between water contained in the positive electrode and lithium hexafluorophosphate contained in the non-aqueous electrolyte (see reaction formula (1)) is promoted and formed on the positive electrode. This is because the amount of the lithium difluorophosphate film formed is increased.

一方、図3および表5に示すように、電極体に含まれる水分量が100mgよりも増えると、初期IV抵抗値(−30℃)が増加した。これは、電極体に含まれる水分量が増えると、電極体に含まれる水と非水電解質に含まれる六フッ化リン酸リチウムとの反応(反応式(1)参照)が促進され、非水電解液中のフッ化水素の濃度が増加したためであると考えられる。   On the other hand, as shown in FIG. 3 and Table 5, when the amount of water contained in the electrode body increased from 100 mg, the initial IV resistance value (−30 ° C.) increased. This is because when the amount of water contained in the electrode body increases, the reaction between the water contained in the electrode body and lithium hexafluorophosphate contained in the non-aqueous electrolyte (see reaction formula (1)) is promoted. This is probably because the concentration of hydrogen fluoride in the electrolyte increased.

試験結果1(表3)と試験結果2(表5)に示した各々のサンプルについて、非水電解液に添加したジフルオロリン酸リチウムの量A(mol)と、電極体に含まれる水分量B(mol)との比R(R=A/B)を求めた。なお、ジフルオロリン酸リチウムの量A(mol)は、ジフルオロリン酸リチウムの濃度と電池容器に注入した非水電解液の量とを用いて求めた。そして、これらの比Rの対数に対する、初期IV抵抗値(−30℃)の測定結果とガス発生量(50日後のガス発生量)の測定結果を図4および表6に示す。

Figure 2014007132
For each sample shown in Test Result 1 (Table 3) and Test Result 2 (Table 5), the amount A (mol) of lithium difluorophosphate added to the non-aqueous electrolyte and the amount of water B contained in the electrode body The ratio R (R = A / B) to (mol) was determined. The amount A (mol) of lithium difluorophosphate was determined using the concentration of lithium difluorophosphate and the amount of non-aqueous electrolyte injected into the battery container. FIG. 4 and Table 6 show the measurement results of the initial IV resistance value (−30 ° C.) and the gas generation amount (gas generation amount after 50 days) with respect to the logarithm of these ratios R.
Figure 2014007132

図4および表6に示すように、非水電解液に添加したジフルオロリン酸リチウムの量A(mol)と、電極体に含まれる水分量B(mol)との比R(R=A/B)の対数が、−0.10<logR<0を満たす場合は、ガス発生量が低減し、更に初期IV抵抗値が低減した。つまり、この範囲は、ジフルオロリン酸リチウムの量A(mol)と電極体に含まれる水分量B(mol)との割合が最適な範囲であるため、反応式(1)の反応が効率よく進行したと考えられる。   As shown in FIG. 4 and Table 6, the ratio R (R = A / B) of the amount A (mol) of lithium difluorophosphate added to the non-aqueous electrolyte and the amount of water B (mol) contained in the electrode body ) Satisfies −0.10 <logR <0, the gas generation amount is reduced, and the initial IV resistance value is further reduced. That is, in this range, since the ratio of the amount A (mol) of lithium difluorophosphate and the amount of water B (mol) contained in the electrode body is the optimum range, the reaction of the reaction formula (1) proceeds efficiently. It is thought that.

以上、本発明を上記実施の形態および実施例に即して説明したが、本発明は上記実施の形態および実施例の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。   The present invention has been described with reference to the above-described embodiment and examples. However, the present invention is not limited only to the configurations of the above-described embodiment and examples. It goes without saying that various modifications, corrections, and combinations that can be made by those skilled in the art within the scope of the invention are included.

Claims (8)

正極活物質を備える正極と、負極活物質を備える負極と、前記正極と前記負極との間に配置されたセパレータと、を有する電極体を形成する工程と、
前記電極体を電池容器内に収容する工程と、
六フッ化リン酸リチウムを含み、0.025M以上0.05M以下の濃度となるようにジフルオロリン酸リチウムが添加された非水電解液を前記電池容器内に注入する工程と、を備え、
前記添加されたジフルオロリン酸リチウムの量A(mol)と、前記非水電解液を注入する前の前記電極体に含まれる水分量B(mol)との比R(R=A/B)の対数が−0.10<logR<0を満たす、
非水電解液二次電池の製造方法。
Forming an electrode body having a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a separator disposed between the positive electrode and the negative electrode;
Accommodating the electrode body in a battery container;
Injecting a non-aqueous electrolyte containing lithium hexafluorophosphate and having lithium difluorophosphate added to a concentration of 0.025M or more and 0.05M or less into the battery container,
Ratio R (R = A / B) of the amount A (mol) of the added lithium difluorophosphate and the amount of water B (mol) contained in the electrode body before injecting the non-aqueous electrolyte Logarithm satisfies −0.10 <logR <0,
A method for producing a non-aqueous electrolyte secondary battery.
前記正極活物質はニッケルコバルトマンガン酸リチウムを含む、請求項1に記載の非水電解液二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material includes lithium nickel cobalt manganate. 前記電極体に含まれる水分量を調整する工程を更に備える、請求項1または2に記載の非水電解液二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 1, further comprising a step of adjusting the amount of water contained in the electrode body. 前記電極体を収容した前記電池容器の一部を開放し、前記電池容器を所定の温度および所定の湿度の環境下で所定の時間放置することで前記電極体に含まれる水分量を調整する、請求項3に記載の非水電解液二次電池の製造方法。   Opening a part of the battery container containing the electrode body, and adjusting the amount of water contained in the electrode body by leaving the battery container for a predetermined time in an environment of a predetermined temperature and a predetermined humidity, The manufacturing method of the non-aqueous-electrolyte secondary battery of Claim 3. 前記電極体として水分を含む電極体を形成し、当該水分を含む電極体を所定の温度および所定の湿度の環境下で所定の時間乾燥することで前記電極体に含まれる水分量を調整する、請求項3に記載の非水電解液二次電池の製造方法。   Forming an electrode body containing moisture as the electrode body, and adjusting the amount of moisture contained in the electrode body by drying the electrode body containing moisture for a predetermined time in an environment of a predetermined temperature and a predetermined humidity; The manufacturing method of the non-aqueous-electrolyte secondary battery of Claim 3. 前記非水電解液を注入した後、前記非水電解液二次電池を所定の容量まで充電し、所定の時間放置することで活性化処理を実施する、請求項1乃至5のいずれか一項に記載の非水電解液二次電池の製造方法。   6. The activation process is performed by charging the non-aqueous electrolyte secondary battery to a predetermined capacity after leaving the non-aqueous electrolyte and allowing the battery to stand for a predetermined time. The manufacturing method of the non-aqueous-electrolyte secondary battery as described in 2 .. 前記六フッ化リン酸リチウムは、前記正極に含まれる水と反応してジフルオロリン酸リチウムを生成し前記正極の表面に皮膜を形成する、請求項1乃至6のいずれか一項に記載の非水電解液二次電池の製造方法。   The said lithium hexafluorophosphate reacts with the water contained in the said positive electrode, produces | generates a lithium difluorophosphate, and forms the membrane | film | coat on the surface of the said positive electrode. A method for producing a water electrolyte secondary battery. 前記電極体は、前記正極と前記セパレータと前記負極とを互いに積層して捲回することで形成した捲回電極体である、請求項1乃至7のいずれか一項に記載の非水電解液二次電池の製造方法。   The non-aqueous electrolyte according to any one of claims 1 to 7, wherein the electrode body is a wound electrode body formed by stacking and winding the positive electrode, the separator, and the negative electrode. A method for manufacturing a secondary battery.
JP2012144116A 2012-06-27 2012-06-27 Method for producing non-aqueous electrolyte secondary battery Active JP5929551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144116A JP5929551B2 (en) 2012-06-27 2012-06-27 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144116A JP5929551B2 (en) 2012-06-27 2012-06-27 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014007132A true JP2014007132A (en) 2014-01-16
JP5929551B2 JP5929551B2 (en) 2016-06-08

Family

ID=50104659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144116A Active JP5929551B2 (en) 2012-06-27 2012-06-27 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5929551B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163279A1 (en) * 2014-04-21 2015-10-29 宇部興産株式会社 Regeneration electrolyte for power storage device, power storage device regenerated therewith, and regeneration method of power storage device
JP2016046058A (en) * 2014-08-21 2016-04-04 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and separator therefor
WO2016136179A1 (en) * 2015-02-26 2016-09-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2017045722A (en) * 2015-08-28 2017-03-02 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
JP2018133283A (en) * 2017-02-17 2018-08-23 Tdk株式会社 Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JPWO2021193388A1 (en) * 2020-03-25 2021-09-30
JP7445873B2 (en) 2018-10-31 2024-03-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary batteries and non-aqueous electrolytes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108463A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2008222484A (en) * 2007-03-12 2008-09-25 Central Glass Co Ltd Manufacturing method of lithium dilfuorophosphate and non-aqueous electrolyte battery using the same
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
JP2012084322A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108463A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2008222484A (en) * 2007-03-12 2008-09-25 Central Glass Co Ltd Manufacturing method of lithium dilfuorophosphate and non-aqueous electrolyte battery using the same
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
JP2009099285A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Method of manufacturing secondary battery
JP2012084322A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Method for producing lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163279A1 (en) * 2014-04-21 2015-10-29 宇部興産株式会社 Regeneration electrolyte for power storage device, power storage device regenerated therewith, and regeneration method of power storage device
JP2016046058A (en) * 2014-08-21 2016-04-04 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and separator therefor
WO2016136179A1 (en) * 2015-02-26 2016-09-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN107004897A (en) * 2015-02-26 2017-08-01 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery
JPWO2016136179A1 (en) * 2015-02-26 2017-12-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2017045722A (en) * 2015-08-28 2017-03-02 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
JP2018133283A (en) * 2017-02-17 2018-08-23 Tdk株式会社 Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP7445873B2 (en) 2018-10-31 2024-03-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary batteries and non-aqueous electrolytes
US11973188B2 (en) 2018-10-31 2024-04-30 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JPWO2021193388A1 (en) * 2020-03-25 2021-09-30
WO2021193388A1 (en) * 2020-03-25 2021-09-30 三井化学株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP5929551B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5929551B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
WO2017056981A1 (en) Lithium ion secondary battery, method for producing same, and method for evaluating same
CN104604014B (en) Non-aqueous electrolytic solution and the lithium secondary battery for including it
CN108808098B (en) Method for manufacturing lithium ion secondary battery
CN112216822B (en) Lithium ion secondary battery and preparation method thereof
JPWO2013076847A1 (en) Method for producing non-aqueous electrolyte secondary battery
WO2014119368A1 (en) Method for manufacturing lithium ion secondary battery
JP2012531020A (en) Lithium ion battery
CN106025334A (en) Lithium secondary battery and manufacturing method of the same
JP6926942B2 (en) Manufacturing method of positive electrode
WO2014141930A1 (en) Lithium ion secondary battery and charging method therefor
JP5508349B2 (en) Lithium battery and manufacturing method thereof
WO2015079893A1 (en) Lithium secondary battery
JP6627621B2 (en) Output evaluation method of lithium ion secondary battery
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
CN109119629B (en) Non-aqueous electrolyte secondary battery
JP4687942B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN111435746A (en) Negative electrode
JP2014120367A (en) Nonaqueous electrolyte secondary battery
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP6863055B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
WO2014118963A1 (en) Negative electrode material for lithium ion secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151