JP2014120367A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014120367A
JP2014120367A JP2012275517A JP2012275517A JP2014120367A JP 2014120367 A JP2014120367 A JP 2014120367A JP 2012275517 A JP2012275517 A JP 2012275517A JP 2012275517 A JP2012275517 A JP 2012275517A JP 2014120367 A JP2014120367 A JP 2014120367A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
battery
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012275517A
Other languages
Japanese (ja)
Inventor
Toshihiko Mihashi
利彦 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012275517A priority Critical patent/JP2014120367A/en
Publication of JP2014120367A publication Critical patent/JP2014120367A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a capacity retention rate of a nonaqueous electrolyte secondary battery in which methyl phenyl carbonate is added to a nonaqueous electrolyte.SOLUTION: A nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The negative electrode has a negative electrode active material having a specific surface area of 2.0-4.0 m/g. The nonaqueous electrolyte contains 1.0-3.0 pts.wt. of methyl phenyl carbonate per 100 pts.wt. of a solvent. The nonaqueous electrolyte preferably contains less than 1.5 pts.wt. of methyl phenyl carbonate per 100 pts.wt. of a solvent.

Description

本発明は非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池の一つにリチウムイオン二次電池がある。リチウムイオン二次電池は、リチウムイオンを吸蔵・放出する正極および負極の間を、非水電解質中のリチウムイオンが移動することで充放電可能な二次電池である。特許文献1に記載されているように、電解液にメチルフェニルカーボネート(MPhC,MPC)を0.5〜5質量%添加した非水電解質二次電池が知られている。   One of the non-aqueous electrolyte secondary batteries is a lithium ion secondary battery. A lithium ion secondary battery is a secondary battery that can be charged and discharged by moving lithium ions in a non-aqueous electrolyte between a positive electrode and a negative electrode that occlude and release lithium ions. As described in Patent Document 1, a nonaqueous electrolyte secondary battery in which 0.5 to 5% by mass of methylphenyl carbonate (MPhC, MPC) is added to an electrolytic solution is known.

国際公開第2012/120579号International Publication No. 2012/120579

特許文献1に記載の電池では、ガス発生添加剤としてMPhCが電解液に添加されている。かかる非水電解質二次電池は、保存特性と過充電に対する耐性に優れたものである。しかしながら、特に車両の駆動に用いるには高温使用後の容量維持率が低かった。本発明は、このような問題を解決するためになされたものであり、MPhCを非水電解質に添加した非水電解質二次電池の容量維持率を向上することを課題とする。   In the battery described in Patent Document 1, MPhC is added to the electrolyte as a gas generating additive. Such a non-aqueous electrolyte secondary battery has excellent storage characteristics and resistance to overcharge. However, the capacity maintenance rate after high temperature use is low particularly when used for driving a vehicle. This invention is made | formed in order to solve such a problem, and makes it a subject to improve the capacity | capacitance maintenance factor of the nonaqueous electrolyte secondary battery which added MPhC to the nonaqueous electrolyte.

本発明の非水電解質二次電池は、正極と負極と非水電解質を備え、前記負極は、比表面積2.0〜4.0m/gの負極活物質を有し、前記非水電解質は、100重量部の溶媒に対して、1.0〜3.0重量部のメチルフェニルカーボネートを有する。前記非水電解質は、100重量部の溶媒に対して、1.5重量部より少ないメチルフェニルカーボネートを含有することが好ましい。前記負極活物質は、非晶質コートを有する天然黒鉛であることが好ましい。 The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, the negative electrode has a negative electrode active material having a specific surface area of 2.0 to 4.0 m 2 / g, And 1.0 to 3.0 parts by weight of methylphenyl carbonate with respect to 100 parts by weight of the solvent. The non-aqueous electrolyte preferably contains less than 1.5 parts by weight of methylphenyl carbonate with respect to 100 parts by weight of the solvent. The negative electrode active material is preferably natural graphite having an amorphous coat.

前記正極は、マンガンを含有する遷移金属複合酸化物からなる正極活物質を有することが好ましい。前記遷移金属複合酸化物はLiNiCoMn(0≦x≦2/3,0≦y≦2/3,1/3≦z<1,x+y+z=1)であることがさらに好ましい。前記遷移金属複合酸化物はLiNi1/3Co1/3Mn1/3であることが特に好ましい。本発明の非水電解質二次電池は、感圧型の電流遮断機構を備えないものとしてもよい。また、本発明の車両駆動用電池は、前記非水電解質二次電池を備える。 The positive electrode preferably has a positive electrode active material made of a transition metal composite oxide containing manganese. The transition metal composite oxide is more preferably LiNi x Co y Mn z O 2 (0 ≦ x ≦ 2/3, 0 ≦ y ≦ 2/3, 1/3 ≦ z <1, x + y + z = 1). . The transition metal composite oxide is particularly preferably LiNi 1/3 Co 1/3 Mn 1/3 O 2 . The nonaqueous electrolyte secondary battery of the present invention may not include a pressure-sensitive current interruption mechanism. The battery for driving a vehicle according to the present invention includes the nonaqueous electrolyte secondary battery.

本発明により、MPhCを非水電解質に添加した非水電解質二次電池の容量維持率が向上する。   According to the present invention, the capacity retention rate of the nonaqueous electrolyte secondary battery in which MPhC is added to the nonaqueous electrolyte is improved.

MPhC存在下での活物質比表面積と高温保存後の容量維持率との関係を表すグラフである。It is a graph showing the relationship between the active material specific surface area in the presence of MPhC and the capacity retention rate after high temperature storage. MPhC非存在下での活物質比表面積と高温保存後の容量維持率との関係を表すグラフである。It is a graph showing the relationship between the active material specific surface area in the absence of MPhC and the capacity retention rate after high temperature storage. 他の添加剤存在下での活物質比表面積と高温保存後の容量維持率との関係を表すグラフである。It is a graph showing the relationship between the active material specific surface area in the presence of other additives and the capacity retention rate after high temperature storage. MPhCの添加量と高温保存後の容量維持率との関係を表すグラフである。It is a graph showing the relationship between the addition amount of MPhC and the capacity retention after high-temperature storage. 他の添加剤の添加量と高温保存後の容量維持率との関係を表すグラフである。It is a graph showing the relationship between the addition amount of another additive and the capacity retention after high-temperature storage. 活物質比表面積と充放電後の容量維持率との関係を表すグラフである。It is a graph showing the relationship between an active material specific surface area and the capacity | capacitance maintenance factor after charging / discharging.

本発明の実施の形態にかかる非水電解質二次電池(以下、単に電池という場合がある。)はリチウムイオン二次電池である。電池は、正極と、負極と、非水電解質とを備える。   A non-aqueous electrolyte secondary battery (hereinafter sometimes simply referred to as a battery) according to an embodiment of the present invention is a lithium ion secondary battery. The battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.

<正極>
正極は正極活物質、導電材及びバインダー(結着材)を有する正極合剤を正極集電体に積層して作製する。正極活物質は、リチウムを吸蔵・放出可能な材料を含有する。かかる材料としては例えば、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を用いることができる。また、LiCoO、LiMn、LiNiOを任意の割合で混合してなる、遷移金属複合酸化物を用いてもよい。
<Positive electrode>
The positive electrode is manufactured by stacking a positive electrode mixture having a positive electrode active material, a conductive material, and a binder (binder) on a positive electrode current collector. The positive electrode active material contains a material capable of inserting and extracting lithium. As such a material, for example, lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), or the like can be used. Moreover, LiCoO 2, LiMn 2 O 4 , the LiNiO 2 obtained by mixing in any ratio, may be used transition metal composite oxide.

遷移金属複合酸化物はマンガンを含有することが好ましい。遷移金属複合酸化物の組成は、LiNiCoMn(0≦x≦2/3,0≦y≦2/3,1/3≦z<1,x+y+z=1)であることが好ましく、LiNi1/3Co1/3Mn1/3であることが特に好ましい。Mnを含有することを特徴とする、かかる組成の正極活物質はエネルギー密度及び発生する電圧の高さに優れる。また、導電材としては、例えばアセチレンブラック(AB)、ケッチェンブラック(登録商標)等のカーボンブラック、黒鉛(グラファイト)を用いることができる。 The transition metal composite oxide preferably contains manganese. The composition of the transition metal composite oxide is LiNi x Co y Mn z O 2 (0 ≦ x ≦ 2/3, 0 ≦ y ≦ 2/3, 1/3 ≦ z <1, x + y + z = 1). LiNi 1/3 Co 1/3 Mn 1/3 O 2 is particularly preferable. The positive electrode active material having such a composition, characterized by containing Mn, is excellent in energy density and generated voltage. Further, as the conductive material, for example, carbon black such as acetylene black (AB) and ketjen black (registered trademark), and graphite (graphite) can be used.

正極合剤には分散剤を含んでもよい。分散剤としては、例えばポリビニルアセタール系の分散剤(バインダー型の分散剤)を用いることができる。ポリビニルアセタール系の分散剤としては、例えば、ポリビニルブチラール、ポリビニルホルマール、ポリビニルアセトアセタール、ポリビニルベンザール、ポリビニルフェニルアセタール、およびこれらの共重合体等を挙げることができる。   The positive electrode mixture may contain a dispersant. As the dispersant, for example, a polyvinyl acetal-based dispersant (binder-type dispersant) can be used. Examples of the polyvinyl acetal dispersant include polyvinyl butyral, polyvinyl formal, polyvinyl acetoacetal, polyvinyl benzal, polyvinyl phenyl acetal, and copolymers thereof.

バインダーとしては、例えば、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等を用いることができる。また、正極集電体としては、アルミニウムまたはアルミニウムを主成分とする合金からなる材料を用いることができる。   As the binder, for example, polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), or the like can be used. For the positive electrode current collector, a material made of aluminum or an alloy containing aluminum as a main component can be used.

本実施の形態にかかる正極の作製に際しては、まず正極活物質と、導電材と、分散剤と、バインダーとを混練し正極合剤ペーストを得る。正極合剤ペーストの固形分率又は粘度を調整するために溶媒を用いることが好ましい。溶媒としては、N−メチル−2−ピロリドン(NMP)等を好適に使用できる。次に、例えば混練後の正極合剤ペーストを正極集電体上に塗布し乾燥する。次に、圧延により、正極が所望の密度になるよう調整してもよい。正極の大きさは作製すべき電池の容量に合わせて任意に選択できる。電池の容量としては4〜20Ah程度としてもよい。   In producing the positive electrode according to this embodiment, first, a positive electrode active material, a conductive material, a dispersant, and a binder are kneaded to obtain a positive electrode mixture paste. It is preferable to use a solvent in order to adjust the solid content or viscosity of the positive electrode mixture paste. As the solvent, N-methyl-2-pyrrolidone (NMP) or the like can be suitably used. Next, for example, the kneaded positive electrode mixture paste is applied onto the positive electrode current collector and dried. Next, the positive electrode may be adjusted to a desired density by rolling. The size of the positive electrode can be arbitrarily selected according to the capacity of the battery to be manufactured. The battery capacity may be about 4 to 20 Ah.

<負極>
負極活物質は、リチウムを吸蔵・放出可能な材料が好ましく、黒鉛(グラファイト)からなる粉末状の炭素材料が特に好ましい。黒鉛は天然黒鉛が好ましい。黒鉛を有する負極活物質は、黒鉛の表面に非晶質(アモルファス)コートを有することもできる。
<Negative electrode>
The negative electrode active material is preferably a material capable of occluding and releasing lithium, and particularly preferably a powdery carbon material made of graphite. The graphite is preferably natural graphite. The negative electrode active material having graphite can also have an amorphous coating on the surface of graphite.

負極活物質として黒鉛を用いた場合は、公知の方法で粒子径を調整することで、所定の比表面積を有するものとすることができる。また、非晶質コート有する黒鉛を用いた場合は、そのコート量を調整することによって、所定の比表面積を有するものとすることができる。また、粒子径及びコート量の両方を調整することもできる。   When graphite is used as the negative electrode active material, it can have a specific surface area by adjusting the particle diameter by a known method. When graphite having an amorphous coat is used, the specific surface area can be obtained by adjusting the coating amount. Further, both the particle diameter and the coating amount can be adjusted.

負極活物質は、2.0〜4.0m/gの比表面積を有することが好ましい。負極活物質の比表面積がかかる範囲にある場合、かかる範囲にない場合に比べ、電池の容量維持率が特異的に向上する。かかる効果は実施例で詳述する。 The negative electrode active material preferably has a specific surface area of 2.0 to 4.0 m 2 / g. When the specific surface area of the negative electrode active material is in such a range, the capacity retention rate of the battery is specifically improved as compared with the case where the specific surface area is not in such a range. Such an effect will be described in detail in Examples.

所望の比表面積を有する負極活物質は、例えば、上記黒鉛又は非晶質コートされた黒鉛から、ガス吸着法により比表面積を評価し、選別することができる。例えば、これら黒鉛等に対し、N吸着法により吸着量を測定し、BET法に比表面積を算出することで評価できる。本実施の形態及び実施例において、比表面積といった場合、N吸着BET比表面積を表すものとする。 The negative electrode active material having a desired specific surface area can be selected from, for example, the graphite or amorphous coated graphite by evaluating the specific surface area by a gas adsorption method. For example, it is possible to evaluate these graphites by measuring the amount of adsorption by the N 2 adsorption method and calculating the specific surface area by the BET method. In the present embodiment and examples, the specific surface area represents the N 2 adsorption BET specific surface area.

負極は正極と同様に、負極活物質と、分散剤(溶媒)と、増粘剤と、バインダーとを有する負極合剤を負極集電体に積層して作製する。増粘剤としてはカルボキシルメチルセルロースNa塩(CMC)が好ましい。バインダーとしてはスチレンブタジエンラバー(SBR)が好ましい。   Similarly to the positive electrode, the negative electrode is prepared by laminating a negative electrode mixture having a negative electrode active material, a dispersant (solvent), a thickener, and a binder on a negative electrode current collector. As the thickener, carboxymethyl cellulose Na salt (CMC) is preferable. As the binder, styrene butadiene rubber (SBR) is preferable.

上記材料を混練し負極合剤ペーストを得る。混練後の負極合剤ペーストを負極集電体上に塗布し乾燥することによって負極を作製することができる。負極集電体としては、例えば銅やニッケルあるいはそれらの合金を用いることができる。負極の大きさは上述の電池の容量に合わせて任意に選択できる。   The above materials are kneaded to obtain a negative electrode mixture paste. A negative electrode can be produced by applying and drying the kneaded negative electrode mixture paste on the negative electrode current collector. As the negative electrode current collector, for example, copper, nickel, or an alloy thereof can be used. The magnitude | size of a negative electrode can be arbitrarily selected according to the capacity | capacitance of the above-mentioned battery.

<非水電解質>
非水電解質は、支持塩を含有する非水溶媒を有する組成物である。ここで、非水溶媒としては、特に制限されない。例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種または二種以上の材料を非水溶媒として用いることができる。
<Nonaqueous electrolyte>
A non-aqueous electrolyte is a composition having a non-aqueous solvent containing a supporting salt. Here, the non-aqueous solvent is not particularly limited. For example, one or two or more materials selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like are used as non-aqueous solvents. Can be used as

電池特性を高める観点から、EC、DMC及びEMCからなる三元溶媒系の溶媒を用いるのが好ましく、EC/DMC/EMC=30/40/30の体積比で混合した溶媒を用いることが好ましい。かかる溶媒に所望の支持塩を溶解して非水電解質とする。   From the viewpoint of enhancing battery characteristics, it is preferable to use a ternary solvent solvent composed of EC, DMC and EMC, and it is preferable to use a solvent mixed at a volume ratio of EC / DMC / EMC = 30/40/30. A desired supporting salt is dissolved in such a solvent to obtain a non-aqueous electrolyte.

支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等から選択される一種または二種以上のリチウム化合物(リチウム塩)を用いることができる。電池特性を高める観点から、LiPFを用いることが好ましい。 Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiI, and the like. One or two or more selected lithium compounds (lithium salts) can be used. From the viewpoint of improving battery characteristics, LiPF 6 is preferably used.

本実施の形態にかかる非水電解質は、添加剤としてメチルフェニルカーボネート(MPhC)を添加し、これを含有するものとするのが好ましい。非水電解質は、100重量部の溶媒に対して、好ましくは1.0〜3.0重量部のMPhCを含有する。MPhCの添加量がかかる範囲にある場合、かかる範囲にない場合に比べ、電池の容量維持率が特異的に向上する。かかる効果は実施例で詳述する。   The nonaqueous electrolyte according to the present embodiment preferably contains methylphenyl carbonate (MPhC) as an additive and contains this. The nonaqueous electrolyte preferably contains 1.0 to 3.0 parts by weight of MPhC with respect to 100 parts by weight of the solvent. When the added amount of MPhC is within such a range, the capacity retention rate of the battery is specifically improved as compared with the case where the amount of MPhC is not within such range. Such an effect will be described in detail in Examples.

非水電解質は、100重量部の溶媒に対して、1.5重量部より多いMPhCを含有してもよい。非水電解質は、100重量部の溶媒に対して、2.0〜3.0重量部のMPhCを含有してもよい。また、非水電解質は、100重量部の溶媒に対して、1.5重量部より少ないMPhCを含有してもよい。   The nonaqueous electrolyte may contain more than 1.5 parts by weight of MPhC with respect to 100 parts by weight of the solvent. The non-aqueous electrolyte may contain 2.0 to 3.0 parts by weight of MPhC with respect to 100 parts by weight of the solvent. The nonaqueous electrolyte may contain less than 1.5 parts by weight of MPhC with respect to 100 parts by weight of the solvent.

<セパレータ>
また、本実施の形態にかかるリチウムイオン二次電池は、セパレータを備えていてもよい。セパレータとしては、多孔性ポリエチレン膜(PE)、多孔性ポリプロピレン膜(PP)、多孔性ポリオレフィン膜、および多孔性ポリ塩化ビニル膜等の多孔性ポリマー膜、又は、リチウムイオンもしくはイオン導電性ポリマー電解質膜を、単独、又は組み合わせて使用することができる。
<Separator>
Moreover, the lithium ion secondary battery according to the present embodiment may include a separator. As a separator, a porous polymer film such as a porous polyethylene film (PE), a porous polypropylene film (PP), a porous polyolefin film, and a porous polyvinyl chloride film, or a lithium ion or ion conductive polymer electrolyte film Can be used alone or in combination.

<電池の組立>
上記の通り作製した正極と、負極と、非水電解質とを組み立てて電池とする。上正極および負極の間にセパレータを介在させて積層した後、当該積層体を扁平に捲回した形態(捲回電極体)とすることもできる。当該捲回電極体を収容し得る形状の容器に捲回電極体を収容する。容器は、上端が開放された容器本体と、その開口部を塞ぐ蓋体とを備える。
<Battery assembly>
A positive electrode, a negative electrode, and a non-aqueous electrolyte produced as described above are assembled into a battery. After laminating with a separator interposed between the upper positive electrode and the negative electrode, the laminate may be wound flatly (wound electrode body). The wound electrode body is accommodated in a container having a shape that can accommodate the wound electrode body. A container is provided with the container main body by which the upper end was open | released, and the cover body which block | closes the opening part.

容器を構成する材料としては、アルミニウム、スチール等の金属材料を用いることができる。また、例えば、ポリフェニレンサルファイド樹脂(PPS)、ポリイミド樹脂等の樹脂材料を成形した容器を用いてもよい。容器の形状には円筒形等があるが、特に制限されない。自動車に搭載する場合は大型のセルとしてよい。   As a material constituting the container, a metal material such as aluminum or steel can be used. Further, for example, a container formed by molding a resin material such as polyphenylene sulfide resin (PPS) or polyimide resin may be used. The shape of the container includes a cylindrical shape, but is not particularly limited. When mounted on an automobile, it may be a large cell.

容器の上面にあたる蓋体には、捲回電極体の正極と電気的に接続される正極端子および当該捲回電極体の負極と電気的に接続される負極端子が設けられている。また、容器の内部には、非水電解質が収容されている。   The lid corresponding to the upper surface of the container is provided with a positive electrode terminal electrically connected to the positive electrode of the wound electrode body and a negative electrode terminal electrically connected to the negative electrode of the wound electrode body. In addition, a non-aqueous electrolyte is accommodated inside the container.

<他の構造的特徴>
感圧型の電流遮断機構(CID機構)は、過充電時にガス発生添加剤が反応することで発生したガスに応じて電流を遮断する。感圧型の電流遮断機構は、過充電時に発生したガスによってリチウムイオン二次電池内部の圧力が所定値以上になると、リチウムイオン二次電池の充電を停止する。
<Other structural features>
The pressure-sensitive current interrupting mechanism (CID mechanism) interrupts current according to the gas generated by the reaction of the gas generating additive during overcharge. The pressure-sensitive current interruption mechanism stops charging of the lithium ion secondary battery when the pressure inside the lithium ion secondary battery exceeds a predetermined value due to the gas generated during overcharging.

本実施の形態で非水電解質に添加するMPhCは、かかるガス発生目的として添加してもよい。しかしながら、本実施の形態において、MPhCの奏する主な効果は、容量維持率の向上である。このため、感圧型の電流遮断機構を備えないものとしてもよい。例えば感圧型の電流遮断機構の代わりに感温型の電流遮断機構を備えてもよい。   MPhC added to the nonaqueous electrolyte in the present embodiment may be added for the purpose of gas generation. However, in the present embodiment, the main effect of MPhC is an improvement in the capacity maintenance rate. For this reason, it is good also as what does not have a pressure-sensitive type electric current interruption mechanism. For example, a temperature-sensitive current interrupt mechanism may be provided instead of the pressure-sensitive current interrupt mechanism.

本実施の形態では、例えば電池が感圧型の電流遮断機構を備えないものとすることで、その構造を単純化できる。MPhCは、感温型の電流遮断機構の動作には寄与しないが、電池の容量維持率を向上する。このため、構造の単純化及び容量維持率の向上により、電池の堅牢性が向上する。   In the present embodiment, the structure can be simplified, for example, by not providing the battery with a pressure-sensitive current interruption mechanism. MPhC does not contribute to the operation of the temperature-sensitive current interruption mechanism, but improves the capacity maintenance rate of the battery. For this reason, the robustness of the battery is improved by simplifying the structure and improving the capacity maintenance rate.

また、感圧型の電流遮断機構を備える電池において、MPhCよりも敏感に過充電に応答する添加剤が添加されている場合が考えられる。かかる場合には、MPhCをさらに添加しても圧力上昇に対するMPhCの寄与が少ない。この場合、本実施の形態で開示するとおり、容量維持率の向上を主な目的としてMPhCを添加してもよい。   In addition, in a battery having a pressure-sensitive current interruption mechanism, an additive that responds to overcharge more sensitively than MPhC may be considered. In such a case, even if MPhC is further added, the contribution of MPhC to the pressure increase is small. In this case, as disclosed in the present embodiment, MPhC may be added mainly for the purpose of improving the capacity retention rate.

<効果の説明>
本実施の形態の方法により電池の容量維持率が向上するため、その他の電池部材の負担を減らすことが可能となる。また容量維持率等に影響を及ぼす不純物について、各工程でこれが含まれてもよい水準を緩和することができる。これらの効果により、電池に使用できる材料の選択肢を増やすことができる。
<Description of effects>
Since the capacity maintenance rate of the battery is improved by the method of the present embodiment, the burden on other battery members can be reduced. In addition, impurities that affect the capacity retention rate and the like can be relaxed at a level that may be included in each step. By these effects, the choice of the material which can be used for a battery can be increased.

負極活物質の比表面積と添加量によっては、非水電解質中のMPhCが、正極に作用するよりも前にMPhCが負極上で還元を受けてしまい、正極上での反応が阻害される恐れがある。本実施の形態の方法は、電池の容量維持率の低下の原因である、正極活物質の劣化しやすさを克服する。すなわち正極活物質にMPhCが吸着することで正極上に被膜を形成しMn等の正極金属の溶出を防止する。   Depending on the specific surface area and addition amount of the negative electrode active material, MPhC in the non-aqueous electrolyte may be reduced on the negative electrode before acting on the positive electrode, which may hinder the reaction on the positive electrode. is there. The method of the present embodiment overcomes the ease of deterioration of the positive electrode active material, which is the cause of a decrease in the capacity retention rate of the battery. That is, MPhC is adsorbed on the positive electrode active material, thereby forming a film on the positive electrode and preventing elution of the positive electrode metal such as Mn.

本実施の形態の電池は、例えば電気自動車(EV)又はプラグインハイブリット自動車(PHV)等の輸送機械又は車両に搭載して、駆動電源又は車両駆動用電池として使用することができる。なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   The battery of this embodiment can be used as a drive power source or a vehicle drive battery by being mounted on a transport machine or vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV). Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

[電池の作製]
実施例1〜8及び比較例1〜57の電池は容量4Ahの小型セルとした。実施例9〜11及び比較例58〜70の電池は容量20Ah程度車載用大型セルとした。
[Production of battery]
The batteries of Examples 1 to 8 and Comparative Examples 1 to 57 were small cells with a capacity of 4 Ah. The batteries of Examples 9 to 11 and Comparative Examples 58 to 70 were on-vehicle large cells with a capacity of about 20 Ah.

<正極の作製>
正極合剤全体を100重量%としたとき、正極活物質としてLiNi1/3Co1/3Mn1/3を用いた。NMP(N−メチル−2−ピロリドン)に正極活物質及びバインダー(PVdF)を加えて混合して、正極合剤ペーストを作製した。その後、正極集電体となる、15μm厚のアルミニウム箔上に、上記のようにして作製した正極合剤ペーストを塗布した。正極合剤ペーストを塗布した後、乾燥、圧延等を行い、密度を調整した。
<Preparation of positive electrode>
When the total amount of the positive electrode mixture was 100% by weight, LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material. A positive electrode active material and a binder (PVdF) were added to NMP (N-methyl-2-pyrrolidone) and mixed to prepare a positive electrode mixture paste. Thereafter, the positive electrode material mixture paste prepared as described above was applied onto a 15 μm-thick aluminum foil serving as a positive electrode current collector. After applying the positive electrode mixture paste, the density was adjusted by drying, rolling and the like.

<負極の作製>
各実施例及び各比較例の負極活物質は、18〜23μmの粒径を有する天然黒鉛に非晶質コートをしたものを使用した。非晶質コートは天然黒鉛100重量部に対し、2重量部とした。ここで2重量部の非晶質コートとは、核材に対する非晶質の量、具体的には焼成後の非晶質の量が2重量部であることを表す。このため、かかる表記は非晶質コート形成に用いた非晶質炭素の量、いわゆる仕込み量を指すものではない。各負極活物質は以下の測定条件で比表面積を測定し、選別して得た。
<Production of negative electrode>
The negative electrode active material of each Example and each Comparative Example was obtained by applying an amorphous coating to natural graphite having a particle size of 18 to 23 μm. The amorphous coat was 2 parts by weight with respect to 100 parts by weight of natural graphite. Here, 2 parts by weight of amorphous coating means that the amount of amorphous material relative to the core material, specifically, the amount of amorphous material after firing is 2 parts by weight. For this reason, this notation does not indicate the amount of amorphous carbon used for forming the amorphous coat, so-called charging amount. Each negative electrode active material was obtained by measuring and measuring the specific surface area under the following measurement conditions.

吸着法を用い、負極活物質のBET比表面積を次のようにして測定した。試料としては上記実施例及び各比較例にかかる負極活物質を使用した。試料を精秤後、試験管に封入し、窒素ガスの吸着によりBET比表面積を測定した。比表面積の計算法はBET理論を適用した。同理論式に従ってBETプロットの約0.05〜0.3の相対圧領域を解析して比表面積を算出した。 Using the N 2 adsorption method, the BET specific surface area of the negative electrode active material was measured as follows. As a sample, the negative electrode active material concerning the said Example and each comparative example was used. The sample was precisely weighed and then sealed in a test tube, and the BET specific surface area was measured by adsorption of nitrogen gas. The specific surface area was calculated by applying the BET theory. The specific surface area was calculated by analyzing a relative pressure region of about 0.05 to 0.3 in the BET plot according to the same theoretical formula.

後述する図1〜3及び6の実施例1〜3及び9〜11並びに比較例1〜29及び58〜70の負極活物質のN吸着BET比表面積は表1の通りであった。後述する図4の実施例4〜8及び比較例30〜35のN吸着BET比表面積は実施例2と同等であった。後述する図5の比較例36〜57のN吸着BET比表面積は比較例15と同等であった。各実施例又は比較例の電池の容量維持率については、その絶対値に若干量の差を生じる場合があった。 The N 2 adsorption BET specific surface areas of the negative electrode active materials of Examples 1 to 3 and 9 to 11 and Comparative Examples 1 to 29 and 58 to 70 in FIGS. The N 2 adsorption BET specific surface areas of Examples 4 to 8 and Comparative Examples 30 to 35 in FIG. 4 described later were equivalent to those of Example 2. The N 2 adsorption BET specific surface area of Comparative Examples 36 to 57 in FIG. 5 described later was equivalent to that of Comparative Example 15. About the capacity maintenance rate of the battery of each Example or the comparative example, the difference of the quantity might arise a little in the absolute value.

Figure 2014120367
Figure 2014120367

上記天然黒鉛粉末と、SBR(スチレンブタジエンゴム)と、CMC(カルボキシメチルセルロース)とを、これらの材料の質量比が98:1:1となるように水とともに混練し、負極合剤ペーストを作製した。その後、この負極合剤ペーストを銅箔(負極集電体)に塗布し乾燥させた。最後に圧延プレス機にて圧延し、密度を調整した。銅箔は、小型セル用のものと、車載用大型セル用のものとを使用した。   The natural graphite powder, SBR (styrene butadiene rubber), and CMC (carboxymethyl cellulose) were kneaded with water so that the mass ratio of these materials was 98: 1: 1 to prepare a negative electrode mixture paste. . Thereafter, this negative electrode mixture paste was applied to a copper foil (negative electrode current collector) and dried. Finally, it was rolled with a rolling press to adjust the density. As the copper foil, one for a small cell and one for a vehicle-mounted large cell were used.

<非水電解質>
非水電解質としては、ECとDMCとEMCとを30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPFを約1Mの濃度で含有させたものを使用した。
<Nonaqueous electrolyte>
As the non-aqueous electrolyte, a mixed solvent containing EC, DMC, and EMC at a volume ratio of 30:40:30 and containing LiPF 6 as a supporting salt at a concentration of about 1M was used.

<添加剤>
実施例及び特定の比較例では、混合溶媒100重量部に対して、0.125〜4.0重量部(0.125〜4.0重量%)の添加剤を非水電解質に添加した。添加剤はMPhC、ビニレンカーボネート(VC)、及びプロパンスルトン(PRS)のいずれかであった。後述する図4及び5の、実施例4〜8及び比較例30〜57の添加剤及び混合溶媒重量当たりの添加量(重量%;以下、添加量という。)は表2の通りであった。
<Additives>
In Examples and specific comparative examples, 0.125 to 4.0 parts by weight (0.125 to 4.0% by weight) of the additive was added to the nonaqueous electrolyte with respect to 100 parts by weight of the mixed solvent. The additive was either MPhC, vinylene carbonate (VC), or propane sultone (PRS). 4 and 5 to be described later, the amounts of additives (weight%; hereinafter referred to as “addition amount”) in Examples 4 to 8 and Comparative Examples 30 to 57 and the mixed solvent weight are shown in Table 2.

Figure 2014120367
Figure 2014120367

後述する図1の実施例1〜3及び比較例1〜5並びに図6の実施例9〜11及び比較例58〜62の添加剤及び添加量は実施例6と同等であった。後述する図2の比較例6〜13及び図6の比較例63〜70には添加剤を添加しなかった。後述する図3の比較例14〜21の添加剤及び添加量は比較例40と同等であった。後述する図3の比較例12〜29の添加剤及び添加量は比較例51と同等であった。   The additives and addition amounts of Examples 1 to 3 and Comparative Examples 1 to 5 in FIG. 1 described later and Examples 9 to 11 and Comparative Examples 58 to 62 in FIG. 6 were the same as those in Example 6. No additive was added to Comparative Examples 6 to 13 shown in FIG. 2 and Comparative Examples 63 to 70 shown in FIG. The additives and addition amounts of Comparative Examples 14 to 21 in FIG. 3 to be described later were equivalent to those of Comparative Example 40. The additives and addition amounts of Comparative Examples 12 to 29 in FIG. 3 described later were equivalent to those of Comparative Example 51.

<電池の組み立て>
上記の方法で作製した正極および負極を2枚のセパレータを介して積層した。この積層体を捲回して、非水電解質と共に電池容器に収容し、電池容器の開口部を気密に封口した。電池容器は、小型セル用のものと、車載用大型セル用のものとを使用した。大型セルの容量は20Ah、小型セルの容量は4Ahであった。
<Battery assembly>
The positive electrode and the negative electrode produced by the above method were laminated via two separators. The laminate was wound and accommodated in a battery container together with a non-aqueous electrolyte, and the opening of the battery container was hermetically sealed. The battery container used was one for a small cell and one for a vehicle-mounted large cell. The capacity of the large cell was 20 Ah, and the capacity of the small cell was 4 Ah.

[効果の検証]
<高温保存に対する耐久性>
SOC90%に充電した電池を、60℃で30日間保存する高温保存耐久試験を行った。試験前後に表3の通り充放電行って各電池容量を測定し、次のとおり容量維持率(%)を求めた。容量維持率(%)=(試験後電池容量/初期電池容量)×100。
[Verification of effect]
<Durability against high temperature storage>
A battery charged to 90% SOC was subjected to a high temperature storage durability test in which the battery was stored at 60 ° C. for 30 days. Before and after the test, charge and discharge were performed as shown in Table 3 to measure the battery capacity, and the capacity retention rate (%) was determined as follows. Capacity maintenance rate (%) = (battery capacity after test / initial battery capacity) × 100.

Figure 2014120367
Figure 2014120367

(1)負極活物質の比表面積の影響評価
2重量%のMPhCを添加した実施例1〜3及び比較例1〜5の電池について、表1に示した負極活物質の比表面積と、電池の容量維持率との関係を図1に示す。図1が示すとおり、MPhC存在下では、活物質の比表面積が小さいほど容量維持率が高かった。特に、比表面積が2.0〜4.0m/gの範囲に含まれる実施例1〜3の電池では、比較例に比べて、容量維持率が大幅に高くなり、89%以上となった。容量維持率の向上は比表面積が2.0〜3.0m/gの範囲で特に顕著であった。
(1) Evaluation of Influence of Specific Surface Area of Negative Electrode Active Material For the batteries of Examples 1 to 3 and Comparative Examples 1 to 5 to which 2% by weight of MPhC was added, the specific surface area of the negative electrode active material shown in Table 1 and the battery The relationship with the capacity maintenance rate is shown in FIG. As shown in FIG. 1, in the presence of MPhC, the capacity retention rate was higher as the specific surface area of the active material was smaller. In particular, in the batteries of Examples 1 to 3 in which the specific surface area is included in the range of 2.0 to 4.0 m 2 / g, the capacity retention rate is significantly higher than that of the comparative example, which is 89% or more. . The improvement of the capacity retention rate was particularly remarkable when the specific surface area was in the range of 2.0 to 3.0 m 2 / g.

MPhCを添加しなかった比較例6〜13の電池について、表1に示した負極活物質の比表面積と、電池の容量維持率との関係を図2に示す。図2が示すとおり、MPhC非存在下でも、活物質の比表面積が小さいほど容量維持率が高かった。しかしながら、実施例1〜3で見られたように、比表面積が4.0m/g以下の範囲に含まれることで、容量維持率が大幅に高くなることはなかった。比較例6〜13の容量維持率は89%以下であった。 FIG. 2 shows the relationship between the specific surface area of the negative electrode active material shown in Table 1 and the capacity retention rate of the battery for the batteries of Comparative Examples 6 to 13 to which MPhC was not added. As shown in FIG. 2, even in the absence of MPhC, the capacity retention rate was higher as the specific surface area of the active material was smaller. However, as seen in Examples 1 to 3, the capacity retention rate was not significantly increased by including the specific surface area in the range of 4.0 m 2 / g or less. The capacity retention ratios of Comparative Examples 6 to 13 were 89% or less.

1重量%のVC又はPRSを添加した比較例14〜29の電池について、表1に示した負極活物質の比表面積と、電池の容量維持率との関係を図3に示す。図3が示すとおり、VC又はPRS存在下でも、活物質の比表面積が小さいほど容量維持率が高かった。しかしながら、実施例1〜3で見られたように、比表面積が4.0m/g以下の範囲に含まれることで、容量維持率が大幅に高くなることはなかった。 FIG. 3 shows the relationship between the specific surface area of the negative electrode active material shown in Table 1 and the capacity retention rate of the battery for the batteries of Comparative Examples 14 to 29 to which 1% by weight of VC or PRS was added. As FIG. 3 shows, the capacity maintenance rate was higher as the specific surface area of the active material was smaller even in the presence of VC or PRS. However, as seen in Examples 1 to 3, the capacity retention rate was not significantly increased by including the specific surface area in the range of 4.0 m 2 / g or less.

これらのことから、電池がMPhCを含有する非水電解質、及び比表面積が上記範囲にある負極活物質を備えることで、電池が高温で長期間保存された場合でも、電池は容易に劣化せず、その電池の容量維持率は大幅に向上することが分かった。かかる効果には比表面積に依存する容量維持率の変化点のあることが示された。また、かかる効果は溶出しやすいマンガンを有する正極にとって有効であることが示された。   Therefore, the battery does not easily deteriorate even when the battery is stored for a long time at a high temperature by including the nonaqueous electrolyte containing MPhC and the negative electrode active material having a specific surface area in the above range. It was found that the capacity maintenance rate of the battery was greatly improved. It was shown that the effect has a change point of the capacity maintenance rate depending on the specific surface area. Moreover, it was shown that this effect is effective for the positive electrode which has manganese which is easy to elute.

(2)添加剤の添加量の影響評価
比表面積3.0m/gの負極活物質を備えた実施例4〜8及び比較例30〜35の電池について、表2に示したMPhCの添加量と、電池の容量維持率との関係を図4に示す。図4が示すとおり、添加量が混合溶媒に対して1.0〜3.0重量%の範囲に含まれる実施例4〜8の電池では、比較例に比べて、容量維持率が大幅に高くなり、93%以上となった。容量維持率の向上は添加量1.0〜1.5重量%の範囲で特に顕著であった。
(2) Evaluation of influence of additive amount of additive The amount of MPhC shown in Table 2 for the batteries of Examples 4 to 8 and Comparative Examples 30 to 35 having a negative electrode active material having a specific surface area of 3.0 m 2 / g. FIG. 4 shows the relationship between the battery capacity retention rate and the battery capacity. As shown in FIG. 4, in the batteries of Examples 4 to 8 in which the addition amount is in the range of 1.0 to 3.0% by weight with respect to the mixed solvent, the capacity retention rate is significantly higher than that of the comparative example. It became 93% or more. The improvement of the capacity retention rate was particularly remarkable in the range of 1.0 to 1.5% by weight.

比表面積3.0m/gの負極活物質を備えた比較例36〜57の電池について、表2に示したVC又はPRSの添加量と、電池の容量維持率との関係を図5に示す。図5が示すとおり、添加量が混合溶媒に対して1.0重量%前後では容量維持率が高い傾向を示す。しかしながら、実施例4〜8で見られたように、添加量が所定の範囲に含まれることで、容量維持率が大幅に高くなることはなかった。 FIG. 5 shows the relationship between the addition amount of VC or PRS shown in Table 2 and the capacity retention rate of the battery for the batteries of Comparative Examples 36 to 57 including the negative electrode active material having a specific surface area of 3.0 m 2 / g. . As shown in FIG. 5, when the addition amount is around 1.0% by weight with respect to the mixed solvent, the capacity retention rate tends to be high. However, as seen in Examples 4 to 8, the capacity retention rate was not significantly increased by the addition amount being included in the predetermined range.

これらのことから、電池が、1.0〜3.0重量%のMPhCを含有する非水電解質、及び比表面積が2.0〜4.0m/gである負極活物質を備える場合、かかる電池が高温で長期間保存された場合でも、電池は容易に劣化せず、その電池の容量維持率は大幅に向上することが分かった。かかる効果にはMPhCの添加量に依存する容量維持率の変化点のあることが示された。また、かかる効果は溶出しやすいマンガンを有する正極にとって有効であることが示された。 From these things, when a battery is equipped with the nonaqueous electrolyte containing 1.0-3.0 weight% MPhC, and the negative electrode active material whose specific surface area is 2.0-4.0 m < 2 > / g, it takes It was found that even when the battery was stored at a high temperature for a long period of time, the battery was not easily deteriorated, and the capacity maintenance rate of the battery was greatly improved. It was shown that this effect has a change point of the capacity maintenance rate depending on the amount of MPhC added. Moreover, it was shown that this effect is effective for the positive electrode which has manganese which is easy to elute.

また、負極活物質の比表面積が上記所定の値を有することで、所定の割合で非水電解質中に含まれるMPhCと相乗効果を発揮して、電池の耐久性能向上に貢献することが示された。また、このような相乗効果はMPhCに顕著にみられ、他の添加剤では顕著ではなかった。   In addition, it is shown that the specific surface area of the negative electrode active material has the above-mentioned predetermined value, exhibits a synergistic effect with MPhC contained in the nonaqueous electrolyte at a predetermined ratio, and contributes to the improvement of the durability performance of the battery. It was. Moreover, such a synergistic effect was remarkably observed in MPhC, but not in other additives.

<充放電の繰り返しに対する耐久性>
車載用大型セルである実施例9〜11及び比較例58〜70の電池について、自動車走行環境における、車両駆動用電池の動作を模擬した充放電試験を行った。60℃にて、20,000Ah相当の充放電パターンサイクルを実施したのち、上記の方法で容量維持率を測定した。
<Durability against repeated charge and discharge>
For the batteries of Examples 9 to 11 and Comparative Examples 58 to 70, which are large vehicle-mounted cells, a charge / discharge test simulating the operation of the vehicle driving battery in an automobile traveling environment was performed. After carrying out a charge / discharge pattern cycle corresponding to 20,000 Ah at 60 ° C., the capacity retention rate was measured by the above method.

2重量%のMPhCを添加した実施例9〜11及び比較例58〜62の大型セル、並びにMPhCを添加しなかった比較例63〜70の大型セルについて、表1に示した負極活物質の比表面積と、大型セルの容量維持率との関係を図6に示す。図6が示すとおり、MPhC存在下では、活物質の比表面積が小さいほど容量維持率が高かった。特に、比表面積が2.0〜4.0m/gの範囲に含まれる実施例9〜11の大型セルでは、比較例に比べて、容量維持率が大幅に高くなり、90%以上となった。 The ratio of the negative electrode active materials shown in Table 1 for the large cells of Examples 9 to 11 and Comparative Examples 58 to 62 to which 2% by weight of MPhC was added and the large cells of Comparative Examples 63 to 70 to which MPhC was not added The relationship between the surface area and the capacity retention rate of the large cell is shown in FIG. As shown in FIG. 6, in the presence of MPhC, the capacity retention rate was higher as the specific surface area of the active material was smaller. In particular, in the large cells of Examples 9 to 11 having a specific surface area in the range of 2.0 to 4.0 m 2 / g, the capacity retention rate is significantly higher than that of the comparative example, which is 90% or more. It was.

MPhC非存在下でも、活物質の比表面積が小さいほど容量維持率が高かった。しかしながら、MPhCが存在する場合よりも全般的に容量維持率が低下した。また、実施例9〜11で見られたように、比表面積が4.0m/g以下の範囲に含まれることで、容量維持率が大幅に高くなることはなかった。比較例58〜70の大型セルの容量維持率は90%以下であった。 Even in the absence of MPhC, the smaller the specific surface area of the active material, the higher the capacity retention rate. However, the capacity retention rate was generally lower than when MPhC was present. Moreover, as seen in Examples 9 to 11, the capacity retention rate was not significantly increased by including the specific surface area within the range of 4.0 m 2 / g or less. The capacity retention rate of the large cells of Comparative Examples 58 to 70 was 90% or less.

これらのことから、電池がMPhCを含有する非水電解質、及び比表面積が上記範囲にある負極活物質を備えることで、電池が自動車走行環境で長期間使用された場合でも、電池は容易に劣化せず、その電池の容量維持率は大幅に向上することが分かった。   Accordingly, the battery is easily deteriorated even when the battery is used for a long time in an automobile driving environment by including the non-aqueous electrolyte containing MPhC and the negative electrode active material having a specific surface area in the above range. It was found that the capacity maintenance rate of the battery was greatly improved.

以上、本発明は、上記実施形態又は実施例の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。   As described above, the present invention is not limited to the configurations of the above-described embodiments or examples, and various modifications, corrections, and combinations that can be made by those skilled in the art within the scope of the invention of the claims of the claims of the present application. Of course.

Claims (8)

正極と、負極と、非水電解質を備え、
前記負極は、比表面積2.0〜4.0m/gの負極活物質を有し、
前記非水電解質は、100重量部の溶媒に対して、1.0〜3.0重量部のメチルフェニルカーボネートを含有する、
非水電解質二次電池。
A positive electrode, a negative electrode, and a non-aqueous electrolyte;
The negative electrode has a negative electrode active material having a specific surface area of 2.0 to 4.0 m 2 / g,
The non-aqueous electrolyte contains 1.0 to 3.0 parts by weight of methylphenyl carbonate with respect to 100 parts by weight of a solvent.
Non-aqueous electrolyte secondary battery.
前記非水電解質は、100重量部の溶媒に対して、1.5重量部より少ないメチルフェニルカーボネートを含有する、請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte contains less than 1.5 parts by weight of methylphenyl carbonate with respect to 100 parts by weight of the solvent. 前記負極活物質は、非晶質コートを有する天然黒鉛である、請求項1又は2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is natural graphite having an amorphous coat. 前記正極は、マンガンを含有する遷移金属複合酸化物からなる正極活物質を有する、請求項1〜3のいずれかに記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode has a positive electrode active material made of a transition metal composite oxide containing manganese. 前記遷移金属複合酸化物はLiNiCoMn(0≦x≦2/3,0≦y≦2/3,1/3≦z<1,x+y+z=1)である、請求項4に記載の非水電解質二次電池。 The transition metal composite oxide is LiNi x Co y Mn z O 2 (0 ≦ x ≦ 2/3, 0 ≦ y ≦ 2/3, 1/3 ≦ z <1, x + y + z = 1). The non-aqueous electrolyte secondary battery described in 1. 前記遷移金属複合酸化物はLiNi1/3Co1/3Mn1/3である、請求項5に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 5, wherein the transition metal composite oxide is LiNi 1/3 Co 1/3 Mn 1/3 O 2 . 感圧型の電流遮断機構を備えない、請求項1〜6のいずれかに記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is not provided with a pressure-sensitive current interruption mechanism. 請求項1〜7のいずれかに記載の非水電解質二次電池を備える、車両駆動用電池。   A battery for driving a vehicle, comprising the nonaqueous electrolyte secondary battery according to claim 1.
JP2012275517A 2012-12-18 2012-12-18 Nonaqueous electrolyte secondary battery Pending JP2014120367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275517A JP2014120367A (en) 2012-12-18 2012-12-18 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275517A JP2014120367A (en) 2012-12-18 2012-12-18 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014120367A true JP2014120367A (en) 2014-06-30

Family

ID=51175033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275517A Pending JP2014120367A (en) 2012-12-18 2012-12-18 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014120367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583273A (en) * 2022-03-02 2022-06-03 香河昆仑新能源材料股份有限公司 Electrolyte containing benzyl carbonate and battery composed of electrolyte
CN114597489A (en) * 2022-03-22 2022-06-07 香河昆仑新能源材料股份有限公司 Electrolyte containing fluorobenzene carbonate and battery composed of electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583273A (en) * 2022-03-02 2022-06-03 香河昆仑新能源材料股份有限公司 Electrolyte containing benzyl carbonate and battery composed of electrolyte
CN114597489A (en) * 2022-03-22 2022-06-07 香河昆仑新能源材料股份有限公司 Electrolyte containing fluorobenzene carbonate and battery composed of electrolyte

Similar Documents

Publication Publication Date Title
JP5866987B2 (en) Secondary battery control device and SOC detection method
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2014053193A (en) Method for manufacturing nonaqueous electrolyte secondary battery
US10840508B2 (en) Lithium ion secondary battery
US11056713B2 (en) Lithium ion secondary battery and method of manufacturing same
KR101941796B1 (en) Nonaqueous electrolyte secondary battery
JP5776663B2 (en) Non-aqueous electrolyte secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JP2019040722A (en) Lithium ion secondary battery
JP6274532B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20160204430A1 (en) Nonaqueous electrolyte secondary battery
JP2014120367A (en) Nonaqueous electrolyte secondary battery
WO2013141243A1 (en) Nonaqueous electrolyte secondary battery
JP5930312B2 (en) Non-aqueous electrolyte secondary battery
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
JP2015185410A (en) Nonaqueous electrolyte secondary battery
JP7343544B2 (en) Non-aqueous electrolyte and secondary battery using the non-aqueous electrolyte
JP6801602B2 (en) Non-aqueous electrolyte secondary battery
JP2015064977A (en) Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN112885990A (en) Secondary battery
JP2014017073A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2015106444A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same