JP2014001137A - GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - Google Patents

GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2014001137A
JP2014001137A JP2013198583A JP2013198583A JP2014001137A JP 2014001137 A JP2014001137 A JP 2014001137A JP 2013198583 A JP2013198583 A JP 2013198583A JP 2013198583 A JP2013198583 A JP 2013198583A JP 2014001137 A JP2014001137 A JP 2014001137A
Authority
JP
Japan
Prior art keywords
gan
plane
main surface
crystal substrate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013198583A
Other languages
Japanese (ja)
Inventor
Shinsuke Fujiwara
伸介 藤原
Koji Uematsu
康二 上松
Hideki Osada
英樹 長田
Seiji Nakahata
成二 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013198583A priority Critical patent/JP2014001137A/en
Publication of JP2014001137A publication Critical patent/JP2014001137A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a GaN single crystal substrate which has a large diameter and in which surface orientation of a principal surface has a value other than (0001) and (000-1) and dislocation density within the principal surface is substantially uniform, and a method of manufacturing the substrate.SOLUTION: In the GaN single crystal substrate 20p, an area of a principal surface 20pm is 10 cmor more, surface orientation of the principal surface 20pm is inclined by 65° or more and 85° or less to a (0001) surface or a (000-1) surface 20c, and distribution of dislocation density within the principal surface 20pm is substantially uniform, that is, dispersion of dislocation density to average dislocation density within the principal surface 20pm is within ±100%, for example.

Description

本発明は、大口径で主面の面方位が(0001)および(000−1)(すなわち{0001})以外で主面内における転位密度の分布が実質的に均一であるGaN単結晶基板およびその製造方法に関する。また、かかるGaN単結晶基板の主面上に少なくとも1層のGaN系半導体層が形成されているGaN系半導体デバイスおよびその製造方法に関する。   The present invention provides a GaN single crystal substrate having a large diameter, a plane orientation of the principal plane other than (0001) and (000-1) (ie {0001}), and a substantially uniform distribution of dislocation density in the principal plane; It relates to the manufacturing method. The present invention also relates to a GaN-based semiconductor device in which at least one GaN-based semiconductor layer is formed on the main surface of the GaN single crystal substrate and a method for manufacturing the same.

発光デバイス、電子デバイス、半導体センサなどに好適に用いられるIII族窒化物結晶は、通常、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法などの気相法、フラックス法などの液相法により、(0001)面の主面を有するサファイア基板または(111)A面の主面を有するGaAs基板などの主面上に結晶成長させることにより製造される。このため、通常得られるIII族窒化物結晶は、面方位が{0001}の主面を有する。   Group III nitride crystals suitably used for light emitting devices, electronic devices, semiconductor sensors, etc. are usually vapor phase methods such as HVPE (hydride vapor phase epitaxy) and MOCVD (metal organic chemical vapor deposition), flux methods The crystal is grown on a main surface such as a sapphire substrate having a (0001) principal surface or a (111) A principal surface by a liquid phase method. For this reason, the group III nitride crystal usually obtained has a main surface with a plane orientation of {0001}.

面方位が{0001}の主面を有するIII族窒化物結晶を基板としてその主面上にMQW(多重量子井戸)構造の発光層を形成させた発光デバイスは、III族窒化物結晶が有する<0001>方向の極性により、発光層内において自発分極が生じるため、発光のブルーシフトが大きくなり、また発光効率が低下する。このため、{0001}以外の面方位の主面を有するIII族窒化物結晶が要望されている。   A light-emitting device in which a light-emitting layer having an MQW (multiple quantum well) structure is formed on a main surface of a group III nitride crystal having a main surface of {0001} in the plane orientation has a group III nitride crystal < Since the polarization in the 0001> direction causes spontaneous polarization in the light emitting layer, the blue shift of light emission becomes large and the light emission efficiency decreases. For this reason, a group III nitride crystal having a principal surface with a plane orientation other than {0001} is desired.

かかる要望に答えるため、特開2008−143772号公報(以下、特許文献1という)は、{1−10X}(ここで、Xは0以上の整数)、{11−2Y}(ここで、Yは0以上の整数)および{HK−(H+K)0}(ここで、HおよびKは0以外の整数)のいずれかの面方位に対するオフ角が5°以下の面方位、具体的には{1−100}、{11−20}、{1−102}、{11−22}、{12−30}および{23−50}のいずれかの面方位の主面を有するIII族窒化物結晶の製造方法を開示する。   In order to respond to such a request, Japanese Patent Application Laid-Open No. 2008-143772 (hereinafter referred to as Patent Document 1) describes {1-10X} (where X is an integer equal to or greater than 0), {11-2Y} (where Y Is an integer greater than or equal to 0) and {HK− (H + K) 0} (where H and K are integers other than 0), the plane orientation with an off angle of 5 ° or less, specifically { 1-100}, {11-20}, {1-102}, {11-22}, {12-30}, and a group III nitride crystal having a principal plane of any one of {23-50} The manufacturing method is disclosed.

しかし、特許文献1に開示された製造方法を用いても、{1−100}、{11−20}または{23−50}の面方位の主面上に成長させるIII族窒化物結晶は部分的に多結晶化するため、大口径の単結晶基板が得られ難いという問題があった。また、{1−102}、{11−22}の面方位の主面上に成長させるIII族窒化物結晶の結晶成長面には、{0001}の面方位のファセット、{0001}以外の面方位のファセットが生じる。ここで、{0001}の面方位のファセットを結晶成長面として成長する部分の転位は{0001}面に垂直な方向(すなわち<0001>方向)に伝播し、{0001}以外の面方位のファセットを結晶成長面として成長する部分の転位は{0001}面に平行な方向に伝播する。成長したIII族窒化物結晶の主面における転位密度のばらつきが大きいため、かかる基板を用いた半導体デバイスの特性のばらつきが大きくなるという問題があった。   However, even when the manufacturing method disclosed in Patent Document 1 is used, the group III nitride crystal grown on the principal plane having the {1-100}, {11-20} or {23-50} plane orientation is partially Therefore, there is a problem that it is difficult to obtain a large-diameter single crystal substrate. Further, a crystal growth surface of a group III nitride crystal grown on a {1-102}, {11-22} principal plane has a facet of {0001} and a plane other than {0001}. Orientation facets arise. Here, the dislocations of the portion that grows with the facet of {0001} plane orientation as the crystal growth plane propagate in the direction perpendicular to the {0001} plane (that is, <0001> direction), and facet of plane orientation other than {0001}. The dislocations in the portion that grows as a crystal growth plane propagate in a direction parallel to the {0001} plane. Since the variation in dislocation density on the main surface of the grown group III nitride crystal is large, there is a problem that the variation in characteristics of a semiconductor device using such a substrate becomes large.

なお、特開2006−052102号公報(以下、特許文献2という)は、転位密度分布が実質的に均一なIII−V族窒化物系半導体基板(具体的にはGaN自立基板)およびその製造方法を開示する。しかし、特許文献2には、面方位が(0001)である主面を有するIII−V族窒化物系半導体基板について、結晶成長において、まず成長界面に凹凸を出しながら成長させて成長界面を平坦化し、さらに平坦化した成長界面で成長させることにより転位密度の分布が実質的に均一することは開示されているが、{0001}以外の面方位の主面を有するIII−V族窒化物系半導体基板について転位密度の分布が実質的に均一することは記載も示唆もされていない。   Japanese Patent Laid-Open No. 2006-052102 (hereinafter referred to as Patent Document 2) discloses a III-V nitride semiconductor substrate (specifically, a GaN free-standing substrate) having a substantially uniform dislocation density distribution and a method for manufacturing the same. Is disclosed. However, Patent Document 2 discloses that a group III-V nitride semiconductor substrate having a main surface with a plane orientation of (0001) is first grown while providing unevenness on the growth interface to flatten the growth interface. Although it has been disclosed that the distribution of dislocation density is substantially uniform by growing at a flattened growth interface, a III-V nitride system having a principal plane with a plane orientation other than {0001} is disclosed. There is no description or suggestion that the dislocation density distribution is substantially uniform for the semiconductor substrate.

特開2008−143772号公報JP 2008-143772 A 特開2006−052102号公報JP 2006-052102 A

本発明は、上記問題を解決して、大口径で主面の面方位が(0001)および(000−1)以外で主面内における転位密度の分布が実質的に均一であるGaN単結晶基板およびその製造方法を提供することを目的とする。また、かかるGaN単結晶基板の主面上に少なくとも1層のGaN系半導体層が形成されている高特性で特性の分布が均一なGaN系半導体デバイスおよびその製造方法を提供することを目的とする。   The present invention solves the above-described problem, and has a large diameter, the orientation of the principal plane is other than (0001) and (000-1), and the distribution of dislocation density in the principal plane is substantially uniform. And it aims at providing the manufacturing method. Another object of the present invention is to provide a GaN-based semiconductor device having at least one GaN-based semiconductor layer formed on the main surface of the GaN single crystal substrate and having a uniform characteristic distribution and a method for manufacturing the same. .

本発明は、主面の面積が10cm2以上であり、主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、主面内における転位密度の分布が実質的に均一である、GaN単結晶基板である。ここで、主面内における転位密度のばらつきを主面内における平均転位密度に対して±100%以内とすることができる。 In the present invention, the area of the main surface is 10 cm 2 or more, the surface orientation of the main surface is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane, This is a GaN single crystal substrate having a substantially uniform dislocation density distribution. Here, the dispersion of the dislocation density in the main surface can be within ± 100% with respect to the average dislocation density in the main surface.

本発明にかかるGaN単結晶基板において、主面内における転位密度を5×106cm-2以下とすることができる。また、(0001)面または(000−1)面に対する主面の面方位の傾斜の方向を<10−10>方向とすることができる。また、(0002)面および(20−20)面もしくは(22−40)面に関するX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅を主面の全面において300arcsec以下とすることができる。 In the GaN single crystal substrate according to the present invention, the dislocation density in the main surface can be 5 × 10 6 cm −2 or less. Moreover, the direction of the inclination of the surface orientation of the main surface with respect to the (0001) plane or the (000-1) plane can be the <10-10> direction. Moreover, the half width of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with respect to the (0002) plane and the (20-20) plane or the (22-40) plane can be 300 arcsec or less over the entire main surface.

また、本発明は、上記のGaN単結晶基板の製造方法であって、主面の面積が10cm2以上で、主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しているGaN種結晶基板を準備する工程と、GaN種結晶基板の主面上にGaN単結晶を成長させる工程と、GaN単結晶をGaN種結晶基板の主面に平行な面で切り出してGaN単結晶基板を形成する工程と、を備えるGaN単結晶基板の製造方法である。 The present invention is also a method for producing the above GaN single crystal substrate, wherein the main surface has an area of 10 cm 2 or more and the main surface has a plane orientation of 65 with respect to the (0001) plane or the (000-1) plane. A step of preparing a GaN seed crystal substrate inclined at an angle of not less than 85 ° and not more than 85 °, a step of growing a GaN single crystal on the main surface of the GaN seed crystal substrate, and a GaN single crystal on the main surface of the GaN seed crystal substrate And a step of cutting a parallel plane to form a GaN single crystal substrate.

また、本発明は、上記のGaN単結晶基板と、GaN単結晶基板の主面上に形成されている少なくとも1層のGaN系半導体層と、を含むGaN系半導体デバイスである。   The present invention is also a GaN-based semiconductor device including the GaN single-crystal substrate and at least one GaN-based semiconductor layer formed on the main surface of the GaN single-crystal substrate.

また、本発明は、上記のGaN単結晶基板を準備する工程と、GaN単結晶基板の主面上に少なくとも1層のGaN系半導体層を成長させる工程と、を備えるGaN系半導体デバイスの製造方法である。   The present invention also provides a method for manufacturing a GaN-based semiconductor device, comprising: preparing the GaN single-crystal substrate as described above; and growing at least one GaN-based semiconductor layer on the main surface of the GaN single-crystal substrate. It is.

本発明によれば、大口径で主面の面方位が(0001)および(000−1)以外で主面内における転位密度の分布が実質的に均一であるGaN単結晶基板およびその製造方法を提供できる。また、かかるGaN単結晶基板の主面上に少なくとも1層のGaN系半導体層が形成されている高特性で特性の分布が均一なGaN系半導体デバイスおよびその製造方法を提供できる。   According to the present invention, there is provided a GaN single crystal substrate having a large diameter, a plane orientation of the main surface other than (0001) and (000-1), and a substantially uniform distribution of dislocation density in the main surface, and a method for manufacturing the same. Can be provided. In addition, it is possible to provide a GaN-based semiconductor device having at least one GaN-based semiconductor layer formed on the main surface of the GaN single crystal substrate and having a uniform characteristic distribution and a method for manufacturing the same.

本発明にかかるGaN単結晶基板の一例を示す概略図である。It is the schematic which shows an example of the GaN single crystal substrate concerning this invention. 本発明にかかるGaN単結晶基板の製造方法におけるGaN種結晶基板を準備する工程の一例を示す概略図である。ここで、(A)はGaN母結晶から複数のGaN母結晶片を切り出すサブ工程を示し、(B)は複数のGaN母結晶片を横方向に互いに隣接させて配置するサブ工程を示し、(C)はGaN種結晶を成長させるサブ工程を示し、(D)はGaN種結晶基板を形成するサブ工程を示す。It is the schematic which shows an example of the process of preparing the GaN seed crystal substrate in the manufacturing method of the GaN single crystal substrate concerning this invention. Here, (A) shows a sub-step of cutting out a plurality of GaN mother crystal pieces from the GaN mother crystal, and (B) shows a sub-step of arranging the plurality of GaN mother crystal pieces adjacent to each other in the lateral direction. C) shows a sub-process for growing a GaN seed crystal, and (D) shows a sub-process for forming a GaN seed crystal substrate. 本発明にかかるGaN単結晶基板の製造方法の一例を示す概略断面図である。ここで、(A)はGaN種結晶基板を準備する工程を示し、(B)はGaN単結晶を成長させる工程を示し、(C)はGaN単結晶基板を形成する工程を示す。It is a schematic sectional drawing which shows an example of the manufacturing method of the GaN single crystal substrate concerning this invention. Here, (A) shows a step of preparing a GaN seed crystal substrate, (B) shows a step of growing a GaN single crystal, and (C) shows a step of forming a GaN single crystal substrate. 本発明にかかるGaN単結晶基板において(0001)面または(000−1)面に対する主面の面方位の傾斜の状況を示す模式図である。ここで、(A)は主面の面方位が{20−21}の場合を示し、(B)は主面の面方位が{20−2−1}の場合を示し、(C)は主面の面方位が{22−42}の場合を示し、(D)は主面の面方位が{22−4−2}の場合を示す。It is a schematic diagram which shows the condition of the inclination of the surface orientation of the main surface with respect to (0001) plane or (000-1) plane in the GaN single crystal substrate concerning this invention. Here, (A) shows the case where the surface orientation of the main surface is {20-21}, (B) shows the case where the surface orientation of the main surface is {20-2-1}, and (C) shows the main surface orientation. The case where the surface orientation of the surface is {22-42} is shown, and (D) shows the case where the surface orientation of the main surface is {22-4-2}. 本発明にかかるGaN系半導体デバイスの一例を示すが概略断面図である。1 is a schematic sectional view showing an example of a GaN-based semiconductor device according to the present invention.

結晶幾何学においては、結晶面の面方位を表わすために(hkl)または(hkil)などの表示(ミラー表示)が用いられる。GaN種結晶基板およびGaN単結晶基板などを形成するIII族窒化物結晶などの六方晶系の結晶における結晶面の面方位は、(hkil)で表わされる。ここで、h、k、iおよびlはミラー指数と呼ばれる整数であり、i=−(h+k)の関係を有する。この面方位(hkil)の面を(hkil)面という。また、(hkil)面に垂直な方向((hkil)面の法線方向)は、[hkil]方向という。また、{hkil}は(hkil)およびそれに結晶幾何学的に等価な個々の面方位を含む総称的な面方位を意味し、<hkil>は、[hkil]およびそれに結晶幾何学的に等価な個々の方向を含む総称的な方向を意味する。   In crystal geometry, a display (mirror display) such as (hkl) or (hkil) is used to indicate the plane orientation of the crystal plane. The plane orientation of the crystal plane in a hexagonal crystal such as a group III nitride crystal forming a GaN seed crystal substrate and a GaN single crystal substrate is represented by (hkil). Here, h, k, i and l are integers called Miller indices and have a relationship of i = − (h + k). The plane having the plane orientation (hkil) is referred to as the (hkil) plane. The direction perpendicular to the (hkil) plane (the normal direction of the (hkil) plane) is referred to as the [hkil] direction. Also, {hkil} means a generic plane orientation including individual plane orientations equivalent to (hkil) and its crystal geometry, and <hkil> is equivalent to [hkil] and its crystal geometry It means a generic direction including individual directions.

ここで、GaN種結晶およびGaN単結晶などのIII族窒化物結晶は、<0001>方向にガリウム(Ga)原子面などのIII族元素原子面および窒素(N)原子面が交互に配列するため、<0001>方向に極性を有する。本願においては、ガリウム原子面などのIII族元素原子面が(0001)面となり、窒素原子面が(000−1)面となるように、結晶軸を設定する。   Here, in a group III nitride crystal such as a GaN seed crystal and a GaN single crystal, group III element atomic planes such as gallium (Ga) atomic planes and nitrogen (N) atomic planes are alternately arranged in the <0001> direction. , <0001> direction is polar. In the present application, the crystal axes are set so that the group III element atomic plane such as the gallium atomic plane is the (0001) plane and the nitrogen atomic plane is the (000-1) plane.

[GaN単結晶基板]
(実施形態1)
図1を参照して、本発明の一実施形態であるGaN単結晶基板20pは、主面20pmの面積が10cm2以上であり、主面20pmの面方位が(0001)面または(000−1)面20cに対して65°以上85°以下で傾斜しており、主面20pm内における転位密度の分布が実質的に均一である。
[GaN single crystal substrate]
(Embodiment 1)
Referring to FIG. 1, a GaN single crystal substrate 20p according to an embodiment of the present invention has an area of a main surface 20pm of 10 cm 2 or more, and the surface orientation of the main surface 20pm is a (0001) plane or (000-1). ) It is inclined at 65 ° or more and 85 ° or less with respect to the surface 20c, and the distribution of dislocation density in the main surface 20pm is substantially uniform.

本実施形態のGaN単結晶基板20pは、主面20pmの面積が10cm2以上と大口径である。また、主面20pmの面方位が(0001)面または(000−1)面20cに対して65°以上85°以下の傾斜角αを有しているため、かかるGaN単結晶基板20pを用いたGaN系半導体デバイスについて、その発光のブルーシフトが抑制され、その発光効率の低下が抑制される。かかる観点から、主面20pmの面方位は、(0001)面または(000−1)面20cに対して、70°以上80°以下の傾斜角αを有していることが好ましく、72°以上78°以下の傾斜角αを有していることがより好ましい。また、主面20pm内における転位密度の分布が実質的に均一であるため、かかるGaN単結晶基板20pを用いたGaN系半導体デバイスについて、その主面内におけるデバイス特性の分布が実質的に均一となる。 The GaN single crystal substrate 20p of the present embodiment has a large diameter with an area of the main surface 20pm of 10 cm 2 or more. Moreover, since the plane orientation of the main surface 20pm has an inclination angle α of 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane 20c, the GaN single crystal substrate 20p is used. For GaN-based semiconductor devices, the blue shift of light emission is suppressed, and the decrease in light emission efficiency is suppressed. From such a viewpoint, the plane orientation of the main surface 20pm preferably has an inclination angle α of 70 ° or more and 80 ° or less with respect to the (0001) plane or the (000-1) plane 20c, and is 72 ° or more. More preferably, it has an inclination angle α of 78 ° or less. In addition, since the dislocation density distribution in the main surface 20pm is substantially uniform, the distribution of device characteristics in the main surface of the GaN-based semiconductor device using the GaN single crystal substrate 20p is substantially uniform. Become.

本実施形態のGaN単結晶基板20pにおいて、主面20pm内における転位密度の分布が実質的に均一であるとは、それを用いたGaN系半導体デバイスの主面内におけるデバイス特性の分布が実質的に均一になることを意味し、たとえば、主面20pm内における転位密度のばらつきがその主面20pm内における平均転位密度に対して±100%以内であることをいう。GaN系半導体デバイスの主面内におけるデバイス特性の分布をより均一にする観点から、主面20pm内における転位密度のばらつきが、その主面20pm内における平均転位密度に対して、−100〜+70%以内であることが好ましく、−100〜+50%以内であることがより好ましい。ここで、GaN単結晶基板20pの主面20pm内における転位密度は、たとえば、CL(カソードルミネッセンス)法により、主面20pm内において2次元方向にそれぞれ2mmピッチで100μm×100μmの測定面積で測定することができる。   In the GaN single crystal substrate 20p of the present embodiment, the distribution of dislocation density in the main surface 20pm is substantially uniform means that the distribution of device characteristics in the main surface of a GaN-based semiconductor device using the same is substantially uniform. For example, it means that the variation in dislocation density in the main surface 20 pm is within ± 100% of the average dislocation density in the main surface 20 pm. From the viewpoint of making the distribution of the device characteristics in the main surface of the GaN-based semiconductor device more uniform, the variation in the dislocation density in the main surface 20pm is -100 to + 70% with respect to the average dislocation density in the main surface 20pm. Is preferably within -100%, more preferably within -100 to + 50%. Here, the dislocation density in the main surface 20pm of the GaN single crystal substrate 20p is measured by a CL (cathode luminescence) method, for example, at a measurement area of 100 μm × 100 μm at a pitch of 2 mm in the two-dimensional direction in the main surface 20pm. be able to.

本実施形態のGaN単結晶基板20pにおいて、結晶性の高いGaN系半導体層をエピタキシャル成長させる観点から、主面20pm内における転位密度は、その最高転位密度においても、5×106cm-2以下であることが好ましく、1×106cm-2以下であることがより好ましい。 From the viewpoint of epitaxially growing a highly crystalline GaN-based semiconductor layer in the GaN single crystal substrate 20p of the present embodiment, the dislocation density in the main surface 20pm is 5 × 10 6 cm −2 or less even at the highest dislocation density. Preferably, it is 1 × 10 6 cm −2 or less.

本実施形態のGaN単結晶基板20pにおいて、結晶性の高いGaN系半導体層を安定してエピタキシャル成長させる観点から、(0001)面または(000−1)面20cに対する主面20pmの面方位の傾斜の方向が<10−10>方向であることが好ましい。   In the GaN single crystal substrate 20p of this embodiment, from the viewpoint of stably epitaxially growing a highly crystalline GaN-based semiconductor layer, the inclination of the plane orientation of the main surface 20pm with respect to the (0001) plane or the (000-1) plane 20c is increased. The direction is preferably the <10-10> direction.

本実施形態のGaN単結晶基板20pにおいて、結晶性の高いGaN系半導体層をエピタキシャル成長させる観点から、(0002)面および(20−20)面もしくは(22−40)面に関するX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅が主面20pmの全面において300arcsec以下であることが好ましい。なお、X線回折ピークの半値幅は、その数値が小さいほど結晶性が高いことを意味する。   From the viewpoint of epitaxially growing a highly crystalline GaN-based semiconductor layer in the GaN single crystal substrate 20p of this embodiment, X-ray diffraction rocking curve measurement on the (0002) plane and the (20-20) plane or the (22-40) plane. The half width of the X-ray diffraction peak at is preferably 300 arcsec or less over the entire main surface of 20 pm. The half width of the X-ray diffraction peak means that the smaller the value, the higher the crystallinity.

X線回折ロッキングカーブ測定における回折結晶面は、たとえば、主面20pmの面方位が{h0kl}(ここで、h、kおよびlは0以外の整数)のGaN単結晶基板20pについては(0002)面および(20−20)面とし、主面20pmの面方位が{hikl}(ここで、h、k、iおよびlは0以外の整数)のGaN単結晶基板20pについては(0002)面および(22−40)面とすることができる。GaN単結晶基板20pの主面20pmの全面におけるX線回折ロッキングカーブ測定は、たとえば主面20pm内の2次元方向に2mmの間隔で1mm2のX線照射面積で行うことができる。 The diffraction crystal plane in the X-ray diffraction rocking curve measurement is, for example, (0002) for the GaN single crystal substrate 20p whose principal plane 20pm has a plane orientation of {h0kl} (where h, k and l are integers other than 0). And a (20-20) plane, and the plane orientation of the main surface 20pm is {hikl} (where h, k, i and l are integers other than 0), It can be a (22-40) plane. The X-ray diffraction rocking curve measurement on the entire main surface 20pm of the GaN single crystal substrate 20p can be performed, for example, with an X-ray irradiation area of 1 mm 2 at intervals of 2 mm in the two-dimensional direction in the main surface 20pm.

[GaN単結晶基板の製造方法]
(実施形態2)
図2および図3を参照して、本発明の一実施形態であるGaN単結晶基板の製造方法は、実施形態1のGaN単結晶基板20pの製造方法であって、主面10pmの面積が10cm2以上で、主面10pmの面方位が(0001)面または(000−1)面1cに対して65°以上85°以下で傾斜しているGaN種結晶基板10pを準備する工程(図2(A)〜(D)、図3(A))と、GaN種結晶基板10pの主面10pm上にGaN単結晶20を成長させる工程(図3(B))と、GaN単結晶20をGaN種結晶基板10pの主面10pmに平行な面20u,20vで切り出してGaN単結晶基板を形成する工程(図3(C))と、を備える。本実施形態のGaN単結晶基板の製造方法は、かかる工程を備えることにより、効率的に実施形態1のGaN単結晶基板を製造することができる。
[Method of manufacturing GaN single crystal substrate]
(Embodiment 2)
2 and 3, the method for manufacturing a GaN single crystal substrate according to one embodiment of the present invention is a method for manufacturing GaN single crystal substrate 20p according to Embodiment 1, and the area of main surface 10pm is 10 cm. A step of preparing a GaN seed crystal substrate 10p having a surface orientation of 2 or more and an inclination of 65 to 85 ° with respect to the (0001) plane or the (000-1) plane 1c (FIG. 2 ( A) to (D), FIG. 3A), a step of growing the GaN single crystal 20 on the main surface 10pm of the GaN seed crystal substrate 10p (FIG. 3B), and the GaN single crystal 20 as a GaN seed. And a step (FIG. 3C) of forming a GaN single crystal substrate by cutting the crystal substrate 10p along planes 20u and 20v parallel to the main surface 10pm. The manufacturing method of the GaN single crystal substrate of this embodiment can efficiently manufacture the GaN single crystal substrate of Embodiment 1 by including such steps.

(GaN種結晶基板の準備工程)
図2を参照して、本実施形態のGaN種結晶基板を準備する工程は、特に制限はないが、たとえば、GaN母結晶から複数のGaN母結晶片を切り出すサブ工程(図2(A))と、複数のGaN母結晶片を横方向に互いに隣接させて配置するサブ工程(図2(B))と、複数のGaN母結晶片の主面上にGaN種結晶を成長させるサブ工程(図2(C))と、GaN種結晶からGaN種結晶基板を形成するサブ工程(図2(D))と、を備える。
(Preparation process of GaN seed crystal substrate)
Referring to FIG. 2, the step of preparing the GaN seed crystal substrate of the present embodiment is not particularly limited. For example, a sub-step of cutting a plurality of GaN mother crystal pieces from the GaN mother crystal (FIG. 2A) And a sub-process for arranging a plurality of GaN mother crystal pieces adjacent to each other in the lateral direction (FIG. 2B), and a sub-process for growing a GaN seed crystal on the main surface of the plurality of GaN mother crystal pieces (FIG. 2 (C)) and a sub-process (FIG. 2D) for forming a GaN seed crystal substrate from the GaN seed crystal.

まず、図2(A)を参照して、複数のGaN母結晶片1pを切り出すサブ工程において、GaN母結晶1から、GaN母結晶1の(0001)面または(000−1)面1cに対して65°以上85°以下の傾斜角αで傾斜している面方位{hkil}に平行な面(<hkil>方向に垂直な面)で複数のGaN母結晶片1pが切り出される。かかるサブ工程により、(0001)面または(000−1)面1cに対して65°以上85°以下の傾斜角αで傾斜している面方位の主面1pmを有する複数のGaN母結晶片1pが得られる。ここで、傾斜角αは、X線回折法により測定することができる。   First, referring to FIG. 2A, in a sub-process of cutting out a plurality of GaN mother crystal pieces 1p, from GaN mother crystal 1 to (0001) plane or (000-1) plane 1c of GaN mother crystal 1 A plurality of GaN mother crystal pieces 1p are cut out on a plane parallel to the plane orientation {hkil} inclined at an inclination angle α of 65 ° to 85 ° (a plane perpendicular to the <hkil> direction). By such a sub-process, a plurality of GaN mother crystal pieces 1p having a principal plane 1pm of a plane orientation inclined at an inclination angle α of 65 ° or more and 85 ° or less with respect to the (0001) plane or (000-1) plane 1c. Is obtained. Here, the inclination angle α can be measured by an X-ray diffraction method.

上記サブ工程において用いられるGaN母結晶1は、特に制限はなく、通常の方法、すなわち、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法などの気相法、フラックス法などの液相法により、(0001)の主面を有するサファイア基板または(111)A面の主面を有するGaAs基板などの主面上に結晶成長させることにより製造されるもので足りる。したがって、このGaN母結晶1は、特に制限はないが、通常、(0001)の主面を有する。なお、このGaN母結晶1は、転位密度を低減し結晶性を高める観点から、特開2001−102307号公報に開示されるように、結晶が成長する面(結晶成長面)にファセットを形成し、ファセットを埋め込むことなく結晶成長を行なうことを特徴とするファセット成長法により成長させることが好ましい。   The GaN mother crystal 1 used in the sub-process is not particularly limited, and is a usual method, that is, a vapor phase method such as HVPE (hydride vapor phase epitaxy) method, MOCVD (metal organic chemical vapor deposition) method, or flux method. It is sufficient to be produced by crystal growth on a main surface such as a sapphire substrate having a (0001) main surface or a GaAs substrate having a (111) A main surface by a liquid phase method. Therefore, although this GaN mother crystal 1 is not particularly limited, it usually has a (0001) main surface. This GaN mother crystal 1 has facets formed on the crystal growth surface (crystal growth surface) as disclosed in JP-A-2001-102307 from the viewpoint of reducing dislocation density and increasing crystallinity. The crystal growth is preferably performed without embedding the facet, and the growth is preferably performed by a facet growth method.

また、GaN母結晶1から複数のGaN母結晶片1pを切り出す方法には、特に制限はなく、ワイヤソー、内周刃、外周刃、またはレーザなどの各種方法を用いることができる。   Moreover, there is no restriction | limiting in particular in the method of cutting out the some GaN mother crystal piece 1p from the GaN mother crystal 1, Various methods, such as a wire saw, an inner peripheral blade, an outer peripheral blade, or a laser, can be used.

また、結晶性の高いGaN種結晶10を成長させる観点から、複数のGaN母結晶片1pの主面1pmおよび側面の平均粗さRaは、50nm以下が好ましく、5nm以下がより好ましい。面の平均粗さRaとは、JIS B 0601−1994に規定する算術平均粗さRaをいい、具体的には、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から粗さ曲線までの距離(偏差の絶対値)を合計し基準長さで平均した値をいう。また、面の平均粗さRaは、AFM(分子間力顕微鏡)などを用いて測定することができる。   Further, from the viewpoint of growing the highly crystalline GaN seed crystal 10, the average roughness Ra of the main surface 1pm and the side surfaces of the plurality of GaN mother crystal pieces 1p is preferably 50 nm or less, and more preferably 5 nm or less. The average surface roughness Ra means the arithmetic average roughness Ra specified in JIS B 0601-1994. Specifically, the surface is extracted by a reference length in the direction of the average line from the roughness curve, and This is the value obtained by summing the distances from the average line to the roughness curve (absolute value of deviation) and averaging them with the reference length. The average surface roughness Ra can be measured using an AFM (Intermolecular Force Microscope) or the like.

複数のGaN母結晶片1pの主面1pmおよび側面の平均粗さRaを、好ましくは50nm以下、より好ましくは5nm以下とするために、切り出された複数のGaN母結晶片1pは、それらの主面1pmおよび側面が研削および/または研磨されることが好ましい。研磨には、機械的研磨、CMP(化学機械的研磨)などが含まれる。   In order to set the average roughness Ra of the main surface 1pm and side surfaces of the plurality of GaN mother crystal pieces 1p to preferably 50 nm or less, more preferably 5 nm or less, the plurality of GaN mother crystal pieces 1p that are cut out are It is preferable that the surface 1pm and the side surface are ground and / or polished. Polishing includes mechanical polishing, CMP (chemical mechanical polishing), and the like.

次に、図2(B)を参照して、複数のGaN母結晶片を横方向に互いに隣接させて配置するサブ工程において、切り出された複数のGaN母結晶片1pは、それらの母結晶片の主面1pmが互いに平行で、かつ、それらの母結晶片の[0001]方向が同一になるように、横方向に互いに隣接させて配置される。   Next, referring to FIG. 2B, in the sub-process of arranging the plurality of GaN mother crystal pieces adjacent to each other in the lateral direction, the plurality of GaN mother crystal pieces 1p that are cut out are the mother crystal pieces. Are arranged adjacent to each other in the lateral direction so that their main faces 1pm are parallel to each other and their mother crystal pieces have the same [0001] direction.

複数のGaN母結晶片1pは、それらの母結晶片の主面1pmと結晶軸とのなす角度がそれらの母結晶片の主面1pm内で均一でないと、それらの母結晶片の主面1pm上に成長させるGaN種結晶の化学組成がそれらの母結晶片の主面1pmに平行な面内で不均一となるため、それらの母結晶片の主面1pmが互いに平行になるように、横方向に配置される。これらの母結晶片の主面1pmが互いに平行であれば足り、必ずしも同一平面上になくてもよい。しかし、隣接する2つのGaN母結晶片1pの主面1pm間の高低差ΔT(図示せず)は、0.1mm以下が好ましく、0.01mm以下がより好ましい。   The plurality of GaN mother crystal pieces 1p have a principal surface 1pm of their mother crystal pieces unless the angle between the principal surface 1pm of those mother crystal pieces and the crystal axis is uniform within the principal surface 1pm of these mother crystal pieces. Since the chemical composition of the GaN seed crystals grown on the surface becomes non-uniform in a plane parallel to the main surface 1 pm of the mother crystal pieces, the main surfaces 1 pm of the mother crystal pieces are laterally aligned so as to be parallel to each other. Arranged in the direction. It is sufficient that the main surfaces 1pm of these mother crystal pieces are parallel to each other, and they do not necessarily have to be on the same plane. However, the height difference ΔT (not shown) between the main surfaces 1pm of two adjacent GaN mother crystal pieces 1p is preferably 0.1 mm or less, and more preferably 0.01 mm or less.

また、複数のGaN母結晶片1pは、それら母結晶片の結晶方位を同一にしてより均一な結晶成長を図る観点から、それらの母結晶片の[0001]方向が同一になるように、横方向に配置される。また、複数のGaN母結晶片1pは、基板間に隙間があるとその隙間上に成長する結晶の結晶性が低下するため、互いに隣接させて配置される。   Further, from the viewpoint of achieving more uniform crystal growth by making the crystal orientations of the mother crystal pieces the same, the plurality of GaN mother crystal pieces 1p are arranged so that the [0001] directions of the mother crystal pieces are the same. Arranged in the direction. The plurality of GaN mother crystal pieces 1p are arranged adjacent to each other because there is a gap between the substrates and the crystallinity of crystals growing on the gaps is reduced.

上記のサブ工程により、複数のGaN母結晶片1pの主面1pmが互いに平行で、かつ、それらの母結晶片の[0001]方向が同一であるように、横方向に互いに隣接して配置された、主面1pmの面方位が(0001)面または(000−1)面1cに対して65°以上85°以下の傾斜角を有する複数のGaN母結晶片1pが得られる。   Through the above sub-processes, the main surfaces 1pm of the plurality of GaN mother crystal pieces 1p are arranged in parallel to each other so that the [0001] directions of the mother crystal pieces are the same. In addition, a plurality of GaN mother crystal pieces 1p having an inclination angle of 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane 1c is obtained.

次に、図2(C)を参照して、複数のGaN母結晶片1pの主面1pm上にGaN種結晶10を成長させる工程において、GaN種結晶10を成長させる方法は、特に制限はないが、GaN種結晶をエピタキシャル成長させる観点から、HVPE法、MOCVD法などの気相法、フラックス法などの液相法などが好ましく用いられる。結晶成長方法の中で、結晶成長速度が高い観点から、HVPE法であることが好ましい。   Next, referring to FIG. 2C, in the step of growing the GaN seed crystal 10 on the main surface 1pm of the plurality of GaN mother crystal pieces 1p, the method for growing the GaN seed crystal 10 is not particularly limited. However, from the viewpoint of epitaxially growing the GaN seed crystal, a gas phase method such as HVPE method or MOCVD method, a liquid phase method such as flux method, or the like is preferably used. Among the crystal growth methods, the HVPE method is preferable from the viewpoint of high crystal growth rate.

複数のGaN母結晶片1pの主面1pm上にGaN種結晶10を成長させると、GaN種結晶10の結晶成長面10gは、マクロ的に見ると複数のGaN母結晶片1pの主面1pmに平行であるが、ミクロ的に見ると複数のGaN母結晶片1pの主面1pmと平行ではない複数のファセット10fa,10fbが形成される。また、かかる複数のファセット10fa,10fbは、それらの面方位が互いに異なる。すなわち、GaN種結晶10は、面方位が互いに異なる複数のファセット10fa,10fbを結晶成長面10gとして成長する。   When the GaN seed crystal 10 is grown on the main surface 1pm of the plurality of GaN mother crystal pieces 1p, the crystal growth surface 10g of the GaN seed crystal 10 is macroscopically formed on the main surface 1pm of the plurality of GaN mother crystal pieces 1p. A plurality of facets 10fa and 10fb that are parallel but are not parallel to the main surface 1pm of the plurality of GaN mother crystal pieces 1p when viewed microscopically are formed. The plurality of facets 10fa and 10fb have different plane orientations. That is, the GaN seed crystal 10 grows using a plurality of facets 10fa and 10fb having different plane orientations as the crystal growth surface 10g.

ここで、結晶成長面10gにおいて、ファセット10faとファセット10fbとは、面方位が互いに異なることにより、面内における結晶構成元素の配列が互いに異なるため、ファセット10faを結晶成長面として成長する部分とファセット10fbを結晶成長面として成長する部分とでは、転位の伝播方向が異なる。   Here, in the crystal growth surface 10g, the facet 10fa and the facet 10fb have different plane orientations, and therefore the arrangement of crystal constituent elements in the plane is different from each other. The direction of dislocation propagation differs from the portion grown with 10 fb as the crystal growth surface.

このため、複数のGaN母結晶片1pの主面1pm上に成長するGaN種結晶10においては、母結晶片の主面1pmに平行な面内における転位密度にばらつきが生じる。   For this reason, in the GaN seed crystal 10 grown on the main surface 1pm of the plurality of GaN mother crystal pieces 1p, variation occurs in the dislocation density in a plane parallel to the main surface 1pm of the mother crystal piece.

このとき、複数のGaN母結晶片1pの主面1pmの面方位における(0001)面または(000−1)面1cに対する傾斜が小さいと、たとえばその傾斜角αが65°より小さいと、その主面1pm上に成長するGaN種結晶10の結晶成長面10gには、面方位が(0001)または(000−1)であるファセット10faと、ファセット10faと面方位が異なるファセット10fbとが生じる。ここで、面方位が(0001)または(000−1)であるファセット10faを結晶成長面として成長する部分の転位は(0001)または(000−1)に垂直な方向(すなわち<0001>方向)に伝播し、(0001)および(000−1)以外の面方位のファセットを結晶成長面として成長する部分の転位は<0001>方向から傾斜した方向に伝播する。このため、かかる主面1pm上に成長するGaN種結晶10およびそれから得られるGaN種結晶基板10pの主面10pmにおける転位密度のばらつきが大きくなるため、かかる基板を用いた半導体デバイスの特性のばらつきが大きくなる。   At this time, if the inclination with respect to the (0001) plane or the (000-1) plane 1c in the plane orientation of the main surface 1pm of the plurality of GaN mother crystal pieces 1p is small, for example, if the inclination angle α is smaller than 65 °, the main A facet 10fa having a plane orientation of (0001) or (000-1) and a facet 10fb having a plane orientation different from that of the facet 10fa are generated on the crystal growth plane 10g of the GaN seed crystal 10 grown on the plane 1pm. Here, the dislocation of the portion grown with the facet 10fa having a plane orientation of (0001) or (000-1) as the crystal growth plane is in a direction perpendicular to (0001) or (000-1) (that is, <0001> direction). The dislocations in the portion that grows with facets having plane orientations other than (0001) and (000-1) as crystal growth planes propagate in a direction inclined from the <0001> direction. For this reason, since the variation in the dislocation density in the main surface 10pm of the GaN seed crystal 10 grown on the main surface 1pm and the GaN seed crystal substrate 10p obtained from the GaN seed crystal 10p increases, the variation in the characteristics of the semiconductor device using such a substrate varies. growing.

また、複数のGaN母結晶片1pの主面1pmの面方位における(0001)面または(000−1)面1cに対する傾斜が大きくなり直角に近づくと、たとえばその傾斜角αが85°より大きいと、その主面1pm上に成長するGaN種結晶10の結晶成長面10gには、面方位が(0001)に対して垂直であるファセット10fbの発生が優勢となり、成長するGaN種結晶10が部分的に多結晶化して、GaN種結晶10に割れが発生する。   Further, when the inclination with respect to the (0001) plane or the (000-1) plane 1c in the plane orientation of the principal surface 1pm of the plurality of GaN mother crystal pieces 1p increases and approaches a right angle, for example, when the inclination angle α is greater than 85 ° On the crystal growth surface 10g of the GaN seed crystal 10 grown on the main surface 1pm, the generation of the facet 10fb whose plane orientation is perpendicular to (0001) is dominant, and the growing GaN seed crystal 10 is partially As a result, the GaN seed crystal 10 is cracked.

上記の観点から、GaN種結晶基板10pを製造するために、(0001)面または(000−1)面1cに対する複数のGaN母結晶片1pの主面1pmの面方位の傾斜角αは、65°以上85°以下であることが必要であり、70°以上80°以下であることが好ましく、72°以上78°以下であることがさらに好ましい。   From the above viewpoint, in order to manufacture the GaN seed crystal substrate 10p, the inclination angle α of the plane orientation of the principal surface 1pm of the plurality of GaN mother crystal pieces 1p with respect to the (0001) plane or the (000-1) plane 1c is 65 It is necessary that the angle be from 85 ° to 85 °, preferably from 70 ° to 80 °, and more preferably from 72 ° to 78 °.

次に、図2(C)および(D)を参照して、GaN種結晶10を複数のGaN母結晶片1pの主面1pmに平行な面10u,10vで切り出してGaN種結晶基板10pを形成する工程において、GaN種結晶10からGaN種結晶基板10pを切り出す方法には、特に制限はなく、ワイヤソー、内周刃、外周刃、またはレーザなどの各種方法を用いることができる。   Next, referring to FIGS. 2C and 2D, the GaN seed crystal 10 is cut out by planes 10u and 10v parallel to the main surface 1pm of the plurality of GaN mother crystal pieces 1p to form a GaN seed crystal substrate 10p. In the step, the method for cutting the GaN seed crystal substrate 10p from the GaN seed crystal 10 is not particularly limited, and various methods such as a wire saw, an inner peripheral blade, an outer peripheral blade, or a laser can be used.

また、結晶性の高いGaN単結晶を成長させる観点から、GaN種結晶基板10pの主面10pmの平均粗さRaは、50nm以下が好ましく、5nm以下がより好ましい。面の平均粗さRaの定義および測定方法は、上記と同様である。GaN種結晶基板10pの主面10pmの平均粗さRaを、好ましくは50nm以下、より好ましくは5nm以下とするために、切り出されたGaN種結晶基板10pは、それらの主面10pmおよび側面が研削および/または研磨されることが好ましい。研磨には、機械的研磨、CMP(化学機械的研磨)などが含まれる。   From the viewpoint of growing a highly crystalline GaN single crystal, the average roughness Ra of the main surface 10pm of the GaN seed crystal substrate 10p is preferably 50 nm or less, and more preferably 5 nm or less. The definition and measurement method of the average roughness Ra of the surface are the same as described above. In order to set the average roughness Ra of the main surface 10pm of the GaN seed crystal substrate 10p to preferably 50 nm or less, more preferably 5 nm or less, the cut GaN seed crystal substrate 10p is ground on its main surface 10pm and side surfaces. And / or is preferably polished. Polishing includes mechanical polishing, CMP (chemical mechanical polishing), and the like.

上記のサブ工程により、図2(D)および図3(A)を参照して、主面10pmの面積が10cm2以上であり、主面10pmの面方位が(0001)面または(000−1)面10cに対して65°以上85°以下で傾斜しているGaN種結晶基板10pが準備される。 2D and 3A, the main surface 10pm has an area of 10 cm 2 or more, and the main surface 10pm has a plane orientation of (0001) plane or (000-1). ) A GaN seed crystal substrate 10p inclined by 65 ° or more and 85 ° or less with respect to the surface 10c is prepared.

なお、非常に厚いGaN母結晶が得られる場合には、上記のサブ工程に替えて、かかるGaN母結晶を、GaN母結晶の(0001)面または(000−1)面に対して65°以上85°以下の傾斜角αで傾斜している面方位{hkil}に平行な面(<hkil>方向に垂直な面)で切り出し、その主面を研削および/または研磨することにより、主面10pmの面積が10cm2以上であり、主面10pmの面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しているGaN種結晶基板10pが準備される。 When a very thick GaN mother crystal is obtained, the GaN mother crystal is replaced by 65 ° or more with respect to the (0001) plane or the (000-1) plane of the GaN mother crystal instead of the above sub-process. By cutting out a plane parallel to the plane orientation {hkil} inclined at an inclination angle α of 85 ° or less (a plane perpendicular to the <hkil> direction), and grinding and / or polishing the main surface, the main surface 10 pm and the area of 10 cm 2 or more, is ready GaN seed crystal substrate 10p to the plane orientation of main surface 10pm is inclined at (0001) plane or (000-1) 85 ° 65 ° or more to the surface below .

(GaN単結晶の成長工程)
次に、図3(B)を参照して、GaN種結晶基板10pの主面10pm上にGaN単結晶20を成長させる工程において、GaN単結晶20を成長させる方法は、特に制限はないが、GaN単結晶をエピタキシャル成長させる観点から、HVPE法、MOCVD法などの気相法、フラックス法などの液相法などが好ましく用いられる。結晶成長方法の中で、結晶成長速度が高い観点から、HVPE法であることが好ましい。
(GaN single crystal growth process)
Next, referring to FIG. 3B, in the step of growing the GaN single crystal 20 on the main surface 10pm of the GaN seed crystal substrate 10p, the method for growing the GaN single crystal 20 is not particularly limited. From the viewpoint of epitaxially growing a GaN single crystal, a gas phase method such as HVPE method or MOCVD method, a liquid phase method such as flux method, or the like is preferably used. Among the crystal growth methods, the HVPE method is preferable from the viewpoint of high crystal growth rate.

GaN種結晶基板10pの主面10pm上にGaN単結晶20を成長させると、GaN単結晶20の結晶成長面20gは、マクロ的に見るとGaN種結晶基板10pの主面10pmに平行であるが、ミクロ的に見るとGaN種結晶基板10pの主面10pmと平行ではない複数のファセット20fa,20fbが形成される。また、かかる複数のファセット20fa,20fbは、それらの面方位が互いに異なる。すなわち、GaN単結晶20は、面方位が互いに異なる複数のファセット20fa,20fbを結晶成長面20gとして成長する。   When the GaN single crystal 20 is grown on the main surface 10pm of the GaN seed crystal substrate 10p, the crystal growth surface 20g of the GaN single crystal 20 is parallel to the main surface 10pm of the GaN seed crystal substrate 10p when viewed macroscopically. When viewed microscopically, a plurality of facets 20fa and 20fb that are not parallel to the main surface 10pm of the GaN seed crystal substrate 10p are formed. The plurality of facets 20fa and 20fb have different plane orientations. That is, the GaN single crystal 20 grows using a plurality of facets 20fa and 20fb having different plane orientations as the crystal growth surface 20g.

ここで、結晶成長面20gにおいて、ファセット20faとファセット20fbとは、面方位が互いに異なることにより、面内における結晶構成元素の配列が互いに異なるため、ファセット20faを結晶成長面として成長する部分とファセット20fbを結晶成長面として成長する部分とでは、転位の伝播方向が異なる。   Here, in the crystal growth surface 20g, the facet 20fa and the facet 20fb have different plane orientations, and therefore the arrangement of crystal constituent elements in the plane is different from each other. The direction of dislocation propagation differs from the portion grown with 20 fb as the crystal growth surface.

このため、GaN種結晶基板10pの主面10pm上に成長するGaN単結晶20においては、GaN種結晶基板10pの主面10pmに平行な面内における転位密度にばらつきが生じる。   For this reason, in the GaN single crystal 20 grown on the main surface 10pm of the GaN seed crystal substrate 10p, the dislocation density varies in a plane parallel to the main surface 10pm of the GaN seed crystal substrate 10p.

このとき、GaN種結晶基板10pの主面10pmの面方位における(0001)面または(000−1)面10cに対する傾斜が小さいと、たとえばその傾斜角αが65°より小さいと、その主面10pm上に成長するGaN単結晶20の結晶成長面20gには、面方位が(0001)または(000−1)であるファセット20faと、ファセット20faと面方位が異なるファセット20fbとが生じる。ここで、面方位が(0001)または(000−1)であるファセット20faを結晶成長面として成長する部分の転位は(0001)または(000−1)に垂直な方向(すなわち<0001>方向)に伝播し、(0001)および(000−1)以外の面方位のファセットを結晶成長面として成長する部分の転位は<0001>方向から傾斜した方向に伝播する。このため、かかる主面10pm上に成長するGaN単結晶20およびそれから得られるGaN単結晶基板20pの主面20pmにおける転位密度のばらつきが大きくなるため、かかる基板を用いた半導体デバイスの特性のばらつきが大きくなる。   At this time, if the inclination with respect to the (0001) plane or the (000-1) plane 10c in the plane orientation of the main surface 10pm of the GaN seed crystal substrate 10p is small, for example, if the inclination angle α is smaller than 65 °, the main surface 10pm. A facet 20fa having a plane orientation of (0001) or (000-1) and a facet 20fb having a plane orientation different from that of the facet 20fa are generated on the crystal growth surface 20g of the GaN single crystal 20 grown thereon. Here, the dislocation of the portion grown with the facet 20fa having a plane orientation of (0001) or (000-1) as a crystal growth plane is in a direction perpendicular to (0001) or (000-1) (that is, <0001> direction). The dislocations in the portion that grows with facets having plane orientations other than (0001) and (000-1) as crystal growth planes propagate in a direction inclined from the <0001> direction. For this reason, since the variation in the dislocation density in the main surface 20pm of the GaN single crystal 20 grown on the main surface 10pm and the GaN single crystal substrate 20p obtained from the main surface 10pm increases, the variation in the characteristics of the semiconductor device using the substrate varies. growing.

また、GaN種結晶基板10pの主面10pmの面方位における(0001)面または(000−1)面10cに対する傾斜が大きくなり直角に近づくと、たとえばその傾斜角αが85°より大きいと、その主面10pm上に成長するGaN単結晶20の結晶成長面20gには、面方位が(0001)に対して垂直であるファセット20fbの発生が優勢となり、成長するGaN単結晶20が部分的に多結晶化して、GaN単結晶20に割れが発生する。   Further, when the inclination with respect to the (0001) plane or the (000-1) plane 10c in the plane orientation of the main surface 10pm of the GaN seed crystal substrate 10p increases and approaches a right angle, for example, when the inclination angle α is greater than 85 °, On the crystal growth surface 20g of the GaN single crystal 20 grown on the main surface 10pm, the generation of the facet 20fb whose plane orientation is perpendicular to (0001) becomes dominant, and the GaN single crystal 20 that grows partially partially. Crystallization causes cracks in the GaN single crystal 20.

上記の観点から、主面20pmにおける転位密度の分布が実質的に均一なGaN単結晶基板20pを製造するために、GaN種結晶基板10pの主面10pmの面方位は、(0001)面または(000−1)面1cに対する傾斜角αは、65°以上85°以下であることが必要であり、70°以上80°以下であることが好ましく、72°以上78°以下であることがさらに好ましい。   From the above viewpoint, in order to manufacture a GaN single crystal substrate 20p having a substantially uniform dislocation density distribution on the main surface 20pm, the plane orientation of the main surface 10pm of the GaN seed crystal substrate 10p is (0001) plane or ( 000-1) The inclination angle α with respect to the surface 1c needs to be 65 ° or more and 85 ° or less, preferably 70 ° or more and 80 ° or less, and more preferably 72 ° or more and 78 ° or less. .

(GaN単結晶基板の形成工程)
次に、図3(B)および(C)を参照して、GaN単結晶20をGaN種結晶基板10pの主面10pmに平行な面20u,20vで切り出してGaN単結晶基板20pを形成する工程において、GaN単結晶20からGaN単結晶基板20pを切り出す方法には、特に制限はなく、ワイヤソー、内周刃、外周刃、またはレーザなどの各種方法を用いることができる。
(Process for forming GaN single crystal substrate)
Next, referring to FIGS. 3B and 3C, a step of cutting GaN single crystal 20 along planes 20u and 20v parallel to main surface 10pm of GaN seed crystal substrate 10p to form GaN single crystal substrate 20p. The method for cutting out the GaN single crystal substrate 20p from the GaN single crystal 20 is not particularly limited, and various methods such as a wire saw, an inner peripheral blade, an outer peripheral blade, or a laser can be used.

また、結晶性の高いGaN系半導体層を成長させる観点から、GaN単結晶基板20pの主面20pmの平均粗さRaは、50nm以下が好ましく、5nm以下がより好ましい。面の平均粗さRaの定義および測定方法は、上記と同様である。GaN単結晶基板20pの主面20pmの平均粗さRaを、好ましくは50nm以下、より好ましくは5nm以下とするために、切り出されたGaN単結晶基板20pは、それらの主面20pmおよび側面が研削および/または研磨されることが好ましい。研磨には、機械的研磨、CMP(化学機械的研磨)などが含まれる。   From the viewpoint of growing a highly crystalline GaN-based semiconductor layer, the average roughness Ra of the main surface 20pm of the GaN single crystal substrate 20p is preferably 50 nm or less, and more preferably 5 nm or less. The definition and measurement method of the average roughness Ra of the surface are the same as described above. In order to set the average roughness Ra of the main surface 20pm of the GaN single crystal substrate 20p to preferably 50 nm or less, more preferably 5 nm or less, the cut GaN single crystal substrate 20p is ground on its main surface 20pm and side surfaces. And / or is preferably polished. Polishing includes mechanical polishing, CMP (chemical mechanical polishing), and the like.

上記の工程により、主面20pmの面積が10cm2以上であり、主面20pmの面方位が(0001)面または(000−1)面20cに対して65°以上85°以下で傾斜しており、主面20pm内における転位密度の分布が実質的に均一(たとえば、主面20pm内における転位密度のばらつきがその主面20pm内における平均転位密度に対して±100%以内)であるGaN単結晶基板20pが得られる。 By the above process, the area of the main surface 20pm is 10 cm 2 or more, and the surface orientation of the main surface 20pm is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane 20c. The dislocation density distribution in the main surface 20pm is substantially uniform (for example, the variation in dislocation density in the main surface 20pm is within ± 100% of the average dislocation density in the main surface 20pm). A substrate 20p is obtained.

[GaN系半導体デバイス]
(実施形態3)
図5を参照して、本発明の一実施形態であるGaN系半導体デバイス100は、実施形態1のGaN単結晶基板20pと、GaN単結晶基板20pの主面20pm上に形成されている少なくとも1層のGaN系半導体層130と、を含む。
[GaN-based semiconductor devices]
(Embodiment 3)
Referring to FIG. 5, a GaN-based semiconductor device 100 according to an embodiment of the present invention includes at least one GaN single crystal substrate 20p according to the first embodiment and a main surface 20pm of the GaN single crystal substrate 20p. GaN-based semiconductor layer 130 as a layer.

本実施形態のGaN系半導体デバイス100において、GaN単結晶基板20pは、主面10pmの面積が10cm2以上であり、主面10pmの面方位が(0001)面または(000−1)面1cに対して65°以上85°以下で傾斜しており、主面10pm内における転位密度の分布が実質的に均一(たとえば、主面20pm内における転位密度のばらつきがその主面20pm内における平均転位密度に対して±100%以内)である。かかるGaN単結晶基板20p上にエピタキシャル成長により形成されているGaN系半導体層130は、その主面の面積が10cm2以上であり、その主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、その主面内における転位密度の分布が実質的に均一(たとえば、主面内における転位密度のばらつきがその主面20pm内における平均転位密度に対して±100%以内)である。このため、本実施形態のGaN系半導体デバイスは、主面内におけるデバイス特性の分布が実質的に均一であり、高いデバイス特性を有する。 In the GaN-based semiconductor device 100 of this embodiment, the GaN single crystal substrate 20p has an area of the main surface 10pm of 10 cm 2 or more, and the surface orientation of the main surface 10pm is the (0001) plane or the (000-1) plane 1c. However, the distribution of dislocation density in the main surface 10pm is substantially uniform (for example, variation in dislocation density in the main surface 20pm is the average dislocation density in the main surface 20pm). Within ± 100%). The GaN-based semiconductor layer 130 formed by epitaxial growth on the GaN single crystal substrate 20p has an area of the main surface of 10 cm 2 or more, and the surface orientation of the main surface is the (0001) plane or (000-1). The distribution of the dislocation density in the principal plane is substantially uniform (for example, the dislocation density variation in the principal plane is an average dislocation within the principal plane 20 pm). Within ± 100% of the density). For this reason, the GaN-based semiconductor device of the present embodiment has a substantially uniform distribution of device characteristics in the main surface and high device characteristics.

図5を参照して、本実施形態のGaN系半導体デバイス100は、具体的には、直径50mm×厚さ500μmのGaN単結晶基板20pの一方の主面20pm上に、少なくとも1層のGaN系半導体層130として、Siがドープされた厚さ2μmのn型GaN層131、6対のIn0.01Ga0.99N障壁層およびIn0.1Ga0.9N井戸層により構成されている多重量子井戸構造を有する厚さ100nmの発光層132、Mgがドープされた厚さ20nmのp型Al0.18Ga0.82N層133およびMgがドープされた厚さ50nmのp型GaN層134が順に積層されている。また、p型GaN層134上の一部には、p側電極141である0.2mm×0.2mm×厚さ0.5μmのNi/Au電極が形成されている。また、GaN単結晶基板20pの他方の主面20pn上には、n側電極142である厚さ1μmのTi/Al電極が形成されている。 Referring to FIG. 5, the GaN-based semiconductor device 100 of this embodiment specifically includes at least one GaN-based layer on one main surface 20pm of a GaN single crystal substrate 20p having a diameter of 50 mm and a thickness of 500 μm. The semiconductor layer 130 has a multiple quantum well structure composed of an n-type GaN layer 131 having a thickness of 2 μm doped with Si, six pairs of In 0.01 Ga 0.99 N barrier layers, and an In 0.1 Ga 0.9 N well layer. A light emitting layer 132 having a thickness of 100 nm, a p-type Al 0.18 Ga 0.82 N layer 133 having a thickness of 20 nm doped with Mg, and a p-type GaN layer 134 having a thickness of 50 nm doped with Mg are sequentially stacked. Further, a Ni / Au electrode of 0.2 mm × 0.2 mm × thickness 0.5 μm, which is a p-side electrode 141, is formed on a part of the p-type GaN layer 134. A Ti / Al electrode having a thickness of 1 μm, which is an n-side electrode 142, is formed on the other main surface 20pn of the GaN single crystal substrate 20p.

[GaN系半導体デバイスの製造方法]
(実施形態4)
図5を参照して、本発明の一実施形態であるGaN系半導体デバイス100の製造方法は、実施形態1のGaN単結晶基板20pを準備する工程と、GaN単結晶基板20pの主面20pm上に少なくとも1層のGaN系半導体層130を成長させる工程と、を備える。
[Method of manufacturing GaN-based semiconductor device]
(Embodiment 4)
Referring to FIG. 5, the manufacturing method of GaN-based semiconductor device 100 according to one embodiment of the present invention includes a step of preparing GaN single crystal substrate 20p of Embodiment 1, and a main surface 20pm of GaN single crystal substrate 20p. And a step of growing at least one GaN-based semiconductor layer 130.

本実施形態のGaN系半導体デバイス100の製造方法においては、主面20pmの面積が10cm2以上であり、主面20pmの面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、主面20pm内における転位密度の分布が実質的に均一(たとえば、主面20pm内における転位密度のばらつきがその主面20pm内における平均転位密度に対して±100%以内)であるGaN単結晶基板20p上に少なくとも1層のGaN系半導体層130をエピタキシャル成長させる。かかるエピタキシャル成長をしたGaN系半導体層130の結晶方位は、GaN単結晶基板20pの結晶方位と同じである。このため、成長したGaN系半導体層130は、その主面の面積が10cm2以上であり、その主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、その主面内における転位密度の分布が実質的に均一(たとえば、主面内における転位密度のばらつきがその主面内における平均転位密度に対して±100%以内)である。このため、本実施形態のGaN系半導体デバイスの製造方法により、主面内におけるデバイス特性の分布が実質的に均一であり、高いデバイス特性を有するGaN系半導体デバイスが得られる。 In the manufacturing method of the GaN-based semiconductor device 100 of this embodiment, the area of the main surface 20pm is 10 cm 2 or more, and the plane orientation of the main surface 20pm is 65 ° with respect to the (0001) plane or the (000-1) plane. It is inclined at 85 ° or less and the distribution of dislocation density in the main surface 20pm is substantially uniform (for example, the dispersion of dislocation density in the main surface 20pm is ±± of the average dislocation density in the main surface 20pm). At least one GaN-based semiconductor layer 130 is epitaxially grown on the GaN single crystal substrate 20p (within 100%). The crystal orientation of the epitaxially grown GaN-based semiconductor layer 130 is the same as the crystal orientation of the GaN single crystal substrate 20p. Therefore, the grown GaN-based semiconductor layer 130 has an area of the main surface of 10 cm 2 or more, and the surface orientation of the main surface is 65 ° or more and 85 ° with respect to the (0001) plane or the (000-1) plane. It is inclined below, and the distribution of dislocation density in the main surface is substantially uniform (for example, variation in dislocation density in the main surface is within ± 100% of the average dislocation density in the main surface). is there. For this reason, the method for manufacturing a GaN-based semiconductor device according to this embodiment provides a GaN-based semiconductor device having a substantially uniform distribution of device characteristics in the main surface and high device characteristics.

実施形態1のGaN単結晶基板20p、すなわち、主面20pmの面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、主面20pm内における転位密度の分布が実質的に均一(たとえば、主面20pm内における転位密度のばらつきがその主面20pm内における平均転位密度に対して±100%以内)であるGaN単結晶基板20pを準備する工程は、たとえば、上記の実施形態2のGaN単結晶基板20pの製造方法によって行われる。   The GaN single crystal substrate 20p of the first embodiment, that is, the plane orientation of the main surface 20pm is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane, and within the main surface 20pm. A step of preparing a GaN single crystal substrate 20p having a dislocation density distribution that is substantially uniform (for example, variation in dislocation density in the main surface 20pm is within ± 100% of the average dislocation density in the main surface 20pm). For example, this is performed by the method for manufacturing the GaN single crystal substrate 20p of the second embodiment.

GaN単結晶基板20pの主面20pm上に少なくとも1層のGaN系半導体層130を成長させる方法は、特に制限はないが、結晶性の高いGaN系半導体層130をエピタキシャル成長させる観点から、HVPE法、MOCVD法、MBE法などが好ましく用いられる。生産性および信頼性が高い観点から、MOCVD法がより好ましく用いられる。   The method for growing at least one GaN-based semiconductor layer 130 on the main surface 20pm of the GaN single crystal substrate 20p is not particularly limited, but from the viewpoint of epitaxially growing the highly crystalline GaN-based semiconductor layer 130, the HVPE method, MOCVD method, MBE method, etc. are preferably used. From the viewpoint of high productivity and reliability, the MOCVD method is more preferably used.

図5を参照して、GaN単結晶基板20p上に少なくとも1層のGaN系半導体層130を形成する工程は、たとえば、直径50mm×厚さ0.4mmのGaN単結晶基板20pの一主面20pm上に、MOCVD法により、少なくとも1層のGaN系半導体層130として、Siがドープされた厚さ2μmのn型GaN層131、6対のIn0.01Ga0.99N障壁層およびIn0.1Ga0.9N井戸層により構成されている多重量子井戸構造を有する厚さ100nmの発光層132、Mgがドープされた厚さ20nmのp型Al0.18Ga0.82N層133およびMgがドープされた厚さ50nmのp型GaN層134を順に成長させる。 Referring to FIG. 5, the step of forming at least one GaN-based semiconductor layer 130 on GaN single crystal substrate 20p includes, for example, one main surface 20pm of GaN single crystal substrate 20p having a diameter of 50 mm and a thickness of 0.4 mm. Further, by MOCVD, as an at least one GaN-based semiconductor layer 130, a Si-doped n-type GaN layer 131 having a thickness of 2 μm, six pairs of an In 0.01 Ga 0.99 N barrier layer and an In 0.1 Ga 0.9 N well 100 nm thick light emitting layer 132 having a multiple quantum well structure composed of layers, Mg doped p-type Al 0.18 Ga 0.82 N layer 133 and Mg doped p-type 50 nm thick A GaN layer 134 is grown in order.

さらに、p型GaN層134上の一部には、真空蒸着法により、p側電極141である厚さ0.5μmのNi/Au電極を形成する。また、GaN単結晶基板20pの他方の主面20pn上には、真空蒸着法により、n側電極142である厚さ1μmのTi/Al電極を形成する。   Further, a Ni / Au electrode having a thickness of 0.5 μm, which is the p-side electrode 141, is formed on a part of the p-type GaN layer 134 by vacuum evaporation. On the other main surface 20pn of the GaN single crystal substrate 20p, a Ti / Al electrode having a thickness of 1 μm as the n-side electrode 142 is formed by vacuum deposition.

次に、GaN単結晶基板20p上に少なくとも1層のGaN系半導体層130が形成されたウエハを、所定の大きさにチップ分割することにより、所定の大きさの発光デバイスが得られる。   Next, a wafer having at least one GaN-based semiconductor layer 130 formed on the GaN single crystal substrate 20p is divided into chips having a predetermined size, whereby a light emitting device having a predetermined size is obtained.

[GaN母結晶の作製]
GaN母結晶は以下のようにして作製した。直径50mmで厚さ0.8mmのGaAs基板(下地基板)の(111)A面の主面上に、フォトリソグラフィ法およびエッチングにより、直径が2μmの複数の開口部が4μmのピッチで平面的に六方稠密に配置された厚さ100nmのSiO層(マスク層)を形成した。次に、GaAs基板において複数の開口部を有するSiO層が形成された主面上に、HVPE法により、500℃で厚さ80nmのGaN低温層を成長させ、次いで、950℃で厚さ60μmのGaN中間層を成長させた後、1050℃で厚さ5mmのGaN母結晶を成長させた。次に、王水を用いたエッチングにより、上記GaN母結晶からGaAs基板を除去して、直径50mmで厚さ3mmのGaN母結晶を得た。かかるGaN母結晶の主面における転位密度を、CL(カソードルミネッセンス)法により、主面20pm内において互いに直交する2方向にそれぞれ2mmピッチで100μm×100μmの測定面積で測定した。平均転位密度は3.1×106cm-2、最低転位密度は0.7×106cm-2、最高転位密度は5.5×106cm-2であった。
[Preparation of GaN mother crystal]
The GaN mother crystal was produced as follows. A plurality of openings having a diameter of 2 μm are planarly formed at a pitch of 4 μm on the main surface of the (111) A surface of a GaAs substrate (underlying substrate) having a diameter of 50 mm and a thickness of 0.8 mm by photolithography and etching. A 100 nm thick SiO layer (mask layer) arranged in a hexagonal close-packed manner was formed. Next, a GaN low temperature layer having a thickness of 80 nm is grown at 500 ° C. on a main surface on which a SiO layer having a plurality of openings is formed on a GaAs substrate, and then a thickness of 60 μm at 950 ° C. After growing the GaN intermediate layer, a GaN mother crystal having a thickness of 5 mm was grown at 1050 ° C. Next, the GaAs substrate was removed from the GaN mother crystal by etching using aqua regia to obtain a GaN mother crystal having a diameter of 50 mm and a thickness of 3 mm. The dislocation density on the main surface of the GaN mother crystal was measured by a CL (cathode luminescence) method at a measurement area of 100 μm × 100 μm at 2 mm pitches in two directions orthogonal to each other in the main surface 20 pm. The average dislocation density was 3.1 × 10 6 cm −2 , the minimum dislocation density was 0.7 × 10 6 cm −2 , and the maximum dislocation density was 5.5 × 10 6 cm −2 .

(実施例1)
1.GaN種結晶基板の準備
図2(A)を参照して、GaN母結晶1の両主面である(0001)面および(000−1)面を、研削および研磨加工して、両主面の平均粗さRaを5nmとした。ここで、表面の平均粗さRaの測定は、AFMにより行なった。
Example 1
1. Preparation of GaN Seed Crystal Substrate Referring to FIG. 2 (A), the (0001) plane and (000-1) plane, which are both main surfaces of GaN mother crystal 1, are ground and polished to obtain both main surfaces. The average roughness Ra was 5 nm. Here, the average roughness Ra of the surface was measured by AFM.

次いで、図2(A)を参照して、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{20−21}面に平行な面(<20−21>方向に垂直な面)でスライスすることにより、{20−21}の主面を有する複数のGaN母結晶片1pを切り出した。   Next, referring to FIG. 2A, a GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is formed in a plane parallel to the {20-21} plane (perpendicular to the <20-21> direction). A plurality of GaN mother crystal pieces 1p having a {20-21} main surface were cut out.

次いで、切り出した各GaN母結晶片1pの研削および研磨加工されていない4面を研削および研磨加工して、これら4面の平均粗さRaを5nmとした。こうして、{20−21}の主面の平均粗さRaが5nmである複数のGaN母結晶片1pが得られた。それらのGaN母結晶片1pの中には、その主面の面方位が{20−21}と完全に一致していない結晶片もあったが、かかる結晶片のいずれについても、その主面の面方位は{20−21}に対する傾斜角は±0.1°以内であった。ここで、傾斜角は、X線回折法により測定した。   Subsequently, four surfaces of each cut GaN mother crystal piece 1p that were not ground and polished were ground and polished, and the average roughness Ra of these four surfaces was set to 5 nm. Thus, a plurality of GaN mother crystal pieces 1p having an average roughness Ra of the main surface of {20-21} of 5 nm were obtained. Among the GaN mother crystal pieces 1p, there was a crystal piece whose plane orientation of the main surface did not completely match {20-21}. The surface orientation was within ± 0.1 ° with respect to {20-21}. Here, the inclination angle was measured by an X-ray diffraction method.

次いで、図2(B)を参照して、複数のGaN母結晶片1pの{20−21}の主面1pmが互いに平行になるように、かつ、それらのGaN母結晶片1pの[0001]方向が同一になるように、横方向にそれらのGaN母結晶片1pを互いに隣接させて配置し、さらにその外周部を一部除去することにより、直径を50mmとした。   Next, referring to FIG. 2B, the {20-21} main surfaces 1pm of the plurality of GaN mother crystal pieces 1p are parallel to each other, and [0001] of those GaN mother crystal pieces 1p. The GaN mother crystal pieces 1p were arranged adjacent to each other in the lateral direction so that the directions were the same, and a part of the outer peripheral portion was removed to make the diameter 50 mm.

次いで、図2(C)を参照して、上記の複数のGaN母結晶片1pの{20−21}の主面1pmを10体積%の塩化水素ガスと90体積%の窒素ガスの混合ガス雰囲気下、800℃で2時間処理した後、その主面1pm上に、HVPE法により、結晶成長温度1050℃で、GaN種結晶10を、成長速度80μm/hrで50時間成長させた。   Next, referring to FIG. 2C, the {20-21} main surface 1pm of the plurality of GaN mother crystal pieces 1p is mixed with 10% by volume of hydrogen chloride gas and 90% by volume of nitrogen gas. Then, after treatment at 800 ° C. for 2 hours, the GaN seed crystal 10 was grown on the main surface 1 pm at a crystal growth temperature of 1050 ° C. at a growth rate of 80 μm / hr by HVPE for 50 hours.

次いで、図2(C)、(D)および図3(A)を参照して、上記のGaN種結晶10を複数のGaN母結晶片1pの{20−21}の主面1pmに平行な面10u,10vでスライスすることにより、主面10pmの面方位が{20−21}であり直径50mmで厚さが0.5mmのGaN種結晶基板10pが得られた。かかるGaN種結晶基板10pは、さらに主面10pmを研削および研磨加工して、主面10pmの平均粗さRaを5nmとした。かかるGaN種結晶基板10pの{20−21}の主面10pmは、(0001)面に対して75°の傾斜角αを有する。   2 (C), (D) and FIG. 3 (A), the GaN seed crystal 10 is parallel to the {20-21} main surface 1pm of the plurality of GaN mother crystal pieces 1p. By slicing at 10u and 10v, a GaN seed crystal substrate 10p having a principal surface 10pm of {20-21}, a diameter of 50 mm, and a thickness of 0.5 mm was obtained. In the GaN seed crystal substrate 10p, the main surface 10pm was further ground and polished so that the average roughness Ra of the main surface 10pm was 5 nm. The {20-21} main surface 10pm of the GaN seed crystal substrate 10p has an inclination angle α of 75 ° with respect to the (0001) plane.

上記のようにして形成されたGaN種結晶基板10pの主面10pm内における転位密度を、CL(カソードルミネッセンス)法により、主面10pm内において中央から外周に向かって互いに直交する2方向にそれぞれ2mmピッチの測定点から外周部の測定点を除いた400の測定点で100μm×100μmの測定面積で測定した。平均転位密度は1.5×106cm-2、最低転位密度は1.0×106cm-2、最高転位密度は3.5×106cm-2であった。したがって、主面内における平均転位密度に対する転位密度のばらつきは、−33%〜+133%と大きかった。これは、複数のGaN母結晶片1pを用いてGaN種結晶基板10pを準備したため、GaN種結晶基板10pにおいて、GaN母結晶片1pの隣接部分上に成長したGaN種結晶基板10pの部分の転位密度が高くなったことによるものと考えられる。 The dislocation density in the main surface 10pm of the GaN seed crystal substrate 10p formed as described above is 2 mm in two directions orthogonal to each other from the center toward the outer periphery in the main surface 10pm by the CL (cathode luminescence) method. Measurement was performed at a measurement area of 100 μm × 100 μm at 400 measurement points excluding the measurement points on the outer periphery from the measurement points of the pitch. The average dislocation density was 1.5 × 10 6 cm −2 , the minimum dislocation density was 1.0 × 10 6 cm −2 , and the maximum dislocation density was 3.5 × 10 6 cm −2 . Therefore, the variation of the dislocation density with respect to the average dislocation density in the main surface was as large as −33% to + 133%. This is because a GaN seed crystal substrate 10p is prepared using a plurality of GaN mother crystal pieces 1p, so that in the GaN seed crystal substrate 10p, a dislocation of a portion of the GaN seed crystal substrate 10p grown on an adjacent portion of the GaN mother crystal piece 1p. This is thought to be due to the higher density.

2.GaN単結晶の成長
図3(B)を参照して、上記のGaN種結晶基板10pの{20−21}の主面10pmを10体積%の塩化水素ガスと90体積%の窒素ガスの混合ガス雰囲気下、800℃で2時間処理した後、その主面10pm上に、HVPE法により、結晶成長温度1050℃で、GaN単結晶20を、成長速度80μm/hrで50時間成長させた。
2. Growth of GaN Single Crystal Referring to FIG. 3 (B), the main surface 10pm of {20-21} of the GaN seed crystal substrate 10p is a mixed gas of 10% by volume hydrogen chloride gas and 90% by volume nitrogen gas. After treatment at 800 ° C. for 2 hours in an atmosphere, the GaN single crystal 20 was grown on the main surface 10 pm at a crystal growth temperature of 1050 ° C. for 50 hours at a growth rate of 80 μm / hr by the HVPE method.

3.GaN単結晶基板の形成
次いで、図3(B)および(C)を参照して、上記のGaN単結晶20をGaN種結晶基板10pの{20−21}の主面10pmに平行な面20u,20vでスライスすることにより、主面20pmの面方位が{20−21}であり直径50mmで厚さが0.5mmのGaN単結晶基板20pが得られた。かかるGaN単結晶基板20pは、さらに主面20pmを研削および研磨加工して、主面20pmの平均粗さRaを5nmとした。図4(A)を参照して、かかるGaN単結晶基板20pの{20−21}の主面20pmは、(0001)面に対して75°の傾斜角αを有する。
3. Formation of GaN Single Crystal Substrate Next, referring to FIGS. 3B and 3C, the GaN single crystal 20 is converted into a surface 20u parallel to the {20-21} main surface 10pm of the GaN seed crystal substrate 10p. By slicing at 20v, a GaN single crystal substrate 20p having a main surface 20pm surface orientation of {20-21}, a diameter of 50 mm, and a thickness of 0.5 mm was obtained. In the GaN single crystal substrate 20p, the main surface 20pm was further ground and polished so that the average roughness Ra of the main surface 20pm was 5 nm. Referring to FIG. 4A, {20-21} main surface 20pm of GaN single crystal substrate 20p has an inclination angle α of 75 ° with respect to the (0001) plane.

上記のようにして形成されたGaN単結晶基板20pの主面20pm内における転位密度を、CL法により、主面20pm内において中央から外周に向かって互いに直交する2方向にそれぞれ2mmピッチの測定点から外周部の測定点を除いた400の測定点で100μm×100μmの測定面積で測定した。平均転位密度は5.4×105cm-2、最低転位密度は2.9×105cm-2、最高転位密度は7.5×105cm-2であった。したがって、主面内における平均転位密度に対する転位密度のばらつきは、−46.3%〜+38.9%であった。 The dislocation density in the main surface 20pm of the GaN single crystal substrate 20p formed as described above is measured at 2 mm pitches in two directions perpendicular to each other from the center to the outer periphery in the main surface 20pm by the CL method. Measured at a measurement area of 100 μm × 100 μm at 400 measurement points excluding the measurement points on the outer periphery. The average dislocation density was 5.4 × 10 5 cm −2 , the minimum dislocation density was 2.9 × 10 5 cm −2 , and the maximum dislocation density was 7.5 × 10 5 cm −2 . Therefore, the variation of the dislocation density with respect to the average dislocation density in the main surface was −46.3% to + 38.9%.

また、GaN単結晶基板20pの主面20pm内の全面において、(0002)面および(22−40)面を回折結晶面とするX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅は30arcsec〜100arcsecと小さく、GaN単結晶基板20pの主面20pmにおける結晶性は高かった。ここで、X線回折ロッキングカーブ測定は、フィリップ社製X’Pert Pro MRDを用いて、主面20pmにおいて中央から外周に向かって互いに直交する2方向にそれぞれ2mmピッチの測定点から外周部の測定点を除いた400の測定点で1mm2のX線照射面積で測定した。 Further, the full width at half maximum of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with the (0002) plane and the (22-40) plane as the diffraction crystal plane is 30 arcsec to the entire main surface 20pm of the GaN single crystal substrate 20p. The crystallinity of the main surface 20pm of the GaN single crystal substrate 20p was high, as small as 100 arcsec. Here, the X-ray diffraction rocking curve measurement is performed using the Philip X'Pert Pro MRD to measure the outer peripheral portion from the measurement point of 2 mm pitch in each of two directions orthogonal to each other from the center to the outer periphery on the main surface 20 pm. Measurement was performed at an X-ray irradiation area of 1 mm 2 at 400 measurement points excluding the point.

4.GaN系半導体デバイスの製造
次に、上記のGaN単結晶基板20p(直径50mm×厚さ0.4mm)の一方の主面20pm上に、MOCVD法により、少なくとも1層のGaN系半導体層130として、Siがドープされた厚さ2μmのn型GaN層131(キャリア濃度:2×1018cm-3)、6対のIn0.01Ga0.99N障壁層およびIn0.1Ga0.9N井戸層により構成される多重量子井戸構造を有する厚さ100nmの発光層132、Mgがドープされた厚さ20nmのp型Al0.18Ga0.82N層133(キャリア濃度:3×107cm-2)およびMgがドープされた厚さ50nmのp型GaN層134(キャリア濃度:1×1018cm-3)を順に成長させた。
4). Production of GaN-based semiconductor device Next, on one main surface 20pm of the GaN single crystal substrate 20p (diameter 50 mm × thickness 0.4 mm), at least one GaN-based semiconductor layer 130 is formed by MOCVD. Multiple layers composed of an n-type GaN layer 131 (carrier concentration: 2 × 10 18 cm −3 ) doped with Si, doped with Si, six pairs of In 0.01 Ga 0.99 N barrier layers and In 0.1 Ga 0.9 N well layers Light emitting layer 132 having a quantum well structure with a thickness of 100 nm, Mg-doped p-type Al 0.18 Ga 0.82 N layer 133 (carrier concentration: 3 × 10 7 cm −2 ) and Mg-doped thickness A p-type GaN layer 134 (carrier concentration: 1 × 10 18 cm −3 ) having a thickness of 50 nm was grown in order.

次に、真空蒸着法により、p型GaN層134上の互いに直交する2方向に1mmのピッチで、p側電極141として0.2mm×0.2mm×厚さ0.5μmのNi/Au電極を形成した。また、真空蒸着法により、GaN単結晶基板20pの他方の主面20pn上には、n側電極142として厚さ1μmのTi/Al電極を形成した。   Next, a 0.2 mm × 0.2 mm × 0.5 μm thick Ni / Au electrode is formed as the p-side electrode 141 at a pitch of 1 mm in two directions orthogonal to each other on the p-type GaN layer 134 by vacuum deposition. Formed. Further, a Ti / Al electrode having a thickness of 1 μm was formed as the n-side electrode 142 on the other main surface 20pn of the GaN single crystal substrate 20p by a vacuum deposition method.

次に、各p側電極が各チップの中心部に位置するように、GaN単結晶基板20p上に上記の少なくとも1層のGaN系半導体層130が形成されたウエハを、GaN単結晶基板20pの主面20pm内におけるキャリア濃度および比抵抗の分布を測定していない外周部を除いて、1mm×1mmの複数のチップ、すなわちGaN系半導体デバイスに分割(チップ化)した。こうして得られたGaN系半導体デバイス100は、発光ピーク波長が450nmのLED(発光ダイオード)であった。   Next, a wafer on which the at least one GaN-based semiconductor layer 130 is formed on the GaN single crystal substrate 20p so that each p-side electrode is positioned at the center of each chip is formed on the GaN single crystal substrate 20p. Except for the outer peripheral portion where the distribution of carrier concentration and specific resistance in the main surface 20 pm was not measured, the chip was divided (chiped) into a plurality of 1 mm × 1 mm chips, that is, GaN-based semiconductor devices. The GaN-based semiconductor device 100 thus obtained was an LED (light emitting diode) having an emission peak wavelength of 450 nm.

上記のようにして製造されたLED(GaN系半導体デバイス100)の主面における輝度を、輝度測定積分球を用いて、上記のチップ化した1600個のLEDについて測定した。実施例1のLEDで得られた平均輝度を平均相対輝度1.0として、各実施例の平均相対輝度および相対輝度の標本分散を表現した。平均相対輝度は1.0と大きく、相対輝度の標本分散は0.12と小さかった。結果を表1にまとめた。   The luminance on the main surface of the LED (GaN-based semiconductor device 100) manufactured as described above was measured for the above-mentioned 1600 LED chips using a luminance measurement integrating sphere. The average luminance obtained with the LED of Example 1 was defined as the average relative luminance 1.0, and the average relative luminance and the sample variance of the relative luminance of each example were expressed. The average relative luminance was as large as 1.0, and the sample variance of the relative luminance was as small as 0.12. The results are summarized in Table 1.

(実施例2)
GaN種結晶基板10pの準備において、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{20−2−1}面に平行な面(<20−2−1>方向に垂直な面)でスライスすることにより、{20−2−1}の主面を有する複数のGaN母結晶片1pを切り出して、それらの主面を研削および研磨してそれらの主面の平均粗さRaを5nmとしたGaN母結晶片1pを用いたこと以外は、実施例1と同様にして、主面10pmの面方位が{20−2−1}であるGaN種結晶基板10pおよび主面20pmの面方位が{20−2−1}であるGaN単結晶基板20pを形成した。図4(B)を参照して、かかるGaN単結晶基板20pの{20−2−1}の主面20pmは、(000−1)面に対して75°の傾斜角αを有する。
(Example 2)
In the preparation of the GaN seed crystal substrate 10p, the GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is formed in a plane parallel to the {20-2-1} plane (perpendicular to the <20-2-1> direction). A plurality of GaN mother crystal pieces 1p having a {20-2-1} main surface, and grinding and polishing the main surfaces to average roughness of the main surfaces. A GaN seed crystal substrate 10p having a principal plane 10pm of {20-2-1} and a principal plane 20pm in the same manner as in Example 1 except that the GaN mother crystal piece 1p with Ra of 5 nm was used. A GaN single crystal substrate 20p having a plane orientation of {20-2-1} was formed. Referring to FIG. 4B, the {20-2-1} main surface 20pm of the GaN single crystal substrate 20p has an inclination angle α of 75 ° with respect to the (000-1) plane.

得られたGaN種結晶基板10pの主面10pm内における転位密度について、平均転位密度は1.1×106cm-2、最低転位密度は7.8×105cm-2、最高転位密度は2.4×106cm-2であった。したがって、主面内における平均転位密度に対する転位密度のばらつきは、−29%〜+118%と大きかった。 Regarding the dislocation density in the main surface 10pm of the obtained GaN seed crystal substrate 10p, the average dislocation density is 1.1 × 10 6 cm −2 , the minimum dislocation density is 7.8 × 10 5 cm −2 , and the maximum dislocation density is It was 2.4 × 10 6 cm −2 . Therefore, the variation of the dislocation density with respect to the average dislocation density in the main surface was as large as -29% to + 118%.

これに対して、得られたGaN単結晶基板20pの主面20pm内における転位密度について、平均転位密度は3.2×105cm-2、最低転位密度は0.0×105cm-2、最高転位密度は4.2×105cm-2であった。したがって、主面内における平均キャリア濃度に対するキャリア濃度のばらつきは、−100%〜+31.3%と小さかった。また、GaN単結晶基板20pの主面20pm内の全面において、(0002)面および(22−40)面を回折結晶面とするX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅は30arcsec〜100arcsecと小さく、GaN単結晶基板20pの主面20pmにおける結晶性は高かった。 On the other hand, regarding the dislocation density in the main surface 20pm of the obtained GaN single crystal substrate 20p, the average dislocation density is 3.2 × 10 5 cm −2 and the minimum dislocation density is 0.0 × 10 5 cm −2. The highest dislocation density was 4.2 × 10 5 cm −2 . Therefore, the variation in carrier concentration with respect to the average carrier concentration in the main surface was as small as −100% to + 31.3%. Further, the full width at half maximum of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with the (0002) plane and the (22-40) plane as the diffraction crystal plane is 30 arcsec to the entire main surface 20pm of the GaN single crystal substrate 20p. The crystallinity of the main surface 20pm of the GaN single crystal substrate 20p was high, as small as 100 arcsec.

また、かかるGaN単結晶基板20pを用いて、実施例1と同様にして、GaN系半導体デバイスであるLEDを製造した。製造されたLED(GaN系半導体デバイス100)の主面における輝度について、平均相対輝度は1.2と大きく、相対輝度の標本分散は0.11と小さかった。結果を表1にまとめた。   Further, using this GaN single crystal substrate 20p, an LED which is a GaN-based semiconductor device was manufactured in the same manner as in Example 1. Regarding the luminance on the main surface of the manufactured LED (GaN-based semiconductor device 100), the average relative luminance was as large as 1.2, and the sample variance of the relative luminance was as small as 0.11. The results are summarized in Table 1.

(実施例3)
GaN種結晶基板10pの準備において、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{22−42}面に平行な面(<22−42>方向に垂直な面)でスライスすることにより、{22−42}の主面を有する複数のGaN母結晶片1pを切り出して、それらの主面を研削および研磨してそれらの主面の平均粗さRaを5nmとしたGaN母結晶片1pを用いたこと以外は、実施例1と同様にして、主面10pmの面方位が{22−42}であるGaN種結晶基板10pおよび主面20pmの面方位が{22−42}であるGaN単結晶基板20pを形成した。図4(C)を参照して、かかるGaN単結晶基板20pの{22−42}の主面20pmは、(0001)面に対して73°の傾斜角αを有する。
(Example 3)
In the preparation of the GaN seed crystal substrate 10p, the GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is a plane parallel to the {22-42} plane (a plane perpendicular to the <22-42> direction). By slicing, a plurality of GaN mother crystal pieces 1p having a {22-42} main surface are cut out, and the main surfaces are ground and polished so that the average roughness Ra of the main surfaces is 5 nm. The surface orientation of the GaN seed crystal substrate 10p whose principal plane 10pm is {22-42} and the principal plane 20pm is {22-42] in the same manner as in Example 1 except that the mother crystal piece 1p is used. }, A GaN single crystal substrate 20p was formed. Referring to FIG. 4C, the {22-42} main surface 20pm of the GaN single crystal substrate 20p has an inclination angle α of 73 ° with respect to the (0001) plane.

得られたGaN種結晶基板10pの主面10pm内における転位密度について、平均転位密度は1.6×106cm-2、最低転位密度は1.2×106cm-2、最高転位密度は3.9×106cm-2であった。したがって、主面内における平均転位密度に対する転位密度のばらつきは、−25%〜+144%と大きかった。 Regarding the dislocation density in the main surface 10pm of the obtained GaN seed crystal substrate 10p, the average dislocation density is 1.6 × 10 6 cm −2 , the minimum dislocation density is 1.2 × 10 6 cm −2 , and the maximum dislocation density is It was 3.9 × 10 6 cm −2 . Therefore, the variation of the dislocation density with respect to the average dislocation density in the main surface was as large as −25% to + 144%.

これに対して、得られたGaN単結晶基板20pの主面20pm内における転位密度について、平均転位密度は6.9×105cm-2、最低転位密度は3.5×105cm-2、最高転位密度は9.8×105cm-2であった。したがって、主面内における平均キャリア濃度に対するキャリア濃度のばらつきは、−49.3%〜+42.0%と小さかった。また、GaN単結晶基板20pの主面20pm内の全面において、(0002)面および(20−20)面を回折結晶面とするX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅は30arcsec〜100arcsecと小さく、GaN単結晶基板20pの主面20pmにおける結晶性は高かった。 On the other hand, regarding the dislocation density in the main surface 20pm of the obtained GaN single crystal substrate 20p, the average dislocation density is 6.9 × 10 5 cm −2 and the minimum dislocation density is 3.5 × 10 5 cm −2. The highest dislocation density was 9.8 × 10 5 cm −2 . Therefore, the carrier concentration variation with respect to the average carrier concentration in the main surface was as small as −49.3% to + 42.0%. The full width at half maximum of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with the (0002) plane and the (20-20) plane as the diffraction crystal plane is 30 arcsec to the entire surface of the main surface 20pm of the GaN single crystal substrate 20p. The crystallinity of the main surface 20pm of the GaN single crystal substrate 20p was high, as small as 100 arcsec.

また、かかるGaN単結晶基板20pを用いて、実施例1と同様にして、GaN系半導体デバイスであるLEDを製造した。製造されたLED(GaN系半導体デバイス100)の主面における輝度について、平均相対輝度は0.9と大きく、相対輝度の標本分散は0.14と小さかった。結果を表1にまとめた。   Further, using this GaN single crystal substrate 20p, an LED which is a GaN-based semiconductor device was manufactured in the same manner as in Example 1. Regarding the luminance on the main surface of the manufactured LED (GaN-based semiconductor device 100), the average relative luminance was as large as 0.9, and the sample variance of the relative luminance was as small as 0.14. The results are summarized in Table 1.

(実施例4)
GaN種結晶基板10pの準備において、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{22−4−2}面に平行な面(<22−4−2>方向に垂直な面)でスライスすることにより、{22−4−2}の主面を有する複数のGaN母結晶片1pを切り出して、それらの主面を研削および研磨してそれらの主面の平均粗さRaを5nmとしたGaN母結晶片1pを用いたこと以外は、実施例1と同様にして、主面10pmの面方位が{22−4−2}であるGaN種結晶基板10pおよび主面20pmの面方位が{22−4−2}であるGaN単結晶基板20pを形成した。図4(D)を参照して、かかるGaN単結晶基板20pの{22−4−2}の主面20pmは、(000−1)面に対して73°の傾斜角αを有する。
Example 4
In the preparation of the GaN seed crystal substrate 10p, the GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is formed on a plane parallel to the {22-4-2} plane (perpendicular to the <22-4-2> direction). A plurality of GaN mother crystal pieces 1p having {22-4-2} main surfaces, and grinding and polishing the main surfaces to average roughness of the main surfaces. A GaN seed crystal substrate 10p having a principal plane 10pm of {22-4-2} and a principal plane 20pm in the same manner as in Example 1 except that the GaN mother crystal piece 1p with Ra of 5 nm was used. A GaN single crystal substrate 20p having a plane orientation of {22-4-2} was formed. Referring to FIG. 4D, the {22-4-2} main surface 20pm of the GaN single crystal substrate 20p has an inclination angle α of 73 ° with respect to the (000-1) plane.

得られたGaN種結晶基板10pの主面10pm内における転位密度について、平均転位密度は2.2×106cm-2、最低転位密度は1.4×106cm-2、最高転位密度は5.5×106cm-2であった。したがって、主面内における平均転位密度に対する転位密度のばらつきは、−36%〜+150%と大きかった。 Regarding the dislocation density in the main surface 10pm of the obtained GaN seed crystal substrate 10p, the average dislocation density is 2.2 × 10 6 cm −2 , the minimum dislocation density is 1.4 × 10 6 cm −2 , and the maximum dislocation density is It was 5.5 × 10 6 cm −2 . Therefore, the variation of the dislocation density with respect to the average dislocation density in the main surface was as large as −36% to + 150%.

これに対して、得られたGaN単結晶基板20pの主面20pm内における転位密度について、平均転位密度は8.9×105cm-2、最低転位密度は3.8×105cm-2、最高転位密度は1.5×106cm-2であった。したがって、主面内における平均キャリア濃度に対するキャリア濃度のばらつきは、−57.3%〜+68.5%と小さかった。また、GaN単結晶基板20pの主面20pm内の全面において、(0002)面および(20−20)面を回折結晶面とするX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅は30arcsec〜100arcsecと小さく、GaN単結晶基板20pの主面20pmにおける結晶性は高かった。 On the other hand, regarding the dislocation density in the main surface 20pm of the obtained GaN single crystal substrate 20p, the average dislocation density is 8.9 × 10 5 cm −2 and the minimum dislocation density is 3.8 × 10 5 cm −2. The highest dislocation density was 1.5 × 10 6 cm −2 . Therefore, the variation of the carrier concentration with respect to the average carrier concentration in the main surface was as small as −57.3% to + 68.5%. The full width at half maximum of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with the (0002) plane and the (20-20) plane as the diffraction crystal plane is 30 arcsec to the entire surface of the main surface 20pm of the GaN single crystal substrate 20p. The crystallinity of the main surface 20pm of the GaN single crystal substrate 20p was high, as small as 100 arcsec.

また、かかるGaN単結晶基板20pを用いて、実施例1と同様にして、GaN系半導体デバイスであるLEDを製造した。製造されたLED(GaN系半導体デバイス100)の主面における輝度について、平均相対輝度は0.86と大きく、相対輝度の標本分散は0.14と小さかった。結果を表1にまとめた。   Further, using this GaN single crystal substrate 20p, an LED which is a GaN-based semiconductor device was manufactured in the same manner as in Example 1. Regarding the luminance on the main surface of the manufactured LED (GaN-based semiconductor device 100), the average relative luminance was as large as 0.86, and the sample variance of the relative luminance was as small as 0.14. The results are summarized in Table 1.

(比較例1)
GaN種結晶基板10pの準備のために、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{10−10}面に平行な面(<10−10>方向に垂直な面)でスライスすることにより、{10−10}の主面を有する複数のGaN母結晶片1pを切り出して、それらの主面を研削および研磨してそれらの主面の平均粗さRaを5nmとしたGaN母結晶片1pを用いたこと以外は、実施例1と同様にして、GaN種結晶10を成長させた。GaN種結晶10は、部分的に多結晶化して、多結晶化部分を起点として割れていた。したがって、GaN種結晶基板が得られず、GaN単結晶基板および系半導体デバイスを製造できなかった。結果を表1にまとめた。
(Comparative Example 1)
For preparation of the GaN seed crystal substrate 10p, a GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is formed on a plane parallel to the {10-10} plane (a plane perpendicular to the <10-10> direction). ), A plurality of GaN mother crystal pieces 1p having {10-10} main surfaces are cut out, and the main surfaces are ground and polished, and the average roughness Ra of the main surfaces is 5 nm. The GaN seed crystal 10 was grown in the same manner as in Example 1 except that the GaN mother crystal piece 1p was used. The GaN seed crystal 10 was partially polycrystallized and cracked starting from the polycrystallized portion. Therefore, a GaN seed crystal substrate could not be obtained, and a GaN single crystal substrate and a system semiconductor device could not be manufactured. The results are summarized in Table 1.

(比較例2)
GaN種結晶基板10pの準備のために、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{11−20}面に平行な面(<11−20>方向に垂直な面)でスライスすることにより、{11−20}の主面を有する複数のGaN母結晶片1pを切り出して、それらの主面を研削および研磨してそれらの主面の平均粗さRaを5nmとしたGaN母結晶片1pを用いたこと以外は、実施例1と同様にして、GaN種結晶10を成長させた。GaN種結晶10は、部分的に多結晶化して、多結晶化部分を起点として割れていた。したがって、GaN種結晶基板が得られず、GaN単結晶基板およびGaN系半導体デバイスを製造できなかった。結果を表1にまとめた。
(Comparative Example 2)
In preparation for the GaN seed crystal substrate 10p, a GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is formed on a plane parallel to the {11-20} plane (a plane perpendicular to the <11-20> direction). ), A plurality of GaN mother crystal pieces 1p having a {11-20} main surface are cut out, the main surfaces are ground and polished, and the average roughness Ra of the main surfaces is 5 nm. The GaN seed crystal 10 was grown in the same manner as in Example 1 except that the GaN mother crystal piece 1p was used. The GaN seed crystal 10 was partially polycrystallized and cracked starting from the polycrystallized portion. Therefore, a GaN seed crystal substrate could not be obtained, and a GaN single crystal substrate and a GaN-based semiconductor device could not be manufactured. The results are summarized in Table 1.

(比較例3)
GaN種結晶基板10pの準備において、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{10−11}面に平行な面(<10−11>方向に垂直な面)でスライスすることにより、{10−11}の主面を有する複数のGaN母結晶片1pを切り出して、それらの主面を研削および研磨してそれらの主面の平均粗さRaを5nmとしたGaN母結晶片1pを用いたこと以外は、実施例1と同様にして、主面10pmの面方位が{10−11}であるGaN種結晶基板10pおよび主面20pmの面方位が{10−11}であるGaN単結晶基板20pを形成した。かかるGaN単結晶基板20pの{10−11}の主面20pmは、(0001)面に対して62°の傾斜角αを有する。
(Comparative Example 3)
In preparation of the GaN seed crystal substrate 10p, a GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is a plane parallel to the {10-11} plane (a plane perpendicular to the <10-11> direction). By slicing, GaN mother crystal pieces 1p having a {10-11} main surface are cut out, and the main surfaces are ground and polished so that the average roughness Ra of the main surfaces is 5 nm. The GaN seed crystal substrate 10p whose principal plane 10pm has a {10-11} plane orientation and the principal plane 20pm has a {10-11 plane orientation, except that the mother crystal piece 1p is used. }, A GaN single crystal substrate 20p was formed. The {10-11} main surface 20pm of the GaN single crystal substrate 20p has an inclination angle α of 62 ° with respect to the (0001) plane.

得られたGaN種結晶基板10pの主面10pm内における転位密度について、平均転位密度は4.0×106cm-2、最低転位密度は2.2×106cm-2、最高転位密度は9.5×106cm-2であった。したがって、主面内における平均転位密度に対する転位密度のばらつきは、−45%〜+138%と大きかった。 Regarding the dislocation density in the principal surface 10pm of the obtained GaN seed crystal substrate 10p, the average dislocation density is 4.0 × 10 6 cm −2 , the minimum dislocation density is 2.2 × 10 6 cm −2 , and the maximum dislocation density is It was 9.5 × 10 6 cm −2 . Therefore, the variation of the dislocation density with respect to the average dislocation density in the main surface was as large as -45% to + 138%.

また、得られたGaN単結晶基板20pの主面20pm内における転位密度について、平均転位密度は3.2×106cm-2、最低転位密度は1.1×106cm-2、最高転位密度は7.5×106cm-2であった。したがって、主面内における平均キャリア濃度に対するキャリア濃度のばらつきは、−65.7%〜+134%と大きかった。また、GaN単結晶基板20pの主面20pm内の全面において、(0002)面および(22−40)面を回折結晶面とするX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅は120arcsec〜350arcsecと大きく、GaN単結晶基板20pの主面20pmにおける結晶性は低かった。 Further, regarding the dislocation density in the main surface 20pm of the obtained GaN single crystal substrate 20p, the average dislocation density is 3.2 × 10 6 cm −2 , the lowest dislocation density is 1.1 × 10 6 cm −2 , and the highest dislocation. The density was 7.5 × 10 6 cm −2 . Therefore, the variation of the carrier concentration with respect to the average carrier concentration in the main surface was as large as -65.7% to + 134%. Further, the full width at half maximum of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with the (0002) plane and the (22-40) plane as the diffraction crystal plane is 120 arcsec to the entire surface of the main surface 20pm of the GaN single crystal substrate 20p. It was as large as 350 arcsec, and the crystallinity on the main surface 20pm of the GaN single crystal substrate 20p was low.

また、かかるGaN単結晶基板20pを用いて、実施例1と同様にして、GaN系半導体デバイスであるLEDを製造した。製造されたLED(GaN系半導体デバイス100)の主面における輝度について、平均相対輝度は0.55と小さく、相対輝度の標本分散は0.35と大きかった。結果を表1にまとめた。   Further, using this GaN single crystal substrate 20p, an LED which is a GaN-based semiconductor device was manufactured in the same manner as in Example 1. Regarding the luminance on the main surface of the manufactured LED (GaN-based semiconductor device 100), the average relative luminance was as small as 0.55, and the sample variance of the relative luminance was as large as 0.35. The results are summarized in Table 1.

(比較例4)
GaN種結晶基板10pの準備において、両主面の平均粗さRaを5nmとしたGaN母結晶1をその{11−22}面に平行な面(<11−22>方向に垂直な面)でスライスすることにより、{11−22}の主面を有する複数のGaN母結晶片1pを切り出して、それらの主面を研削および研磨してそれらの主面の平均粗さRaを5nmとしたGaN母結晶片1pを用いたこと以外は、実施例1と同様にして、主面10pmの面方位が{11−22}であるGaN種結晶基板10pおよび主面20pmの面方位が{11−22}であるGaN単結晶基板20pを形成した。かかるGaN単結晶基板20pの{11−22}の主面20pmは、(0001)面に対して58°の傾斜角αを有する。
(Comparative Example 4)
In the preparation of the GaN seed crystal substrate 10p, the GaN mother crystal 1 having an average roughness Ra of both main surfaces of 5 nm is a plane parallel to the {11-22} plane (a plane perpendicular to the <11-22> direction). By slicing, a plurality of GaN mother crystal pieces 1p having a {11-22} main surface are cut out, and the main surfaces are ground and polished so that the average roughness Ra of the main surfaces is 5 nm. The surface orientation of the GaN seed crystal substrate 10p whose principal plane 10pm is {11-22} and the principal plane 20pm is {11-22] in the same manner as in Example 1 except that the mother crystal piece 1p is used. }, A GaN single crystal substrate 20p was formed. The {11-22} main surface 20pm of the GaN single crystal substrate 20p has an inclination angle α of 58 ° with respect to the (0001) plane.

得られたGaN種結晶基板10pの主面10pm内における転位密度について、平均転位密度は4.7×106cm-2、最低転位密度は2.8×106cm-2、最高転位密度は9.8×106cm-2であった。したがって、主面内における平均転位密度に対する転位密度のばらつきは、−40%〜+109%と大きかった。 Regarding the dislocation density in the main surface 10pm of the obtained GaN seed crystal substrate 10p, the average dislocation density is 4.7 × 10 6 cm −2 , the minimum dislocation density is 2.8 × 10 6 cm −2 , and the maximum dislocation density is It was 9.8 × 10 6 cm −2 . Therefore, the variation of the dislocation density with respect to the average dislocation density in the main surface was as large as −40% to + 109%.

また、得られたGaN単結晶基板20pの主面20pm内における転位密度について、平均転位密度は4.6×106cm-2、最低転位密度は2.2×106cm-2、最高転位密度は9.3×106cm-2であった。したがって、主面内における平均キャリア濃度に対するキャリア濃度のばらつきは、−52.2%〜+102%と大きかった。また、GaN単結晶基板20pの主面20pm内の全面において、(0002)面および(20−20)面を回折結晶面とするX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅は120arcsec〜350arcsecと大きく、GaN単結晶基板20pの主面20pmにおける結晶性は低かった。 Further, regarding the dislocation density in the main surface 20pm of the obtained GaN single crystal substrate 20p, the average dislocation density is 4.6 × 10 6 cm −2 , the lowest dislocation density is 2.2 × 10 6 cm −2 , and the highest dislocation. The density was 9.3 × 10 6 cm −2 . Therefore, the variation in carrier concentration with respect to the average carrier concentration in the main surface was as large as −52.2% to + 102%. Further, the full width at half maximum of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with the (0002) plane and the (20-20) plane as the diffraction crystal plane is 120 arcsec to the entire main surface 20pm of the GaN single crystal substrate 20p. It was as large as 350 arcsec, and the crystallinity on the main surface 20pm of the GaN single crystal substrate 20p was low.

また、かかるGaN単結晶基板20pを用いて、実施例1と同様にして、GaN系半導体デバイスであるLEDを製造した。製造されたLED(GaN系半導体デバイス100)の主面における輝度について、平均相対輝度は0.41と小さく、相対輝度の標本分散は0.31と大きかった。結果を表1にまとめた。   Further, using this GaN single crystal substrate 20p, an LED which is a GaN-based semiconductor device was manufactured in the same manner as in Example 1. Regarding the luminance on the main surface of the manufactured LED (GaN-based semiconductor device 100), the average relative luminance was as small as 0.41, and the sample variance of the relative luminance was as large as 0.31. The results are summarized in Table 1.

Figure 2014001137
Figure 2014001137

表1から明らかなように、主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、主面内における転位密度の分布が実質的に均一(主面内における平均転位密度に対する転位密度のばらつきが±100%以内)であるGaN単結晶基板を用いることにより、主面における平均発光強度が大きく発光強度の分布が実質的に均一(主面内における平均相対輝度に対する相対輝度の標本分散が0.2以下と平均発光強度に対する発光強度のばらつきが小さい)であるGaN系半導体デバイスが得られた。   As is apparent from Table 1, the plane orientation of the main surface is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane, and the distribution of dislocation density in the main plane is substantial. Use of a GaN single crystal substrate that is uniformly uniform (dispersion of the dislocation density with respect to the average dislocation density in the main surface is within ± 100%), the distribution of the emission intensity is substantially uniform with a large average emission intensity on the main surface. A GaN-based semiconductor device was obtained (the sample dispersion of the relative luminance with respect to the average relative luminance in the main surface was 0.2 or less and the variation in the emission intensity with respect to the average emission intensity was small).

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 GaN母結晶
1c,10c,20c (0001)面または000(000−1)面
1p GaN母結晶片
1pm,10pm,20pm,20pn 主面
10 GaN種結晶
10g,20g 結晶成長面
10p GaN種結晶基板
20 GaN単結晶
10fa,10fb,20fa,20fb ファセット
20p GaN単結晶基板
10u,10v,20u,20v 平行な面
100 GaN系半導体デバイス
130 GaN系半導体層
131 n型GaN層
132 発光層
133 p型Al0.18Ga0.82N層
134 p型GaN層
141 p側電極
142 n側電極
1 GaN mother crystal 1c, 10c, 20c (0001) plane or 000 (000-1) plane 1p GaN mother crystal piece 1pm, 10pm, 20pm, 20pn Main surface 10 GaN seed crystals 10g, 20g Crystal growth surface 10p GaN seed crystal substrate 20 GaN single crystal 10fa, 10fb, 20fa, 20fb Facet 20p GaN single crystal substrate 10u, 10v, 20u, 20v Parallel plane 100 GaN-based semiconductor device 130 GaN-based semiconductor layer 131 n-type GaN layer 132 Light-emitting layer 133 p-type Al 0.18 Ga 0.82 N layer 134 p-type GaN layer 141 p-side electrode 142 n-side electrode

本発明は、主面の面積が10cm2以上であり、主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、主面内における転位密度のばらつきが主面内における平均転位密度に対して±100%以内である、ハイドライド気相成長法により得られたGaN単結晶基板である。本発明にかかるGaN単結晶基板において、主面内における転位密度を5×10 6 cm -2 以下とすることができる。また、(0001)面または(000−1)面に対する主面の面方位の傾斜の方向を<10−10>方向とすることができる。また、(0002)面および(20−20)面もしくは(22−40)面に関するX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅を主面の全面において300arcsec以下とすることができる。 In the present invention, the area of the main surface is 10 cm 2 or more, the surface orientation of the main surface is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane, This is a GaN single crystal substrate obtained by a hydride vapor phase growth method in which the variation in dislocation density is within ± 100% of the average dislocation density in the main surface . In the GaN single crystal substrate according to the present invention, the dislocation density in the main surface can be 5 × 10 6 cm −2 or less. Moreover, the direction of the inclination of the surface orientation of the main surface with respect to the (0001) plane or the (000-1) plane can be the <10-10> direction. Moreover, the half width of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement with respect to the (0002) plane and the (20-20) plane or the (22-40) plane can be 300 arcsec or less over the entire main surface.

また、本発明は、主面の面積が10cmIn the present invention, the area of the main surface is 10 cm. 22 以上であり、主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、(0002)面および(20−20)面もしくは(22−40)面に関するX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅が主面の全面において300arcsec以下である、ハイドライド気相成長法により得られたGaN単結晶基板である。本発明にかかるGaN単結晶基板において、主面内における転位密度のばらつきを主面内における平均転位密度に対して±100%以内とすることができる。また、主面内における転位密度を5×10The plane orientation of the main surface is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane, and the (0002) plane and the (20-20) plane or (22 A GaN single crystal substrate obtained by a hydride vapor phase growth method in which the half width of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement on the −40) plane is 300 arcsec or less over the entire main surface. In the GaN single crystal substrate according to the present invention, the variation in the dislocation density in the main surface can be within ± 100% with respect to the average dislocation density in the main surface. Also, the dislocation density in the main surface is 5 × 10 66 cmcm -2-2 以下とすることができる。また、(0001)面または(000−1)面に対する主面の面方位の傾斜の方向を<10−10>方向とすることができる。It can be as follows. Moreover, the direction of the inclination of the surface orientation of the main surface with respect to the (0001) plane or the (000-1) plane can be the <10-10> direction.

また、本発明は、上記のGaN単結晶基板の製造方法であって、主面の面積が10cm2以上で、主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しているGaN種結晶基板を準備する工程と、GaN種結晶基板の主面上にハイドライド気相成長法によりGaN単結晶を成長させる工程と、GaN単結晶をGaN種結晶基板の主面に平行な面で切り出してGaN単結晶基板を形成する工程と、を備えるGaN単結晶基板の製造方法である。 The present invention is also a method for producing the above GaN single crystal substrate, wherein the main surface has an area of 10 cm 2 or more and the main surface has a plane orientation of 65 with respect to the (0001) plane or the (000-1) plane. Preparing a GaN seed crystal substrate inclined at an angle of not less than 85 ° and not more than 85 °; a step of growing a GaN single crystal on a main surface of the GaN seed crystal substrate by a hydride vapor phase growth method; And a step of cutting a plane parallel to the main surface of the crystal substrate to form a GaN single crystal substrate.

Claims (8)

主面の面積が10cm2以上であり、
前記主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しており、
前記主面内における転位密度の分布が実質的に均一である、GaN単結晶基板。
The area of the main surface is 10 cm 2 or more,
The principal plane is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane,
A GaN single crystal substrate having a substantially uniform dislocation density distribution in the main surface.
前記主面内における転位密度のばらつきが前記主面内における平均転位密度に対して±100%以内である請求項1に記載のGaN単結晶基板。   2. The GaN single crystal substrate according to claim 1, wherein a variation in dislocation density in the main surface is within ± 100% with respect to an average dislocation density in the main surface. 前記主面内における転位密度が5×106cm-2以下である請求項1または請求項2に記載のGaN単結晶基板。 3. The GaN single crystal substrate according to claim 1, wherein a dislocation density in the main surface is 5 × 10 6 cm −2 or less. 前記(0001)面または(000−1)面に対する前記主面の面方位の傾斜の方向が<10−10>方向である請求項1から請求項3までのいずれか1項に記載のGaN単結晶基板。   The GaN unit according to any one of claims 1 to 3, wherein a direction of inclination of a plane orientation of the main surface with respect to the (0001) plane or (000-1) plane is a <10-10> direction. Crystal substrate. (0002)面および(20−20)面もしくは(22−40)面に関するX線回折ロッキングカーブ測定におけるX線回折ピークの半値幅が前記主面の全面において300arcsec以下である請求項1から請求項4までのいずれか1項に記載のGaN単結晶基板。   The half width of the X-ray diffraction peak in the X-ray diffraction rocking curve measurement for the (0002) plane and the (20-20) plane or the (22-40) plane is 300 arcsec or less over the entire main surface. The GaN single crystal substrate according to any one of 4 to 4. 請求項1のGaN単結晶基板の製造方法であって、
主面の面積が10cm2以上で、前記主面の面方位が(0001)面または(000−1)面に対して65°以上85°以下で傾斜しているGaN種結晶基板を準備する工程と、
前記GaN種結晶基板の前記主面上にGaN単結晶を成長させる工程と、
前記GaN単結晶を前記GaN種結晶基板の前記主面に平行な面で切り出して前記GaN単結晶基板を形成する工程と、を備えるGaN単結晶基板の製造方法。
A method for producing a GaN single crystal substrate according to claim 1,
A step of preparing a GaN seed crystal substrate having a principal surface area of 10 cm 2 or more and an orientation of the principal surface that is inclined at 65 ° or more and 85 ° or less with respect to the (0001) plane or the (000-1) plane. When,
Growing a GaN single crystal on the main surface of the GaN seed crystal substrate;
Cutting the GaN single crystal along a plane parallel to the main surface of the GaN seed crystal substrate to form the GaN single crystal substrate.
請求項1のGaN単結晶基板と、前記GaN単結晶基板の前記主面上に形成されている少なくとも1層のGaN系半導体層と、を含むGaN系半導体デバイス。   A GaN-based semiconductor device comprising the GaN single-crystal substrate of claim 1 and at least one GaN-based semiconductor layer formed on the main surface of the GaN single-crystal substrate. 請求項1のGaN単結晶基板を準備する工程と、
前記GaN単結晶基板の前記主面上に少なくとも1層のGaN系半導体層を成長させる工程と、を備えるGaN系半導体デバイスの製造方法。
Preparing the GaN single crystal substrate of claim 1;
And a step of growing at least one GaN-based semiconductor layer on the main surface of the GaN single crystal substrate.
JP2013198583A 2013-09-25 2013-09-25 GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME Pending JP2014001137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198583A JP2014001137A (en) 2013-09-25 2013-09-25 GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198583A JP2014001137A (en) 2013-09-25 2013-09-25 GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009204978A Division JP5549158B2 (en) 2009-09-04 2009-09-04 GaN single crystal substrate and manufacturing method thereof, and GaN-based semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2014001137A true JP2014001137A (en) 2014-01-09

Family

ID=50034681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198583A Pending JP2014001137A (en) 2013-09-25 2013-09-25 GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP2014001137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223914A (en) * 2018-03-02 2019-09-10 赛奥科思有限公司 The manufacturing method of GaN material and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227896A (en) * 1993-02-05 1994-08-16 Sumitomo Electric Ind Ltd Synthesis of diamond
JP2006315947A (en) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd Nitride semiconductor wafer and its production method
JP2008143772A (en) * 2006-11-17 2008-06-26 Sumitomo Electric Ind Ltd Process for producing group iii element nitride crystal
JP2008543089A (en) * 2005-06-01 2008-11-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for growth and fabrication of semipolar (Ga, Al, In, B) N thin films, heterostructures and devices
JP2009073704A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227896A (en) * 1993-02-05 1994-08-16 Sumitomo Electric Ind Ltd Synthesis of diamond
JP2006315947A (en) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd Nitride semiconductor wafer and its production method
JP2008543089A (en) * 2005-06-01 2008-11-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for growth and fabrication of semipolar (Ga, Al, In, B) N thin films, heterostructures and devices
JP2008143772A (en) * 2006-11-17 2008-06-26 Sumitomo Electric Ind Ltd Process for producing group iii element nitride crystal
JP2009073704A (en) * 2007-09-21 2009-04-09 Sumitomo Electric Ind Ltd Method for growing group iii nitride crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223914A (en) * 2018-03-02 2019-09-10 赛奥科思有限公司 The manufacturing method of GaN material and semiconductor device
JP2019153679A (en) * 2018-03-02 2019-09-12 株式会社サイオクス GaN material and method for manufacturing semiconductor device
JP7112857B2 (en) 2018-03-02 2022-08-04 株式会社サイオクス GaN material and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP4462251B2 (en) III-V nitride semiconductor substrate and III-V nitride light emitting device
US7816238B2 (en) GaN substrate, substrate with epitaxial layer, semiconductor device, and method of manufacturing GaN substrate
US8598685B2 (en) GaN single crystal substrate and method of manufacturing thereof and GaN-based semiconductor device and method of manufacturing thereof
TWI358468B (en) Nitride semiconductor free-standing substrate
JP6913626B2 (en) Semiconductor laminate
JP4952547B2 (en) GaN substrate, substrate with epitaxial layer, semiconductor device, and method of manufacturing GaN substrate
WO2012127801A1 (en) Multiwavelength light emitting element and method for manufacturing same
JP2011084469A (en) METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
JP4652888B2 (en) Method for manufacturing gallium nitride based semiconductor multilayer structure
JP6704387B2 (en) Substrate for growing nitride semiconductor, method of manufacturing the same, semiconductor device, and method of manufacturing the same
JP5549157B2 (en) GaN single crystal substrate and manufacturing method thereof, and GaN-based semiconductor device and manufacturing method thereof
JP2018201008A (en) Template, nitride semiconductor ultraviolet light-emitting element, and manufacturing method for template
JP6925141B2 (en) Semiconductor substrates, semiconductor light emitting devices and lamps
JP5446945B2 (en) Nitride semiconductor single crystal and method for manufacturing nitride semiconductor substrate
TW200939536A (en) Nitride semiconductor and method for manufacturing same
JP2009152511A (en) Gallium nitride substrate, substrate with epitaxial layer, semiconductor device, and method of manufacturing gallium nitride substrate
JP2006273716A (en) METHOD OF MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
JP5549158B2 (en) GaN single crystal substrate and manufacturing method thereof, and GaN-based semiconductor device and manufacturing method thereof
JP5822190B2 (en) Multi-wavelength light emitting device and manufacturing method thereof
JP2014001137A (en) GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JP5471251B2 (en) GaN single crystal substrate and GaN-based semiconductor device
JP2015032730A (en) Nitride semiconductor structure and manufacturing method of the same
JP5488562B2 (en) Manufacturing method of nitride semiconductor substrate
JP2014001138A (en) GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JP2009001470A (en) Manufacturing process of group iii nitride crystal, group iii nitride substrate and group iii nitride semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721