JP2013543348A5 - - Google Patents

Download PDF

Info

Publication number
JP2013543348A5
JP2013543348A5 JP2013537753A JP2013537753A JP2013543348A5 JP 2013543348 A5 JP2013543348 A5 JP 2013543348A5 JP 2013537753 A JP2013537753 A JP 2013537753A JP 2013537753 A JP2013537753 A JP 2013537753A JP 2013543348 A5 JP2013543348 A5 JP 2013543348A5
Authority
JP
Japan
Prior art keywords
mas
client device
cluster
antennas
client
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013537753A
Other languages
Japanese (ja)
Other versions
JP2013543348A (en
JP5957000B2 (en
Filing date
Publication date
Priority claimed from US12/917,257 external-priority patent/US8542763B2/en
Application filed filed Critical
Publication of JP2013543348A publication Critical patent/JP2013543348A/en
Publication of JP2013543348A5 publication Critical patent/JP2013543348A5/ja
Application granted granted Critical
Publication of JP5957000B2 publication Critical patent/JP5957000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (114)

複数の分散型送受信機局又はアンテナにネットワークを介して通信接続された一つまたはそれ以上の集中型ユニットから成るマルチユーザ(MU)マルチアンテナシステム(MU-MAS)であって、
前記ネットワークが、バックホール通信チャンネルとして使用される有線リンク、無線リンク、又は両者の組合せから成り、
前記集中型ユニットが、N個のデータストリームを、M個の事前符号化データストリームに変換し、各事前符号化データストリームが、N個のデータストリームの内の幾つか又は全ての組合せであり、
前記M個の事前符号化データストリームが前記ネットワークを介して前記分散型送受信機局に送られ、
前記分散型送受信機局が、無線リンクを介して少なくとも一つのクライアントに前記事前符号化データストリームを同時に送り、少なくとも一つのクライアントデバイスが、元のN個のデータストリームの少なくとも一つを受信するようにすることを特徴とするシステム。
A multi-user (MU) multi-antenna system (MU-MAS) consisting of one or more centralized units communicatively connected via a network to a plurality of distributed transceiver stations or antennas,
The network consists of a wired link, a wireless link, or a combination of both used as a backhaul communication channel;
The centralized unit converts N data streams into M pre-encoded data streams, each pre-encoded data stream being a combination of some or all of the N data streams;
The M pre-encoded data streams are sent to the distributed transceiver station via the network;
The distributed transceiver station simultaneously sends the pre-encoded data stream to at least one client over a wireless link, and at least one client device receives at least one of the original N data streams A system characterized by doing so.
前記複数の分散型アンテナが、ゼロRFエネルギを有する空間にロケーションを作成するために無線周波数(RF)信号を送信することを特徴とする請求項1のシステム。   The system of claim 1, wherein the plurality of distributed antennas transmit radio frequency (RF) signals to create locations in a space having zero RF energy. 前記MU−MASが隣接するクラスター間の干渉を除去し、前記システムが、
MU−MAS通信チャネルを介して、第1のクライアントデバイスと通信するための第1のMU−MASクラスターであって、前記第1のMU−MASクラスターからの信号強度が、前記第1のクライアントデバイスによって検出される、第1のMU−MASクラスター、及び
前記MU−MAS通信チャンネルと干渉する信号を発生する第2のMU−MASクラスターであって、前記第2のMU−MASクラスターからの干渉信号強度が、前記第1のクライアントデバイスによって、検出される、第2のMU−MASクラスターを含み、
前記第1のMU−MASクラスターからの前記信号強度が、前記第2のMU−MASクラスターからの前記干渉信号強度の値に対する指定の値に到達した場合に、前記第1のクライアントデバイスが、前記第1のクライアントデバイスの一つ以上のアンテナと、前記第2のMU−MASクラスターの一つ以上のアンテナとの間のチャンネル状態を定めるチャンネル状態情報(CSI)を発生し、前記CSIを、前記第2のMU−MASクラスター内の基地送受信機局(BTS)に送信し、
前記BTSが、前記第1クライアントデバイスにおけるRF干渉を避けるために、MU−MASクラスター間干渉(IMCI)相殺によってMU-MUS事前符号化を実施する請求項1記載のシステム。
The MU-MAS removes interference between adjacent clusters, and the system comprises:
A first MU-MAS cluster for communicating with a first client device via a MU-MAS communication channel, wherein the signal strength from the first MU-MAS cluster is the first client device And a second MU-MAS cluster that generates a signal that interferes with the MU-MAS communication channel, the interference signal from the second MU-MAS cluster detected by A second MU-MAS cluster whose intensity is detected by the first client device;
When the signal strength from the first MU-MAS cluster reaches a specified value for the value of the interference signal strength from the second MU-MAS cluster, the first client device Generating channel state information (CSI) defining a channel state between one or more antennas of a first client device and one or more antennas of the second MU-MAS cluster; and To the base transceiver station (BTS) in the second MU-MAS cluster,
The system of claim 1, wherein the BTS performs MU-MUS precoding with MU-MAS intercluster interference (IMCI) cancellation to avoid RF interference at the first client device.
前記MU−MASが、第1クライアントデバイスとの通信を第1クライアントデバイスが第1のMU−MASクラスターから第2のMU−MASクラスターまで移動する時に調節し、前記システムが、
前記第1のクライアント装置が、前記第1のクライアントデバイスと前記第1のMU−MASクラスター間(「S1」)及び該第1のクライアントデバイスと第2のMU−MASクラスター間(「S2」)の信号強度を検出し、
前記第1のクライアントデバイスが、S2がS1に対して十分に低い第1の指定ゾーン内である時に、該第1のクライアントデバイスを含む第1の複数のクライアントに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第1のMU−MASクラスター内の基地送受信機局(BTS)の少なくとも1つに対して従来のMU−MAS事前符号化を実施し、かつ該第1のクライアントを含まない第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第2のMU−MASクラスターの該BTSに対して従来のMU−MAS事前符号化を実施し、
前記第1のクライアントデバイスが、S2及びS1の相対値が結果として第1の閾値が到達するように、S2がS1に対して増加し及び/又はS1がS2に対して減少した第2の指定ゾーン内である時に、該第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと前記第2のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義するチャンネル状態情報(CSI)を生成し、該第2のMU−MASクラスターのBTSが、該CSIを使用して、該第1のクライアントデバイスでのRF干渉を回避するためにMU−MASクラスター間干渉(IMCI)相殺を用いてMU−MAS事前符号化を実施し、
前記第1のクライアントデバイスが、S2及びS1の相対値が結果として第2の閾値が到達するように、S2がS1に対して増加し及び/又はS1がS2に対して減少した第3の指定ゾーン内である時に、該第1のクライアントデバイスを含む第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第2のMU−MASクラスターの前記BTSに従来のMU−MAS事前符号化を実施し、かつ該第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと前記第1のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義するチャンネル状態情報(CSI)を生成し、該第1のMU−MASクラスターのBTSが、該CSIを使用して、該第1のクライアントデバイスでのRF干渉を回避するためにMU−MASクラスター間干渉(IMCI)相殺を用いてMU−MAS事前符号化を実施し、
前記第1のクライアントデバイスが、S2及びS1の相対値が結果として第3の閾値が到達するように、S2がS1に対して増加し及び/又はS1がS2に対して減少した第4の指定ゾーン内である時に、該第1のクライアントデバイスを含む前記第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第2のMU−MASクラスター内の前記基地送受信機局(BTS)の少なくとも1つに対して従来のMU−MAS事前符号化を実施し、かつ該第1のクライアントデバイスを含まない前記第1の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第1のMU−MASクラスターの該BTSに対して従来のMU−MAS事前符号化を実施する、
ことを特徴とする請求項1記載のシステム。
The MU-MAS coordinates communication with a first client device as the first client device moves from a first MU-MAS cluster to a second MU-MAS cluster;
The first client device is connected between the first client device and the first MU-MAS cluster (“S1”), and between the first client device and the second MU-MAS cluster (“S2”). Detects the signal strength of
When the first client device is in a first designated zone where S2 is sufficiently low relative to S1, simultaneous non-interference in the same frequency band to a first plurality of clients including the first client device Performing conventional MU-MAS pre-encoding on at least one of the base transceiver stations (BTS) in the first MU-MAS cluster to transmit a data stream; and Performing conventional MU-MAS precoding on the BTS of the second MU-MAS cluster to transmit simultaneous non-interfering data streams in the same frequency band to a second plurality of client devices not included ,
The first client device has a second designation in which S2 is increased with respect to S1 and / or S1 is decreased with respect to S2, such that a relative value of S2 and S1 results in a first threshold being reached. Define channel conditions between one or more antennas of the first client device and one or more antennas of the second MU-MAS cluster when in a zone Generate channel state information (CSI), and the BTS of the second MU-MAS cluster uses the CSI to avoid MU-MAS inter-cluster interference to avoid RF interference at the first client device (IMCI) perform MU-MAS precoding with cancellation,
The first client device has a third designation in which S2 increases with respect to S1 and / or S1 decreases with respect to S2, such that a relative value of S2 and S1 results in a second threshold being reached. Conventionally to the BTS of the second MU-MAS cluster to transmit simultaneous non-interfering data streams in the same frequency band to a second plurality of client devices including the first client device when in the zone MU-MAS precoding and between one or more antennas of the first client device and one or more antennas of the first MU-MAS cluster Channel state information (CSI) defining the channel state of the first MU-MAS cluster is generated by the BTS of the first MU-MAS cluster using the CSI. Conducted MU-MAS precoding using the MU-MAS intercluster interference to avoid RF interference at the client device (IMCI) offset,
The first client device has a fourth designation that S2 has increased with respect to S1 and / or S1 has decreased with respect to S2, such that the relative value of S2 and S1 results in a third threshold being reached. The base in the second MU-MAS cluster to transmit simultaneous non-interfering data streams in the same frequency band to the second plurality of client devices including the first client device when in a zone Performs conventional MU-MAS precoding for at least one of the transceiver stations (BTS) and simultaneously within the same frequency band to the first plurality of client devices not including the first client device Perform conventional MU-MAS precoding on the BTS of the first MU-MAS cluster to transmit a non-interfering data stream That,
The system according to claim 1.
前記MU−MASが第1のクライアントデバイスとの通信を調節し、
前記クライアントデバイスに、RFエネルギを送る複数のアンテナを有するMU−MASネットワークを備え、
該MU−MASネットワークの該クライアントデバイス及び/又は1つ又はそれよりも多くの基地局送受信機(BTS)が、該クライアントデバイスの現在の速度を推定し、該BTSのうちの1つ又はそれよりも多くが、該クライアントデバイスを該クライアントデバイスの該推定速度に基づいて特定のMU−MASネットワークに割り当てる
ことを特徴とする請求項1記載のシステム。
The MU-MAS coordinates communication with a first client device;
The client device comprises a MU-MAS network having a plurality of antennas for transmitting RF energy;
The client device and / or one or more base station transceivers (BTS) of the MU-MAS network estimate the current speed of the client device and one or more of the BTSs 2. The system of claim 1, wherein most assign the client device to a particular MU-MAS network based on the estimated speed of the client device.
前記MU−MASが第1のクライアントデバイスとの通信を調節し、
1つ又はそれよりも多くのデータストリームにMU−MAS重みを適用して1つ又はそれよりも多くのMU−MAS事前符号化データストリームを生成し、
前記MU−MAS事前符号化データストリームが送信される通信チャンネルに関連する入力チャンネル品質情報(CQI)及び/又はチャンネル状態情報(CSI)を受信し、
前記CQI及び/又はCSIに基づいて電力スケーリング係数を決定し、
前記MU−MAS事前符号化データストリームの各々に前記電力スケーリング係数を適用することを含むことを特徴とする請求項1記載のシステム。
The MU-MAS coordinates communication with a first client device;
Applying MU-MAS weights to one or more data streams to generate one or more MU-MAS pre-encoded data streams;
Receiving input channel quality information (CQI) and / or channel state information (CSI) associated with a communication channel over which the MU-MAS pre-encoded data stream is transmitted;
Determining a power scaling factor based on the CQI and / or CSI;
The system of claim 1, comprising applying the power scaling factor to each of the MU-MAS pre-encoded data streams.
前記MU−MASが、第1のクライアントとの通信を調節し、
チャンネル状態情報(CSI)及び/又はチャンネル品質情報(CQI)を受信し、
前記CSI又はCQIに基づいて同じクラスター内のMU−MASアンテナの群を選択し、
前記CSI及び/又はCQIに基づいて、MU−MAS重みを適用して各群内で1つ又はそれよりも多くのMU−MAS事前符号化データストリームを生成することを
を含むことを特徴とする請求項1記載のシステム。
The MU-MAS coordinates communication with the first client;
Receiving channel state information (CSI) and / or channel quality information (CQI);
Selecting a group of MU-MAS antennas in the same cluster based on the CSI or CQI;
Applying MU-MAS weights to generate one or more MU-MAS pre-encoded data streams within each group based on the CSI and / or CQI. The system of claim 1.
前記MU−MASが複数のクライアントデバイスと通信し、
第1の複数のMU−MASアンテナの各々とクライアントデバイスの各々との間のチャンネル状態を定義するチャンネル状態情報(CSI)を決定し、
前記CSIを使用して、前記第1の複数のMU−MASアンテナの各々と前記クライアントデバイスの各々のアンテナとの間の前記チャンネルの各々に対するMU−MAS事前符号化重みを決定し、
前記CSI及びMU−MAS事前符号化重みを使用して、前記第1の複数のMU−MASアンテナの各々と前記クライアントデバイスの各々の前記アンテナとの間のリンク品質を定義するリンク品質メトリックを決定し、
前記リンク品質メトリックを使用して異なるクライアントデバイスに対する変調符号化方式(MCS)を決定し、
前記第1の複数のMU−MASアンテナの各々から個々のクライアントデバイスの各々までそれらのクライアントデバイスに対する前記決定されたMCSを使用して事前符号化データストリームを送信することを
を含む請求項1記載のシステム。
The MU-MAS communicates with a plurality of client devices;
Determining channel state information (CSI) defining a channel state between each of the first plurality of MU-MAS antennas and each of the client devices;
Using the CSI to determine a MU-MAS precoding weight for each of the channels between each of the first plurality of MU-MAS antennas and each antenna of the client device;
The CSI and MU-MAS precoding weights are used to determine a link quality metric that defines a link quality between each of the first plurality of MU-MAS antennas and each of the antennas of the client device. And
Determining a modulation and coding scheme (MCS) for different client devices using the link quality metric;
2. Transmitting a pre-encoded data stream from each of the first plurality of MU-MAS antennas to each of individual client devices using the determined MCS for those client devices. System.
前記MU−MASが事前符号化補間を行い、且つ複数のクライアントデバイスと通信するために直交周波数分割多重(OFDM)及びMU−MAS事前符号化を使用し、
前記システムが、作動を行うプログラムコードを処理するためのプロセッサを含み、前記作動が、
ODFMトーンの第1の部分集合を選択して事前符号化重みの第1の部分集合を決定し、
事前符号化重みの前記第1の部分集合間で補間することにより、ODFMトーンの第2の部分集合のための事前符号化重みの第2の部分集合を導出し、
事前符号化重みの前記第1の部分集合及び事前符号化重みの前記第2の部分集合の組合せを使用して、データストリームを該データストリームをクライアントデバイスに送信する前に事前符号化することを含むことを特徴とする請求項1記載のシステム。
The MU-MAS performs precoding interpolation and uses orthogonal frequency division multiplexing (OFDM) and MU-MAS precoding to communicate with multiple client devices;
The system includes a processor for processing program code to perform operations, the operations comprising:
Selecting a first subset of ODFM tones to determine a first subset of precoding weights;
Deriving a second subset of precoding weights for the second subset of ODFM tones by interpolating between said first subsets of precoding weights;
Using a combination of the first subset of pre-encoding weights and the second subset of pre-encoding weights to pre-encode the data stream before sending the data stream to the client device; The system of claim 1, comprising:
前記MU−MASが、
複数の無線クライアントデバイスと、
前記複数のクライアントデバイスとの複数の同時の通信チャンネルを確立するための複数のMU−MASアンテナを有する複数の基地送受信機局(BTS)と、
を含み、
前記BTS及び/又は前記無線クライアントデバイスのいずれかが、それらの間の前記通信チャンネルのリンク品質を測定し、かつ該リンク品質測定値を使用してクライアントデバイスクラスターを定義し、
前記BTS及び/又は前記無線クライアントデバイスは、更に、定義されたクライアントデバイスクラスター内の各クライアントデバイスと各MU−MASアンテナ間のチャンネル状態情報(CSI)を測定し、かつ該測定CSIに基づいて該クライアントデバイスクラスター内の該MU−MASアンテナとそれらのMU−MASアンテナによって到達可能な前記クライアントデバイスとの間のデータ伝送を事前符号化する、
ことを特徴とする請求項1記載のシステム。
The MU-MAS is
Multiple wireless client devices;
A plurality of base transceiver stations (BTS) having a plurality of MU-MAS antennas for establishing a plurality of simultaneous communication channels with the plurality of client devices;
Including
Either the BTS and / or the wireless client device measures the link quality of the communication channel between them, and uses the link quality measurement to define a client device cluster;
The BTS and / or the wireless client device further measures channel state information (CSI) between each client device and each MU-MAS antenna in the defined client device cluster, and based on the measured CSI Pre-encoding data transmissions between the MU-MAS antennas in a client device cluster and the client devices reachable by those MU-MAS antennas;
The system according to claim 1.
ブロック対角化事前符号化を使用することを特徴とする請求項1に記載のシステム。   The system of claim 1, wherein block diagonalization precoding is used. M個の分散型送信アンテナが、ゼロRFエネルギの(M−1)個までの点を作成することを特徴とする請求項2に記載のシステム。   The system of claim 2, wherein the M distributed transmit antennas create up to (M-1) points of zero RF energy. 前記ゼロRFエネルギのロケーションは、受信機であり、前記送信アンテナは、前記送信機と該受信機間の前記チャンネル状態情報を認識し、該送信機は、該チャンネル状態情報を利用して同時に送信される干渉信号を決定することを特徴とする請求項2に記載のシステム。   The location of the zero RF energy is a receiver, the transmit antenna recognizes the channel state information between the transmitter and the receiver, and the transmitter transmits simultaneously using the channel state information. The system of claim 2, wherein an interference signal to be determined is determined. 前記送信アンテナは、マルチユーザ(MU)マルチアンテナシステム(MU−MAS)アンテナであり、
前記ゼロRFエネルギを有するロケーションは、クライアントデバイスのロケーションに対応し、MU−MAS事前符号化が、該クライアントデバイスに対してゼロRFエネルギの点を作成するために使用されることを特徴とする請求項2に記載のシステム。
The transmit antenna is a multi-user (MU) multi-antenna system (MU-MAS) antenna;
The location having zero RF energy corresponds to the location of a client device, and MU-MAS precoding is used to create a zero RF energy point for the client device. Item 3. The system according to Item 2.
ゼロRFエネルギの点が、隣接MU−MASクラスター間の干渉を除去するために作成されることを特徴とする請求項2に記載のシステム。   The system of claim 2, wherein zero RF energy points are created to eliminate interference between adjacent MU-MAS clusters. 前記第1のクライアントデバイスが、前記第1のMU−MASクラスターからの該第1のクライアントデバイスによって検出された前記信号強度と前記第2のMU−MASからの該第1のクライアントデバイスによって検出された前記干渉信号強度との比率に基づく該第1のクライアントデバイスでの信号対干渉ノイズ比(SINR)を推定することにより、該第1のMU−MASクラスターからの該信号強度の指定の値が該第2のMU−MAクラスターからの該干渉信号強度の前記値に対する前記指定の値に到達するか否かを決定し、
前記第1のクライアントデバイスが、前記SINRが指定の閾値よりも下に移動する時に該第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと前記第2のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義するチャンネル状態情報(CSI)を生成する、
ことを更に含むことを特徴とする請求項3に記載のシステム。
The first client device is detected by the signal strength detected by the first client device from the first MU-MAS cluster and the first client device from the second MU-MAS. By estimating a signal-to-interference noise ratio (SINR) at the first client device based on a ratio with the interference signal strength, a specified value of the signal strength from the first MU-MAS cluster is obtained. Determining whether to reach the specified value for the value of the interference signal strength from the second MU-MA cluster;
When the first client device moves the SINR below a specified threshold, one or more antennas of the first client device and one or more of the second MU-MAS clusters or Generating channel state information (CSI) that defines the channel state with more antennas;
The system of claim 3 further comprising:
前記第1のMU−MASクラスター内の複数の基地局送受信機(BTS)、
を更に含み、
前記第1のMU−MASクラスターの前記BTSは、前記第1のクライアントデバイスを含む第1の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために従来のMU−MAS事前符号化を実施し、
前記第2のMU−MASクラスター内の前記BTSは、第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記IMCI相殺事前符号化と同時に実施される従来のMU−MAS事前符号化を実施する、
ことを特徴とする請求項3に記載のシステム。
A plurality of base station transceivers (BTSs) in the first MU-MAS cluster;
Further including
The BTS of the first MU-MAS cluster is configured to transmit a conventional non-interfering data stream in a same frequency band to a plurality of first client devices including the first client device. Perform the encoding,
The BTS in the second MU-MAS cluster is implemented simultaneously with the IMCI cancellation precoding to transmit simultaneous non-interfering data streams in the same frequency band to a second plurality of client devices. Perform MU-MAS pre-encoding,
The system according to claim 3.
第2のMU−MASクラスターからの前記第1のクライアントデバイスでの干渉信号強度を検出することは、前記第1のMU−MASクラスターの前記MU−MASアンテナからの指定のサイレンス期間中に信号強度を測定することを含むことを特徴とする請求項3に記載のシステム。   Detecting the interference signal strength at the first client device from a second MU-MAS cluster is a signal strength during a specified silence period from the MU-MAS antenna of the first MU-MAS cluster. 4. The system according to claim 3, comprising measuring. 前記指定のサイレンス期間は、所定の送信フレーム構造に基づいて指定されることを特徴とする請求項18に記載のシステム。   The system of claim 18, wherein the specified silence period is specified based on a predetermined transmission frame structure. 前記第1のMU−MASクラスター及び前記第2のMU−MASクラスターは、マルチキャリア直交周波数分割多重(OFDM)システムを含み、
前記第1のクライアントで信号対干渉比(SIR)又は信号対干渉ノイズ比(SINR)を推定することにより、前記第1のMU−MASクラスターからの前記信号強度の指定の値が、前記第2のMU−MASクラスターからの前記干渉信号強度の前記値に対する前記指定の値に到達するか否かを決定し、該SIRが、該第1のMU−MASクラスターからの該第1のクライアントによって検出された該信号強度と該第2のMU−MASクラスターからの該第1のクライアントによって検出された該干渉信号強度との比率に基づいており、該SINRが、該第1のMU−MASクラスターからの該第1のクライアントによって検出された該信号強度と該第2のMU−MASクラスターからの該第1のクライアントによって検出された該干渉信号強度及びノイズ信号強度との比率に基づいており、該SIR又はSINRが、前記ODFMシステムのヌルトーンから推定される前記決定すること、
を更に含む、
ことを特徴とする請求項3に記載のシステム。
The first MU-MAS cluster and the second MU-MAS cluster comprise a multi-carrier orthogonal frequency division multiplexing (OFDM) system;
By estimating a signal-to-interference ratio (SIR) or a signal-to-interference noise ratio (SINR) at the first client, the specified value of the signal strength from the first MU-MAS cluster becomes the second value. Determine whether the specified value for the value of the interference signal strength from the MU-MAS cluster of the first MU-MAS cluster is reached, and the SIR is detected by the first client from the first MU-MAS cluster Based on a ratio of the measured signal strength to the interference signal strength detected by the first client from the second MU-MAS cluster, wherein the SINR is derived from the first MU-MAS cluster. The signal strength detected by the first client and the interference detected by the first client from the second MU-MAS cluster. Is based on the ratio between the intensity and the noise signal intensity, that said SIR or SINR is, the determining estimated from null tones of the ODFM systems,
Further including
The system according to claim 3.
前記第1のMU−MASクラスターからの前記信号強度が前記第2のMU−MASクラスターからの前記干渉信号強度の前記値に対する指定の値に到達した場合に、該第2のMU−MASクラスターからのトレーニング信号を使用して、前記第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと該第2のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義する前記チャンネル状態情報(CSI)を生成することを特徴とする請求項3に記載のシステム。   When the signal strength from the first MU-MAS cluster reaches a specified value for the value of the interference signal strength from the second MU-MAS cluster, from the second MU-MAS cluster Are used to determine the channel condition between one or more antennas of the first client device and one or more antennas of the second MU-MAS cluster. The system according to claim 3, wherein the channel state information (CSI) to be defined is generated. 前記第2のMU−MASクラスター内の前記BTSでMU−MASクラスター間干渉(IMCI)相殺を用いてMU−MAS事前符号化を実施することは、前記第1のクライアントデバイスのロケーションでゼロRFエネルギを作成するために高周波(RF)信号を事前符号化して送信することを含むことを特徴とする請求項3に記載のシステム。   Performing MU-MAS precoding with MU-MAS inter-cluster interference (IMCI) cancellation at the BTS in the second MU-MAS cluster is a zero RF energy at the location of the first client device. 4. The system of claim 3, comprising pre-encoding and transmitting a radio frequency (RF) signal to create a signal. S1及びS2に対して信号対干渉ノイズ比(SINR)及び/又は信号対干渉比(SIR)を計算すること、
SIR及び/又はSINRの値に基づいて第1、第2、及び第3の閾値を定義することと、
を更に含むことを特徴とする請求項4に記載のシステム。
Calculating a signal to interference noise ratio (SINR) and / or a signal to interference ratio (SIR) for S1 and S2,
Defining first, second and third thresholds based on SIR and / or SINR values;
The system of claim 4 further comprising:
前記第1のクライアントデバイス及び/又は前記BTSが、S1及びS2の前記相対値に基づいて、該第1のクライアントデバイスがゾーン間を移動するのに応答してヒステリシスループを実施して該ゾーンの各々間の反復的な切り換えを回避するために前記第1から第3の閾値の値の各々を動的に調節すること、
を更に含むことを特徴とする請求項4に記載のシステム。
Based on the relative values of S1 and S2, the first client device and / or the BTS performs a hysteresis loop in response to the first client device moving between zones to Dynamically adjusting each of the first to third threshold values to avoid repetitive switching between each;
The system of claim 4 further comprising:
前記クライアントデバイスが現在常駐する前記ゾーンに関する決定が、該クライアントデバイスによって行われることを特徴とする請求項4に記載のシステム。   The system of claim 4, wherein a determination regarding the zone in which the client device currently resides is made by the client device. 前記クライアントデバイスが現在常駐する前記ゾーンに関する決定が、前記第1のMU−MASクラスター及び/又は前記第2のMU−MASクラスター内のBTSによって行われることを特徴とする請求項4に記載のシステム。   5. The system of claim 4, wherein a determination regarding the zone in which the client device currently resides is made by a BTS in the first MU-MAS cluster and / or the second MU-MAS cluster. . 命令のシーケンスを実行するプロセッサとして実施される有限状態機械を用いて実施されることを特徴とする請求項4に記載のシステム。   5. The system of claim 4, implemented using a finite state machine implemented as a processor that executes a sequence of instructions. 前記RFエネルギは、ドップラーシフトを推定することによって前記クライアントデバイスに対する現在の速度を推定するのに使用されることを特徴とする請求項5に記載のシステム。   The system of claim 5, wherein the RF energy is used to estimate a current velocity for the client device by estimating a Doppler shift. 前記ドップラーシフトは、ブラインド推定技術を使用して、前記アンテナから前記クライアントに反射されて該アンテナに戻る前記RFエネルギを使用して計算されることを特徴とする請求項28に記載のシステム。   29. The system of claim 28, wherein the Doppler shift is calculated using the RF energy reflected from the antenna back to the client using a blind estimation technique. 前記RFエネルギは、トレーニング信号から構成され、前記ドップラーシフトは、該トレーニング信号を使用して計算されることを特徴とする請求項28に記載のシステム。   29. The system of claim 28, wherein the RF energy is comprised of a training signal and the Doppler shift is calculated using the training signal. 前記クライアントデバイスの速度が指定の閾値よりも大きい場合に、高速クライアントデバイスと通信することができる第1のMU−MASネットワークに該クライアントデバイスを割り当て、及び該クライアントデバイスの速度が該指定の閾値よりも小さい場合に、第2のMU−MASネットワークに該クライアントデバイスを割り当てることを特徴とする請求項5に記載のシステム。   If the speed of the client device is greater than a specified threshold, assign the client device to a first MU-MAS network capable of communicating with a high speed client device, and the speed of the client device is greater than the specified threshold 6. The system of claim 5, wherein the client device is assigned to a second MU-MAS network when the value is also smaller. 前記第1のMU−MASネットワークは、第1の平均待ち時間を有するBTSネットワークを通じて接続された複数の基地局送受信機(BTS)を含み、
前記第2のMU−MASネットワークは、前記第1の平均待ち時間よりも低い第2の平均待ち時間を有するBTSネットワークを通じて接続された複数のBTSを含む、
ことを特徴とする請求項31に記載のシステム。
The first MU-MAS network includes a plurality of base station transceivers (BTSs) connected through a BTS network having a first average latency;
The second MU-MAS network includes a plurality of BTSs connected through a BTS network having a second average latency that is lower than the first average latency.
32. The system of claim 31, wherein:
前記MU−MAS事前符号化データストリームの各々に前記電力スケーリング係数を適用することは、該MU−MAS事前符号化データストリームの各々に該電力スケーリング係数を乗算することを含むことを特徴とする請求項6に記載のシステム。   Applying the power scaling factor to each of the MU-MAS pre-encoded data streams includes multiplying each of the MU-MAS pre-encoded data streams by the power scaling factor. Item 7. The system according to Item 6. 前記CQIは、前記通信チャンネルの各々に対する平均信号対ノイズ比(SNR)又は受信信号強度表示(RSSI)を含むことを特徴とする請求項6に記載のシステム。   The system of claim 6, wherein the CQI includes an average signal to noise ratio (SNR) or a received signal strength indication (RSSI) for each of the communication channels. 前記電力スケーリング係数が、全てのMU−MASアンテナに送られた前記データストリームの各々に適用され、かつ瞬間的なMU−MAS当たりアンテナ送信電力が所定の最大許容露出(MPE)限界値よりも大きい場合があっても平均MU−MAS当たりアンテナ電力が該MPE限界値よりも低く維持されるように動的に調節されることを特徴とする請求項6に記載のシステム。   The power scaling factor is applied to each of the data streams sent to all MU-MAS antennas and the instantaneous antenna transmit power per MU-MAS is greater than a predetermined maximum allowable exposure (MPE) limit value 7. The system of claim 6, wherein the system is dynamically adjusted so that the antenna power per average MU-MAS is maintained below the MPE limit value in some cases. 前記MU−MAS事前符号化データストリームの各々に前記電力スケーリング係数を適用することは、該MU−MAS事前符号化データストリームの各々に該電力スケーリング係数を乗算することを特徴とする請求項7に記載のシステム。   The method of claim 7, wherein applying the power scaling factor to each of the MU-MAS pre-encoded data streams multiplies each of the MU-MAS pre-encoded data streams by the power scaling factor. The described system. 前記CQIは、前記通信チャンネルの各々に対する平均信号対ノイズ比(SNR)又は受信信号強度表示(RSSI)を含むことを特徴とする請求項7に記載のシステム。   The system of claim 7, wherein the CQI includes an average signal to noise ratio (SNR) or a received signal strength indication (RSSI) for each of the communication channels. 前記電力スケーリング係数は、全てのMU−MASアンテナに送られた前記データストリームの各々に適用され、かつ瞬間的なMU−MAS当たりアンテナ送信電力が所定の最大許容露出(MPE)限界値よりも大きい場合があっても平均MU−MAS当たりアンテナ電力が該MPE限界値よりも低く維持されるように動的に調節されることを特徴とする請求項7に記載のシステム。   The power scaling factor is applied to each of the data streams sent to all MU-MAS antennas and the instantaneous antenna transmit power per MU-MAS is greater than a predetermined maximum allowable exposure (MPE) limit value. 8. The system of claim 7, wherein the system is dynamically adjusted so that the antenna power per average MU-MAS is maintained below the MPE limit value in some cases. 直交周波数分割多重(OFDM)を使用するシステムにおいて、前記リンク品質メトリックは、全てのOFDMトーンにわたる平均信号対ノイズ比を含むことを特徴とする請求項8に記載のシステム。   9. The system of claim 8, wherein in a system using orthogonal frequency division multiplexing (OFDM), the link quality metric includes an average signal to noise ratio across all OFDM tones. 前記リンク品質メトリックは、前記第1の複数のアンテナと前記クライアントの前記アンテナとの間の有効チャンネルの周波数応答であることを特徴とする請求項8に記載のシステム。   The system of claim 8, wherein the link quality metric is a frequency response of an effective channel between the first plurality of antennas and the antenna of the client. 直交周波数分割多重(OFDM)を使用するシステムにおいて、
前記リンク品質メトリックに基づいて、前記異なるクライアントデバイスの各々と通信するのに使用される異なるOFDMトーンを決定すること、
を更に含むことを特徴とする請求項8に記載のシステム。
In a system using orthogonal frequency division multiplexing (OFDM),
Determining different OFDM tones used to communicate with each of the different client devices based on the link quality metric;
The system of claim 8 further comprising:
それぞれの前記クライアントデバイスの各々への通信に使用される前記MCSの表示を送信すること、
を更に含むことを特徴とする請求項8に記載のシステム。
Sending an indication of the MCS used for communication to each of the respective client devices;
The system of claim 8 further comprising:
直交周波数分割多重(OFDM)を使用するシステムにおいて、
それぞれの前記クライアントデバイスの各々への通信に使用される異なるトーンの表示を送信すること、
を更に含むことを特徴とする請求項8に記載のシステム。
In a system using orthogonal frequency division multiplexing (OFDM),
Sending an indication of the different tones used for communication to each of the respective client devices;
The system of claim 8 further comprising:
チャンネル利得の検出された時間的変動に基づいて前記MCSを調節することを更に含むことを特徴とする請求項8に記載のシステム。   9. The system of claim 8, further comprising adjusting the MCS based on a detected temporal variation in channel gain. 前記MCSは、チャンネル干渉時間の部分毎に再計算されることを特徴とする請求項18に記載のシステム。   The system of claim 18, wherein the MCS is recalculated for each portion of channel interference time. 前記MU−MAS送信アンテナは、前記送信機と該受信機間の前記チャンネル状態情報を認識し、該送信機は、該チャンネル状態情報を利用して同時に送信される干渉信号を決定することを特徴とする請求項1に記載のシステム。   The MU-MAS transmit antenna recognizes the channel state information between the transmitter and the receiver, and the transmitter determines an interference signal transmitted simultaneously using the channel state information. The system according to claim 1. 特異値分解(SVD)が、事前符号化重みの前記第1の部分集合を決定するためにOFDMトーンの前記第1の部分集合に対して行われることを特徴とする請求項9に記載のシステム。   The system of claim 9, wherein singular value decomposition (SVD) is performed on the first subset of OFDM tones to determine the first subset of precoding weights. . 前記リンク品質は、信号対ノイズ比(SNR)又は信号対干渉ノイズ比(SINR)として測定されることを特徴とする請求項10に記載のシステム。   The system of claim 10, wherein the link quality is measured as a signal to noise ratio (SNR) or a signal to interference noise ratio (SINR). 前記MU−MASアンテナは、トレーニング信号を送信し、前記クライアントデバイスは、そのトレーニングに基づいて前記受信信号品質を推定することを特徴とする請求項48に記載のシステム。   49. The system of claim 48, wherein the MU-MAS antenna transmits a training signal and the client device estimates the received signal quality based on the training. 前記リンク品質測定値を使用してクライアントデバイスクラスターを定義することは、ターゲットクライアントデバイスに対して非ゼロリンク品質メトリックを有する前記アンテナの部分集合を識別することを含むことを特徴とする請求項10に記載のシステム。   11. The defining a client device cluster using the link quality measurement includes identifying a subset of the antennas having a non-zero link quality metric for a target client device. The system described in. 前記クライアントデバイスクラスターが選択された状態で、あらゆるクライアントデバイスへの該クライアントデバイスクラスター内の全ての送信機からの前記CSIは、該クライアントデバイスクラスター内の全てのBTSに対して利用可能にされることを特徴とする請求項10に記載のシステム。   With the client device cluster selected, the CSI from all transmitters in the client device cluster to every client device is made available to all BTSs in the client device cluster The system of claim 10. 前記CSI情報は、基地局ネットワーク(BSN)を通じて全てのBTSにわたって共有されることを特徴とする請求項51に記載のシステム。   52. The system of claim 51, wherein the CSI information is shared across all BTSs through a base station network (BSN). アップリンク/ダウンリンク(UL/DL)チャンネル相互関係が、時分割複信(TDD)システムのためのULチャンネル上のトレーニングから前記CSIを導出するのに利用されることを特徴とする請求項10に記載のシステム。   The uplink / downlink (UL / DL) channel correlation is utilized to derive the CSI from training on a UL channel for a time division duplex (TDD) system. The system described in. 前記BTSへの全てのクライアントデバイスからのフィードバックチャンネルが、周波数分割複信(FDD)システムに使用されることを特徴とする請求項10に記載のシステム。   The system of claim 10, wherein feedback channels from all client devices to the BTS are used in a frequency division duplex (FDD) system. フィードバックの量を低減するために、前記リンク品質行列の前記非ゼロ入力に対応する前記CSIのみがフィードバックされることを特徴とする請求項54に記載のシステム。   55. The system of claim 54, wherein only the CSI corresponding to the non-zero input of the link quality matrix is fed back to reduce the amount of feedback. 実効チャンネル行列
Figure 2013543348
の特異値分解(SVD)が計算され、ターゲットクライアントデバイスkに対する事前符号化重み
Figure 2013543348
が、
Figure 2013543348
のヌル部分空間に対応する右特異ベクトルとして定義されることを特徴とする請求項10に記載のシステム。
Effective channel matrix
Figure 2013543348
The singular value decomposition (SVD) of the precoding weights for the target client device k
Figure 2013543348
But,
Figure 2013543348
The system of claim 10, wherein the system is defined as a right singular vector corresponding to a null subspace.
送信機の数が、クライアントデバイスの数よりも多く、かつSVDが、実効チャンネル行列を
Figure 2013543348
として分解する場合に、クライアントデバイスkに対するMU−MAS事前符号化重みが、
Figure 2013543348
によって与えられ、ここで、
Figure 2013543348
は、列が
Figure 2013543348
のヌル部分空間の特異ベクトルである行列であることを特徴とする請求項10に記載のシステム。
The number of transmitters is greater than the number of client devices and the SVD has an effective channel matrix
Figure 2013543348
MU-MAS pre-encoding weight for client device k is
Figure 2013543348
Where, given by
Figure 2013543348
Is the column
Figure 2013543348
The system of claim 10, wherein the system is a matrix that is a singular vector of a null subspace.
マルユーザ(MU)マルチアンテナシステム(MU-MAS)で実施する方法あって、
バックホール通信チャンネルとして使用される有線リンク、無線リンク、又は両者の組合せから成るネットワークを介して、一つまたはそれ以上の集中型ユニットを複数の分散型送受信機局又はアンテナに通信接続する段階と、
N個のデータストリームを、M個の事前符号化データストリームに変換する段階であって、各事前符号化データストリームが、N個のデータストリームの内の幾つか又は全ての組合せである段階と、
前記M個の事前符号化データストリームが前記ネットワークを介して前記分散型送受信機局に送る段階と、
無線リンクを介して少なくとも一つのクライアントに前記事前符号化データストリームを同時に送る段階であって、少なくとも一つのクライアントデバイスが、元のN個のデータストリームの少なくとも一つを受信するようにする段階から成ることを特徴とする方法。
There is a method implemented in a multi-user (MU) multi-antenna system (MU-MAS),
Communicatively connecting one or more centralized units to a plurality of distributed transceiver stations or antennas via a network of wired links, wireless links, or a combination of both used as backhaul communication channels; ,
Converting N data streams into M pre-encoded data streams, each pre-encoded data stream being a combination of some or all of the N data streams;
Sending the M pre-encoded data streams over the network to the distributed transceiver station;
Simultaneously sending the pre-encoded data stream to at least one client over a wireless link, wherein at least one client device receives at least one of the original N data streams. A method characterized by comprising.
前記複数の分散型アンテナが、ゼロRFエネルギを有する空間にロケーションを作成するために無線周波数(RF)信号を送信することを特徴とする請求項58の方法。   59. The method of claim 58, wherein the plurality of distributed antennas transmit radio frequency (RF) signals to create locations in a space having zero RF energy. 前記MU−MASが隣接するクラスター間の干渉を除去し、前記方法が、
MU−MAS通信チャネルを介して、第1のMU−MASクラスターから第1のクライアントデバイスと通信する段階と、
前記第1のMU−MASクラスターからの信号強度を、前記第1のクライアントデバイスで検出する段階と、
前記MU−MAS通信チャンネルと干渉する信号を第2のMU−MASクラスターで発生する段階であって、前記第2のMU−MASクラスターからの干渉信号強度を前記第1のクライアントデバイスによって検出する段階と、
前記第1のMU−MASクラスターからの前記信号強度が、前記の第2のMU−MASクラスターからの前記干渉信号強度の値に対する指定の値に到達した場合に、前記第1のクライアントデバイスの一つ以上のアンテナと、前記第2のMU−MASクラスターの一つ以上のアンテナとの間のチャンネル状態を定めるチャンネル状態情報(CSI)を発生し、前記CSIを、前記第2のMU−MASクラスター内の基地送受信機局(BTS)に送信する段階と、
前記BTSが、前記第1クライアントデバイスにおけるRF干渉を避けるために、MU−MASクラスター間干渉(IMCI)相殺によってMU-MUS事前符号化を実施する段階と、を更に含む請求項58記載の方法。
The MU-MAS removes interference between adjacent clusters, the method comprising:
Communicating with a first client device from a first MU-MAS cluster via a MU-MAS communication channel;
Detecting signal strength from the first MU-MAS cluster at the first client device;
Generating a signal interfering with the MU-MAS communication channel in a second MU-MAS cluster, wherein the first client device detects an interference signal strength from the second MU-MAS cluster. When,
One of the first client devices when the signal strength from the first MU-MAS cluster reaches a specified value for the value of the interference signal strength from the second MU-MAS cluster. Generating channel state information (CSI) defining a channel state between one or more antennas and one or more antennas of the second MU-MAS cluster, wherein the CSI is defined as the second MU-MAS cluster; Transmitting to a base transceiver station (BTS) in the
59. The method of claim 58, further comprising: the BTS performing MU-MUS precoding with MU-MAS intercluster interference (IMCI) cancellation to avoid RF interference at the first client device.
前記MU−MASが、第1クライアントデバイスとの通信を第1クライアントデバイスが第1のMU−MASクラスターから第2のMU−MASクラスターまで移動する時に調節し、前記方法が、
前記第1のクライアントデバイスと前記第1のMU−MASクラスター間(「S1」)及び該第1のクライアントデバイスと第2のMU−MASクラスター間(「S2」)の信号強度を検出する段階と、
前記第1のクライアントデバイスが、S2がS1に対して十分に低い第1の指定ゾーン内である時に、該第1のクライアントデバイスを含む第1の複数のクライアントに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第1のMU−MASクラスター内の基地送受信機局(BTS)の少なくとも1つに対して従来のMU−MAS事前符号化を実施する段階と、
該第1のクライアントを含まない第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第2のMU−MASクラスターの該BTSに対して従来のMU−MAS事前符号化を実施する段階と、
前記第1のクライアントデバイスが、S2及びS1の相対値が結果として第1の閾値が到達するように、S2がS1に対して増加し及び/又はS1がS2に対して減少した第2の指定ゾーン内である時に、該第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと前記第2のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義するチャンネル状態情報(CSI)を生成し、該第2のMU−MASクラスターのBTSが、該CSIを使用して、該第1のクライアントデバイスでのRF干渉を回避するためにMU−MASクラスター間干渉(IMCI)相殺を用いてMU−MAS事前符号化を実施する段階と、
前記第1のクライアントデバイスが、S2及びS1の相対値が結果として第2の閾値が到達するように、S2がS1に対して増加し及び/又はS1がS2に対して減少した第3の指定ゾーン内である時に、該第1のクライアントデバイスを含む第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第2のMU−MASクラスターの前記BTSに従来のMU−MAS事前符号化を実施する段階と、
該第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと前記第1のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義するチャンネル状態情報(CSI)を生成し、該第1のMU−MASクラスターのBTSが、該CSIを使用して、該第1のクライアントデバイスでのRF干渉を回避するためにMU−MASクラスター間干渉(IMCI)相殺を用いてMU−MAS事前符号化を実施する段階と、
前記第1のクライアントデバイスが、S2及びS1の相対値が結果として第3の閾値が到達するように、S2がS1に対して増加し及び/又はS1がS2に対して減少した第4の指定ゾーン内である時に、該第1のクライアントデバイスを含む前記第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第2のMU−MASクラスター内の前記基地送受信機局(BTS)の少なくとも1つに対して従来のMU−MAS事前符号化を実施する段階と、
該第1のクライアントデバイスを含まない前記第1の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記第1のMU−MASクラスターの該BTSに対して従来のMU−MAS事前符号化を実施する段階と、
を更に含むことを特徴とする請求項58記載の方法。
The MU-MAS adjusts communication with a first client device when the first client device moves from a first MU-MAS cluster to a second MU-MAS cluster;
Detecting signal strength between the first client device and the first MU-MAS cluster (“S1”) and between the first client device and the second MU-MAS cluster (“S2”); ,
When the first client device is in a first designated zone where S2 is sufficiently low relative to S1, simultaneous non-interference in the same frequency band to a first plurality of clients including the first client device Performing conventional MU-MAS precoding for at least one of the base transceiver stations (BTS) in the first MU-MAS cluster to transmit a data stream;
A conventional MU-MAS for the BTS of the second MU-MAS cluster to transmit simultaneous non-interfering data streams in the same frequency band to a second plurality of client devices not including the first client. Performing pre-encoding; and
The first client device has a second designation in which S2 is increased with respect to S1 and / or S1 is decreased with respect to S2, such that a relative value of S2 and S1 results in a first threshold being reached. Define channel conditions between one or more antennas of the first client device and one or more antennas of the second MU-MAS cluster when in a zone Generate channel state information (CSI), and the BTS of the second MU-MAS cluster uses the CSI to avoid MU-MAS inter-cluster interference to avoid RF interference at the first client device Performing MU-MAS precoding with (IMCI) cancellation;
The first client device has a third designation in which S2 increases with respect to S1 and / or S1 decreases with respect to S2, such that a relative value of S2 and S1 results in a second threshold being reached. Conventionally to the BTS of the second MU-MAS cluster to transmit simultaneous non-interfering data streams in the same frequency band to a second plurality of client devices including the first client device when in the zone Performing MU-MAS pre-coding of
Channel state information (CSI) that defines the channel state between one or more antennas of the first client device and one or more antennas of the first MU-MAS cluster And the BTS of the first MU-MAS cluster uses the CSI to use MU-MAS inter-cluster interference (IMCI) cancellation to avoid RF interference at the first client device Performing MU-MAS pre-coding,
The first client device has a fourth designation that S2 has increased with respect to S1 and / or S1 has decreased with respect to S2, such that the relative value of S2 and S1 results in a third threshold being reached. The base in the second MU-MAS cluster to transmit simultaneous non-interfering data streams in the same frequency band to the second plurality of client devices including the first client device when in a zone Performing conventional MU-MAS precoding for at least one of the transceiver stations (BTS);
A conventional MU for the BTS of the first MU-MAS cluster to transmit simultaneous non-interfering data streams in the same frequency band to the first plurality of client devices not including the first client device. -Performing MAS pre-encoding;
59. The method of claim 58, further comprising:
前記MU−MASが第1のクライアントデバイスとの通信を調節し、前記方法が、
前記クライアントデバイスに、複数のアンテナを有するMU−MASネットワークからRFエネルギを送る段階と、
該MU−MASネットワークの該クライアントデバイス及び/又は1つ又はそれよりも多くの基地局送受信機(BTS)によって、該クライアントデバイスの現在の速度を推定する段階と、
該BTSのうちの1つ又はそれよりも多くによって、該クライアントデバイスを該クライアントデバイスの該推定速度に基づいて特定のMU−MASネットワークに割り当てる段階と、を更に含む、
ことを特徴とする請求項58記載の方法。
The MU-MAS coordinates communication with a first client device, the method comprising:
Sending RF energy to the client device from a MU-MAS network having multiple antennas;
Estimating the current speed of the client device by the client device and / or one or more base station transceivers (BTS) of the MU-MAS network;
Further comprising assigning the client device to a particular MU-MAS network based on the estimated rate of the client device by one or more of the BTSs.
59. The method of claim 58, wherein:
前記MU−MASが第1のクライアントデバイスとの通信を調節し、前記方法が、
1つ又はそれよりも多くのデータストリームにMU−MAS重みを適用して1つ又はそれよりも多くのMU−MAS事前符号化データストリームを生成する段階と、
前記MU−MAS事前符号化データストリームが送信される通信チャンネルに関連する入力チャンネル品質情報(CQI)及び/又はチャンネル状態情報(CSI)を受信する段階と、
前記CQI及び/又はCSIに基づいて電力スケーリング係数を決定する段階と、
前記MU−MAS事前符号化データストリームの各々に前記電力スケーリング係数を適用する段階と、を更に含む、
ことを特徴とする請求項58記載の方法。
The MU-MAS coordinates communication with a first client device, the method comprising:
Applying MU-MAS weights to one or more data streams to generate one or more MU-MAS pre-encoded data streams;
Receiving input channel quality information (CQI) and / or channel state information (CSI) associated with a communication channel over which the MU-MAS pre-encoded data stream is transmitted;
Determining a power scaling factor based on the CQI and / or CSI;
Applying the power scaling factor to each of the MU-MAS pre-encoded data streams.
59. The method of claim 58, wherein:
前記MU−MASが第1のクライアントとの通信を調節し、前記方法が、
チャンネル状態情報(CSI)及び/又はチャンネル品質情報(CQI)を受信する段階と、
前記CSI又はCQIに基づいて同じクラスター内のMU−MASアンテナの群を選択する段階と、
前記CSI及び/又はCQIに基づいて、MU−MAS重みを適用して各群内で1つ又はそれよりも多くのMU−MAS事前符号化データストリームを生成する段階と、を更地に含む
ことを特徴とする請求項58記載の方法。
The MU-MAS coordinates communication with a first client, the method comprising:
Receiving channel state information (CSI) and / or channel quality information (CQI);
Selecting a group of MU-MAS antennas in the same cluster based on the CSI or CQI;
Further comprising applying MU-MAS weights to generate one or more MU-MAS pre-encoded data streams within each group based on the CSI and / or CQI. 59. The method of claim 58, wherein:
前記MU−MASが複数のクライアントデバイスと通信し、前記方法が、
第1の複数のMU−MASアンテナの各々とクライアントデバイスの各々との間のチャンネル状態を定義するチャンネル状態情報(CSI)を決定する段階と、
前記CSIを使用して、前記第1の複数のMU−MASアンテナの各々と前記クライアントデバイスの各々のアンテナとの間の前記チャンネルの各々に対するMU−MAS事前符号化重みを決定する段階と、
前記CSI及びMU−MAS事前符号化重みを使用して、前記第1の複数のMU−MASアンテナの各々と前記クライアントデバイスの各々の前記アンテナとの間のリンク品質を定義するリンク品質メトリックを決定する段階と、
前記リンク品質メトリックを使用して異なるクライアントデバイスに対する変調符号化方式(MCS)を決定する段階と、
前記第1の複数のMU−MASアンテナの各々から個々のクライアントデバイスの各々までそれらのクライアントデバイスに対する前記決定されたMCSを使用して事前符号化データストリームを送信する段階を更に含む
ことを特徴とする請求項58記載の方法。
The MU-MAS communicates with a plurality of client devices, the method comprising:
Determining channel state information (CSI) defining a channel state between each of the first plurality of MU-MAS antennas and each of the client devices;
Using the CSI to determine MU-MAS precoding weights for each of the channels between each of the first plurality of MU-MAS antennas and each antenna of the client device;
The CSI and MU-MAS precoding weights are used to determine a link quality metric that defines a link quality between each of the first plurality of MU-MAS antennas and each of the antennas of the client device. And the stage of
Determining a modulation and coding scheme (MCS) for different client devices using the link quality metric;
Further comprising transmitting a pre-encoded data stream from each of the first plurality of MU-MAS antennas to each of the individual client devices using the determined MCS for those client devices. 59. The method of claim 58.
前記MU−MASが事前符号化補間を行い、且つ複数のクライアントデバイスと通信するために直交周波数分割多重(OFDM)及びMU−MAS事前符号化を使用し、前記方法が、
ODFMトーンの第1の部分集合を選択して事前符号化重みの第1の部分集合を決定する段階と、
事前符号化重みの前記第1の部分集合間で補間することにより、ODFMトーンの第2の部分集合のための事前符号化重みの第2の部分集合を導出する段階と、
事前符号化重みの前記第1の部分集合及び事前符号化重みの前記第2の部分集合の組合せを使用して、データストリームを該データストリームをクライアントデバイスに送信する前に事前符号化する段階と、を更に含む
ことを特徴とする請求項58記載の方法。
The MU-MAS performs precoding interpolation and uses orthogonal frequency division multiplexing (OFDM) and MU-MAS precoding to communicate with multiple client devices, the method comprising:
Selecting a first subset of ODFM tones to determine a first subset of precoding weights;
Deriving a second subset of precoding weights for the second subset of ODFM tones by interpolating between said first subsets of precoding weights;
Using a combination of the first subset of pre-encoding weights and the second subset of pre-encoding weights to pre-encode the data stream before sending the data stream to a client device; 59. The method of claim 58, further comprising:
前記MU−MASが、
複数の無線クライアントデバイスと、
前記複数のクライアントデバイスとの複数の同時の通信チャンネルを確立するための複数のMU−MASアンテナを有する複数の基地送受信機局(BTS)と、
を含み、前記方法が、
前記BTS及び/又は前記無線クライアントデバイスのいずれかが、それらの間の前記通信チャンネルのリンク品質を測定し、かつ該リンク品質測定値を使用してクライアントデバイスクラスターを定義する段階と、
前記BTS及び/又は前記無線クライアントデバイスは、更に、定義されたクライアントデバイスクラスター内の各クライアントデバイスと各MU−MASアンテナ間のチャンネル状態情報(CSI)を測定し、かつ該測定CSIに基づいて該クライアントデバイスクラスター内の該MU−MASアンテナとそれらのMU−MASアンテナによって到達可能な前記クライアントデバイスとの間のデータ伝送を事前符号化する段階と、を更に含む
ことを特徴とする請求項58記載の方法。
The MU-MAS is
Multiple wireless client devices;
A plurality of base transceiver stations (BTS) having a plurality of MU-MAS antennas for establishing a plurality of simultaneous communication channels with the plurality of client devices;
The method comprising:
Either the BTS and / or the wireless client device measure the link quality of the communication channel between them and define the client device cluster using the link quality measurement;
The BTS and / or the wireless client device further measures channel state information (CSI) between each client device and each MU-MAS antenna in the defined client device cluster, and based on the measured CSI 59. Pre-encoding data transmission between the MU-MAS antennas in a client device cluster and the client devices reachable by those MU-MAS antennas. the method of.
ブロック対角化事前符号化を使用することを特徴とする請求項58に記載の方法。   59. The method of claim 58, wherein block diagonalized precoding is used. M個の分散型送信アンテナが、ゼロRFエネルギの(M−1)個までの点を作成することを特徴とする請求項59に記載の方法。   60. The method of claim 59, wherein the M distributed transmit antennas create up to (M-1) points of zero RF energy. 前記ゼロRFエネルギのロケーションは、受信機であり、前記送信アンテナは、前記送信機と該受信機間の前記チャンネル状態情報を認識し、該送信機は、該チャンネル状態情報を利用して同時に送信される干渉信号を決定することを特徴とする請求項59に記載の方法。   The location of the zero RF energy is a receiver, the transmit antenna recognizes the channel state information between the transmitter and the receiver, and the transmitter transmits simultaneously using the channel state information. 60. The method of claim 59, wherein the interference signal to be determined is determined. 前記送信アンテナは、マルチユーザ(MU)マルチアンテナシステム(MU−MAS)アンテナであり、
前記ゼロRFエネルギを有するロケーションは、クライアントデバイスのロケーションに対応し、MU−MAS事前符号化が、該クライアントデバイスに対してゼロRFエネルギの点を作成するために使用されることを特徴とする請求項59に記載の方法。
The transmit antenna is a multi-user (MU) multi-antenna system (MU-MAS) antenna;
The location having zero RF energy corresponds to the location of a client device, and MU-MAS precoding is used to create a zero RF energy point for the client device. 60. The method according to Item 59.
ゼロRFエネルギの点が、隣接MU−MASクラスター間の干渉を除去するために作成されることを特徴とする請求項59に記載の方法。   60. The method of claim 59, wherein zero RF energy points are created to eliminate interference between adjacent MU-MAS clusters. 前記第1のMU−MASクラスターからの該第1のクライアントデバイスによって検出された前記信号強度と前記第2のMU−MASからの該第1のクライアントデバイスによって検出された前記干渉信号強度との比率に基づく該第1のクライアントデバイスでの信号対干渉ノイズ比(SINR)を推定することにより、該第1のMU−MASクラスターからの該信号強度の指定の値が該第2のMU−MAクラスターからの該干渉信号強度の前記値に対する前記指定の値に到達するか否かを決定する段階と、
前記第1のクライアントデバイスが、前記SINRが指定の閾値よりも下に移動する時に該第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと前記第2のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義するチャンネル状態情報(CSI)を生成する段階と、
ことを更に含むことを特徴とする請求項60に記載の方法。
A ratio between the signal strength detected by the first client device from the first MU-MAS cluster and the interference signal strength detected by the first client device from the second MU-MAS. By estimating a signal-to-interference noise ratio (SINR) at the first client device based on the first MU-MAS cluster, a specified value of the signal strength from the first MU-MAS cluster is Determining whether to reach the specified value for the value of the interference signal strength from
When the first client device moves the SINR below a specified threshold, one or more antennas of the first client device and one or more of the second MU-MAS clusters or Generating channel state information (CSI) that defines channel states with more antennas;
61. The method of claim 60, further comprising:
前記第1のMU−MASクラスター内の複数の基地局送受信機(BTS)で、前記第1のクライアントデバイスを含む第1の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために従来のMU−MAS事前符号化を実施する段階と、
前記第2のMU−MASクラスター内の前記BTSで、第2の複数のクライアントデバイスに同じ周波数帯域内で同時非干渉データストリームを送信するために前記IMCI相殺事前符号化と同時に実施される従来のMU−MAS事前符号化を実施する段階と、
を更に含むことを特徴とする請求項60に記載の方法。
A plurality of base station transceivers (BTS) in the first MU-MAS cluster transmit simultaneous non-interfering data streams in a same frequency band to a plurality of first client devices including the first client device. Performing conventional MU-MAS precoding for
Conventional performed at the BTS in the second MU-MAS cluster concurrently with the IMCI cancellation precoding to transmit simultaneous non-interfering data streams in the same frequency band to a second plurality of client devices Performing MU-MAS precoding;
61. The method of claim 60, further comprising:
第2のMU−MASクラスターからの干渉信号強度を前記第1のクライアントデバイスによって検出する段階は、前記第1のMU−MASクラスターの前記MU−MASアンテナからの指定のサイレンス期間中に信号強度を測定することを含むことを特徴とする請求項60に記載の方法。   Detecting by the first client device the interference signal strength from a second MU-MAS cluster is the step of detecting the signal strength during a specified silence period from the MU-MAS antenna of the first MU-MAS cluster. 61. The method of claim 60, comprising measuring. 前記指定のサイレンス期間は、所定の送信フレーム構造に基づいて指定されることを特徴とする請求項75に記載の方法。   The method of claim 75, wherein the specified silence period is specified based on a predetermined transmission frame structure. 前記第1のMU−MASクラスター及び前記第2のMU−MASクラスターは、マルチキャリア直交周波数分割多重(OFDM)システムを含み、前記方法が、
前記第1のクライアントで信号対干渉比(SIR)又は信号対干渉ノイズ比(SINR)を推定することにより、前記第1のMU−MASクラスターからの前記信号強度の指定の値が、前記第2のMU−MASクラスターからの前記干渉信号強度の前記値に対する前記指定の値に到達するか否かを決定し、該SIRが、該第1のMU−MASクラスターからの該第1のクライアントによって検出された該信号強度と該第2のMU−MASクラスターからの該第1のクライアントによって検出された該干渉信号強度との比率に基づいており、該SINRが、該第1のMU−MASクラスターからの該第1のクライアントによって検出された該信号強度と該第2のMU−MASクラスターからの該第1のクライアントによって検出された該干渉信号強度及びノイズ信号強度との比率に基づいており、該SIR又はSINRが、前記ODFMシステムのヌルトーンから推定される前記決定する段階を更に含む、
ことを特徴とする請求項60に記載の方法。
The first MU-MAS cluster and the second MU-MAS cluster comprise a multi-carrier orthogonal frequency division multiplexing (OFDM) system, the method comprising:
By estimating a signal-to-interference ratio (SIR) or a signal-to-interference noise ratio (SINR) at the first client, the specified value of the signal strength from the first MU-MAS cluster becomes the second value. Determine whether the specified value for the value of the interference signal strength from the MU-MAS cluster of the first MU-MAS cluster is reached, and the SIR is detected by the first client from the first MU-MAS cluster Based on a ratio of the measured signal strength to the interference signal strength detected by the first client from the second MU-MAS cluster, wherein the SINR is derived from the first MU-MAS cluster. The signal strength detected by the first client and the interference detected by the first client from the second MU-MAS cluster. Is based on the ratio between the intensity and the noise signal intensity, the SIR, or SINR further comprises the step of the determined estimated from null tones of the ODFM systems,
61. The method of claim 60.
前記第1のMU−MASクラスターからの前記信号強度が前記第2のMU−MASクラスターからの前記干渉信号強度の前記値に対する指定の値に到達した場合に、該第2のMU−MASクラスターからのトレーニング信号を使用して、前記第1のクライアントデバイスの1つ又はそれよりも多くのアンテナと該第2のMU−MASクラスターの1つ又はそれよりも多くのアンテナとの間のチャンネル状態を定義する前記チャンネル状態情報(CSI)を生成することを特徴とする請求項60に記載の方法。   When the signal strength from the first MU-MAS cluster reaches a specified value for the value of the interference signal strength from the second MU-MAS cluster, from the second MU-MAS cluster Are used to determine the channel condition between one or more antennas of the first client device and one or more antennas of the second MU-MAS cluster. 61. The method of claim 60, wherein the channel state information (CSI) to define is generated. 前記第2のMU−MASクラスター内の前記BTSでMU−MASクラスター間干渉(IMCI)相殺によってMU−MAS事前符号化を実施する段階は、前記第1のクライアントデバイスのロケーションでゼロRFエネルギを作成するために高周波(RF)信号を事前符号化して送信することを含むことを特徴とする請求項60に記載の方法。   Performing MU-MAS precoding with MU-MAS intercluster interference (IMCI) cancellation at the BTS in the second MU-MAS cluster creates zero RF energy at the location of the first client device 61. The method of claim 60, comprising pre-encoding and transmitting a radio frequency (RF) signal to do so. S1及びS2に対して信号対干渉ノイズ比(SINR)及び/又は信号対干渉比(SIR)を計算する段階と、
SIR及び/又はSINRの値に基づいて第1、第2、及び第3の閾値を定義する段階と、
を更に含むことを特徴とする請求項61に記載の方法。
Calculating a signal to interference noise ratio (SINR) and / or a signal to interference ratio (SIR) for S1 and S2;
Defining first, second, and third threshold values based on SIR and / or SINR values;
62. The method of claim 61, further comprising:
S1及びS2の前記相対値に基づいて、該第1のクライアントデバイスがゾーン間を移動するのに応答してヒステリシスループを実施して該ゾーンの各々間の反復的な切り換えを回避するために前記第1から第3の閾値の値の各々を動的に調節すること、
を更に含むことを特徴とする請求項61に記載の方法。
Based on the relative values of S1 and S2, the hysteresis loop is implemented in response to the first client device moving between zones to avoid repetitive switching between each of the zones. Dynamically adjusting each of the first to third threshold values;
62. The method of claim 61, further comprising:
前記クライアントデバイスが現在常駐する前記ゾーンに関する決定が、該クライアントデバイスによって行われることを特徴とする請求項61に記載の方法。   62. The method of claim 61, wherein a determination regarding the zone in which the client device currently resides is made by the client device. 前記クライアントデバイスが現在常駐する前記ゾーンに関する決定が、前記第1のMU−MASクラスター及び/又は前記第2のMU−MASクラスター内のBTSによって行われることを特徴とする請求項61に記載の方法。   62. The method of claim 61, wherein a determination regarding the zone in which the client device currently resides is made by a BTS in the first MU-MAS cluster and / or the second MU-MAS cluster. . 命令のシーケンスを実行するプロセッサとして実施される有限状態機械を用いて実施されることを特徴とする請求項61に記載の方法。   62. The method of claim 61, implemented using a finite state machine implemented as a processor that executes a sequence of instructions. 前記RFエネルギは、ドップラーシフトを推定することによって前記クライアントデバイスに対する現在の速度を推定するのに使用されることを特徴とする請求項62に記載の方法。   The method of claim 62, wherein the RF energy is used to estimate a current velocity for the client device by estimating a Doppler shift. 前記ドップラーシフトは、ブラインド推定技術を使用して、前記アンテナから前記クライアントに反射されて該アンテナに戻る前記RFエネルギを使用して計算されることを特徴とする請求項85に記載の方法。   86. The method of claim 85, wherein the Doppler shift is calculated using the RF energy reflected from the antenna back to the client and back to the antenna using a blind estimation technique. 前記RFエネルギは、トレーニング信号から構成され、前記ドップラーシフトは、該トレーニング信号を使用して計算されることを特徴とする請求項85に記載の方法。   86. The method of claim 85, wherein the RF energy is comprised of a training signal and the Doppler shift is calculated using the training signal. 前記クライアントデバイスの速度が指定の閾値よりも大きい場合に、前記方法が、高速クライアントデバイスと通信することができる第1のMU−MASネットワークに該クライアントデバイスを割り当て、及び該クライアントデバイスの速度が該指定の閾値よりも小さい場合に、第2のMU−MASネットワークに該クライアントデバイスを割り当てること更に含むことを特徴とする請求項62に記載の方法。   If the speed of the client device is greater than a specified threshold, the method assigns the client device to a first MU-MAS network that can communicate with the high-speed client device, and the speed of the client device is the speed of the client device 64. The method of claim 62, further comprising assigning the client device to a second MU-MAS network if it is less than a specified threshold. 前記第1のMU−MASネットワークは、第1の平均待ち時間を有するBTSネットワークを通じて接続された複数の基地局送受信機(BTS)を含み、
前記第2のMU−MASネットワークは、前記第1の平均待ち時間よりも低い第2の平均待ち時間を有するBTSネットワークを通じて接続された複数のBTSを含む、
ことを特徴とする請求項88に記載の方法。
The first MU-MAS network includes a plurality of base station transceivers (BTSs) connected through a BTS network having a first average latency;
The second MU-MAS network includes a plurality of BTSs connected through a BTS network having a second average latency that is lower than the first average latency.
90. The method of claim 88, wherein:
前記MU−MAS事前符号化データストリームの各々に前記電力スケーリング係数を適用する段階は、該MU−MAS事前符号化データストリームの各々に該電力スケーリング係数を乗算することを含むことを特徴とする請求項63に記載の方法。   Applying the power scaling factor to each of the MU-MAS pre-encoded data streams comprises multiplying each of the MU-MAS pre-encoded data streams by the power scaling factor. Item 64. The method according to Item 63. 前記CQIは、前記通信チャンネルの各々に対する平均信号対ノイズ比(SNR)又は受信信号強度表示(RSSI)を含むことを特徴とする請求項63に記載の方法。   64. The method of claim 63, wherein the CQI includes an average signal to noise ratio (SNR) or a received signal strength indication (RSSI) for each of the communication channels. 前記電力スケーリング係数が、全てのMU−MASアンテナに送られた前記データストリームの各々に適用され、かつ瞬間的なMU−MAS当たりアンテナ送信電力が所定の最大許容露出(MPE)限界値よりも大きい場合があっても平均MU−MAS当たりアンテナ電力が該MPE限界値よりも低く維持されるように動的に調節されることを特徴とする請求項63に記載の方法。   The power scaling factor is applied to each of the data streams sent to all MU-MAS antennas and the instantaneous antenna transmit power per MU-MAS is greater than a predetermined maximum allowable exposure (MPE) limit value 64. The method of claim 63, wherein, in some cases, the antenna power per average MU-MAS is dynamically adjusted so as to remain below the MPE limit. 前記MU−MAS事前符号化データストリームの各々に前記電力スケーリング係数を適用する段階は、該MU−MAS事前符号化データストリームの各々に該電力スケーリング係数を乗算することを含むことを特徴とする請求項64に記載の方法。   Applying the power scaling factor to each of the MU-MAS pre-encoded data streams comprises multiplying each of the MU-MAS pre-encoded data streams by the power scaling factor. Item 65. The method according to Item 64. 前記CQIは、前記通信チャンネルの各々に対する平均信号対ノイズ比(SNR)又は受信信号強度表示(RSSI)を含むことを特徴とする請求項64に記載の方法。   The method of claim 64, wherein the CQI includes an average signal to noise ratio (SNR) or a received signal strength indication (RSSI) for each of the communication channels. 前記電力スケーリング係数は、全てのMU−MASアンテナに送られた前記データストリームの各々に適用され、かつ瞬間的なMU−MAS当たりアンテナ送信電力が所定の最大許容露出(MPE)限界値よりも大きい場合があっても平均MU−MAS当たりアンテナ電力が該MPE限界値よりも低く維持されるように動的に調節されることを特徴とする請求項64に記載の方法。   The power scaling factor is applied to each of the data streams sent to all MU-MAS antennas and the instantaneous antenna transmit power per MU-MAS is greater than a predetermined maximum allowable exposure (MPE) limit value. 65. The method of claim 64, wherein the method is dynamically adjusted such that the antenna power per average MU-MAS is maintained below the MPE limit value in some cases. 直交周波数分割多重(OFDM)を使用することを更に含み、前記リンク品質メトリックは、全てのOFDMトーンにわたる平均信号対ノイズ比を含むことを特徴とする請求項65に記載の方法。   66. The method of claim 65, further comprising using orthogonal frequency division multiplexing (OFDM), wherein the link quality metric comprises an average signal to noise ratio across all OFDM tones. 前記リンク品質メトリックは、前記第1の複数のアンテナと前記クライアントの前記アンテナとの間の有効チャンネルの周波数応答であることを特徴とする請求項65に記載の方法。   The method of claim 65, wherein the link quality metric is a frequency response of an effective channel between the first plurality of antennas and the antenna of the client. 直交周波数分割多重(OFDM)を使用する段階と、
前記リンク品質メトリックに基づいて、前記異なるクライアントデバイスの各々と通信するのに使用される異なるOFDMトーンを決定する段階と、
を更に含むことを特徴とする請求項65に記載の方法。
Using orthogonal frequency division multiplexing (OFDM);
Determining different OFDM tones used to communicate with each of the different client devices based on the link quality metric;
66. The method of claim 65, further comprising:
それぞれの前記クライアントデバイスの各々への通信に使用される前記MCSの表示を送信する段階、
を更に含むことを特徴とする請求項65に記載の方法。
Sending an indication of the MCS used for communication to each of the respective client devices;
66. The method of claim 65, further comprising:
直交周波数分割多重(OFDM)を使用する段階と、
それぞれの前記クライアントデバイスの各々への通信に使用される異なるトーンの表示を送信する段階と、
を更に含むことを特徴とする請求項65に記載の方法。
Using orthogonal frequency division multiplexing (OFDM);
Sending an indication of the different tones used for communication to each of the respective client devices;
66. The method of claim 65, further comprising:
チャンネル利得の検出された時間的変動に基づいて前記MCSを調節する段階を更に含むことを特徴とする請求項65に記載の方法。   66. The method of claim 65, further comprising adjusting the MCS based on a detected temporal variation in channel gain. 前記MCSは、チャンネル干渉時間の部分毎に再計算されることを特徴とする請求項65に記載の方法。   66. The method of claim 65, wherein the MCS is recalculated for each portion of channel interference time. 前記MU−MAS送信アンテナは、前記送信機と該受信機間の前記チャンネル状態情報を認識し、該送信機は、該チャンネル状態情報を利用して同時に送信される干渉信号を決定することを特徴とする請求項58に記載の方法。   The MU-MAS transmit antenna recognizes the channel state information between the transmitter and the receiver, and the transmitter determines an interference signal transmitted simultaneously using the channel state information. 59. The method of claim 58. 特異値分解(SVD)が、事前符号化重みの前記第1の部分集合を決定するためにOFDMトーンの前記第1の部分集合に対して行われることを特徴とする請求項66に記載の方法。   The method of claim 66, wherein singular value decomposition (SVD) is performed on the first subset of OFDM tones to determine the first subset of pre-encoding weights. . 前記リンク品質は、信号対ノイズ比(SNR)又は信号対干渉ノイズ比(SINR)として測定されることを特徴とする請求項67に記載の方法。   68. The method of claim 67, wherein the link quality is measured as a signal to noise ratio (SNR) or a signal to interference noise ratio (SINR). 前記MU−MASアンテナは、トレーニング信号を送信し、前記クライアントデバイスは、そのトレーニングに基づいて前記受信信号品質を推定することを特徴とする請求項105に記載の方法。   106. The method of claim 105, wherein the MU-MAS antenna transmits a training signal and the client device estimates the received signal quality based on the training. 前記リンク品質測定値を使用してクライアントデバイスクラスターを定義することは、ターゲットクライアントデバイスに対して非ゼロリンク品質メトリックを有する前記アンテナの部分集合を識別することを含むことを特徴とする請求項67に記載の方法。   68. Defining a client device cluster using the link quality measurement comprises identifying a subset of the antennas having a non-zero link quality metric for a target client device. The method described in 1. 前記クライアントデバイスクラスターが選択された状態で、あらゆるクライアントデバイスへの該クライアントデバイスクラスター内の全ての送信機からの前記CSIは、該クライアントデバイスクラスター内の全てのBTSに対して利用可能にされることを特徴とする請求項67に記載の方法。   With the client device cluster selected, the CSI from all transmitters in the client device cluster to every client device is made available to all BTSs in the client device cluster 68. The method of claim 67, wherein: 前記CSI情報は、基地局ネットワーク(BSN)を通じて全てのBTSにわたって共有されることを特徴とする請求項108に記載の方法。   109. The method of claim 108, wherein the CSI information is shared across all BTSs through a base station network (BSN). アップリンク/ダウンリンク(UL/DL)チャンネル相互関係が、時分割複信(TDD)システムのためのULチャンネル上のトレーニングから前記CSIを導出するのに利用されることを特徴とする請求項67に記載の方法。   68. Uplink / downlink (UL / DL) channel correlation is utilized to derive the CSI from training on a UL channel for a time division duplex (TDD) system. The method described in 1. 前記BTSへの全てのクライアントデバイスからのフィードバックチャンネルが、周波数分割複信(FDD)システムに使用されることを特徴とする請求項67に記載の方法。   68. The method of claim 67, wherein feedback channels from all client devices to the BTS are used in a frequency division duplex (FDD) system. フィードバックの量を低減するために、前記リンク品質行列の前記非ゼロ入力に対応する前記CSIのみがフィードバックされることを特徴とする請求項111に記載の方法。   111. The method of claim 111, wherein only the CSI corresponding to the non-zero input of the link quality matrix is fed back to reduce the amount of feedback. 実効チャンネル行列
Figure 2013543348
の特異値分解(SVD)が計算され、ターゲットクライアントデバイスkに対する事前符号化重み
Figure 2013543348
が、
Figure 2013543348
のヌル部分空間に対応する右特異ベクトルとして定義されることを特徴とする請求項67に記載の方法。
Effective channel matrix
Figure 2013543348
The singular value decomposition (SVD) of the precoding weights for the target client device k
Figure 2013543348
But,
Figure 2013543348
68. The method of claim 67, defined as a right singular vector corresponding to a null subspace.
送信機の数が、クライアントデバイスの数よりも多く、かつSVDが、実効チャンネル行列を
Figure 2013543348
として分解する場合に、クライアントデバイスkに対するMU−MAS事前符号化重みが、
Figure 2013543348
によって与えられ、ここで、
Figure 2013543348
は、列が
Figure 2013543348
のヌル部分空間の特異ベクトルである行列であることを特徴とする請求項67に記載の方法。
The number of transmitters is greater than the number of client devices and the SVD has an effective channel matrix
Figure 2013543348
MU-MAS pre-encoding weight for client device k is
Figure 2013543348
Where, given by
Figure 2013543348
Is the column
Figure 2013543348
68. The method of claim 67, wherein the matrix is a singular vector of null subspaces.
JP2013537753A 2010-11-01 2011-10-31 System and method for coordinating transmissions in a distributed wireless system through user clustering Active JP5957000B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/917,257 2010-11-01
US12/917,257 US8542763B2 (en) 2004-04-02 2010-11-01 Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
PCT/US2011/058663 WO2012061325A1 (en) 2010-11-01 2011-10-31 Systems and methods to coordinate transmissions in distributed wireless systems via user clustering

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016120928A Division JP6155368B2 (en) 2010-11-01 2016-06-17 System and method for coordinating transmissions in a distributed wireless system through user clustering

Publications (3)

Publication Number Publication Date
JP2013543348A JP2013543348A (en) 2013-11-28
JP2013543348A5 true JP2013543348A5 (en) 2014-12-18
JP5957000B2 JP5957000B2 (en) 2016-07-27

Family

ID=46024795

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2013537753A Active JP5957000B2 (en) 2010-11-01 2011-10-31 System and method for coordinating transmissions in a distributed wireless system through user clustering
JP2016120928A Active JP6155368B2 (en) 2010-11-01 2016-06-17 System and method for coordinating transmissions in a distributed wireless system through user clustering
JP2017110950A Active JP6263300B2 (en) 2010-11-01 2017-06-05 Method implemented in the apparatus to achieve precoding interpolation
JP2017240334A Pending JP2018078608A (en) 2010-11-01 2017-12-15 Execution method by apparatus for attainment of previous coding interpolation
JP2019039195A Active JP6641512B2 (en) 2010-11-01 2019-03-05 Method implemented in an apparatus to achieve pre-encoded interpolation
JP2019238040A Pending JP2020074541A (en) 2010-11-01 2019-12-27 System and method for distributed antenna wireless communications
JP2023025944A Pending JP2023071793A (en) 2010-11-01 2023-02-22 System and method for distributed antenna wireless communications

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2016120928A Active JP6155368B2 (en) 2010-11-01 2016-06-17 System and method for coordinating transmissions in a distributed wireless system through user clustering
JP2017110950A Active JP6263300B2 (en) 2010-11-01 2017-06-05 Method implemented in the apparatus to achieve precoding interpolation
JP2017240334A Pending JP2018078608A (en) 2010-11-01 2017-12-15 Execution method by apparatus for attainment of previous coding interpolation
JP2019039195A Active JP6641512B2 (en) 2010-11-01 2019-03-05 Method implemented in an apparatus to achieve pre-encoded interpolation
JP2019238040A Pending JP2020074541A (en) 2010-11-01 2019-12-27 System and method for distributed antenna wireless communications
JP2023025944A Pending JP2023071793A (en) 2010-11-01 2023-02-22 System and method for distributed antenna wireless communications

Country Status (17)

Country Link
US (3) US8542763B2 (en)
EP (3) EP4373041A3 (en)
JP (7) JP5957000B2 (en)
KR (4) KR101703384B1 (en)
CN (3) CN114024581A (en)
AU (6) AU2011323559B2 (en)
BR (1) BR112013010642A2 (en)
CA (1) CA2816556C (en)
FI (1) FI3557782T3 (en)
HK (1) HK1255304A1 (en)
IL (3) IL226082A (en)
MX (1) MX2013004913A (en)
NZ (1) NZ610463A (en)
RU (1) RU2543092C2 (en)
SG (3) SG10202111030TA (en)
TW (4) TW201944743A (en)
WO (1) WO2012061325A1 (en)

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10187133B2 (en) 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
JP4433867B2 (en) 2004-04-28 2010-03-17 ソニー株式会社 Wireless communication system
US9685997B2 (en) * 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US7917176B2 (en) * 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
US8989155B2 (en) * 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
US8547861B2 (en) * 2008-07-07 2013-10-01 Apple Inc. Optimizing downlink communications between a base station and a remote terminal by power sharing
US8249540B1 (en) 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
US8160571B2 (en) * 2008-10-06 2012-04-17 Root Wireless, Inc. Mobile device and method for collecting location based user quality data
US8379532B2 (en) 2008-10-06 2013-02-19 Root Wireless, Inc. Web server and method for hosting a web page for presenting location based user quality data related to a communication network
US8832258B2 (en) * 2008-10-06 2014-09-09 Root Wireless, Inc. Server device and method for directing mobile devices to collect and communicate location based user quality data
US9113345B2 (en) 2008-10-06 2015-08-18 Root Wireless, Inc. Web server and method for hosting a web page for presenting location based user quality data related to a communication network
KR101800294B1 (en) * 2009-04-02 2017-12-20 삼성전자주식회사 Apparatus and method for error minimization of cell boundary users in multi-call communication system
US8145223B2 (en) * 2009-04-09 2012-03-27 Telefonaktiebolaget L M Ericsson (Publ) Inter-cell interference mitigation
US20100304773A1 (en) * 2009-05-27 2010-12-02 Ramprashad Sean A Method for selective antenna activation and per antenna or antenna group power assignments in cooperative signaling wireless mimo systems
JP5669854B2 (en) 2009-11-09 2015-02-18 マーベル ワールド トレード リミテッド Method and apparatus for transmitting feedback data to a base station using coordinated transmission, and system comprising a base station using coordinated transmission scheme and a mobile communication terminal for transmitting feedback data
JP2012085115A (en) * 2010-10-12 2012-04-26 Panasonic Corp Communication terminal and cluster monitoring method
US9048970B1 (en) 2011-01-14 2015-06-02 Marvell International Ltd. Feedback for cooperative multipoint transmission systems
CN105959956B (en) 2011-02-22 2019-07-23 索尼公司 Antenna management device and method
WO2012131612A1 (en) 2011-03-31 2012-10-04 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
EP2705726A4 (en) * 2011-05-02 2015-04-29 Ziva Corp Distributed co-operating nodes using time reversal
EP2747325A4 (en) * 2011-08-15 2015-07-08 Sharp Kk Wireless transmission device, wireless reception device, program, integrated circuit, and wireless communication system
US9977188B2 (en) 2011-08-30 2018-05-22 Skorpios Technologies, Inc. Integrated photonics mode expander
US9885832B2 (en) 2014-05-27 2018-02-06 Skorpios Technologies, Inc. Waveguide mode expander using amorphous silicon
CN102983933B (en) * 2011-09-06 2017-12-26 中兴通讯股份有限公司 Signaling method, signal decoding method, device and system
SG11201400621TA (en) * 2011-09-14 2014-04-28 Rearden Llc Systems and methods to exploit areas of coherence in wireless systems
KR101477169B1 (en) * 2011-09-26 2014-12-29 주식회사 에치에프알 Method for Sharing Optical Fiber for Cloud Based Network, System And Apparatus Therefor
US9025479B2 (en) * 2011-10-03 2015-05-05 Qualcomm Incorporated Increasing CSI-RS overhead via antenna port augmentation
WO2013068974A1 (en) 2011-11-10 2013-05-16 Marvell World Trade Ltd. Differential cqi encoding for cooperative multipoint feedback
US9220087B1 (en) 2011-12-08 2015-12-22 Marvell International Ltd. Dynamic point selection with combined PUCCH/PUSCH feedback
US9137818B2 (en) * 2011-12-14 2015-09-15 Alcatel Lucent Method and system for a reduced-complexity scheduling for a network MIMO with linear zero-forcing beamforming
CN103188768A (en) * 2011-12-30 2013-07-03 华为终端有限公司 Method and device of selection of communication mode
US9295033B2 (en) 2012-01-31 2016-03-22 Qualcomm Incorporated Systems and methods for narrowband channel selection
CN109379113B (en) 2012-02-06 2021-12-21 日本电信电话株式会社 Radio signal transmission method and radio apparatus
US10090901B2 (en) 2012-02-07 2018-10-02 Motorola Mobility Llc Method and apparatus for optimizing antenna precoder selection with coupled antennas
US9215597B2 (en) * 2012-03-16 2015-12-15 Alcatel Lucent Method of coordinating concurrent sector optimizations in a wireless communication system
US9019148B1 (en) * 2012-04-24 2015-04-28 Sandia Corporation Remote sensing using MIMO systems
EP2842361B1 (en) 2012-04-27 2019-03-27 Marvell World Trade Ltd. Coordinated multipoint (comp) communication between base-stations and mobile communication terminals
CN104603853B (en) * 2012-05-04 2020-02-18 李尔登公司 System and method for handling doppler effect in distributed input-distributed output wireless systems
CN109889233B (en) * 2012-05-18 2023-04-07 李尔登公司 System and method for enhancing spatial diversity in a wireless system
US9282473B2 (en) * 2012-06-07 2016-03-08 Samsung Electronics Co., Ltd. Wireless communication system with channel-quality indicator mechanism and method of operation thereof
US9215726B1 (en) * 2012-07-24 2015-12-15 Spectranet, Inc. Low latency wireless messaging
CN103596196B (en) * 2012-08-14 2018-05-25 中兴通讯股份有限公司 A kind of multi-access point calibration method and device
JP6019298B2 (en) * 2012-10-03 2016-11-02 株式会社国際電気通信基礎技術研究所 Wireless communication system, wireless transmission device, and wireless communication method
EP3306826B1 (en) * 2012-10-03 2019-06-05 Sckipio Technologies S.i Ltd Hybrid precoder
US10194346B2 (en) * 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US20150229372A1 (en) 2014-02-07 2015-08-13 Rearden, Llc Systems and methods for mapping virtual radio instances into physical volumes of coherence in distributed antenna wireless systems
US9161385B2 (en) 2012-11-26 2015-10-13 Brightsource Industries (Israel) Ltd. Systems and methods for wireless communications in a solar field
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11050468B2 (en) * 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9648503B2 (en) * 2013-01-09 2017-05-09 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method to establish and maintain cell clusters
US9241275B2 (en) * 2013-02-28 2016-01-19 Cisco Technologies, Inc. Distributed processing distributed-input distributed-output (DIDO) wireless communication
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) * 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
RU2767777C2 (en) * 2013-03-15 2022-03-21 Риарден, Ллк Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output
WO2014148812A1 (en) * 2013-03-19 2014-09-25 엘지전자 주식회사 Method by which terminal transmits and receives signal in multi cell-based wireless communication system, and device for same
JP2016129270A (en) * 2013-04-24 2016-07-14 三菱電機株式会社 Communication device and receiving device
CN105637773A (en) * 2013-08-14 2016-06-01 慧与发展有限责任合伙企业 Transmit antenna selection
US9344159B2 (en) 2013-10-09 2016-05-17 Telefonaktiebolaget L M Ericsson (Publ) Dynamic multi-cell clustering for downlink comp in a wireless communication network
KR102220399B1 (en) * 2013-10-21 2021-02-25 삼성전자주식회사 Apparatus and method for selecting user equipment and performing beam forming operation in wireless communication system using multiple input multiple output scheme
US9521520B2 (en) 2013-11-13 2016-12-13 Cisco Technology, Inc. Distributed-input OFDM angle-of-arrival scheme for location determination
CN103702343B (en) * 2013-12-30 2017-06-06 大唐移动通信设备有限公司 The detection method and device of a kind of inter-frequency interference cell
US9664855B2 (en) 2014-03-07 2017-05-30 Skorpios Technologies, Inc. Wide shoulder, high order mode filter for thick-silicon waveguides
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
AU2015274867C1 (en) 2014-06-09 2019-10-24 Commscope Technologies Llc Scheduling the same resource in radio access networks
CN104101873B (en) * 2014-06-29 2017-04-19 西北工业大学 Weighted average strategy-based distributed radar network multi-target positioning method
WO2016051343A1 (en) * 2014-09-29 2016-04-07 Telefonaktiebolaget L M Ericsson (Publ) Interference and/or power reduction for multiple relay nodes using cooperative beamforming
KR102069543B1 (en) * 2014-10-14 2020-01-23 주식회사 쏠리드 Headend apparatus of distributed antenna system and signal processing method thereof
US20160128048A1 (en) * 2014-10-29 2016-05-05 Qualcomm Incorporated Control channel on plcp service data unit (psdu) tones
US9544032B2 (en) * 2014-11-20 2017-01-10 Huawei Technologies Canada Co., Ltd. System and method for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) offset quadrature amplitude modulation (OQAM)
US9706514B2 (en) 2014-12-02 2017-07-11 Cisco Technology, Inc. Wideband angle-of-arrival location determination using bandwidth partitioning
CN104579441B (en) * 2014-12-29 2018-01-23 三维通信股份有限公司 A kind of indoor DAS system and small base station down interference avoidance method
US9936422B2 (en) * 2015-03-16 2018-04-03 Aruba Networks, Inc. Client association management for improving MU-MIMO transmissions
CN106161725B (en) * 2015-03-24 2019-10-29 联想(北京)有限公司 A kind of information processing method and electronic equipment
WO2016154908A1 (en) * 2015-03-31 2016-10-06 深圳市大疆创新科技有限公司 Wireless communication control method and apparatus
WO2016172202A1 (en) 2015-04-20 2016-10-27 Skorpios Technologies, Inc. Vertical output couplers for photonic devices
KR102123032B1 (en) * 2015-05-22 2020-06-16 모토로라 모빌리티 엘엘씨 Method and apparatus for optimizing antenna precoder selection with combined antennas
WO2016194235A1 (en) * 2015-06-05 2016-12-08 富士通株式会社 Observation system and observation method
US10178560B2 (en) * 2015-06-15 2019-01-08 The Invention Science Fund I Llc Methods and systems for communication with beamforming antennas
CN106257951B (en) * 2015-06-19 2021-04-30 中兴通讯股份有限公司 Data transmission method and base station
US9661598B2 (en) 2015-09-30 2017-05-23 Mitsubishi Electric Research Laboratories, Inc. System and method for reducing interference between multiple terminals
US10327164B2 (en) 2015-10-29 2019-06-18 Cable Television Laboratories, Inc. Multichannel communication systems
US10972155B2 (en) * 2015-11-25 2021-04-06 Hewlett Packard Enterprise Development Lp Access point selection
US10419975B1 (en) 2015-12-11 2019-09-17 Spectranet, Inc. Parallel multi-bit low latency wireless messaging
CN105721026B (en) * 2015-12-31 2019-12-17 华为技术有限公司 Joint data transmission method and equipment
JPWO2017126541A1 (en) * 2016-01-20 2018-11-22 日本電気株式会社 Calculation method, radio station, and program
RU2617207C1 (en) * 2016-02-24 2017-04-24 Ольга Олеговна Матросова Method of subscriber access to data network
US10200894B2 (en) * 2016-04-22 2019-02-05 City University Of Hong Kong Facilitating interference management in multi-cell and multi-user millimeter wave cellular networks
CN107370523A (en) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 The system of selection of codebook configuration and the electronic equipment for performing this method
US9668149B1 (en) 2016-05-25 2017-05-30 Cisco Technology, Inc. Receiver stomp-and-restart in a distributed MU-MIMO system using RSSI separation
AU2017278371A1 (en) * 2016-06-10 2019-01-24 At&T Intellectual Property I, L.P. Backhaul link with reference signal for distributed antenna system
US9918317B2 (en) * 2016-07-08 2018-03-13 Alcatel-Lucent Usa Inc. Apparatus configured to approximate a power coefficient in a cell-free massive MIMO wireless system and method of performing same
US10312979B2 (en) 2016-07-27 2019-06-04 Cisco Technology, Inc. Enabling distributed access points on high bandwidth cables for band and antenna splitting
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
US20180101590A1 (en) * 2016-10-10 2018-04-12 International Business Machines Corporation Message management in a social networking environment
US10039120B2 (en) * 2016-10-24 2018-07-31 Qualcomm Incorporated Scaling of shared spectrum exclusive resources
EP3577791B1 (en) * 2017-01-31 2023-10-11 Poynting Antennas (Pty) Limited System and method for providing communications services on both sides of a corridor
CN107249191B (en) * 2017-04-27 2019-12-10 东南大学 distributed base station clustering method based on hedonic game
US10306675B2 (en) 2017-05-03 2019-05-28 Cisco Technology, Inc. Collision detection and avoidance mechanism using distributed radio heads in a wireless network
US10645704B2 (en) * 2017-06-15 2020-05-05 Qualcomm Incorporated Multi-user multiple-input/multiple-output transmissions in millimeter wave systems
CN109309924B (en) * 2017-07-26 2022-06-03 北京小米移动软件有限公司 Data transmission method and device
US10229092B2 (en) 2017-08-14 2019-03-12 City University Of Hong Kong Systems and methods for robust low-rank matrix approximation
WO2019045729A1 (en) * 2017-08-31 2019-03-07 Intel IP Corporation Method and apparatus for iip2 calibration
CN109495152A (en) 2017-09-13 2019-03-19 索尼公司 Electronic equipment and communication means
US11678358B2 (en) 2017-10-03 2023-06-13 Commscope Technologies Llc Dynamic downlink reuse in a C-RAN
CN111108701B (en) * 2017-10-20 2021-09-14 荣耀终端有限公司 Resource scheduling method and terminal equipment
US10649148B2 (en) 2017-10-25 2020-05-12 Skorpios Technologies, Inc. Multistage spot size converter in silicon photonics
US10330770B2 (en) 2017-11-09 2019-06-25 Cisco Technology, Inc. Channel estimation in OFDMA for switched antenna array based angle-of-arrival location
US11324014B2 (en) * 2017-12-22 2022-05-03 Qualcomm Incorporated Exposure detection in millimeter wave systems
CN110062417B (en) 2018-01-19 2023-08-22 华为技术有限公司 Method, device and system for cooperative transmission control
WO2019157742A1 (en) * 2018-02-14 2019-08-22 华为技术有限公司 Channel state information matrix information processing method and communication apparatus
CN110324846B (en) 2018-03-28 2021-09-03 维沃移动通信有限公司 Monitoring method and terminal for uplink transmission cancellation instruction
CN108966369B (en) * 2018-07-19 2021-08-17 广州华创物联科技股份有限公司 System and method for positioning and monitoring personnel in nursing home
CN110752866B (en) * 2018-07-23 2021-08-20 华为技术有限公司 Large-scale MIMO precoding transmission method and device
CN109033084B (en) * 2018-07-26 2022-10-28 国信优易数据股份有限公司 Semantic hierarchical tree construction method and device
CN108848525B (en) * 2018-08-02 2021-09-03 武汉虹信科技发展有限责任公司 Method and device for measuring field intensity for accurately measuring LTE uplink power
RU2688927C1 (en) * 2018-08-10 2019-05-23 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Method of determining the angular position of the ofdm signal source
CN109409216B (en) * 2018-09-18 2022-04-05 哈尔滨工程大学 Speed self-adaptive indoor human body detection method based on subcarrier dynamic selection
US11184863B2 (en) * 2018-10-08 2021-11-23 Qualcomm Incorporated Uplink beam selection in millimeter wave subject to maximum permissible exposure constraints
WO2020124589A1 (en) 2018-12-21 2020-06-25 Qualcomm Incorporated Beam-strength related type-ii channel state information coefficient feedback
CN109769274B (en) * 2018-12-27 2021-06-25 普联技术有限公司 Method, apparatus and readable storage medium for channel switching in wireless networking system
EP3909396B1 (en) 2019-01-11 2022-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Inter-node coordination for cross-link interference management
US11360263B2 (en) 2019-01-31 2022-06-14 Skorpios Technologies. Inc. Self-aligned spot size converter
US11109432B2 (en) * 2019-02-15 2021-08-31 At&T Intellectual Property I, L.P. Location based coreset configuration for transmitting the physical downlink control channel in 5G wireless communication systems
CN110213713B (en) * 2019-04-28 2020-06-23 浙江大学 Centralized cooperative positioning system and method based on time-space domain joint processing
CN110191411B (en) * 2019-04-28 2020-06-19 浙江大学 Distributed cooperative positioning system and method based on time-space domain joint processing
TWI717736B (en) 2019-05-15 2021-02-01 財團法人工業技術研究院 Multi-antenna system and channel calibration method thereof
CN110166104B (en) * 2019-06-10 2020-04-03 深圳大学 Clustering-based distributed beamforming uplink signal identification method and system
EP4070472A4 (en) 2019-12-06 2023-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods performed in a wireless communication network for precoder optimization
CN111212433B (en) * 2020-01-13 2020-09-08 电子科技大学 Cognitive radio device and method based on single-channel self-interference cancellation
US11190955B1 (en) 2020-01-16 2021-11-30 Sprint Communications Company L.P. Configuration of a wireless network centralized unit (CU) and multiple wireless network distributed units (DUs)
US11329722B2 (en) 2020-03-27 2022-05-10 Relative Dynamics Incorporated Optical terminals
TWI714496B (en) * 2020-04-13 2020-12-21 國立清華大學 Communication time allocation method using reinforcement learning for wireless powered communication network and base station
DE112020007407B4 (en) * 2020-09-17 2024-09-12 Mitsubishi Electric Corporation RADIO COMMUNICATION DEVICE, CONTROL CIRCUIT, STORAGE MEDIUM AND SIGNAL PROCESSING METHOD
CN112688724A (en) * 2020-11-17 2021-04-20 西安电子科技大学 Cluster target cooperative response method and inquiry response system based on MIMO technology
US11582029B2 (en) * 2020-11-18 2023-02-14 Kabushiki Kaisha Toshiba Secret key generation for wireless channels
TWI764456B (en) * 2020-12-21 2022-05-11 鴻海精密工業股份有限公司 Method and device for block operation, computer device and storage medium
KR102301131B1 (en) * 2021-04-29 2021-09-10 세종대학교산학협력단 multi-antenna channel estimation apparatus and method for beamforming
CN117837170A (en) * 2021-07-01 2024-04-05 舒尔·阿奎西什控股公司 Scalable multi-user audio system and method
TWI773620B (en) * 2021-12-28 2022-08-01 李學智 Mobile phone mmWave antenna system with multiple ports and multiple antenna elements
CN115685187B (en) * 2022-07-08 2023-10-13 中山大学 High-integration portable MIMO deformation monitoring radar device and correction method
CN116488684B (en) * 2023-04-26 2023-10-13 南通大学 Method and device for identifying visible region in ultra-large-scale MIMO antenna system

Family Cites Families (508)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085877A (en) 1959-06-10 1963-04-16 Robert J Reid Method of producing animated motion pictures
US3887925A (en) 1973-07-31 1975-06-03 Itt Linearly polarized phased antenna array
US4075097A (en) 1975-04-01 1978-02-21 Monroe Auto Equipment Company Oil filter with oil improving dissolving body
US4003016A (en) 1975-10-06 1977-01-11 The United States Of America As Represented By The Secretary Of The Navy Digital beamforming system
US4076097A (en) 1976-08-04 1978-02-28 Thomas Lowe Clarke Augmented passive radiator loudspeaker
GB1578469A (en) 1977-11-05 1980-11-05 Marconi Co Ltd Tropospheric scatter radio communications systems
US4209780A (en) 1978-05-02 1980-06-24 The United States Of America As Represented By The United States Department Of Energy Coded aperture imaging with uniformly redundant arrays
US4771289A (en) 1982-05-28 1988-09-13 Hazeltine Corporation Beamforming/null-steering adaptive array
US4564935A (en) 1984-01-10 1986-01-14 The United States Of America As Represented By The Secretary Of The Air Force Tropospheric scatter communication system having angle diversity
US6041365A (en) 1985-10-29 2000-03-21 Kleinerman; Aurel Apparatus and method for high performance remote application gateway servers
US4855061A (en) 1988-04-26 1989-08-08 Cpc Engineering Corporation Method and apparatus for controlling the coagulant dosage for water treatment
CA1307842C (en) 1988-12-28 1992-09-22 Adrian William Alden Dual polarization microstrip array antenna
US5088091A (en) 1989-06-22 1992-02-11 Digital Equipment Corporation High-speed mesh connected local area network
US5097485A (en) 1989-10-10 1992-03-17 Hughes Aircraft Company Hf high data rate modem
US5095500A (en) 1989-12-07 1992-03-10 Motorola, Inc. Cellular radiotelephone diagnostic system
CA2011298C (en) 1990-03-01 1999-05-25 Adrian William Alden Dual polarization dipole array antenna
GB2256948B (en) 1991-05-31 1995-01-25 Thomas William Russell East Self-focussing antenna array
US5315309A (en) 1991-09-06 1994-05-24 Mcdonnell Douglas Helicopter Company Dual polarization antenna
US5600326A (en) 1991-12-16 1997-02-04 Martin Marietta Corp. Adaptive digital beamforming architecture and algorithm for nulling mainlobe and multiple sidelobe radar jammers while preserving monopulse ratio angle estimation accuracy
TW214620B (en) * 1992-04-13 1993-10-11 Ericsson Ge Mobile Communicat Calling channel in CDMA communications system
US5304809A (en) 1992-09-15 1994-04-19 Luxtron Corporation Luminescent decay time measurements by use of a CCD camera
US5483667A (en) 1993-07-08 1996-01-09 Northern Telecom Limited Frequency plan for a cellular network
US6005856A (en) * 1993-11-01 1999-12-21 Omnipoint Corporation Communication protocol for spread spectrum wireless communication system
US5472467A (en) 1994-03-14 1995-12-05 Pfeffer; Jack R. Self-supporting filter composite
US5771449A (en) 1994-03-17 1998-06-23 Endlink, Inc. Sectorized multi-function communication system
US5479026A (en) 1994-05-16 1995-12-26 United Technologies Corporation System having optically encoded information
US5424533A (en) 1994-06-21 1995-06-13 United Technologies Corporation Self illuminating touch activated optical switch
US5787344A (en) 1994-06-28 1998-07-28 Scheinert; Stefan Arrangements of base transceiver stations of an area-covering network
SE513974C2 (en) 1994-08-19 2000-12-04 Telia Ab Speed determination of mobile devices in telecommunication systems
JP3467888B2 (en) 1995-02-08 2003-11-17 三菱電機株式会社 Receiving device and transmitting / receiving device
US6005516A (en) 1995-06-08 1999-12-21 Metawave Communications Corporation Diversity among narrow antenna beams
US5838671A (en) 1995-06-23 1998-11-17 Ntt Mobile Communications Network Inc. Method and apparatus for call admission control in CDMA mobile communication system
US5841768A (en) 1996-06-27 1998-11-24 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US5950124A (en) 1995-09-06 1999-09-07 Telxon Corporation Cellular communication system with dynamically modified data transmission parameters
US5809422A (en) 1996-03-08 1998-09-15 Watkins Johnson Company Distributed microcellular communications system
US5742253A (en) 1996-03-12 1998-04-21 California Institute Of Technology System and method for controlling the phase of an antenna array
US7764231B1 (en) 1996-09-09 2010-07-27 Tracbeam Llc Wireless location using multiple mobile station location techniques
FR2754968B1 (en) 1996-10-22 1999-06-04 Sagem LOCALIZABLE CELL MOBILE TELEPHONY TERMINAL
US6732183B1 (en) 1996-12-31 2004-05-04 Broadware Technologies, Inc. Video and audio streaming for multiple users
US6049593A (en) 1997-01-17 2000-04-11 Acampora; Anthony Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
US5872814A (en) 1997-02-24 1999-02-16 At&T Wireless Services Inc. Method for linearization of RF transmission electronics using baseband pre-distortion in T/R compensation pilot signals
US6792259B1 (en) 1997-05-09 2004-09-14 Ronald J. Parise Remote power communication system and method thereof
US6308080B1 (en) 1997-05-16 2001-10-23 Texas Instruments Incorporated Power control in point-to-multipoint systems
US6008760A (en) 1997-05-23 1999-12-28 Genghis Comm Cancellation system for frequency reuse in microwave communications
US5930379A (en) 1997-06-16 1999-07-27 Digital Equipment Corporation Method for detecting human body motion in frames of a video sequence
US6259687B1 (en) * 1997-10-31 2001-07-10 Interdigital Technology Corporation Communication station with multiple antennas
US6061023A (en) 1997-11-03 2000-05-09 Motorola, Inc. Method and apparatus for producing wide null antenna patterns
US6252912B1 (en) 1997-12-24 2001-06-26 General Dynamics Government Systems Corporation Adaptive predistortion system
JPH11252613A (en) * 1998-03-05 1999-09-17 Tsushin Hoso Kiko Mobile communication system
FR2783126B1 (en) 1998-09-03 2001-03-30 Cit Alcatel CHANGING FROM THE MICROCELLULAR LAYER TO THE MACROCELLULAR LAYER IN A TWO-LAYERED CELL OF A TELECOMMUNICATIONS NETWORK
US6411612B1 (en) 1998-05-19 2002-06-25 Harris Communication Selective modification of antenna directivity pattern to adaptively cancel co-channel interference in TDMA cellular communication system
DE19833967C2 (en) 1998-07-28 2001-02-08 Siemens Ag Reception diversity procedure and radio communication system with diversity reception
US7483049B2 (en) 1998-11-20 2009-01-27 Aman James A Optimizations for live event, real-time, 3D object tracking
US6442151B1 (en) 1999-04-06 2002-08-27 Ericsson Inc. System and method for variable reassignment of transmission channels
US6804311B1 (en) 1999-04-08 2004-10-12 Texas Instruments Incorporated Diversity detection for WCDMA
ATE211334T1 (en) 1999-05-26 2002-01-15 Motorola Inc TRANSMIT DIVERSITY METHOD AND SYSTEM WITH PHASE CONTROL FOR RADIO TRANSMISSION SYSTEMS
US6717930B1 (en) 2000-05-22 2004-04-06 Interdigital Technology Corporation Cell search procedure for time division duplex communication systems using code division multiple access
US6067290A (en) 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6400761B1 (en) 1999-09-15 2002-06-04 Princeton University Method and apparatus for adaptively compensating channel or system variations in precoded communications system
JP4276399B2 (en) 1999-11-24 2009-06-10 富士通株式会社 Base station control station apparatus, radio terminal apparatus, and radio communication system
US6901062B2 (en) 1999-12-01 2005-05-31 Kathrein-Werke Kg Adaptive antenna array wireless data access point
US6975666B2 (en) 1999-12-23 2005-12-13 Institut National De La Recherche Scientifique Interference suppression in CDMA systems
US6888809B1 (en) 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
JP2001217759A (en) 2000-01-31 2001-08-10 Matsushita Electric Ind Co Ltd Radio communication equipment and radio communication method by adaptive array
US6633294B1 (en) 2000-03-09 2003-10-14 Seth Rosenthal Method and apparatus for using captured high density motion for animation
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US7139324B1 (en) 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
US20020027985A1 (en) * 2000-06-12 2002-03-07 Farrokh Rashid-Farrokhi Parallel processing for multiple-input, multiple-output, DSL systems
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
JP3473555B2 (en) 2000-06-30 2003-12-08 日本電気株式会社 Transmission power control system, control method, base station, control station, and recording medium
KR100493152B1 (en) 2000-07-21 2005-06-02 삼성전자주식회사 Transmission antenna diversity method, base station apparatus and mobile station apparatus therefor in mobile communication system
US6834043B1 (en) * 2000-07-24 2004-12-21 Motorola, Inc. Method and device for exploiting transmit diversity in time varying wireless communication systems
GB2365239A (en) 2000-07-26 2002-02-13 Alenia Marconi Systems Ltd Near-vertical incidence skywave HF radar
US6920192B1 (en) 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
US6643386B1 (en) 2000-08-10 2003-11-04 Omnivision Technologies, Inc. Method and apparatus for adding watermarks to images and/or video data streams
US6718180B1 (en) 2000-10-24 2004-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Power level convergence in a communications system
US8670390B2 (en) 2000-11-22 2014-03-11 Genghiscomm Holdings, LLC Cooperative beam-forming in wireless networks
US6836673B1 (en) 2000-12-22 2004-12-28 Arraycomm, Inc. Mitigating ghost signal interference in adaptive array systems
US6870515B2 (en) 2000-12-28 2005-03-22 Nortel Networks Limited MIMO wireless communication system
US7116722B2 (en) 2001-02-09 2006-10-03 Lucent Technologies Inc. Wireless communication system using multi-element antenna having a space-time architecture
FR2821217B1 (en) 2001-02-21 2003-04-25 France Telecom METHOD AND SYSTEM FOR ITERATIVE CODING-DECODING OF DIGITAL DATA STREAMS ENCODED BY SPATIO-TEMPORAL COMBINATIONS, IN MULTIPLE TRANSMISSION AND RECEPTION
JP2002281551A (en) 2001-03-16 2002-09-27 Mitsubishi Electric Corp Data transmitter, transmission permitting device, data transmitting method and transmission permitting method
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
JP3631698B2 (en) 2001-04-09 2005-03-23 日本電信電話株式会社 OFDM signal transmission system, OFDM signal transmitter and OFDM signal receiver
US10425135B2 (en) 2001-04-26 2019-09-24 Genghiscomm Holdings, LLC Coordinated multipoint systems
JP4314342B2 (en) 2001-05-01 2009-08-12 アイピージー エレクトロニクス 503 リミテッド Wireless communication system
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
ATE397812T1 (en) 2001-05-15 2008-06-15 Nokia Corp METHOD FOR CHANNEL ASSIGNMENT TO A MOBILE TERMINAL THAT MOVES IN A CELLULAR COMMUNICATIONS NETWORK
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
US20030026348A1 (en) * 2001-06-07 2003-02-06 National University Of Singapore Wireless communication apparatus and method
US7397826B2 (en) 2001-06-21 2008-07-08 Koninklijke Philips Electronics N.V. MIMO transmission system in a radio communications network
GB0115937D0 (en) 2001-06-29 2001-08-22 Koninkl Philips Electronics Nv Radio communication system
JP2003018054A (en) 2001-07-02 2003-01-17 Ntt Docomo Inc Radio communication method and system, and communication device
US20030012315A1 (en) 2001-07-06 2003-01-16 John Fan System and method for multistage error correction coding wirelessly transmitted information in a multiple antennae communication system
US7197282B2 (en) * 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
US20030048753A1 (en) 2001-08-30 2003-03-13 Ahmad Jalali Method and apparatus for multi-path elimination in a wireless communication system
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
US7068704B1 (en) 2001-09-26 2006-06-27 Itt Manufacturing Enterpprises, Inc. Embedded chirp signal for position determination in cellular communication systems
US7313617B2 (en) 2001-09-28 2007-12-25 Dale Malik Methods and systems for a communications and information resource manager
WO2004045087A2 (en) 2002-11-08 2004-05-27 Lyndale Trading Company Limited Adaptive broadband platforms and methods of operation
US6956907B2 (en) 2001-10-15 2005-10-18 Qualcomm, Incorporated Method and apparatus for determining power allocation in a MIMO communication system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US8396368B2 (en) 2009-12-09 2013-03-12 Andrew Llc Distributed antenna system for MIMO signals
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US20030114165A1 (en) * 2001-12-07 2003-06-19 Mills Donald Charles Method for enhanced wireless signal distribution
JP2003179948A (en) 2001-12-10 2003-06-27 Furukawa Electric Co Ltd:The Monitoring system of catv system
JP3840412B2 (en) 2001-12-28 2006-11-01 株式会社日立製作所 Wireless terminal device
JP4052835B2 (en) 2001-12-28 2008-02-27 株式会社日立製作所 Wireless transmission system for multipoint relay and wireless device used therefor
GB2388264A (en) 2002-01-10 2003-11-05 Roke Manor Research GPS based networked time synchronised unit
US20030220112A1 (en) 2002-01-16 2003-11-27 Engim, Incorporated System and method for enabling the use of spatially distributed multichannel wireless access points/base stations
US6654521B2 (en) 2002-01-23 2003-11-25 Teraxion Inc. Diffraction compensation of FBG phase masks for multi-channel sampling applications
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7813311B2 (en) 2002-02-05 2010-10-12 Interdigital Technology Corporation Method and apparatus for synchronizing base stations
US7116944B2 (en) 2002-02-07 2006-10-03 Lucent Technologies Inc. Method and apparatus for feedback error detection in a wireless communications systems
US7218934B2 (en) 2002-02-14 2007-05-15 Nokia Corporation Mobile station speed estimation
CA2475132A1 (en) 2002-02-20 2003-08-28 University Of Washington Analytical instruments using a pseudorandom array of sample sources, such as a micro-machined mass spectrometer or monochromator
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US7039356B2 (en) 2002-03-12 2006-05-02 Blue7 Communications Selecting a set of antennas for use in a wireless communication system
JP4166026B2 (en) 2002-03-22 2008-10-15 三洋電機株式会社 Wireless device, space path control method, and space path control program
US7197084B2 (en) 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
US6801580B2 (en) 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels
US7386274B2 (en) 2002-04-15 2008-06-10 Aol Llc, A Delaware Limited Liability Company Wireless viral mesh network and process for using the same
EP1359683B1 (en) 2002-04-30 2006-08-30 Motorola, Inc. Wireless communication using multi-transmit multi-receive antenna arrays
KR100605824B1 (en) 2002-05-13 2006-07-31 삼성전자주식회사 Broadcasting service method for mobile telecommunication system using code division multiple access
US6950056B2 (en) 2002-05-13 2005-09-27 Honeywell International Inc. Methods and apparatus for determination of a filter center frequency
JP4178501B2 (en) 2002-05-21 2008-11-12 日本電気株式会社 Antenna transmission / reception system
DE10223564A1 (en) 2002-05-27 2003-12-11 Siemens Ag Method for transmitting information in a radio communication system with a transmitting station and receiving stations, each with an antenna with a plurality of antenna elements and a radio communication system
US7421039B2 (en) 2002-06-04 2008-09-02 Lucent Technologies Inc. Method and system employing antenna arrays
TWI225339B (en) 2002-06-06 2004-12-11 Via Telecom Co Ltd Power control of plural packet data control channels
US6791508B2 (en) 2002-06-06 2004-09-14 The Boeing Company Wideband conical spiral antenna
FR2841068B1 (en) 2002-06-14 2004-09-24 Comsis METHOD FOR DECODING LINEAR SPACE-TIME CODES IN A MULTI-ANTENNA WIRELESS TRANSMISSION SYSTEM, AND DECODER IMPLEMENTING SUCH A METHOD
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US20030235146A1 (en) 2002-06-21 2003-12-25 Yunnan Wu Bezout precoder for transmitter in MIMO communications network
US20040002835A1 (en) 2002-06-26 2004-01-01 Nelson Matthew A. Wireless, battery-less, asset sensor and communication system: apparatus and method
US7920590B2 (en) 2002-07-12 2011-04-05 Spyder Navigations L.L.C. Wireless communications system having built-in packet data compression and support for enabling non-standard features between network elements
US7751843B2 (en) 2002-07-29 2010-07-06 Qualcomm Incorporated Reducing interference with a multiple format channel in a communication system
US7072693B2 (en) 2002-08-05 2006-07-04 Calamp Corp. Wireless communications structures and methods utilizing frequency domain spatial processing
GB2392065B (en) 2002-08-15 2004-12-29 Toshiba Res Europ Ltd Signal decoding methods and apparatus
ATE421809T1 (en) 2002-08-22 2009-02-15 Imec Inter Uni Micro Electr MULTI-USER MIMO TRANSMISSION METHOD AND CORRESPONDING DEVICES
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7633894B2 (en) 2002-09-05 2009-12-15 The Regents Of The University Of California Scheduling methods for wireless networks
JP4110519B2 (en) 2002-09-05 2008-07-02 ソニー株式会社 Space division multiple access control method, radio communication system, base station, and mobile station
GB2393618B (en) 2002-09-26 2004-12-15 Toshiba Res Europ Ltd Transmission signals methods and apparatus
US7412212B2 (en) 2002-10-07 2008-08-12 Nokia Corporation Communication system
GB2394389B (en) 2002-10-15 2005-05-18 Toshiba Res Europ Ltd Equalisation apparatus and methods
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7082305B2 (en) * 2002-11-22 2006-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for generating a neighbor cell list
FR2848747A1 (en) 2002-12-16 2004-06-18 France Telecom Pre-coded signal emitting process for wireless communication system, involves interlacing pre-coded transmitted symbols to modify temporal order of symbols and coding each block of symbols according to coding time space
US7154960B2 (en) 2002-12-31 2006-12-26 Lucent Technologies Inc. Method of determining the capacity of each transmitter antenna in a multiple input/multiple output (MIMO) wireless system
CN100454795C (en) 2003-01-03 2009-01-21 华为技术有限公司 Adaptive space time closed-loop transmitting diversity method and its system
US6919857B2 (en) 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US20040176097A1 (en) 2003-02-06 2004-09-09 Fiona Wilson Allocation of sub channels of MIMO channels of a wireless network
US9177387B2 (en) 2003-02-11 2015-11-03 Sony Computer Entertainment Inc. Method and apparatus for real time motion capture
GB2398455B (en) 2003-02-11 2007-09-26 Ipwireless Inc Method, base station and mobile station for TDD operation in a communication system
US7369876B2 (en) 2003-03-04 2008-05-06 Samsung Electronics Co., Ltd. Apparatus and method for estimating a velocity of a mobile station in a mobile communication system
US7257237B1 (en) 2003-03-07 2007-08-14 Sandia Corporation Real time markerless motion tracking using linked kinematic chains
US7197082B2 (en) 2003-03-20 2007-03-27 Lucent Technologies Inc. Linear transformation of symbols to at least partially compensate for correlation between antennas in space time block coded systems
US7327795B2 (en) 2003-03-31 2008-02-05 Vecima Networks Inc. System and method for wireless communication systems
US7389096B2 (en) 2003-04-07 2008-06-17 Bellow Bellows Llc Monitoring system using multi-antenna transceivers
US7099678B2 (en) 2003-04-10 2006-08-29 Ipr Licensing, Inc. System and method for transmit weight computation for vector beamforming radio communication
FR2854020B1 (en) 2003-04-17 2005-09-09 Wavecom METHOD OF TRANSMITTING RADIO DATA USING MULTIPLE SEPARATE DRIVER PATTERNS, CORRESPONDING RECEPTION METHOD, SYSTEM, MOBILE AND CORRESPONDING STATION
KR100957395B1 (en) 2003-05-23 2010-05-11 삼성전자주식회사 Velocity estimator and velocity estimation method based on level crossing rate
CN1820424A (en) 2003-06-02 2006-08-16 高通股份有限公司 Receiving apparatus with hybrid equalizer and rake receiver and corresponding method of receiving
US7646802B2 (en) 2003-06-02 2010-01-12 Qualcomm Incorporated Communication receiver with hybrid equalizer
US7302278B2 (en) 2003-07-03 2007-11-27 Rotani, Inc. Method and apparatus for high throughput multiple radio sectorized wireless cell
US20050014496A1 (en) * 2003-07-14 2005-01-20 Seung-Jae Han Method and apparatus for adaptive and online assignment in hierarchical overlay networks
US7242724B2 (en) 2003-07-16 2007-07-10 Lucent Technologies Inc. Method and apparatus for transmitting signals in a multi-antenna mobile communications system that compensates for channel variations
US7558575B2 (en) 2003-07-24 2009-07-07 Motorola Inc. Method and apparatus for wireless communication in a high velocity environment
US7286609B2 (en) 2003-08-08 2007-10-23 Intel Corporation Adaptive multicarrier wireless communication system, apparatus and associated methods
KR100790092B1 (en) 2003-08-18 2007-12-31 삼성전자주식회사 Apparatus and method for scheduling resource in a radio communication system using multi-user multiple input multiple output scheme
US7257167B2 (en) 2003-08-19 2007-08-14 The University Of Hong Kong System and method for multi-access MIMO channels with feedback capacity constraint
US7065144B2 (en) 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7440510B2 (en) 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
DE10345541A1 (en) 2003-09-30 2005-04-28 Siemens Ag Method for setting the transmission parameters of grouped, broadband transmission channels
US8306574B2 (en) 2003-10-29 2012-11-06 Robert Warner Method and system for an adaptive wireless communication system optimized for economic benefit
US8705659B2 (en) 2003-11-06 2014-04-22 Apple Inc. Communication channel optimization systems and methods in multi-user communication systems
US7664533B2 (en) 2003-11-10 2010-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for a multi-beam antenna system
US7298805B2 (en) 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
FI20031702A0 (en) 2003-11-21 2003-11-21 Nokia Corp Allocation of multiple carriers for multiple users in a communication system
EP1700438B1 (en) 2003-12-30 2007-04-11 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Calibration method to achieve reciprocity of bidirectional communication channels
TWI271946B (en) * 2004-01-14 2007-01-21 Interdigital Tech Corp Method and apparatus for dynamically selecting the best antennas/mode ports for transmission and reception
US7006043B1 (en) 2004-01-16 2006-02-28 The United States Of America, As Represented By The Secretary Of The Army Wideband circularly polarized single layer compact microstrip antenna
US7339904B2 (en) 2004-02-06 2008-03-04 M-Stack Limited Apparatus and method for operating a communications device in a mobile communications network
US20050186991A1 (en) 2004-02-10 2005-08-25 Bateman Blaine R. Wireless access point with enhanced coverage
JP4012167B2 (en) * 2004-03-31 2007-11-21 株式会社東芝 Wireless communication system
US8571086B2 (en) 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US7599420B2 (en) 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US8170081B2 (en) 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US7711030B2 (en) 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US7418053B2 (en) 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8160121B2 (en) 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US7633994B2 (en) 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US7636381B2 (en) 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10187133B2 (en) 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
KR100651447B1 (en) 2004-04-14 2006-11-29 삼성전자주식회사 System and method for reselecting antennas in a cellular mobile communication system using a plurality of antennas
US7492749B2 (en) 2004-05-19 2009-02-17 The Directv Group, Inc. Method and system for providing multi-input-multi-output (MIMO) downlink transmission
JP2005341432A (en) 2004-05-28 2005-12-08 Ntt Docomo Inc Frequency selecting apparatus, mobile communication system and multi-band control method
KR101050603B1 (en) 2004-06-23 2011-07-19 삼성전자주식회사 Packet data transmission / reception apparatus and method using multiple antennas in wireless communication system
US7327983B2 (en) 2004-06-25 2008-02-05 Mitsubishi Electric Research Laboratories, Inc. RF-based antenna selection in MIMO systems
US7606319B2 (en) * 2004-07-15 2009-10-20 Nokia Corporation Method and detector for a novel channel quality indicator for space-time encoded MIMO spread spectrum systems in frequency selective channels
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US7512110B2 (en) 2004-09-21 2009-03-31 Motorola, Inc. Method and apparatus to facilitate inter-AN HRPD hard handoff
GB2418827B (en) 2004-09-28 2010-11-10 British Broadcasting Corp Method and system for providing a volumetric representation of a 3-Dimensional object
BRPI0516148A (en) 2004-09-28 2008-08-26 Matsushita Electric Ind Co Ltd multiport communication device and multiport communication method
US20060098754A1 (en) 2004-10-21 2006-05-11 Samsung Electronics Co., Ltd. Beam and power allocation method for MIMO communication system
KR20060038812A (en) 2004-11-01 2006-05-04 엘지전자 주식회사 Method for transmitting precoding matrix and transmitting signal using the precoding matrix
KR100909539B1 (en) 2004-11-09 2009-07-27 삼성전자주식회사 Apparatus and method for supporting various multi-antenna technologies in a broadband wireless access system using multiple antennas
US7573851B2 (en) 2004-12-07 2009-08-11 Adaptix, Inc. Method and system for switching antenna and channel assignments in broadband wireless networks
US7548752B2 (en) 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
BRPI0519274A2 (en) 2004-12-28 2009-01-06 Matsushita Electric Ind Co Ltd wireless communication device and wireless communication method
CN1797987B (en) * 2004-12-30 2011-02-16 都科摩(北京)通信技术研究中心有限公司 Communication system for self-adaptive scheduling MIMO, and method for self-adaptive scheduling users
GB2422073B (en) * 2005-01-07 2007-03-28 Toshiba Res Europ Ltd Improved frequency offset tracking
US8780957B2 (en) 2005-01-14 2014-07-15 Qualcomm Incorporated Optimal weights for MMSE space-time equalizer of multicode CDMA system
EP2204918A1 (en) * 2005-01-24 2010-07-07 NTT DoCoMo, Inc. Mobile communication terminal and method for controlling activation of multi-path interference removing apparatus
US7596111B2 (en) 2005-01-27 2009-09-29 Atc Technologies, Llc Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
JP4599192B2 (en) 2005-03-02 2010-12-15 株式会社日立製作所 Wireless data communication system and wireless data communication method
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
JP4856221B2 (en) * 2005-03-31 2012-01-18 株式会社エヌ・ティ・ティ・ドコモ Base station and reception method
CN1841960B (en) * 2005-03-31 2010-06-23 西门子(中国)有限公司 Downlink chain circuit data stream distribution method in distributed antenna system
US8483200B2 (en) 2005-04-07 2013-07-09 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7609751B1 (en) 2005-05-24 2009-10-27 L-3 Communications Corporation Method and apparatus to initiate communications between an unknown node and an existing secure network
US8307922B2 (en) 2005-05-24 2012-11-13 Rearden, Llc System and method for powering an aircraft using radio frequency signals and feedback
US7616930B2 (en) 2005-05-24 2009-11-10 Magnolia Broadband Inc. Determining a phase adjustment in accordance with power trends
CN101238648B (en) 2005-06-14 2013-03-20 高通股份有限公司 Method and device for broadcast and multicast from cellular wireless networks
US7630732B2 (en) 2005-06-14 2009-12-08 Interdigital Technology Corporation Method and apparatus for generating feedback information for transmit power control in a multiple-input multiple-output wireless communication system
ES2711610T3 (en) 2005-06-16 2019-05-06 Qualcomm Inc Negotiated notification of channel information in a wireless communication system
US7817967B2 (en) 2005-06-21 2010-10-19 Atc Technologies, Llc Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
KR100946924B1 (en) 2005-06-24 2010-03-09 삼성전자주식회사 User terminal selection method in zero forcing beamforming algorithm
US7480497B2 (en) 2005-06-29 2009-01-20 Intel Corporation Multicarrier receiver and method for carrier frequency offset correction and channel estimation for receipt of simultaneous transmissions over a multi-user uplink
HUE040634T2 (en) 2005-08-22 2019-03-28 Qualcomm Inc Method and apparatus for selection of virtual antennas
JP4702883B2 (en) 2005-08-23 2011-06-15 国立大学法人東京工業大学 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system
US8054312B2 (en) 2005-08-26 2011-11-08 Sony Corporation Material for motion capture costumes and props
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
FI20055483A0 (en) 2005-09-08 2005-09-08 Nokia Corp Data transmission system in wireless communication system
KR20070032548A (en) 2005-09-16 2007-03-22 삼성전자주식회사 Apparatus and method for calibrating channel in wireless communication system using multiple antennas
US7630337B2 (en) * 2005-09-21 2009-12-08 Broadcom Corporation Method and system for an improved user group selection scheme with finite-rate channel state information feedback for FDD multiuser MIMO downlink transmission
KR100734890B1 (en) 2005-10-10 2007-07-03 삼성전자주식회사 Apparatus and method for improving the performance of mobile station communicating in smart antenna system
CN100407825C (en) * 2005-10-18 2008-07-30 上海贝尔阿尔卡特股份有限公司 A distributed base station, communication system and its used signal transmission method
US7539458B2 (en) 2005-10-24 2009-05-26 The Regents Of The University Of California Apparatus and method for a system architecture for multiple antenna wireless communication systems using round robin channel estimation and transmit beam forming algorithms
JP2009514400A (en) * 2005-10-27 2009-04-02 クゥアルコム・インコーポレイテッド Precoding for segment-responsive scheduling in wireless communication systems
US8483616B1 (en) 2005-11-01 2013-07-09 At&T Intellectual Property Ii, L.P. Non-interference technique for spatially aware mobile ad hoc networking
EP1949710B1 (en) 2005-11-16 2017-08-02 Telefonaktiebolaget LM Ericsson (publ) Expert system for remote antenna evaluation
US7720437B2 (en) 2005-12-08 2010-05-18 University Of South Florida Zero-order energy smart antenna and repeater
US7860502B2 (en) 2005-12-10 2010-12-28 Samsung Electronics Co., Ltd. Apparatus and method for hard handover in a wireless communication system
WO2007081181A2 (en) 2006-01-13 2007-07-19 Lg Electronics Inc. A method and apparatus for achieving transmit diversity using antenna selection based on feedback information
US7426198B2 (en) 2006-02-06 2008-09-16 Motorola, Inc. Method and apparatus for performing spatial-division multiple access
GB0602380D0 (en) 2006-02-06 2006-03-15 Qinetiq Ltd Imaging system
JP2007228029A (en) 2006-02-21 2007-09-06 Fujitsu Ltd Wireless communication system and receiving device
KR101218495B1 (en) 2006-02-21 2013-01-18 삼성전자주식회사 An adaptive channel prediction apparatus and method for uplink pre-equalization in mobile communication system using orthgonal frequncy division multiplexing/time division duplex according to the quantity of downlink channel variation
WO2007103085A2 (en) 2006-03-01 2007-09-13 Interdigital Technology Corporation Method and apparatus for calibration and channel state feedback to support transmit beamforming in a mimo system
US7729433B2 (en) 2006-03-07 2010-06-01 Motorola, Inc. Method and apparatus for hybrid CDM OFDMA wireless transmission
KR100841639B1 (en) 2006-03-13 2008-06-26 삼성전자주식회사 Channel estimation apparatus and method for interference elimination in mobile communication system
US8041362B2 (en) 2006-03-20 2011-10-18 Intel Corporation Downlink resource allocation and mapping
CN101405973B (en) 2006-03-20 2013-04-24 英特尔公司 Wireless access network and method for allocating time and frequency resources
WO2007117468A2 (en) 2006-03-30 2007-10-18 Beceem Communications, Inc. Method and system for uplink coordinated reception in orthogonal frequency division multiple access systems
KR101231357B1 (en) 2006-04-06 2013-02-07 엘지전자 주식회사 Channel status information feedback method and data transmission method for multiple antenna system
US20070249380A1 (en) 2006-04-19 2007-10-25 Motorola, Inc. Apparatus and method for broadcasting data
US7894505B2 (en) 2006-04-19 2011-02-22 Samsung Electronics Co., Ltd. Apparatus and method for selecting effective channel in a multi-user MIMO system
CN101056152B (en) * 2006-04-30 2010-08-04 华为技术有限公司 Transmission method of the universal mobile communication system and its system
US7751368B2 (en) * 2006-05-01 2010-07-06 Intel Corporation Providing CQI feedback to a transmitter station in a closed-loop MIMO system
US7894820B2 (en) 2006-05-01 2011-02-22 Intel Corporation Channel feedback using channel state predictions based also on delays
US7756222B2 (en) 2006-05-04 2010-07-13 Integrated System Solution Corporation Adaptive quantization method and apparatus for an OFDM receiver
US7633944B1 (en) 2006-05-12 2009-12-15 Juniper Networks, Inc. Managing timeouts for dynamic flow capture and monitoring of packet flows
US20070280116A1 (en) 2006-06-05 2007-12-06 Hong Kong University Of Science And Technology Adaptive multi-user mimo non-cooperative threshold-based wireless communication system using limited channel feedback
US7801084B2 (en) * 2006-06-09 2010-09-21 Intel Corporation Doppler frequency determination for mobile wireless devices
KR101269201B1 (en) 2006-06-30 2013-05-28 삼성전자주식회사 Apparatus and method for transmitting/receiving data in a multi-antenna system of closed loop
US8396158B2 (en) 2006-07-14 2013-03-12 Nokia Corporation Data processing method, data transmission method, data reception method, apparatus, codebook, computer program product, computer program distribution medium
JP4806307B2 (en) * 2006-07-28 2011-11-02 京セラ株式会社 Wireless communication method, wireless base station, wireless communication terminal, and base station control device
TW200824378A (en) 2006-08-17 2008-06-01 Interdigital Tech Corp Method and apparatus for reducing a peak-to-average power ratio in a multiple-input multiple-output system
US8271043B2 (en) 2006-08-21 2012-09-18 Qualcomm Incorporated Approach to a unified SU-MIMO/MU-MIMO operation
JP4845640B2 (en) 2006-08-23 2011-12-28 富士通株式会社 Wireless communication system and wireless communication method
CN101141165A (en) 2006-09-05 2008-03-12 华为技术有限公司 System and method of implementing transmitting and receiving diversity
EP2064818B1 (en) 2006-09-18 2017-07-26 Marvell World Trade Ltd. Calibration correction for implicit beamforming in a wireless mimo communication system
US20080080635A1 (en) 2006-10-02 2008-04-03 Nokia Corporation Advanced feedback signaling for multi-antenna transmission systems
US20090135944A1 (en) 2006-10-23 2009-05-28 Dyer Justin S Cooperative-MIMO Communications
KR100834631B1 (en) 2006-10-25 2008-06-02 삼성전자주식회사 An adaptive transmit power allocation scheme for combined orthogonal space time block codes and beam forming in distributed wireless communication system
WO2008049366A1 (en) 2006-10-26 2008-05-02 Huawei Technologies Co., Ltd. Sdma access codebook constructing method and apparatus thereof and scheduling method and apparatus and system thereof
KR101049616B1 (en) 2006-10-31 2011-07-14 콸콤 인코포레이티드 Unified design and centralized scheduling for dynamic simo, su-mimo and mu-mimo operation for rl transmissions
JP2010508695A (en) 2006-11-01 2010-03-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and configuration for SINR feedback in a MIMO-based wireless communication system
US8126510B1 (en) 2006-11-15 2012-02-28 Nextel Communications Inc. Public safety communications network architecture
KR100842619B1 (en) 2006-11-22 2008-06-30 삼성전자주식회사 Symbol error rate based power allocation scheme for combined orthogonal space time block codes and beam forming in distributed wireless communication system
GB0623653D0 (en) 2006-11-27 2007-01-03 Innovision Res & Tech Plc Near field RF communicators and near field RF communications enabled devices
CN101622843A (en) 2007-01-12 2010-01-06 诺基亚公司 Method and apparatus for providing automatic control channel mapping
KR100950706B1 (en) 2007-01-29 2010-03-31 삼성전자주식회사 Apparatus and method for precoding in multi-antenna system
KR20080074004A (en) 2007-02-07 2008-08-12 엘지전자 주식회사 Virtual antenna based multiplexing method using feedback information and mobile terminal supporting the same
EP3709712A1 (en) 2007-02-12 2020-09-16 InterDigital Technology Corporation Method and apparatus for supporting handover from lte/eutran to gprs/geran
KR100866188B1 (en) 2007-02-22 2008-10-30 삼성전자주식회사 Symbol error rate approximation method for orthogonal space time block codes in distributed wireless communication system
KR101005233B1 (en) 2007-03-14 2010-12-31 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 Apparatus and method for interference cancellation in multi-antenna system
TW200901655A (en) 2007-03-21 2009-01-01 Interdigital Tech Corp Method and apparatus for communicating precoding or beamforming information to users in MIMO wireless communication systems
CN101272520B (en) 2007-03-21 2011-04-13 上海贝尔阿尔卡特股份有限公司 Method and device for supporting multimedia broadcast multicast service in system structure evolution
WO2008120159A2 (en) 2007-03-30 2008-10-09 Nokia Corporation System and method for self-optimization of interference coordination in communication systems
JP5006097B2 (en) * 2007-04-24 2012-08-22 京セラ株式会社 Reception control method and wireless communication apparatus
WO2008144151A2 (en) 2007-05-15 2008-11-27 Rambus Inc. Multi-antenna transmitter for multi-tone signaling
US8482462B2 (en) 2007-05-25 2013-07-09 Rambus Inc. Multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal
US20100150013A1 (en) 2007-05-29 2010-06-17 Mitsubishi Electric Corporation Calibration method, communication system, frequency control method, and communication device
CN101325741B (en) 2007-06-14 2012-12-12 Nxp股份有限公司 Method and system for operating MU-MIMO wireless communication system
US8379749B2 (en) 2007-06-19 2013-02-19 Ntt Docomo, Inc. Transmitter and transmission method
US8160601B2 (en) 2007-06-21 2012-04-17 Elektrobit Wireless Communications Ltd. Method for optimizing spatial modulation in a wireless link and network element thereto
US8010116B2 (en) 2007-06-26 2011-08-30 Lgc Wireless, Inc. Distributed antenna communications system
US20090023467A1 (en) 2007-07-18 2009-01-22 Kaibin Huang Method and apparatus for performing space division multiple access in a wireless communication network
US8675743B2 (en) 2007-08-03 2014-03-18 Apple Inc. Feedback scheduling to reduce feedback rates in MIMO systems
US8369450B2 (en) 2007-08-07 2013-02-05 Samsung Electronics Co., Ltd. Pilot boosting and traffic to pilot ratio estimation in a wireless communication system
US8798183B2 (en) 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
ES2375323T3 (en) 2007-08-16 2012-02-28 Nokia Siemens Networks Oy INTEGRATION DEVICE, COMMUNICATION NETWORK AND METHOD TO INTEGRATE A NETWORK NODE IN A COMMUNICATION NETWORK.
US20090046678A1 (en) 2007-08-17 2009-02-19 Industry-Academic Cooperation Foundation Of Kyung Hee University Method for predicting the mobility in mobile ad hoc networks
US8989155B2 (en) 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
US20090067198A1 (en) 2007-08-29 2009-03-12 David Jeffrey Graham Contactless power supply
US8830812B2 (en) 2007-08-31 2014-09-09 Alcatel Lucent Optimizing precoder settings using average SINR reports for groups of tones
CN101485103A (en) * 2007-08-31 2009-07-15 富士通株式会社 Wireless communication system and wireless communication method
US20090075686A1 (en) 2007-09-19 2009-03-19 Gomadam Krishna S Method and apparatus for wideband transmission based on multi-user mimo and two-way training
US8077809B2 (en) 2007-09-28 2011-12-13 Cisco Technology, Inc. Link adaptation based on generic CINR measurement according to log-likelihood ratio distribution
US8948093B2 (en) * 2007-10-02 2015-02-03 Apple Inc. Rank adaptation for an open loop multi-antenna mode of wireless communication
EP2204051A1 (en) * 2007-10-30 2010-07-07 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Distributed antenna system
US8300726B2 (en) 2007-11-02 2012-10-30 Alcatel Lucent Interpolation method and apparatus for increasing efficiency of crosstalk estimation
KR100991794B1 (en) 2007-12-31 2010-11-03 엘지전자 주식회사 Method For Reducing Inter-Cell Interference
US8055211B2 (en) 2007-12-31 2011-11-08 Motorola Mobility, Inc. Method and system for utilizing transmit local oscillator for improved cell search and multi-link communication in multi-mode device
US20090195355A1 (en) 2008-02-01 2009-08-06 Cynthia Sue Mitchell Methods and apparatus for place shifting content to a vehicle entertainment system
US8509291B2 (en) 2008-02-08 2013-08-13 Qualcomm Incorporated Open-loop transmit diversity schemes with four transmit antennas
US20090209206A1 (en) 2008-02-15 2009-08-20 The Hong Kong University Of Science And Technology Optimal mimo isi channel estimation using loosely synchronized codes and their variations
JP4946922B2 (en) 2008-03-06 2012-06-06 住友電気工業株式会社 Wireless communication device
ES2755403T3 (en) 2008-03-07 2020-04-22 Blackberry Ltd Method and system for representation of reduced system time overload parameter length for communication between radio access technologies
US8594733B2 (en) 2008-03-08 2013-11-26 Qualcomm Incorporated Methods and apparatus for using polarized antennas in wireless networks including single sector base stations
US8085721B2 (en) 2008-03-10 2011-12-27 Elektrobit Wireless Communications Oy Adaptive transmission method and a base station using the method
US8203483B2 (en) 2008-03-13 2012-06-19 Cubic Corporation Digital beamforming antenna and datalink array
CN101981826A (en) 2008-03-28 2011-02-23 爱立信电话股份有限公司 Method and apparatus for antenna selection in a MIMO system
US8301956B2 (en) 2008-04-07 2012-10-30 Samsung Electronics Co., Ltd. Methods and apparatus to improve communication in a relay channel
US8243353B1 (en) 2008-04-07 2012-08-14 Applied Science Innovations, Inc. Holography-based device, system and method for coded aperture imaging
US8559879B2 (en) 2008-04-22 2013-10-15 Qualcomm Incorporated Null pilots for interference estimation in a wireless communication network
US8811353B2 (en) 2008-04-22 2014-08-19 Texas Instruments Incorporated Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO)
US8155063B2 (en) 2008-04-28 2012-04-10 Apple Inc. Apparatus and methods for transmission and reception of data in multi-antenna systems
KR101486378B1 (en) 2008-05-07 2015-01-26 엘지전자 주식회사 Methods of transmitting and receciving data in collative multiple input multiple output antenna mobile communication system
WO2009138876A2 (en) 2008-05-13 2009-11-19 Mobileaccess Networks Ltd. Multiple data services over a distributed antenna system
US8102785B2 (en) 2008-05-21 2012-01-24 Alcatel Lucent Calibrating radiofrequency paths of a phased-array antenna
US8218422B2 (en) 2008-06-03 2012-07-10 Nec Laboratories America, Inc. Coordinated linear beamforming in downlink multi-cell wireless networks
US9225575B2 (en) 2008-06-18 2015-12-29 Center Of Excellence In Wireless Technology Precoding for single transmission streams in multiple antenna systems
US8326341B2 (en) 2008-06-23 2012-12-04 Nokia Corporation Method, apparatus and computer program for downlink MU-MIMO power settings and control
JP2010016674A (en) * 2008-07-04 2010-01-21 Fujitsu Ltd Radio communication apparatus, system and method
US9374746B1 (en) 2008-07-07 2016-06-21 Odyssey Wireless, Inc. Systems/methods of spatial multiplexing
US8243690B2 (en) 2008-07-09 2012-08-14 Intel Corporation Bandwidth allocation base station and method for allocating uplink bandwidth using SDMA
US8594158B2 (en) 2008-07-16 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Base and repeater stations
KR101236033B1 (en) 2008-07-21 2013-02-21 한국전자통신연구원 Communication system for removing transmission overhead
CN102113384B (en) * 2008-07-30 2015-09-30 株式会社日立制作所 Radio communications system and radio communication method
US8391206B2 (en) 2008-08-07 2013-03-05 Alcatel Lucent Method of joint resource allocation and clustering of base stations
US9755705B2 (en) 2008-08-07 2017-09-05 Qualcomm Incorporated Method and apparatus for supporting multi-user and single-user MIMO in a wireless communication system
US8705484B2 (en) 2008-08-15 2014-04-22 Ntt Docomo, Inc. Method for varying transmit power patterns in a multi-cell environment
EP2342878B1 (en) 2008-08-20 2013-06-19 QUALCOMM Incorporated A method and apparatus for sharing signals on a single channel
JP5256955B2 (en) * 2008-09-12 2013-08-07 富士通株式会社 Control method, communication characteristic control method, base station apparatus, and mobile station apparatus
EP2327166A1 (en) 2008-09-12 2011-06-01 Telefonaktiebolaget L M Ericsson (PUBL) Methods and devices for spatial coding
US8340235B2 (en) 2008-09-25 2012-12-25 Research In Motion Limited X-MIMO systems with multi-transmitters and multi-receivers
US8295395B2 (en) 2008-09-30 2012-10-23 Apple Inc. Methods and apparatus for partial interference reduction within wireless networks
US8830926B2 (en) 2008-10-27 2014-09-09 Nokia Siemens Networks Oy Method for network co-ordination in a mobile communications system and apparatus thereof
JP5149971B2 (en) 2008-12-09 2013-02-20 株式会社日立製作所 Wireless communication system and wireless communication method
US8625542B2 (en) 2008-12-18 2014-01-07 Cisco Technology, Inc. Beamforming spatial de-multiplexing for collaborative spatially multiplexed wireless communication
US8068844B2 (en) 2008-12-31 2011-11-29 Intel Corporation Arrangements for beam refinement in a wireless network
US20100178934A1 (en) 2009-01-13 2010-07-15 Qualcomm Incorporated Environment-specific measurement weighting in wireless positioning
US8867493B2 (en) 2009-02-02 2014-10-21 Qualcomm Incorporated Scheduling algorithms for cooperative beamforming based on resource quality indication
US8700039B2 (en) 2009-02-10 2014-04-15 Lg Electronics Inc. Method and apparatus for coordinated multiple point transmission and reception
EP2398157B1 (en) 2009-02-13 2019-04-03 LG Electronics Inc. Data transmission method and apparatus in multiple antenna system
JP4993778B2 (en) * 2009-02-18 2012-08-08 日本電信電話株式会社 Distributed antenna system and distributed antenna control method
US8264407B2 (en) 2009-02-19 2012-09-11 Qualcomm Atheros, Inc. Transmitter beamforming steering matrix processing and storage
US8428177B2 (en) 2009-02-25 2013-04-23 Samsung Electronics Co., Ltd. Method and apparatus for multiple input multiple output (MIMO) transmit beamforming
US8989106B2 (en) 2009-02-27 2015-03-24 Qualcomm Incorporated Methods and apparatuses for scheduling uplink request spatial division multiple access (RSDMA) messages in an SDMA capable wireless LAN
KR101584689B1 (en) * 2009-03-04 2016-01-13 삼성전자주식회사 Apparatus and method for interference cancellation of multi user in multi-antenna system
WO2010105210A2 (en) 2009-03-12 2010-09-16 Comsys Communication & Signal Processing Ltd. Vehicle integrated communications system
US20100238984A1 (en) 2009-03-19 2010-09-23 Motorola, Inc. Spatial Information Feedback in Wireless Communication Systems
WO2010110588A2 (en) 2009-03-23 2010-09-30 엘지전자주식회사 Method and apparatus for transmitting reference signal in multi-antenna system
US20100260060A1 (en) 2009-04-08 2010-10-14 Qualcomm Incorporated Integrated calibration protocol for wireless lans
US9432991B2 (en) * 2009-04-21 2016-08-30 Qualcomm Incorporated Enabling support for transparent relays in wireless communication
JP4801755B2 (en) 2009-04-23 2011-10-26 株式会社エヌ・ティ・ティ・ドコモ Wireless communication apparatus and method
US8320432B1 (en) 2009-04-27 2012-11-27 Indian Institute of Science at Bangalore Device and method for precoding vectors in a communication system
US8380135B2 (en) 2009-05-04 2013-02-19 Lg Electronics Inc. Method of transmitting control information in wireless communication system
US8553589B2 (en) 2009-05-12 2013-10-08 Airhop Communications, Inc. Dual mode radio for frequency division duplexing and time division duplexing communication modes
US8107965B2 (en) * 2009-05-14 2012-01-31 Telefonaktiebolaget L M Ericsson (Publ) Distributed computation of precoding weights for coordinated multipoint transmission on the downlink
US8320926B2 (en) 2009-05-20 2012-11-27 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a wireless communication system
KR101607336B1 (en) 2009-06-07 2016-03-30 엘지전자 주식회사 Apparatus and method of setting up radio bearer in wireless communication system
KR101715939B1 (en) 2009-06-18 2017-03-14 엘지전자 주식회사 Method and apparatus for channel state information feedback
US8711716B2 (en) 2009-06-19 2014-04-29 Texas Instruments Incorporated Multiple CQI feedback for cellular networks
WO2011008013A2 (en) 2009-07-13 2011-01-20 엘지전자 주식회사 Method and apparatus for configuring a transmission mode for a backhaul link transmission
US8879602B2 (en) 2009-07-24 2014-11-04 At&T Mobility Ii Llc Asymmetrical receivers for wireless communication
CN101989870A (en) 2009-08-05 2011-03-23 株式会社Ntt都科摩 Method for acquiring channel quality indication information and base station thereof
US10454645B2 (en) 2009-08-14 2019-10-22 Hmd Global Oy Coordinated multipoint transmission
US8848624B2 (en) 2009-08-17 2014-09-30 Broadcom Corporation Multi-user uplink communications within multiple user, multiple access, and/or MIMO wireless communication systems
EP2471208B1 (en) 2009-08-24 2020-09-23 Nokia Solutions and Networks Oy Channel-adaptive transmission in a distributed coordinated multi-point transmission system
US8391429B2 (en) 2009-08-26 2013-03-05 Qualcomm Incorporated Methods for determining reconstruction weights in a MIMO system with successive interference cancellation
CN102025396B (en) 2009-09-23 2013-09-11 华为技术有限公司 Filtering processing method, and system and equipment
JP5354498B2 (en) 2009-09-24 2013-11-27 独立行政法人情報通信研究機構 Cognitive communication network system and communication method thereof
US8923905B2 (en) 2009-09-30 2014-12-30 Qualcomm Incorporated Scrambling sequence initialization for coordinated multi-point transmissions
EP2484163A2 (en) 2009-10-02 2012-08-08 InterDigital Patent Holdings, Inc. Method and apparatus for transmit power control for multiple antenna transmissions in the uplink
US8185088B2 (en) 2009-10-09 2012-05-22 At&T Mobility Ii Llc Mobile device leasing with customized operational features
US8750257B2 (en) 2009-10-12 2014-06-10 Lg Electronics Inc. Method and apparatus for providing downlink reference signal transmission power information in a wireless communication system that supports multiple antennas
US8873650B2 (en) 2009-10-12 2014-10-28 Motorola Mobility Llc Configurable spatial channel information feedback in wireless communication system
WO2011047333A1 (en) * 2009-10-15 2011-04-21 Saeid Safavi Methods and apparatus for centralized and coordinated interference mitigation in a wlan network
US20110090820A1 (en) 2009-10-16 2011-04-21 Osama Hussein Self-optimizing wireless network
EP2498417B1 (en) 2009-11-05 2018-09-05 LG Electronics Inc. Method for transmitting channel quality information, medium and apparatus for the same
US8582516B2 (en) 2009-11-09 2013-11-12 Qualcomm Incorporated Reference signaling for a high-mobility wireless communication device
KR101948082B1 (en) 2009-11-24 2019-04-25 한국전자통신연구원 Data Protection in Multi-User MIMO based Wireless Communication System
EP2471200A4 (en) 2009-12-10 2012-10-17 Lg Electronics Inc Method and apparatus of transmitting training signal in wireless local area network system
RU2680752C2 (en) 2010-01-18 2019-02-26 Телефонактиеболагет Лм Эрикссон (Пабл) Radio base station and user equipment and methods therein
US20110176633A1 (en) 2010-01-20 2011-07-21 Eric Ojard Method and system for orthogonalized beamforming in multiple user multiple input multiple output (mu-mimo) communication systems
US8792367B2 (en) 2010-01-21 2014-07-29 Polytechnic Institute Of New York University CoopMAX: a cooperative MAC with randomized distributed space time coding for an IEEE 802.16 network
KR101419925B1 (en) 2010-02-08 2014-07-14 브로드콤 코포레이션 Method and system of beamforming a broadband signal through a multiport network
WO2011099802A2 (en) 2010-02-11 2011-08-18 Lg Electronics Inc. Method and apparatus of recovering backhaul link failure between base station and relay node
EP2534875B1 (en) 2010-02-12 2021-12-08 InterDigital Technology Corporation Data split between multiple sites
US20110199946A1 (en) 2010-02-17 2011-08-18 Qualcomm Incorporated Method and apparatus for supporting adaptive channel state information feedback rate in multi-user communication systems
US8705443B2 (en) 2010-02-24 2014-04-22 Futurewei Technologies, Inc. System and method for reduced feedback in multiuser multiple input, multiple output wireless communications
US20130016616A1 (en) 2010-03-25 2013-01-17 Telefonaktiebolaget L M Ericsson (Publ) Method for backhaul link protection in a mimo wireless link
CA2784035C (en) 2010-03-29 2020-07-21 Lg Electronics Inc. Method and apparatus for measurement for inter-cell interference coordination in radio communication system
WO2011136518A2 (en) 2010-04-26 2011-11-03 Samsung Electronics Co., Ltd. Method and apparatus for controlling inter-cell interference of control channels in ofdm-based hierarchical cellular system
US9288690B2 (en) 2010-05-26 2016-03-15 Qualcomm Incorporated Apparatus for clustering cells using neighbor relations
WO2011155763A2 (en) 2010-06-08 2011-12-15 엘지전자 주식회사 Method and device for transmitting/receiving channel state information in coordinated multipoint communication system
US8521199B2 (en) 2010-06-15 2013-08-27 Futurewei Technologies, Inc. System and method for transparent coordinated beam-forming
US8838161B2 (en) 2010-06-16 2014-09-16 Samsung Electronics Co., Ltd Uplink power control method for mobile communication system
CN102948085B (en) 2010-06-18 2016-08-24 日本电气株式会社 The precoding technique of multicast communication is worked in coordination with for downlink in radio communication system link
KR20110138742A (en) 2010-06-21 2011-12-28 주식회사 팬택 Method for transmitting channel information and apparatus thereof and cell apparatus using the same, transmission method thereof
US8934557B2 (en) 2010-06-30 2015-01-13 Telefonaktiebolaget L M Ericsson (Publ) Statistical joint precoding in multi-cell, multi-user MIMO
KR20120003781A (en) 2010-07-05 2012-01-11 주식회사 팬택 Transmitter and communicating method thereof, receiver, communicating method thereof
US20120021707A1 (en) 2010-07-26 2012-01-26 Qualcomm Incorporated Apparatus and method for adjustment of transmitter power in a system
US8660057B2 (en) 2010-08-26 2014-02-25 Golba, Llc Method and system for distributed communication
US9253767B2 (en) 2010-09-08 2016-02-02 Mediatek Singapore Pte. Ltd. PSMP-based downlink multi-user MIMO communications
KR101835326B1 (en) 2010-09-26 2018-03-07 엘지전자 주식회사 Method and apparatus for efficient feedback in a wireless communication system supporting multiple antenna
US8687555B2 (en) 2010-09-29 2014-04-01 Lg Electronics Inc. Method and apparatus for performing effective feedback in wireless communication system supporting multiple antennas
CN103229427B (en) 2010-10-01 2016-08-03 康普技术有限责任公司 Distributing antenna system for MIMO signal
US8681660B2 (en) 2010-10-01 2014-03-25 Clearwire Ip Holdings Llc Enabling coexistence between FDD and TDD wireless networks
US8576742B2 (en) 2010-10-06 2013-11-05 Qualcomm Incorporated Dynamic switching between common reference signal interference cancellation and resource element puncturing in a co-channel heterogeneous network
WO2012058600A2 (en) 2010-10-29 2012-05-03 Lilee Systems, Ltd System and method of frequency offset compensation for radio system with fast doppler shift
EP2638652A2 (en) 2010-11-10 2013-09-18 Interdigital Patent Holdings, Inc. Method and apparatus for interference mitigation via successive cancellation in heterogeneous networks
JP2012124859A (en) 2010-12-10 2012-06-28 Sharp Corp Communication system, base station device, communication method and communication program
WO2012079619A1 (en) 2010-12-14 2012-06-21 Gn Netcom A/S Docking station for a handheld telecommunication device
EP2673892A4 (en) 2011-02-07 2016-09-14 Intel Corp Co-phasing of transmissions from multiple infrastructure nodes
US9426703B2 (en) 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US10187859B2 (en) 2011-02-14 2019-01-22 Qualcomm Incorporated Power control and user multiplexing for heterogeneous network coordinated multipoint operations
US8774167B2 (en) 2011-03-04 2014-07-08 T-Mobile Usa, Inc. Packet-switched core network architecture for voice services on second- and third-generation wireless access networks
US8737298B2 (en) 2011-03-11 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Method of downlink signal transport over backhaul communications through distributed processing
US9351315B2 (en) 2011-03-25 2016-05-24 Beijing Nufront Mobile Multimedia Technology Co. Ltd. Resource scheduling method and device
US8442579B2 (en) 2011-03-31 2013-05-14 Intel Corporation Distributed adaptive resource allocation to enhance cell edge throughput
EP2702699A1 (en) 2011-04-27 2014-03-05 Fujitsu Limited Wireless communication with co-operating cells
US20120281555A1 (en) 2011-05-02 2012-11-08 Research In Motion Limited Systems and Methods of Wireless Communication with Remote Radio Heads
US8837621B2 (en) 2011-05-09 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for a very large-scale multiple-input multiple output (MIMO) system
EP3923639B1 (en) 2011-05-17 2023-12-13 InterDigital Patent Holdings, Inc. Ue power adaptation for concurrent transmission over the pusch
GB2491157B (en) 2011-05-24 2013-08-07 Toshiba Res Europ Ltd Method and apparatus for antenna selection in wireless communications systems
US9319189B2 (en) 2011-06-29 2016-04-19 Lg Electronics Inc. Method and apparatus for controlling inter-cell interference in wireless communication system
EP2740286B1 (en) 2011-08-04 2015-04-22 Telefonaktiebolaget LM Ericsson (PUBL) An outdoor-indoor mimo communication system using multiple repeaters and leaky cables
US8693420B2 (en) 2011-08-10 2014-04-08 Futurewei Technologies, Inc. System and method for signaling and transmitting uplink reference signals
US8849339B2 (en) 2011-08-12 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Closed loop power control in a heterogeneous network by selecting among sets of accumulative power step values
TWI599191B (en) 2011-08-12 2017-09-11 內數位專利控股公司 Method and apparatus for multiple-input multiple-output operation
US9456372B2 (en) 2011-08-12 2016-09-27 Interdigital Patent Holdings, Inc. Interference measurement in wireless networks
US20130083681A1 (en) 2011-09-30 2013-04-04 Research In Motion Limited Methods of Channel State Information Feedback and Transmission in Coordinated Multi-Point Wireless Communications System
US9025574B2 (en) 2011-08-12 2015-05-05 Blackberry Limited Methods of channel state information feedback and transmission in coordinated multi-point wireless communications system
KR102094890B1 (en) 2011-08-19 2020-04-14 엘지전자 주식회사 Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
CN102983934B (en) 2011-09-06 2015-12-02 华为技术有限公司 The method of multiuser mimo system neutral line precoding and device
SG11201400621TA (en) * 2011-09-14 2014-04-28 Rearden Llc Systems and methods to exploit areas of coherence in wireless systems
US9124475B2 (en) 2011-09-19 2015-09-01 Alcatel Lucent Method and apparatus for interference cancellation for antenna arrays
US8743791B2 (en) 2011-09-22 2014-06-03 Samsung Electronics Co., Ltd. Apparatus and method for uplink transmission in wireless communication systems
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
US20130114437A1 (en) 2011-11-04 2013-05-09 Qualcomm Incorporated Method and apparatus for interference cancellation by a user equipment using blind detection
KR101901942B1 (en) 2011-11-17 2018-09-28 엘지전자 주식회사 Method for receiving uplink signal, base station, method for transmitting uplink signal and user equipment
US20130128821A1 (en) 2011-11-18 2013-05-23 Nokia Siemens Networks Oy Demodulation Reference Signal Arrangement For Uplink Coordinated Multi-Point Reception
WO2013080582A1 (en) 2011-12-02 2013-06-06 Nec Corporation Method of providing control information for user equipment in lte communication system
US8731028B2 (en) 2011-12-02 2014-05-20 Futurewei Technologies, Inc. Method and apparatus for modulation and coding scheme adaption in a MIMO system
EP2806573B1 (en) 2012-01-20 2019-03-06 LG Electronics Inc. Method of receiving control information and device therefor
EP2621242A1 (en) 2012-01-26 2013-07-31 Panasonic Corporation Improved discontinuous reception operation with additional wake up opportunities
GB2498815A (en) 2012-01-30 2013-07-31 Renesas Mobile Corp Enhanced PHICH with multibit ACK/NAK
US20130195086A1 (en) 2012-02-01 2013-08-01 Qualcomm Incorporated Timing management in uplink (ul) coordinated multipoint (comp) transmission
ES2775798T3 (en) 2012-02-03 2020-07-28 Ericsson Telefon Ab L M Advanced Baseband Digital Processor
CN104115436B (en) 2012-02-08 2017-12-29 瑞典爱立信有限公司 Realize the method and device of shared ACK/NACK message
US9414184B2 (en) 2012-02-15 2016-08-09 Maxlinear Inc. Method and system for broadband near-field communication (BNC) utilizing full spectrum capture (FSC) supporting bridging across wall
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
KR102081938B1 (en) 2012-03-17 2020-04-14 엘지전자 주식회사 Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
CN104603853B (en) 2012-05-04 2020-02-18 李尔登公司 System and method for handling doppler effect in distributed input-distributed output wireless systems
CN109889233B (en) 2012-05-18 2023-04-07 李尔登公司 System and method for enhancing spatial diversity in a wireless system
US8995410B2 (en) 2012-05-25 2015-03-31 University Of Southern California Airsync: enabling distributed multiuser MIMO with full multiplexing gain
CN103517360B (en) 2012-06-25 2017-04-19 华为终端有限公司 Switching method, system and device
KR101669701B1 (en) 2012-06-25 2016-10-26 주식회사 케이티 Method for providing information mapping of physical uplink shared channel, transmission/reception point thereof, method for transitting physical uplink shared channel and terminal thereof
US8908743B2 (en) 2012-09-26 2014-12-09 Intel Mobile Communications GmbH Receiver with multi layer interference cancellation
US9055425B2 (en) 2012-09-27 2015-06-09 Nokia Technologies Oy Method and apparatus for enhancing emergency calling with mobile devices
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US9407302B2 (en) 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
WO2014101233A1 (en) 2012-12-31 2014-07-03 华为技术有限公司 Information transmission method and device
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US9733797B2 (en) 2013-02-08 2017-08-15 Ubiquiti Networks, Inc. Radio system for long-range high speed wireless communication
US9923621B2 (en) 2013-02-16 2018-03-20 Cable Television Laboratories, Inc. Multiple-input multiple-output (MIMO) communication system
US9241275B2 (en) 2013-02-28 2016-01-19 Cisco Technologies, Inc. Distributed processing distributed-input distributed-output (DIDO) wireless communication
US9331882B2 (en) 2013-06-05 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Crest factor reduction of carrier aggregated signals
US9451625B2 (en) 2013-09-19 2016-09-20 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing interference characteristics for interference mitigation
CN104519514B (en) 2013-10-08 2019-12-06 中兴通讯股份有限公司 method, node and system for reducing interference between nodes
EP2889957A1 (en) 2013-12-30 2015-07-01 Clemens Rheinfelder Active antenna system with distributed transceiver system
WO2016076785A1 (en) 2014-11-14 2016-05-19 Telefonaktiebolaget L M Ericsson (Publ) Feedback channel transmission and detection in multi antenna wireless communication systems
US9615263B2 (en) 2015-05-27 2017-04-04 Telefonaktiebolaget L M Ericsson (Publ) Method to improve the performance in cell range expansion using location based codebook subset restriction
US9883529B2 (en) 2015-06-19 2018-01-30 Intel IP Corporation Controlling uplink transmissions in communication systems with scheduled trigger frames

Similar Documents

Publication Publication Date Title
JP2013543348A5 (en)
RU2013125496A (en) TRANSMISSION SYSTEMS AND METHODS IN DISTRIBUTED WIRELESS SYSTEMS BY USER CLUSTERING
CN101325741B (en) Method and system for operating MU-MIMO wireless communication system
KR101529343B1 (en) Feedback scheduling to reduce feedback rates in mimo systems
KR102170650B1 (en) Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
JP5244235B2 (en) Method for assigning precoding vectors in mobile cellular networks
JP5667144B2 (en) MIMO communication system having variable slot structure
RU2413367C2 (en) Control of transfer speed in multichannel communication systems
TWI535230B (en) Primary station and method for operating the same,secondary station and method for operating the same
CN110198180B (en) Link self-adaptive adjustment method, device and computer readable storage medium
JP2008508833A (en) Quality control method for multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) system
KR20120058532A (en) Method and device for determining cqi value in coordinated multi-point transmission/reception
JP2015522972A (en) Method and apparatus for CSI reporting
KR102050745B1 (en) Method and apparatus for transceving information between base station and terminar
JP5744833B2 (en) Method for communicating in a MIMO network
CN105917609B (en) A kind of channel measurement and feedback method, the network equipment and system
EP2517375B1 (en) Telecommunication transmission method and system
KR20120112741A (en) Closed-loop transmission feedback in wireless communication systems
JP2013502797A (en) Method for operating a radio station in a mobile network
US10771184B2 (en) Control entity, access node, user equipment and methods
WO2013091205A1 (en) Downlink transmission in a mu-mimo system
JP2008053906A (en) Communication equipment and sir estimation method therefor
JP5279913B2 (en) Quantization and transmission of normalized measure of MU-COMP channel state
KR20150014479A (en) Calculating and reporting channel characteristics
Bi et al. Fairness improvement of maximum C/I scheduler by dumb antennas in slow fading channel