JP2013531392A - Method and apparatus for automatically compensating tilt of solar tracking panel - Google Patents

Method and apparatus for automatically compensating tilt of solar tracking panel Download PDF

Info

Publication number
JP2013531392A
JP2013531392A JP2013519929A JP2013519929A JP2013531392A JP 2013531392 A JP2013531392 A JP 2013531392A JP 2013519929 A JP2013519929 A JP 2013519929A JP 2013519929 A JP2013519929 A JP 2013519929A JP 2013531392 A JP2013531392 A JP 2013531392A
Authority
JP
Japan
Prior art keywords
panel
light receiving
solar
receiving end
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013519929A
Other languages
Japanese (ja)
Inventor
賜鴻 林
賜海 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wei Sheng Investment & Development Co ltd
Original Assignee
Wei Sheng Investment & Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wei Sheng Investment & Development Co ltd filed Critical Wei Sheng Investment & Development Co ltd
Publication of JP2013531392A publication Critical patent/JP2013531392A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/428Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis with inclined axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/15Non-parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/16Preventing shading effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本発明は、太陽追尾パネルの傾斜自動補償方法及びその装置を提供し、それは互いに隣接して配置され、太陽追尾方向へ揺動可能な複数のソーラパネルを含み、その受光端面上に個別に設けられた2つ以上の光センサは、太陽光の照射を受けると電位信号を生成し、電位信号を比較して電位差が存在するとき、電位信号の電位が等しくなって停止するまでソーラパネルを同期で揺動させ、ソーラパネルの傾斜を補償し、受光端面全体で太陽光の熱放射エネルギを受ける。The present invention provides a method and apparatus for automatically compensating the inclination of a solar tracking panel, which includes a plurality of solar panels arranged adjacent to each other and capable of swinging in the solar tracking direction, and provided individually on the light receiving end face thereof. The two or more optical sensors generate a potential signal when irradiated with sunlight, and when there is a potential difference when the potential signals are compared, the solar panel is synchronized until the potential of the potential signal becomes equal and stops. To compensate for the inclination of the solar panel and receive the heat radiation energy of sunlight over the entire light receiving end face.

Description

本発明は太陽追尾パネルに関し、特に、パネル全体で太陽光の照射が受けられるまでソーラーパネルを揺動させて傾ける自動補正方法と、当該方法を実行する駆動ユニット、光センサ及び制御ユニットとに関する。   The present invention relates to a solar tracking panel, and more particularly, to an automatic correction method for swinging and tilting a solar panel until the entire panel is irradiated with sunlight, and a drive unit, an optical sensor, and a control unit that execute the method.

従来、自動的に太陽光の照射角度に応じて揺動させる太陽追尾型ソーラパネルは、特許文献1において開示されているように、主にソーラパネルを揺動可能なブラケットの頂部へ取り付け、駆動ユニットをブラケットに隣接して設け、制御ユニットは、季節及び時間に基づいて太陽光の照射角度を判断し、ソーラパネルをブラケットに応じて揺動させ、ソーラパネルの受光端面に照射される太陽光の角度を最適にする。   Conventionally, a solar tracking type solar panel that automatically swings according to the irradiation angle of sunlight, as disclosed in Patent Document 1, is mainly mounted and driven on the top of a swingable bracket. A unit is installed adjacent to the bracket, and the control unit determines the sunlight irradiation angle based on the season and time, swings the solar panel according to the bracket, and irradiates the light receiving end face of the solar panel. To optimize the angle.

さらに、上述の従来の太陽追尾型パネルは、1組のソーラパネルのみで発電を行う以外に、例えば、特許文献2において、互いに隣接して設けられた複数組のソーラバッテリにより同時に発電する技術が開示されている。この技術では、主に連結ロッドを各ソーラバッテリに枢着させ、ソーラバッテリにより太陽追尾方向へ同期で揺動させる。   Further, the conventional solar tracking type panel described above has a technology for generating power simultaneously by using a plurality of sets of solar batteries provided adjacent to each other in Patent Document 2, for example, in addition to generating power by using only one set of solar panels. It is disclosed. In this technique, a connecting rod is mainly pivotally attached to each solar battery, and is swung synchronously in the solar tracking direction by the solar battery.

上述の配置により複数のソーラパネルを同時に発電し、実際に使用する際、複数のソーラパネルを直列接続させて1つの直列回路を形成し、ソーラパネルの複数のソーラバッテリ間を直列接続させて1つの回路を形成する。そのため、ソーラパネルの受光端面全体で太陽光の照射を受けると、ソーラバッテリにより発電を行って直列回路が導通され、外部へ電力が出力される。   With the arrangement described above, when a plurality of solar panels are simultaneously generated and actually used, a plurality of solar panels are connected in series to form one series circuit, and a plurality of solar batteries of the solar panel are connected in series. One circuit is formed. Therefore, when sunlight is irradiated on the entire light receiving end face of the solar panel, power is generated by the solar battery, the series circuit is conducted, and electric power is output to the outside.

しかし、複数のソーラパネルが同期で太陽追尾の方向へ揺動すると、各ソーラパネルの揺動により跳ね上がった端部が、隣接したソーラパネルの下がった端部に照射される太陽光を遮り、ソーラパネルの下がった端部の受光端面上に日陰領域が形成され、この日陰領域に設けられたソーラバッテリが発電を停止して直列回路が断線し、ソーラパネルの発電が一時的に停止し、受光端面全体で太陽光の照射を受けることができるようになるまでソーラパネルを揺動しなければ、再び起動させて発電を行うことができない。   However, when multiple solar panels swing in the direction of solar tracking synchronously, the end that jumps up due to the swing of each solar panel blocks the sunlight that is irradiated to the lower end of the adjacent solar panel, A shaded area is formed on the light-receiving end face of the lower edge of the panel, the solar battery provided in this shaded area stops power generation, the series circuit is disconnected, and power generation of the solar panel is temporarily stopped. If the solar panel is not swung until the entire end face can be irradiated with sunlight, it cannot be activated again to generate power.

しかし、上述のソーラパネルが揺動して日陰領域が形成され、発電が一時的に停止する問題に対しては、上述の従来技術において、日陰領域の発生を有効に防ぐ方法が開示されていなかったため、この点の改善が求められていた。   However, with respect to the problem that the above-described solar panel swings to form a shaded area and power generation temporarily stops, the above-described prior art does not disclose a method for effectively preventing the occurrence of the shaded area. Therefore, improvement of this point has been demanded.

台湾実用新案登録第317554号明細書Taiwan Utility Model Registration No. 317554 Specification 台湾実用新案登録第379172号明細書Taiwan Utility Model Registration No. 379172 Specification

本発明の目的は、ソーラパネルにより、隣接したソーラパネルに照射される太陽光を遮り、ソーラパネルが断線状態となり、発電が一時的に停止する従来技術の問題を克服することにある。   An object of the present invention is to overcome the problems of the prior art in which solar panels block the sunlight irradiated to adjacent solar panels, the solar panels are disconnected, and power generation temporarily stops.

上述の目的を達成するために、本発明の太陽追尾パネルの傾斜自動補償方法は、互いに隣接して配置され、太陽追尾方向へ揺動可能な複数のソーラパネルを有し、その方法は、ソーラパネルの受光端面上の2つ以上の光センサを使用し、太陽光の照射を受けて合致した電位信号を生成させるステップと、合致した電位信号を比較し、電位差が存在するとき、電位信号の電位が等しくなって停止するまでソーラパネルを同期で揺動させ、ソーラパネルの傾斜を補償し、受光端面全体で太陽光照射を受けて熱放射エネルギを十分に受ける。   In order to achieve the above-mentioned object, the method of automatically compensating for the inclination of the solar tracking panel of the present invention has a plurality of solar panels arranged adjacent to each other and swingable in the solar tracking direction. Using two or more light sensors on the light receiving end face of the panel, comparing the matched potential signal with the step of generating a matched potential signal upon irradiation with sunlight, and when there is a potential difference, The solar panel is oscillated synchronously until the potentials are equalized and stopped, the inclination of the solar panel is compensated, and the entire light receiving end face is irradiated with sunlight and sufficiently receives heat radiation energy.

上述したように、上述の光センサにより感知し続け、合致した電位信号を生成すると同時に、電位信号を比較し続け、ソーラパネルが同期で行う揺動を補償するタイミングを判断し、受光端面全体で太陽光の照射が受けられる角度になるまで、ソーラパネルの揺動を即時に補償することにより、ソーラパネルにより太陽光が遮られ、隣接して設けられたソーラパネルの受光端面上に形成される暗い領域を即時に無くし、ソーラパネルの発電を一時的に停止し、ソーラパネルの発電効率を向上させる。   As described above, the detection by the above-described optical sensor continues to generate a matched potential signal, and at the same time, the potential signal is continuously compared to determine the timing at which the solar panel compensates for the synchronous swing, and the entire light receiving end face is determined. The solar panel is immediately compensated for the oscillation of the solar panel until it reaches an angle at which sunlight can be irradiated, so that the solar panel blocks the sunlight and is formed on the light receiving end face of the adjacent solar panel. Immediately eliminate dark areas, temporarily stop solar panel power generation, and improve solar panel power generation efficiency.

受光端面は、パネル上の受光表面か、或いは受光表面に隣接して平行に設けられ、パネルに応じて揺動する特定位置を含む。   The light receiving end surface is provided on the light receiving surface on the panel or in parallel adjacent to the light receiving surface, and includes a specific position that swings according to the panel.

日照領域を日照度が高い1つの所定時間範囲と、日照度が低い複数の所定時間範囲とに分け、日照度が低い所定時間範囲内で光センサの電位信号を比較するか、日照度が高い所定時間範囲内で光センサの電位信号を比較するステップをさらに含む。   Divide the sunshine area into one predetermined time range with high daily illuminance and multiple predetermined time ranges with low daily illuminance, and compare the potential signals of the photosensors within the predetermined time range with low daily illuminance, or high daily illuminance The method further includes comparing the photosensor potential signal within a predetermined time range.

受光端面上の2つ以上の光センサは、相対位置関係を有し、相対位置関係により、2つ以上の光センサを、ソーラパネルの揺動軸心の端部の2つの隣接した側部に接続させるか、受光端面上の2つ以上の光センサは、相対位置関係を有し、相対位置関係により、2つ以上の光センサを、受光端面上の両端側に設けるか、受光端面上の2つ以上の光センサは、相対位置関係を有し、相対位置関係により、2つ以上の光センサを、受光端面上の両端側の先端角に設けることにより、ソーラパネルの揺動補償の敏感度を高める。   The two or more photosensors on the light receiving end face have a relative positional relationship, and the two or more photosensors are placed on two adjacent sides of the end of the swing axis of the solar panel. The two or more optical sensors on the light receiving end face are connected to each other or have a relative positional relationship. Depending on the relative positional relation, two or more optical sensors are provided on both ends on the light receiving end face, or on the light receiving end face. Two or more optical sensors have a relative positional relationship, and by providing two or more optical sensors at the front end angles on both ends on the light receiving end surface due to the relative positional relationship, the solar panel fluctuation compensation is sensitive. Increase the degree.

日照度が高い所定時間範囲は、正午及び正午前後の時間帯であり、日照度が低い所定時間範囲には、午前及び午後の時間帯が含まれる。   The predetermined time range with high daily illuminance is a time zone after noon and noon, and the predetermined time range with low daily illuminance includes time zones in the morning and afternoon.

電位差は、低電位信号と高電位信号との差であり、低電位信号を生成する光センサが設けられた受光端面の端部を、ソーラパネルの揺動に応じて上昇させ、高電位信号を生成する光センサが設けられた受光端面の端部を、ソーラパネルの揺動に応じて下降させる。   The potential difference is the difference between the low potential signal and the high potential signal, and the end of the light receiving end face provided with the photosensor that generates the low potential signal is raised according to the oscillation of the solar panel, and the high potential signal is The end portion of the light receiving end surface provided with the photosensor to be generated is lowered according to the swing of the solar panel.

この他、本発明の太陽追尾パネルの傾斜自動補償装置は、互いに隣接して設けられた複数のソーラパネルと、太陽追尾方向でソーラパネルを同期で揺動させる駆動ユニットと、ソーラパネルの受光端面上に個別に設置し、太陽光照射を受けて合致した電位信号を生成する相対位置関係を有する2つ以上の光センサと、光センサと駆動ユニットとの間に電気的に接続され、合致した電位信号を比較し、電位信号の間に電位差が存在する場合、電位信号の電位が等しくなって停止するまで、駆動ユニットによりソーラパネルを同期で揺動させ、ソーラパネルの傾斜を補償し、受光端面全体で太陽光の照射を受ける。そのため上述の本発明の太陽追尾パネルの傾斜自動補償装置を実行する。   In addition, the automatic inclination compensator for the solar tracking panel of the present invention includes a plurality of solar panels provided adjacent to each other, a drive unit that swings the solar panel synchronously in the solar tracking direction, and a light receiving end face of the solar panel. Two or more optical sensors that are installed individually and have a relative positional relationship to generate a matched potential signal upon receiving sunlight, and are electrically connected and matched between the optical sensor and the drive unit Compare potential signals, and if there is a potential difference between the potential signals, the solar panel is swung synchronously by the drive unit until the potential signals become equal and stopped, compensating for the tilt of the solar panel, and receiving light The entire end face is irradiated with sunlight. Therefore, the above-described automatic inclination compensation device for the solar tracking panel of the present invention is executed.

受光端面は、パネル上の受光表面か、或いは受光表面に隣接して平行に設けられ、パネルに応じて揺動する特定位置を含む。   The light receiving end surface is provided on the light receiving surface on the panel or in parallel adjacent to the light receiving surface, and includes a specific position that swings according to the panel.

ソーラパネルは、水平状に隣接して設けられるか、傾けて隣接して設けられる。   The solar panels are provided adjacent to each other in a horizontal shape, or provided so as to be inclined and adjacent to each other.

2つ以上の光センサは、ソーラパネルの揺動軸心の端部の隣接した2つの側部にそれぞれ接続されるか、或いは、2つ以上の光センサは、受光端面上の両端側に設けられてもよいし、2つ以上の光センサは、受光端面上の両端側の先端角に設けられてもよい。   Two or more optical sensors are respectively connected to two adjacent side portions of the end of the swing axis of the solar panel, or two or more optical sensors are provided on both ends on the light receiving end surface. Alternatively, the two or more optical sensors may be provided at the tip angles on both ends on the light receiving end face.

電位差は、低電位信号と高電位信号との差であり、低電位信号を生成する光センサが設けられた受光端面の端部を、ソーラパネルの揺動に応じて上昇させ、高電位信号を生成する光センサが設けられた受光端面の端部を、ソーラパネルの揺動に応じて下降させる。   The potential difference is the difference between the low potential signal and the high potential signal, and the end of the light receiving end face provided with the photosensor that generates the low potential signal is raised according to the oscillation of the solar panel, and the high potential signal is The end portion of the light receiving end surface provided with the photosensor to be generated is lowered according to the swing of the solar panel.

従来技術と比較し、ソーラパネルの傾斜を補償すると、受光端面全体で太陽光の熱放射エネルギを受けることができる。   Comparing with the inclination of the solar panel as compared with the prior art, it is possible to receive the heat radiation energy of sunlight over the entire light receiving end face.

本発明の流れ図である。3 is a flowchart of the present invention. 本発明の配置図である。It is an arrangement plan of the present invention. 図2の側面図である。FIG. 3 is a side view of FIG. 2. 本発明の他の配置図である。It is another arrangement drawing of the present invention. 本発明の実施ステップを示す流れ図である。It is a flowchart which shows the implementation step of this invention. 図2の使用状態図である。FIG. 3 is a use state diagram of FIG. 2. 図6の次の状態図である。FIG. 7 is a state diagram next to FIG. 6. 図3の線A−Aに沿った断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図8の使用状態図である。FIG. 9 is a use state diagram of FIG. 8. 図9の次の状態図である。FIG. 10 is a state diagram next to FIG. 9. 図2のもう一つの使用状態図である。FIG. 3 is another use state diagram of FIG. 2. 図11の次の状態図である。FIG. 12 is a state diagram next to FIG. 11. 図2のさらにもう一つの使用状態図である。FIG. 3 is still another usage state diagram of FIG. 2. 図13の次の状態図である。FIG. 14 is a state diagram next to FIG. 13. 図2のさらに別のもう一つの使用状態図である。FIG. 4 is still another usage state diagram of FIG. 2. 図15の次の状態図である。FIG. 16 is a state diagram next to FIG. 15. 図8のもう一つの使用状態図である。FIG. 9 is another use state diagram of FIG. 8. 図17の次の状態図である。FIG. 18 is a state diagram next to FIG. 17. 本発明の他の配置図である。It is another arrangement drawing of the present invention.

本発明を明確かつ十分に開示し、好適な実施例の図面を列挙し、以下、その実施方式を詳細に説明する。
<実施方式>
The present invention will be disclosed clearly and fully, the drawings of the preferred embodiments will be listed, and the manner of implementation thereof will be described in detail below.
<Implementation method>

まず、図1は、本発明の太陽追尾パネルの傾斜自動補償方法を示す流れ図であり、図2、図3及び図5を併せて見ると分かるように、本発明は、互いに隣接して設けられ、太陽追尾方向へ揺動可能な複数のソーラパネルを有し、太陽追尾の位置決め角度になるまで地球の東、西方向で揺動する第1のパネル11、第2のパネル12及び第3のパネル13を含む。第1のパネル11は、第2のパネル12の東側に位置し、第3のパネル13は、第2のパネル12の西側に位置し、この方法は以下のステップを含む。   First, FIG. 1 is a flow chart showing a method for automatically compensating for a solar tracking panel tilt according to the present invention. As can be seen from FIGS. 2, 3 and 5, the present invention is provided adjacent to each other. The first panel 11, the second panel 12 and the third panel have a plurality of solar panels swingable in the sun tracking direction, and swing in the east and west directions of the earth until the solar tracking positioning angle is reached. A panel 13 is included. The first panel 11 is located on the east side of the second panel 12, the third panel 13 is located on the west side of the second panel 12, and the method includes the following steps.

ステップS30:太陽光の照射を受ける第2のパネル12の受光端面120上の2つ以上の光センサ31,32,33,34を使用し、太陽光の照射を受けて合致した電位信号(図6参照)を生成する。   Step S30: Using the two or more photosensors 31, 32, 33, 34 on the light receiving end face 120 of the second panel 12 that is irradiated with sunlight, a potential signal matched by receiving the irradiation of sunlight (see FIG. 6).

ステップS40:合致した電位信号を比較する。   Step S40: Compare the matched potential signals.

ステップS50:電位信号に電位差が存在するとき、電位信号の電位が等しくなるまで第1のパネル11,第2のパネル12,第3のパネル13を同期で揺動させる(図7参照)。   Step S50: When a potential difference exists between the potential signals, the first panel 11, the second panel 12, and the third panel 13 are swung synchronously until the potentials of the potential signals become equal (see FIG. 7).

第1のパネル11,第2のパネル12,第3のパネル13の傾斜を補償し、受光端面120全体で太陽光の照射を受け、熱放射エネルギを十分に受ける。   The inclination of the first panel 11, the second panel 12, and the third panel 13 is compensated, and the entire light receiving end face 120 is irradiated with sunlight and sufficiently receives heat radiation energy.

上述の方法によると、1日の時間で行う太陽追尾パネルの傾斜自動補償方法は、以下のステップを含む。   According to the method described above, the method for automatically compensating for the inclination of the solar tracking panel performed in the time of one day includes the following steps.

ステップS10:互いに隣接して設けた第1のパネル11,第2のパネル12,第3のパネル13を準備する。   Step S10: A first panel 11, a second panel 12, and a third panel 13 provided adjacent to each other are prepared.

ステップS20:駆動ユニット2により第1のパネル11,第2のパネル12,第3のパネル13を太陽追尾方向で同期で揺動させる。太陽追尾方向は、地球の東、西方向であり、第1のパネル11,第2のパネル12,第3のパネル13間を駆動ユニット2の連結ロッド21により同期で連動させる。   Step S20: The drive unit 2 swings the first panel 11, the second panel 12, and the third panel 13 synchronously in the sun tracking direction. The sun tracking direction is the east and west directions of the earth, and the first panel 11, the second panel 12, and the third panel 13 are synchronized with each other by the connecting rod 21 of the drive unit 2.

ステップS30:2つ以上の光センサ31,32,33,34を第2のパネル12の受光端面120上へ個別に設置し、上述の光センサ31,32,33,34により太陽光の照射を受けて合致した電位信号を生成する。上述の光センサは、相対位置関係にある第1の光センサ31及び第2の光センサ32と、相対位置関係にある第3の光センサ33及び第4の光センサ34とを有する。第1の光センサ31,第2の光センサ32,第3の光センサ33,第4の光センサ34は、受ける太陽光の照射強度の違いに応じて低電位信号及び高電位信号をそれぞれ生成する。相対位置関係により、第2のパネル12に接続された揺動軸心121の端部に隣接した両側に、第1の光センサ31,第2の光センサ32をそれぞれ設け(図8参照)、第1の光センサ31が軸心121の東側に位置し、第2の光センサ32が軸心121の西側に位置する。実際に使用する際、上述の第1のパネル11,第2のパネル12,第3のパネル13がそれぞれ有する地球の南、北軸に沿って枢設されたシャフト112,122,132は、駆動ユニット2により同期で駆動され、地球の東、西方向へ第1のパネル11,第2のパネル12,第3のパネル13を揺動させ、受光端面120が第2のパネル12の頂部の受光表面か、或いは受光表面に隣接して平行に配置され、第2のパネル12に応じて揺動する特定位置を含む。この特定位置は、実際には第2のパネル12のシャフト122の両側外壁を含んでもよい。受光端面120の軸心121は、シャフト122の軸心でもよい。第1の光センサ31は、シャフト122の東面外壁に位置してもよく、第2の光センサ32は、シャフト122の西面外壁など、第1の光センサ31より高い位置でもよく、第1の光センサ31,第2の光センサ32間に形成した水平面71を第2のパネル12の頂部に対して平行かつ隣接して設けられ、第1の光センサ31,第2の光センサ32は、シャフト122を介して第2のパネル12により太陽追尾の揺動と、揺動の補償とを行う(図9及び図10参照)。この相対位置関係により、第3の光センサ33,第4の光センサ34を受光端面120上の両端側へ位置させる。第3の光センサ33は、受光端面120の東端側へ設け、第4の光センサ34は、受光端面120の西端側へ設けるか、或いは第3の光センサ33a,第4の光センサ34aも受光端面120上の両端側の先端角126,127に位置し、第3の光センサ33aは、受光端面120の東端側の先端角126に設けられ、第4の光センサ34aは、受光端面120の西端側の先端角127に設けられる。また、他の具体的な実施例において、特定位置には、第2のパネル12の両端側からそれぞれ外側へ平行に延伸されたブラケット81,82を含んでもよい(図19参照)。第2のパネル12は、実質上ラック8により支持され、シャフト122の頂面に位置決めされ、ブラケット81,82は、ラック8の両端側から第1のパネル11,第3のパネル13に向かって平行に延伸され、第3の光センサ33bは、ラック8の東側ブラケット81の頂部に位置し、第4の光センサ34bは、ラック8の西側ブラケット82の頂部に位置し、第3の光センサ33b,第4の光センサ34b間に形成した水平面72は、第2のパネル12の頂部に対して平行に隣接して設けられ、第3の光センサ33b,第4の光センサ34bは、ラック8及びシャフト122を介し、第2のパネル12により太陽追尾の揺動と、揺動の補償とを行う。   Step S30: Two or more photosensors 31, 32, 33, 34 are individually installed on the light receiving end face 120 of the second panel 12, and the above-described photosensors 31, 32, 33, 34 irradiate sunlight. Upon receipt, a matching potential signal is generated. The above-described optical sensor includes a first optical sensor 31 and a second optical sensor 32 that are in a relative positional relationship, and a third optical sensor 33 and a fourth optical sensor 34 that are in a relative positional relationship. The first optical sensor 31, the second optical sensor 32, the third optical sensor 33, and the fourth optical sensor 34 generate a low potential signal and a high potential signal, respectively, according to the difference in received sunlight irradiation intensity. To do. Due to the relative positional relationship, a first photosensor 31 and a second photosensor 32 are provided on both sides adjacent to the end of the swing axis 121 connected to the second panel 12 (see FIG. 8). The first optical sensor 31 is located on the east side of the axis 121, and the second optical sensor 32 is located on the west side of the axis 121. In actual use, the shafts 112, 122, 132 pivoted along the south and north axes of the earth included in the first panel 11, the second panel 12, and the third panel 13 described above are driven. Driven synchronously by the unit 2, the first panel 11, the second panel 12, and the third panel 13 are swung in the east and west directions of the earth, and the light receiving end face 120 receives light at the top of the second panel 12. It includes a specific position that is arranged in parallel on the surface or adjacent to the light receiving surface and swings according to the second panel 12. This particular location may actually include both outer walls of the shaft 122 of the second panel 12. The axis 121 of the light receiving end surface 120 may be the axis of the shaft 122. The first photosensor 31 may be positioned on the east surface outer wall of the shaft 122, and the second photosensor 32 may be positioned higher than the first photosensor 31 such as the west surface outer wall of the shaft 122. A horizontal plane 71 formed between the first photosensor 31 and the second photosensor 32 is provided parallel to and adjacent to the top of the second panel 12, and the first photosensor 31 and the second photosensor 32. Performs the swing of the sun tracking and the compensation of the swing by the second panel 12 through the shaft 122 (see FIGS. 9 and 10). Due to this relative positional relationship, the third optical sensor 33 and the fourth optical sensor 34 are positioned on both ends on the light receiving end face 120. The third photosensor 33 is provided on the east end side of the light receiving end surface 120, and the fourth photosensor 34 is provided on the west end side of the light receiving end surface 120, or the third photosensor 33a and the fourth photosensor 34a are also provided. The third photosensor 33 a is located at the tip angle 126 on the east end side of the light receiving end surface 120, and the fourth photosensor 34 a is located at the light receiving end surface 120. At the tip angle 127 on the west end side. In another specific embodiment, the specific position may include brackets 81 and 82 extending in parallel from both ends of the second panel 12 to the outside (see FIG. 19). The second panel 12 is substantially supported by the rack 8 and is positioned on the top surface of the shaft 122, and the brackets 81 and 82 are directed from both ends of the rack 8 toward the first panel 11 and the third panel 13. The third optical sensor 33b extends in parallel, and the third optical sensor 33b is located at the top of the east side bracket 81 of the rack 8, and the fourth optical sensor 34b is located at the top of the west side bracket 82 of the rack 8. The horizontal plane 72 formed between the second optical sensor 34b and the fourth optical sensor 34b is provided adjacent to and parallel to the top of the second panel 12, and the third optical sensor 33b and the fourth optical sensor 34b are connected to the rack. 8 and the shaft 122, the second panel 12 performs sun tracking oscillation and oscillation compensation.

ステップS40:制御ユニット4により合致した電位信号を比較し続ける。   Step S40: Continue to compare potential signals matched by the control unit 4.

ステップS51:制御ユニット4は、日照領域を日照度が高い1つの所定時間範囲と、日照度が低い複数の所定時間範囲とに分ける。日照度が高い所定時間範囲とは、一日の時間範囲内の太陽の照射強度が高い時間を指し、本実施例では、正午と、正午前後の時間帯でもよく、日照度が低い所定時間範囲とは、一日の時間範囲内の太陽の照射強度が低い時間帯を指し、本実施例では、午前及び午後の時間帯を含む。ここで正午とは、ソーラパネルを取り付ける地表位置のグリニッジ標準時(Greenwich Mean Time,GMT)の正午12時である。正午前後の時間帯とは、ユーザの定義によると実際には午前10時〜午後3時の間である。日照度が低い所定時間範囲とは、正午近くの前後の時間帯以外の日照時間であり、季節に応じて異なる。例えば、北回帰線近くの地表では、夏季期間が午前5時〜10時及び午後3時〜7時である。ユーザは、実際に取り付ける位置に応じて自ら設定することができ、ここでは例を挙げて説明するが、本発明は特にこれだけに限定されるわけではない。   Step S51: The control unit 4 divides the sunshine area into one predetermined time range in which the day illuminance is high and a plurality of predetermined time ranges in which the day illuminance is low. The predetermined time range in which the daily illuminance is high refers to the time in which the solar irradiation intensity is high within the time range of the day. Means a time zone in which the irradiation intensity of the sun within a time range of one day is low, and in this embodiment, includes a time zone in the morning and afternoon. Here, noon is 12:00 noon of Greenwich Mean Time (GMT) at the surface position where the solar panel is attached. The time zone after noon is actually between 10 am and 3 pm as defined by the user. The predetermined time range in which the illuminance is low is the sunshine hours other than the time zone before and after noon and varies depending on the season. For example, on the surface of the ground near the North Return Line, the summer periods are 5am to 10am and 3pm to 7pm. The user can set the user himself / herself according to the actual attachment position, and will be described here by way of example. However, the present invention is not limited to this.

ステップS52:制御ユニット4により現在の時刻が、日照度が高い所定時間範囲内にあるか否かを判断し続ける。   Step S52: The control unit 4 continues to determine whether or not the current time is within a predetermined time range in which the daily illuminance is high.

現在の時刻が早朝の5時〜午前10時の間であり、太陽が地表の東の空から次第に昇り、第1のパネル11,第2のパネル12,第3のパネル13の東の空にくると、制御ユニット4は、太陽追尾の所定角度を制御し、駆動ユニット2により第1のパネル11,第2のパネル12,第3のパネル13を太陽の方向へ揺動させ(図6参照)、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の所定角度α1が形成され、太陽追尾の所定角度は、季節及び時間に基づいて太陽の運行角度を判断して決定する。もし第2のパネル12に照射される光線5が第1のパネル11により遮られる場合、第2のパネル12の受光端面120の一部に暗い領域62が形成され易い。同時に、制御ユニット4により現在の時刻が、日照度が高い所定時間範囲内に無いと判断すると、現在の時刻が日照度が低い所定時間範囲内にあると判断する。   When the current time is between 5:00 am and 10 am in the early morning, and the sun gradually rises from the eastern sky on the surface of the earth, and comes to the eastern sky of the first panel 11, the second panel 12, and the third panel 13. The control unit 4 controls a predetermined angle of sun tracking, and the drive unit 2 swings the first panel 11, the second panel 12, and the third panel 13 in the direction of the sun (see FIG. 6). A predetermined angle α1 for solar tracking is formed between each of the top surfaces of the panels 11, 12, and 13 and the horizontal plane, and the predetermined angle for solar tracking is determined by judging the operating angle of the sun based on the season and time. To do. If the light beam 5 applied to the second panel 12 is blocked by the first panel 11, a dark region 62 is likely to be formed in a part of the light receiving end face 120 of the second panel 12. At the same time, if the control unit 4 determines that the current time is not within a predetermined time range with high daily illuminance, it determines that the current time is within a predetermined time range with low daily illuminance.

ステップS53:現在の時刻が日照度が高い所定時間範囲内に無いとき、制御ユニット4により第1の光センサ31及び第2の光センサ32の電位信号が等しいか否かを比較する。   Step S53: When the current time is not within a predetermined time range in which the daily illuminance is high, the control unit 4 compares the potential signals of the first photosensor 31 and the second photosensor 32 with each other.

現在の時刻が早朝5時から午前10時の間である場合、シャフト122の西面に、太陽光線5の照射を受けて明るい領域61が形成されるため(図9参照)、第2の光センサ32は、明るい領域61内で光線5の照射を受けて高電位信号を生成する。第1の光センサ31,第2の光センサ32間が沿面距離h1を有するため(図8参照)、沿面距離h1には、実際にはシャフト122の直径と、第1の光センサ31,第2の光センサ32に接続された光センサボディ3の表面幅と、が含まれる。沿面距離h1により形成される突起部30は、太陽光線5が照射されるシャフト122の東面又は西面を容易に遮ることができる。このとき太陽光線5が照射されるシャフト122の東面が突起部30により遮られると、暗い領域62が形成され、暗い領域62内に位置する第1の光センサ31が光線5の照射を受けない場合、低電位信号が生成され、第1の光センサ31,第2の光センサ32の電位信号が異なり、電位差が存在する。   When the current time is between 5:00 am and 10:00 am in the early morning, a bright region 61 is formed on the west surface of the shaft 122 by receiving the sunlight 5 (see FIG. 9), so the second photosensor 32. Receives a light beam 5 in a bright area 61 to generate a high potential signal. Since the first optical sensor 31 and the second optical sensor 32 have a creepage distance h1 (see FIG. 8), the creepage distance h1 actually includes the diameter of the shaft 122, the first optical sensor 31, and the second optical sensor 32. The surface width of the optical sensor body 3 connected to the second optical sensor 32 is included. The protrusion 30 formed by the creeping distance h1 can easily block the east surface or the west surface of the shaft 122 irradiated with the sunlight 5. At this time, when the east surface of the shaft 122 irradiated with the sunlight 5 is blocked by the protrusion 30, a dark region 62 is formed, and the first photosensor 31 located in the dark region 62 is irradiated with the light beam 5. If not, a low potential signal is generated, the potential signals of the first photosensor 31 and the second photosensor 32 are different, and a potential difference exists.

ステップS54:合致した電子信号に電位差が存在するとき、制御ユニット4により第1の光センサ31,第2の光センサ32の電位信号の高低を比較する。   Step S54: When there is a potential difference between the matched electronic signals, the control unit 4 compares the potential signals of the first optical sensor 31 and the second optical sensor 32 with each other.

現在の時刻が早朝5時〜午前10時の間である場合、第2の光センサ32は、第1の光センサ31の低電位信号より高い高電位信号を生成する。   When the current time is between 5 am and 10 am in the early morning, the second photosensor 32 generates a high potential signal that is higher than the low potential signal of the first photosensor 31.

ステップS541:制御ユニット4は、低電位信号を生成する光センサが設けられた受光端面120の一端側の端部を、駆動ユニット2により駆動し、第2のパネル12の揺動に伴って上昇させ、高電位信号を生成する光センサが設けられた受光端面120の他端側の端部を、第2のパネル12の揺動に応じて下降させる。   Step S541: The control unit 4 drives the end on the one end side of the light receiving end face 120 provided with the light sensor for generating the low potential signal by the drive unit 2, and rises as the second panel 12 swings. Then, the end on the other end side of the light receiving end face 120 provided with the photosensor for generating a high potential signal is lowered in accordance with the swing of the second panel 12.

現在の時刻が早朝の5時〜午前10時の間であり、第2の光センサ32の電位信号が第1の光センサ31の電位信号より高いため、第1の光センサ31が設けられた受光端面120の東端側の端部123を駆動ユニット2により駆動し、第2のパネル12の揺動に応じて上昇させるとともに(図7及び図10参照)、第2の光センサ32が設けられた受光端面120の西端側の端部124を駆動し、第2のパネル12の揺動に応じて下降させ、太陽追尾方向へ第2のパネル12を揺動させ、第1のパネル11,第3のパネル13を連動させて太陽追尾方向へ揺動させる。この期間中、ステップS52,S53,S54,S541を繰り返して行う。ステップS53を繰り返して行う際、第2のパネル12を太陽追尾方向でシャフト122の東面及び西面まで揺動させ、太陽光線5の照射を受けると、シャフト122の東、西面に明るい領域61がそれぞれ形成され、第1の光センサ31,第2の光センサ32が太陽光線5の照射を受け、等しい電位信号を生成させる。   Since the current time is between 5 am and 10 am in the early morning and the potential signal of the second photosensor 32 is higher than the potential signal of the first photosensor 31, the light receiving end face provided with the first photosensor 31 The end 123 on the east end side of 120 is driven by the drive unit 2 and is raised in accordance with the swing of the second panel 12 (see FIGS. 7 and 10), and light reception provided with the second photosensor 32 is provided. The end portion 124 on the west end side of the end surface 120 is driven and lowered in accordance with the swing of the second panel 12, and the second panel 12 is swung in the sun tracking direction. The panel 13 is interlocked and swung in the sun tracking direction. During this period, steps S52, S53, S54, and S541 are repeated. When step S53 is repeated, the second panel 12 is swung to the east and west surfaces of the shaft 122 in the sun tracking direction, and when irradiated with the sunbeam 5, bright areas on the east and west surfaces of the shaft 122 61 are formed, and the first optical sensor 31 and the second optical sensor 32 are irradiated with the sunlight 5 to generate equal potential signals.

ステップS55:現在の時刻が早朝の5時〜午前10時の間で、電位信号の電位が等しいとき、駆動ユニット2によるシャフト122の駆動を制御ユニット4により停止させ、第1のパネル11,第2のパネル12,第3のパネル13の揺動を停止し、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の実際角度α2を形成し(図7及び図10参照)、角度α1及びα2の減算した角度値とは、各パネル11,12,13の太陽追尾の傾斜補償値である。これにより、受光端面120上の暗い領域62を即時に無くし、受光端面120全体で太陽光照射を受け、ソーラパネルの揺動補償の敏感度を高めることができる。この期間中、ステップS52,S53,S55を繰り返して行う。ステップS53を繰り返して行い、電位信号に電位差が存在するとき、ステップS52,S53,S54,S541を繰り返して行う。   Step S55: When the current time is between 5 am and 10 am in the early morning and the potentials of the potential signals are equal, the drive of the shaft 122 by the drive unit 2 is stopped by the control unit 4, and the first panel 11, second The swinging of the panel 12 and the third panel 13 is stopped, and an actual angle α2 of the sun tracking is formed between each of the top surfaces of the panels 11, 12, 13 and the horizontal plane (see FIGS. 7 and 10). The angle values obtained by subtracting the angles α1 and α2 are inclination compensation values for solar tracking of the panels 11, 12, and 13, respectively. As a result, the dark region 62 on the light receiving end face 120 can be eliminated immediately, and the entire light receiving end face 120 can be irradiated with sunlight to increase the sensitivity of the solar panel swing compensation. During this period, steps S52, S53, and S55 are repeated. Step S53 is repeated, and when there is a potential difference in the potential signal, steps S52, S53, S54, and S541 are repeated.

ステップS52:現在の時刻が午前10時〜正午12時の間であるとき、太陽が次第に西方から第1のパネル11,第2のパネル12,第3のパネル13の上方又は上方近くの東空まで移動する際、制御ユニット4により太陽追尾の所定角度を制御し、駆動ユニット2により第1のパネル11,第2のパネル12,第3のパネル13を駆動し、太陽の方向へ揺動させ(図11参照)、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の所定角度α3が形成される。この期間中、第2のパネル12に照射される太陽光線5が第1のパネル11により遮られて第2のパネル12の受光端面120の一部に暗い領域62が形成されると、制御ユニット4により、現在の時刻が日照度が高い所定時間範囲内にあると判断する。   Step S52: When the current time is between 10:00 am and 12:00 noon, the sun gradually moves from the west to the eastern sky above the first panel 11, the second panel 12, and the third panel 13 or near the top. In this case, the control unit 4 controls the predetermined angle of sun tracking, and the drive unit 2 drives the first panel 11, the second panel 12, and the third panel 13 to swing in the direction of the sun (see FIG. 11), a predetermined angle α3 for sun tracking is formed between each of the top surfaces of the panels 11, 12, and 13 and the horizontal plane. During this period, when the sunlight 5 irradiated to the second panel 12 is blocked by the first panel 11 and a dark region 62 is formed on a part of the light receiving end face 120 of the second panel 12, the control unit 4, it is determined that the current time is within a predetermined time range with high daily illuminance.

ステップS56:現在の時刻が日照度が高い所定時間範囲内にあるとき、制御ユニット4により、第3及び第4の光センサ33,33a,34,34aの電位信号が等しいか否かを比較する。   Step S56: When the current time is within a predetermined time range where the daily illuminance is high, the control unit 4 compares the potential signals of the third and fourth photosensors 33, 33a, 34, 34a with each other. .

現在の時刻が午前10時〜正午12時の間であり、受光端面120の西端側の端部124が太陽光線5の照射を受けて明るい領域61が形成されると、明るい領域61内に太陽光線5が照射され、第4の光センサ34,34aが高電位信号を生成する。第1のパネル11が太陽光線5を遮ると、第2のパネル12の受光端面120の東端側の端部123及び先端角126に暗い領域62が形成され、暗い領域62内の第3の光センサ33,33aは、太陽光線5の照射を受けないときに低電位信号を生成し、第3及び第4の光センサ33,33a,34,34aの電位信号が相違して電位差が存在する。   When the current time is between 10:00 am and 12:00 noon, and the end 124 on the west end side of the light receiving end face 120 is irradiated with the sunbeam 5 to form a bright area 61, the sunbeam 5 is formed in the bright area 61. , And the fourth photosensors 34, 34a generate a high potential signal. When the first panel 11 blocks the sunlight 5, a dark region 62 is formed at the end portion 123 and the tip angle 126 on the east end side of the light receiving end surface 120 of the second panel 12, and the third light in the dark region 62 is formed. The sensors 33 and 33a generate a low potential signal when they are not irradiated with the sunlight 5, and the potential signals of the third and fourth photosensors 33, 33a, 34, and 34a are different and a potential difference exists.

ステップS57:電位信号に電位差が存在する場合、第3及び第4の光センサ33,33a,34,34aの電位信号の高低を制御ユニット4により比較する。現在の時刻が午前10時〜正午12時の間である場合、第4の光センサ34は、第3の光センサ33の低電位信号より高い高電位信号を生成する。   Step S57: When a potential difference exists in the potential signal, the control unit 4 compares the potential signals of the third and fourth photosensors 33, 33a, 34, and 34a with each other. When the current time is between 10:00 am and 12:00 noon, the fourth photosensor 34 generates a high potential signal that is higher than the low potential signal of the third photosensor 33.

ステップS571:制御ユニット4は、低電位信号を生成する光センサが設けられた受光端面120の一端側の端部を駆動し、第2のパネル12の揺動に伴って上昇させるとともに、高電位信号を生成する光センサが設けられた受光端面120の他端側の端部を駆動し、第2のパネル12の揺動に伴い下降させる。   Step S571: The control unit 4 drives the end portion on one end side of the light receiving end face 120 provided with the optical sensor for generating the low potential signal, and raises it with the swinging of the second panel 12, and also increases the high potential. The end on the other end side of the light receiving end face 120 provided with the optical sensor for generating a signal is driven and lowered with the swing of the second panel 12.

現在の時刻が午前10時〜正午12時の間である場合、第4の光センサ34,34aの電位信号が第3の光センサ33,33aの電位信号より高いため、駆動ユニット2により第3の光センサ33,33aが設けられた受光端面120の東端側の端部123及び先端角126を駆動し、第2のパネル12の揺動に応じて上昇させるとともに(図12参照)、第4の光センサ34,34aが設けられた受光端面120の西端側の端部124及び先端角127を駆動し、第2のパネル12の揺動に応じて下降させ、第2のパネル12を太陽追尾方向へ揺動させ、第1のパネル11,第3のパネル13を太陽追尾方向で同期で揺動させる。   When the current time is between 10:00 am and 12:00 noon, the potential signal of the fourth photosensors 34 and 34a is higher than the potential signal of the third photosensors 33 and 33a. The end portion 123 and the tip angle 126 on the east end side of the light receiving end face 120 provided with the sensors 33 and 33a are driven and raised according to the swing of the second panel 12 (see FIG. 12), and the fourth light The light receiving end face 120 provided with the sensors 34, 34a is driven with the end portion 124 and the tip angle 127 on the west end side, and is lowered in accordance with the swinging of the second panel 12, and the second panel 12 is moved in the sun tracking direction. The first panel 11 and the third panel 13 are swung synchronously in the sun tracking direction.

この期間中、ステップS52,S56,S57,S571を繰り返して行う。ステップS56を繰り返して行う際、第2のパネル12を太陽追尾方向で受光端面120の東及び西端側の端部123,124及び先端角126,127を揺動させて太陽光線5の照射を受けると、受光端面120の東及び西端側の端部123,124及び先端角126,127に明るい領域61がそれぞれ形成され、第3及び第4の光センサ33,33a,34,34aが太陽光線5の照射を同時に受けると、等しい電位信号を生成する。   During this period, steps S52, S56, S57, and S571 are repeated. When step S56 is repeated, the second panel 12 is irradiated with the sunlight 5 by swinging the east and west end portions 123 and 124 and the tip angles 126 and 127 of the light receiving end surface 120 in the sun tracking direction. The bright regions 61 are formed at the end portions 123 and 124 and the tip angles 126 and 127 on the east and west end sides of the light receiving end surface 120, respectively, and the third and fourth photosensors 33, 33a, 34, and 34a are sunbeams 5 respectively. Are simultaneously generated, the same potential signal is generated.

ステップS58:上述の電子信号の電位が等しいとき、制御ユニット4は、駆動ユニット2により駆動されているシャフト122を停止させ、第1のパネル11,第2のパネル12,第3のパネル13の揺動を停止し、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の実際角度α4が形成されるため(図12参照)、受光端面120上の暗い領域62を即時に無くし、受光端面120全体で太陽光照射を受け、この期間中、ステップS52,S56,S58を繰り返して実行する。ステップS56を繰り返し、上述の電位信号に電位差が存在する際、ステップS52,S56,S57,S571を繰り返して実行する。   Step S58: When the potentials of the electronic signals described above are equal, the control unit 4 stops the shaft 122 driven by the drive unit 2, and the first panel 11, the second panel 12, and the third panel 13 are stopped. Since the swinging is stopped and the actual angle α4 of the sun tracking is formed between each of the top surfaces of the panels 11, 12, 13 and the horizontal plane (see FIG. 12), the dark region 62 on the light receiving end surface 120 is Immediately disappear, the entire light receiving end face 120 is irradiated with sunlight, and steps S52, S56, and S58 are repeated during this period. Step S56 is repeated, and steps S52, S56, S57, and S571 are repeatedly executed when there is a potential difference in the above-described potential signal.

ステップS57を繰り返して実行する際、現在の時刻が正午12時〜午後3時の間であり、太陽が次第に西方へ向かって第1のパネル11,第2のパネル12,第3のパネル13の上方又は上方の西空近くまで運行すると、制御ユニット4は、太陽追尾の所定角度に基づき、駆動ユニット2により第1のパネル11,第2のパネル12,第3のパネル13を太陽の方向に向かって揺動させ(図13参照)、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の所定角度β3が設けられる。この期間中、受光端面120の東端側の端部123及び先端角126が太陽光線5の照射を受けると明るい領域61が形成され、第3の光センサ33,33aが明るい領域61内で太陽光線5の照射を受けると高電位信号を生成する。この際、第2のパネル12に照射される太陽光線5が第3のパネル13により遮られると、受光端面120の西端側の端部124及び先端角127に暗い領域62が形成され、暗い領域62内に位置する第4の光センサ34,34aは、太陽光線5の照射を受けない場合、低電位信号を生成し、第3の光センサ33,33aの電位信号が第4の光センサ34,34aの電位信号より高くなる。   When step S57 is repeatedly executed, the current time is between 12:00 noon and 3pm, and the sun gradually moves westward above the first panel 11, the second panel 12, and the third panel 13. When operating near the upper west sky, the control unit 4 causes the drive unit 2 to move the first panel 11, the second panel 12, and the third panel 13 toward the sun based on a predetermined angle of sun tracking. A predetermined angle β3 for sun tracking is provided between each of the top surfaces of the panels 11, 12, and 13 and a horizontal plane. During this period, when the end portion 123 and the tip angle 126 on the east end side of the light receiving end face 120 are irradiated with the sunbeam 5, a bright area 61 is formed, and the third photosensors 33 and 33a are sunbeams in the bright area 61. When receiving 5, a high potential signal is generated. At this time, when the sunlight 5 irradiated to the second panel 12 is blocked by the third panel 13, a dark region 62 is formed at the end 124 and the tip angle 127 on the west end side of the light receiving end surface 120, and the dark region When the fourth photosensors 34 and 34a located in 62 do not receive the irradiation of the solar beam 5, the fourth photosensors 34 and 34a generate a low potential signal, and the potential signals of the third photosensors 33 and 33a are the fourth photosensor 34. , 34a becomes higher than the potential signal.

ステップS572:制御ユニット4は、駆動ユニット2の駆動により、低電位信号を生成する光センサが設けられた受光端面120の一端側の端部を、第2のパネル12の揺動に応じて上昇させるともに、高電位信号を生成する光センサが設けられた受光端面120の他方側の端部を、第2のパネル12の揺動に応じて下降させる。   Step S572: When the drive unit 2 is driven, the control unit 4 raises the end on the one end side of the light receiving end face 120 provided with the photosensor for generating a low potential signal in accordance with the swing of the second panel 12. At the same time, the other end of the light receiving end face 120 provided with the photosensor for generating a high potential signal is lowered in accordance with the swing of the second panel 12.

現在の時刻が正午の12時〜午後3時の間である場合、第3の光センサ33,33aの電位信号が第4の光センサ34,34aの電位信号より高いため、駆動ユニット2の駆動により、第4の光センサ34,34aが設けられた受光端面120の西端側の端部124及び先端角127を、上述の第2のパネル12の揺動に応じて上昇させるとともに(図14参照)、第3の光センサ33,33aが設けられた受光端面120の東端側の端部123及び先端角126を、第2のパネル12の揺動に応じて下降させ、太陽追尾の方向とは反対方向に第2のパネル12を揺動させ、太陽追尾の方向とは反対方向に第1のパネル11,第3のパネル13を揺動させる。この期間中、ステップS52,S56,S57,S572を繰り返して実行する。ステップS56を繰り返して実行する際、太陽追尾の方向とは反対方向で第2のパネル12を揺動させ、第3及び第4の光センサ33,33a,34,34aが等しい電子信号を生成すると、S52,S56,S58を繰り返して実行し、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の実際の角度β4が形成され(図14参照)、ステップS56を繰り返して実行し、電位信号に電位差が存在すると、ステップS52,S56,S57,S572を繰り返して実行する。   When the current time is between 12:00 noon and 3 pm, the potential signal of the third photosensors 33, 33a is higher than the potential signal of the fourth photosensors 34, 34a. The end portion 124 and the tip end angle 127 on the west end side of the light receiving end face 120 provided with the fourth photosensors 34 and 34a are raised according to the swing of the second panel 12 described above (see FIG. 14). The end portion 123 and the tip angle 126 on the east end side of the light receiving end surface 120 provided with the third photosensors 33 and 33a are lowered according to the swing of the second panel 12, and the direction opposite to the sun tracking direction. The second panel 12 is swung, and the first panel 11 and the third panel 13 are swung in the direction opposite to the sun tracking direction. During this period, steps S52, S56, S57, and S572 are repeatedly executed. When step S56 is repeatedly executed, the second panel 12 is swung in a direction opposite to the sun tracking direction, and the third and fourth photosensors 33, 33a, 34, and 34a generate equal electronic signals. , S52, S56, and S58 are repeatedly executed, and the actual angle β4 of the sun tracking is formed between the top surface of each panel 11, 12, and 13 and the horizontal plane (see FIG. 14), and step S56 is repeated. If there is a potential difference in the potential signal, steps S52, S56, S57, and S572 are repeated.

ステップS52を繰り返して実行し、現在の時刻が午後3時〜夜7時の間である場合、太陽が次第に第1のパネル11,第2のパネル12,第3のパネル13の西空まで移動すると、制御ユニット4は、太陽追尾の所定角度に基づき、駆動ユニット2により第1のパネル11,第2のパネル12,第3のパネル13を太陽方向へ揺動させ(図15参照)、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の所定角度β1が形成される。この期間中、第2のパネル12に照射される太陽光線5が第3のパネル13により遮られると、第2のパネル12の受光端面120の一部に暗い領域62が形成され易い。同時に、制御ユニット4により現在の時刻が、日照度が低い所定時間範囲内にあると判断する。そのためステップS53を繰り返して実行する。   When step S52 is repeatedly executed and the current time is between 3:00 pm and 7:00 pm, when the sun gradually moves to the west sky of the first panel 11, the second panel 12, and the third panel 13, The control unit 4 causes the drive unit 2 to swing the first panel 11, the second panel 12, and the third panel 13 in the sun direction based on a predetermined angle of sun tracking (see FIG. 15). , 12 and 13 is formed with a predetermined angle β1 of sun tracking between each of the top surfaces and the horizontal plane. During this period, when the sunlight 5 irradiated to the second panel 12 is blocked by the third panel 13, a dark region 62 is likely to be formed on a part of the light receiving end face 120 of the second panel 12. At the same time, the control unit 4 determines that the current time is within a predetermined time range in which the daily illuminance is low. Therefore, step S53 is repeatedly executed.

ステップS53:現在の時刻が午後3時〜夜7時の間である場合、シャフト122の東面に、太陽光線5の照射を受けて明るい領域61が形成され(図15及び図17参照)、第1の光センサ31が明るい領域61内で太陽光線5の照射を受けると高電位信号を生成する。この際、シャフト122の西面に照射される太陽光線5を突起部30により遮って暗い領域62を形成し、暗い領域62内に設けられた第2の光センサ32は、太陽光線5の照射を受けない場合、低電位信号を生成し、第1及び第2の光センサ31,32の電位信号に電位差が存在する。そのためステップS54を繰り返して実行する。   Step S53: When the current time is between 3:00 pm and 7:00 pm, a bright region 61 is formed on the east surface of the shaft 122 by receiving the irradiation of the sunlight 5 (see FIGS. 15 and 17). When the photosensor 31 is irradiated with sunlight 5 in a bright region 61, a high potential signal is generated. At this time, the sun rays 5 irradiated on the west surface of the shaft 122 are blocked by the protrusions 30 to form a dark region 62, and the second photosensor 32 provided in the dark region 62 is irradiated with the sun rays 5. Otherwise, a low potential signal is generated, and a potential difference exists between the potential signals of the first and second photosensors 31 and 32. Therefore, step S54 is repeatedly executed.

ステップS54:第1及び第2の光センサ31,32の電位信号の高低を制御ユニット4により比較する。現在の時刻が午後3時〜夜7時の間であるとき、第1の光センサ31は、第2の光センサ32の低電位信号より高い高電位信号を生成させる。   Step S54: The control unit 4 compares the potential signals of the first and second photosensors 31 and 32 with each other. When the current time is between 3:00 pm and 7:00 pm, the first photosensor 31 generates a high potential signal that is higher than the low potential signal of the second photosensor 32.

ステップS542:制御ユニット4は、駆動ユニット2の駆動により、低電位信号を生成させる光センサが設けられた受光端面120の一端側の端部を、第2のパネル12の揺動に応じて上昇させ、高電位信号を生成する光センサが設けられた受光端面120の他端側の端部を、第2のパネル12の揺動に応じて下降させる。   Step S542: When the drive unit 2 is driven, the control unit 4 raises the end on the one end side of the light receiving end surface 120 provided with the photosensor for generating a low potential signal in accordance with the swing of the second panel 12. Then, the end on the other end side of the light receiving end face 120 provided with the photosensor for generating a high potential signal is lowered in accordance with the swing of the second panel 12.

現在の時刻が午後3時〜夜7時の間であり、第1の光センサ31の電位信号が第2の光センサ32の電位信号より高いため、駆動ユニット2の駆動により、第2の光センサ32が設けられた受光端面120の西端側の端部124を、第2のパネル12の揺動に応じて上昇させ(図16及び図18参照)、第1の光センサ31が設けられた受光端面120の東端側の端部123を、第2のパネル12の揺動に応じて下降させ、第2のパネル12を太陽追尾の方向と反対方向へ揺動させ、第1のパネル11,第3のパネル13を同期で太陽追尾の方向と反対方向へ揺動させる。この期間中、ステップS52,S53,S54,S542を繰り返して実行する。ステップS53を繰り返して実行する際、第1及び第2の光センサ31,32に等しい電位信号が発生すると、ステップS52,S53,S55を繰り返して実行し、各パネル11,12,13の頂面のそれぞれと水平面との間に太陽追尾の実際角度β2が形成され、ステップS53を繰り返して行い、電位信号に電位差が存在する場合、ステップS52,S53,S54,S642を繰り返して実行する。   Since the current time is between 3:00 pm and 7:00 pm and the potential signal of the first photosensor 31 is higher than the potential signal of the second photosensor 32, the second photosensor 32 is driven by the drive unit 2. The light receiving end surface 120 provided with the first photosensor 31 is raised by raising the end portion 124 on the west end side of the light receiving end surface 120 provided with the second panel 12 according to the swing of the second panel 12 (see FIGS. 16 and 18). The end portion 123 on the east end side of 120 is lowered in response to the swing of the second panel 12, and the second panel 12 is swung in the direction opposite to the sun tracking direction. The panel 13 is swung synchronously in the direction opposite to the sun tracking direction. During this period, steps S52, S53, S54, and S542 are repeated. When the same potential signal is generated in the first and second photosensors 31 and 32 when the step S53 is repeatedly executed, the steps S52, S53, and S55 are repeatedly executed, and the top surfaces of the panels 11, 12, and 13 are executed. The actual angle β2 of the sun tracking is formed between each of these and the horizontal plane, and step S53 is repeated, and if there is a potential difference in the potential signal, steps S52, S53, S54, and S642 are repeatedly executed.

上述したように、上述の光センサ31,32,33,33a,34,34aにより感知し続け、合致した電位信号を生成すると同時に、制御ユニット4へ供給して電位信号を比較し続け、駆動ユニット2により駆動し、ソーラパネルが同期で揺動を補償するタイミングを判断し、受光端面120全体で太陽光の照射を受けることができる傾斜角度になるまで、ソーラパネルの揺動を即時に補償することにより、ソーラパネルにより太陽光が遮られ、隣接して設けられたソーラパネルの受光端面120上に形成される暗い領域を即時に無くしてソーラパネルの発電が一時的に停止することを防ぎ、ソーラパネルの発電効率を向上させる。   As described above, the above-described photosensors 31, 32, 33, 33a, 34, and 34a continue to sense and generate matching potential signals, and at the same time, supply them to the control unit 4 and continue to compare the potential signals, thereby driving units. 2 to determine the timing at which the solar panel compensates for the oscillation in synchronization, and immediately compensates for the oscillation of the solar panel until the inclination angle at which the entire light receiving end face 120 can receive sunlight is obtained. By this, sunlight is blocked by the solar panel, and the dark area formed on the light receiving end surface 120 of the adjacent solar panel is immediately eliminated to prevent the power generation of the solar panel from temporarily stopping, Improve solar panel power generation efficiency.

これ以外に、本発明は、日照度が低い所定時間範囲内で、制御ユニット4により第3及び第4の光センサ33,33a,34,34aの電位信号を比較し、上述の電位信号間に電位差が存在すると、電位信号の電位が等しくなって停止するまで、第1のパネル11,第2のパネル12,第3のパネル13を同期で揺動させる。同時に、日照度が高い所定時間範囲内で、制御ユニット4により第1及び第2の光センサ31,32の電位信号を比較し、電位信号の間に電位差が存在するとき、電位信号の電位が等しくなるまで第1のパネル11,第2のパネル12,第3のパネル13を同期で揺動させる。   In addition to this, the present invention compares the potential signals of the third and fourth photosensors 33, 33a, 34, and 34a by the control unit 4 within a predetermined time range in which the daily illuminance is low. If there is a potential difference, the first panel 11, the second panel 12, and the third panel 13 are swung synchronously until the potentials of the potential signals become equal and stop. At the same time, the control unit 4 compares the potential signals of the first and second photosensors 31 and 32 within a predetermined time range in which the daily illuminance is high, and when there is a potential difference between the potential signals, the potential of the potential signal is The first panel 11, the second panel 12, and the third panel 13 are swung synchronously until they are equal.

図2は、本発明の太陽追尾パネルの傾斜自動補償装置の配置図であり、図3と併せて説明し、本発明は、互いに隣接して設けられた複数のソーラパネル、駆動ユニット2、相対位置関係にある2つ以上の光センサ31,32,33,34及び制御ユニット4を含む。上述のソーラパネルは、地球の東、西方向に沿って、太陽追尾の位置決め角度まで揺動する第1のパネル11、第2のパネル12及び第3のパネル13を含んでもよく、第1のパネル11は、第2のパネル12の東側に位置し、第3のパネル13は、第2のパネル12の西側に位置する。上述の第1のパネル11,第2のパネル12,第3のパネル13のそれぞれは、地球の南、北軸に沿って枢設されたシャフト112,122,132を有する。シャフト112,122,132のそれぞれには、下方に延伸された振竿体115,125,135が配置され(図3及び図6を参照)、上述の振竿体115,125,135の底端は、連結ロッド21上に枢支連結されている。この他、上述の第1のパネル11,第2のパネル12,第3のパネル13は、水平状に隣接して設けられるか、傾けて隣接して設けられてもよい(図4参照)。   FIG. 2 is a layout diagram of the automatic inclination compensator for the solar tracking panel of the present invention, which will be described in conjunction with FIG. 3. The present invention relates to a plurality of solar panels, drive units 2, Two or more optical sensors 31, 32, 33, and 34 and the control unit 4 in a positional relationship are included. The solar panel described above may include a first panel 11, a second panel 12, and a third panel 13 that swing along the east and west directions of the earth to the positioning angle of the sun tracking. The panel 11 is located on the east side of the second panel 12, and the third panel 13 is located on the west side of the second panel 12. Each of the above-described first panel 11, second panel 12, and third panel 13 has shafts 112, 122, and 132 pivoted along the south and north axes of the earth. Each of the shafts 112, 122, 132 is provided with a vibration body 115, 125, 135 extending downward (see FIGS. 3 and 6), and the bottom ends of the above-mentioned vibration bodies 115, 125, 135 are arranged. Is pivotally connected on the connecting rod 21. In addition, the first panel 11, the second panel 12, and the third panel 13 described above may be provided adjacent to each other horizontally or may be provided adjacent to each other by being inclined (see FIG. 4).

駆動ユニット2は、第2のパネル12のシャフト122の端部に隣接して設けられ(図2及び図3参照)、モータと、モータにより駆動されるウォーム(worm)と、ウォームと噛合されたタービンと、を内部に含む。シャフト122の端部は、タービンに結合され、モータによりウォームが駆動されることにより、タービンと、第2のパネル12のシャフト122とが回転されて第2のパネル12の振竿体115が揺動され、連結ロッド21及び振竿体125,135により第1のパネル11,第2のパネル12,第3のパネル13を太陽追尾の方向で同期で揺動させる(図6及び図13参照)。   The drive unit 2 is provided adjacent to the end of the shaft 122 of the second panel 12 (see FIGS. 2 and 3), and meshes with the motor, the worm driven by the motor, and the worm. And a turbine. The end of the shaft 122 is coupled to the turbine, and the worm is driven by the motor, whereby the turbine and the shaft 122 of the second panel 12 are rotated, and the shaking body 115 of the second panel 12 is shaken. The first panel 11, the second panel 12, and the third panel 13 are swung synchronously in the sun tracking direction by the connecting rod 21 and the shaking bodies 125 and 135 (see FIGS. 6 and 13). .

前述の光センサは、第1の光センサ31、第2の光センサ32、第3の光センサ33及び第4の光センサ34を含み、第2のパネル12の受光端面120上に個別に設置され(図2及び図3参照)、太陽光の照射を受けて合致した電位信号を生成する。第1の光センサ31,第2の光センサ32,第3の光センサ33,第4の光センサ34は、受け取る太陽光の照射強度の違いに基づき、低電位信号及び高電位信号をそれぞれ生成する。受光端面120は、第2のパネル12の頂部の受光表面か、第2のパネル12に応じて揺動し、受光表面に隣接して平行に設けられた特定位置とを含む。この特定位置は、実際には第2のパネル12のシャフト122の両側外壁を含み、この相対位置関係により、前述の第2のパネル12が接続された揺動軸心121の端部に隣接した両側に第1及び第2の光センサ31,32が位置する(図8参照)。本実施例では、第1の光センサ31が軸心121の東側に位置し、第2の光センサ32が軸心121の西側に位置する。実際には、受光端面120の軸心121は、シャフト122の軸心でもよい。シャフト122の頂面には、光センサボディ3が設けられているため、第1の光センサ31はボディ3の東面外壁に位置する。第2の光センサ32は、ボディ3の西面外壁など、第1の光センサ31より高い位置に設けられ、第1及び第2の光センサ31,32間に形成された水平面71は、第2のパネル12の頂部に互いに隣接して平行に設けられ、第1及び第2の光センサ31,32は、シャフト122により第2のパネル12に応じて太陽追尾及び揺動の補償を行う(図9及び図10参照)。   The aforementioned optical sensors include a first optical sensor 31, a second optical sensor 32, a third optical sensor 33, and a fourth optical sensor 34, and are individually installed on the light receiving end face 120 of the second panel 12. (See FIGS. 2 and 3), and generates a matched potential signal upon receiving sunlight. The first optical sensor 31, the second optical sensor 32, the third optical sensor 33, and the fourth optical sensor 34 generate a low potential signal and a high potential signal, respectively, based on the difference in received sunlight irradiation intensity. To do. The light receiving end face 120 includes a light receiving surface at the top of the second panel 12 or a specific position that swings according to the second panel 12 and is provided adjacent to the light receiving surface in parallel. This specific position actually includes both outer walls of the shaft 122 of the second panel 12, and due to this relative positional relationship, it is adjacent to the end of the swing axis 121 to which the second panel 12 is connected. First and second photosensors 31 and 32 are located on both sides (see FIG. 8). In the present embodiment, the first optical sensor 31 is located on the east side of the axis 121, and the second optical sensor 32 is located on the west side of the axis 121. Actually, the axis 121 of the light receiving end face 120 may be the axis of the shaft 122. Since the optical sensor body 3 is provided on the top surface of the shaft 122, the first optical sensor 31 is located on the east surface outer wall of the body 3. The second photosensor 32 is provided at a position higher than the first photosensor 31, such as the western outer wall of the body 3, and a horizontal plane 71 formed between the first and second photosensors 31, 32 is The first and second photosensors 31 and 32 are compensated for solar tracking and oscillation according to the second panel 12 by the shaft 122 (see FIG. 2). 9 and 10).

相対位置関係により、第3及び第4の光センサ33,34を受光端面120上の両端側へ設け(図2及び図3参照)、第3の光センサ33は、受光端面120の東端側に位置し、第4の光センサ34は、受光端面120の西端側へ設ける。本実施例において、第3及び第4の光センサ33,34は、シャフト122の両側の第2のパネル12の頂面にそれぞれ設けられる。第3の光センサ33は、第2のパネル12の受光端面120の東端側の端部123に位置し、第4の光センサ34は、受光端面120の西端側の端部124に位置するか、或いは上述の第3及び第4の光センサ33a,34aも受光端面120の両端側の先端角126,127へそれぞれ設けられ、第3の光センサ33aが受光端面120の東端側の先端角126に設けられ、第4の光センサ34aが受光端面120の西端側の先端角127に設けられる。   Due to the relative positional relationship, the third and fourth photosensors 33 and 34 are provided on both ends of the light receiving end surface 120 (see FIGS. 2 and 3), and the third photosensor 33 is disposed on the east end side of the light receiving end surface 120. The fourth optical sensor 34 is located on the west end side of the light receiving end surface 120. In the present embodiment, the third and fourth photosensors 33 and 34 are respectively provided on the top surface of the second panel 12 on both sides of the shaft 122. Is the third optical sensor 33 positioned at the east end 123 of the light receiving end surface 120 of the second panel 12 and is the fourth optical sensor 34 positioned at the west end 124 of the light receiving end 120? Alternatively, the third and fourth photosensors 33 a and 34 a described above are also provided at the tip angles 126 and 127 on both ends of the light receiving end surface 120, respectively, and the third photosensor 33 a is a tip angle 126 on the east end side of the light receiving end surface 120. The fourth optical sensor 34 a is provided at the tip end angle 127 on the west end side of the light receiving end face 120.

制御ユニット4は、駆動ユニット2に近い側に設けられ、第1、第2、第3、第4の光センサ31,32,33,33a,34,34aと駆動ユニット2とが電気的に接続され、合致した電位信号を比較して電位差が存在するときに(図6及び図9参照)、駆動ユニット2の駆動により、電位信号の電位が等しくなって停止するまで、第1のパネル11,第2のパネル12,第3のパネル13を同期で揺動させる(図7及び図10参照)。   The control unit 4 is provided on the side close to the drive unit 2, and the first, second, third, and fourth optical sensors 31, 32, 33, 33 a, 34, and 34 a are electrically connected to the drive unit 2. When there is a potential difference by comparing the matched potential signals (see FIGS. 6 and 9), the first panel 11, until the potential of the potential signal is equalized and stopped by driving the drive unit 2. The second panel 12 and the third panel 13 are swung synchronously (see FIGS. 7 and 10).

さらに、他の具体的な実施例において、上述の特定位置は、同様に第2のパネル12の両端側からそれぞれ外側へ平行に延伸されたブラケット81,82を含む(図19参照)。第2のパネル12は、実質上ラック8により支持され、シャフト122の頂面に位置決めされ、上述のブラケット81,82は、ラック8の両端側から第1及び第3のパネル11,13へ向けてそれぞれ平行に延伸される。第3の光センサ33bは、ラック8の東側のブラケット81の頂部に位置し、第4の光センサ34bは、ラック8の西側ブラケット82の頂部に位置し、第3及び第4の光センサ33b,34b間に形成された水平面72を、第2のパネル12の頂部に隣接して平行に設ける。第3及び第4の光センサ33b,34bは、ラック8及びシャフト122により、第2のパネル12に応じて太陽追尾及び揺動の補償を行う。   Furthermore, in another specific embodiment, the above-mentioned specific position includes brackets 81 and 82 that are similarly extended outward from both ends of the second panel 12 in parallel (see FIG. 19). The second panel 12 is substantially supported by the rack 8 and is positioned on the top surface of the shaft 122, and the brackets 81 and 82 are directed from the both ends of the rack 8 toward the first and third panels 11 and 13. Are stretched in parallel. The third optical sensor 33b is located at the top of the east side bracket 81 of the rack 8, and the fourth optical sensor 34b is located at the top of the west side bracket 82 of the rack 8, and the third and fourth optical sensors 33b. , 34b is provided parallel to the top of the second panel 12 in parallel. The third and fourth optical sensors 33 b and 34 b perform sun tracking and oscillation compensation according to the second panel 12 by the rack 8 and the shaft 122.

そのため、光センサ31,32,33,33a,33b,34,34a,34bは、上述の第1のパネル11,第2のパネル12,第3のパネル13が太陽追尾方向へ揺動する期間中、異なる角度で太陽光の照射を受けて低電位信号及び高電位信号をそれぞれ生成する。駆動ユニット2の駆動により、低電位信号を生成する光センサが設けられた受光端面120の端部を、第2のパネル12に応じて上昇させ、高電位信号を生成する光センサが設けられた受光端面120の端部を、第2のパネル12に応じて下降させ、受光端面120全体で太陽光の照射を受ける。上述の構成要件により、上述の実施例の太陽追尾パネルの傾斜自動補償方法を実行することができる。   Therefore, the optical sensors 31, 32, 33, 33a, 33b, 34, 34a, and 34b are in a period during which the first panel 11, the second panel 12, and the third panel 13 are swung in the sun tracking direction. The low potential signal and the high potential signal are respectively generated by receiving sunlight irradiation at different angles. By driving the drive unit 2, an end of the light receiving end surface 120 provided with the photosensor for generating the low potential signal is raised according to the second panel 12, and the photosensor for generating the high potential signal is provided. The end of the light receiving end face 120 is lowered according to the second panel 12, and the entire light receiving end face 120 is irradiated with sunlight. According to the above-described configuration requirements, the method for automatically compensating the inclination of the solar tracking panel of the above-described embodiment can be executed.

そのため、合致した電位信号を比較し、電位信号に電位差が存在するとき、上述の電位信号の電位が等しくなって停止するまで、駆動ユニット2により上述のソーラパネルを同期で揺動させ、受光端面120全体で太陽光の照射が受けられるようになるまでソーラパネルの揺動を補償する。   Therefore, the matched potential signals are compared, and when there is a potential difference between the potential signals, the above-described solar panel is swung synchronously by the drive unit 2 until the potential of the above-mentioned potential signal becomes equal and stops, and the light receiving end face The oscillation of the solar panel is compensated until the entire 120 can receive sunlight.

以上の説明は、本発明をなんら限定するものではなく単に説明しただけであり、それが属する技術分野の通常の知識を有する者であるなら分かるように、特許請求の範囲の精神及び範囲から逸脱しない限り、様々な修正、変更又は置換を行ったものも本発明の保護範囲に含まれる。   The foregoing description is not intended to limit the invention in any way, but merely as an illustration, and as will be appreciated by those having ordinary skill in the art to which it belongs, departs from the spirit and scope of the claims. Unless otherwise, various modifications, changes, or substitutions are included in the protection scope of the present invention.

2:駆動ユニット
3:ボディ
4:制御ユニット
5:光線
8:ラック
11:第1のパネル
12:第2のパネル
13:第3のパネル
21:連結ロッド
30:突起部
31:第1の光センサ
32:第2の光センサ
33:第3の光センサ
33a:第3の光センサ
33b:第3の光センサ
34:第4の光センサ
34a:第4の光センサ
34b:第4の光センサ
61:明るい面
62:暗い領域
71:水平面
72:水平面
81:ブラケット
82:ブラケット
112:シャフト
115:振竿体
120:受光端面
121:軸心
122:シャフト
123:端部
124:端部
125:振竿体
126:先端角
127:先端角
132:シャフト
135:振竿体
2: Drive unit 3: Body 4: Control unit 5: Light beam 8: Rack 11: First panel 12: Second panel 13: Third panel 21: Connecting rod 30: Protrusion 31: First optical sensor 32: Second optical sensor 33: Third optical sensor 33a: Third optical sensor 33b: Third optical sensor 34: Fourth optical sensor 34a: Fourth optical sensor 34b: Fourth optical sensor 61 : Bright surface 62: Dark region 71: Horizontal plane 72: Horizontal plane 81: Bracket 82: Bracket 112: Shaft 115: Shaking body 120: Light receiving end surface 121: Shaft center 122: Shaft 123: End portion 124: End portion 125: Shaking Body 126: Tip angle 127: Tip angle 132: Shaft 135: Shaking body

Claims (16)

互いに隣接して配置され、太陽追尾方向へ揺動可能な複数のソーラパネルを有する太陽追尾パネルの傾斜自動補償方法において、
前記ソーラパネルの受光端面上の2つ以上の光センサは、太陽光の照射を受けると合致した電位信号を生成するステップと、
前記合致した電位信号を比較し、前記電位信号間に電位差が存在するとき、前記電位信号の電位が等しくなって停止するまで前記ソーラパネルを同期で揺動させ、前記ソーラパネルの傾斜を補償し、前記受光端面全体で太陽光照射を受けるステップと、含む
ことを特徴とする太陽追尾パネルの傾斜自動補償方法。
In a solar tracking panel tilt automatic compensation method having a plurality of solar panels arranged adjacent to each other and swingable in the sun tracking direction,
Two or more optical sensors on the light receiving end face of the solar panel generate a potential signal that is matched when irradiated with sunlight; and
The matched potential signals are compared, and when there is a potential difference between the potential signals, the solar panel is swung synchronously until the potential of the potential signal becomes equal and stops, thereby compensating for the tilt of the solar panel. And a step of receiving sunlight irradiation over the entire light receiving end face, and a method of automatically compensating for the inclination of the solar tracking panel.
前記受光端面は、前記パネル上の受光表面か、或いは前記受光表面に隣接して平行に設けられ、前記パネルに応じて揺動する特定位置を含む
ことを特徴とする請求項1に記載の太陽追尾パネルの傾斜自動補償方法。
2. The sun according to claim 1, wherein the light receiving end surface includes a specific position that is provided in parallel with or adjacent to the light receiving surface on the panel and swings according to the panel. Automatic tilt compensation method for tracking panel.
日照領域を日照度が高い1つの所定時間範囲と、日照度が低い複数の所定時間範囲とに分け、前記日照度が低い所定時間範囲内で前記光センサの電位信号を比較するステップをさらに含む
ことを特徴とする請求項1に記載の太陽追尾パネルの傾斜自動補償方法。
The method further includes the step of dividing the sunshine region into one predetermined time range in which the daily illuminance is high and a plurality of predetermined time ranges in which the daily illuminance is low, and comparing the potential signals of the photosensors within the predetermined time range in which the daily illuminance is low. The method for automatically compensating for the inclination of the solar tracking panel according to claim 1.
日照領域を日照度が高い1つの所定時間範囲と、日照度が低い複数の所定時間範囲とに分け、前記日照度が高い所定時間範囲内で前記光センサの電位信号を比較するステップをさらに含む
ことを特徴とする請求項1に記載の太陽追尾パネルの傾斜自動補償方法。
The method further includes the step of dividing the sunshine region into one predetermined time range in which the daily illuminance is high and a plurality of predetermined time ranges in which the daily illuminance is low, and comparing the potential signals of the photosensors within the predetermined time range in which the solar illuminance is high. The method for automatically compensating for the inclination of the solar tracking panel according to claim 1.
前記受光端面上の2つ以上の前記光センサは、相対位置関係を有し、
前記相対位置関係により、前記2つ以上の光センサを、前記ソーラパネルの揺動軸心の端部の2つの隣接した側部に接続させる
ことを特徴とする請求項1、3又は4の何れか1項に記載の太陽追尾パネルの傾斜自動補償方法。
The two or more optical sensors on the light receiving end surface have a relative positional relationship,
5. The method according to claim 1, wherein the two or more photosensors are connected to two adjacent side portions of an end portion of the swing axis of the solar panel according to the relative positional relationship. The method for automatically compensating for the inclination of the solar tracking panel according to claim 1.
前記受光端面上の2つ以上の前記光センサは、相対位置関係を有し、
前記相対位置関係により、前記2つ以上の光センサを、前記受光端面上の両端側に設ける
ことを特徴とする請求項1、3又は4の何れか1項に記載の太陽追尾パネルの傾斜自動補償方法。
The two or more optical sensors on the light receiving end surface have a relative positional relationship,
5. The automatic inclination of the solar tracking panel according to claim 1, wherein the two or more photosensors are provided on both end sides of the light receiving end face according to the relative positional relationship. Compensation method.
前記受光端面上の2つ以上の前記光センサは、相対位置関係を有し、
前記相対位置関係により、前記2つ以上の光センサを、前記受光端面上の両端側の先端角に設ける
ことを特徴とする請求項1、3又は4の何れか1項に記載の太陽追尾パネルの傾斜自動補償方法。
The two or more optical sensors on the light receiving end surface have a relative positional relationship,
5. The solar tracking panel according to claim 1, wherein the two or more photosensors are provided at tip angles on both end sides on the light receiving end face according to the relative positional relationship. Inclination automatic compensation method.
前記日照度が高い所定時間範囲は、正午及び正午前後の時間帯であり、
前記日照度が低い所定時間範囲には、午前及び午後の時間帯が含まれる
ことを特徴とする請求項3又は4に記載の太陽追尾パネルの傾斜自動補償方法。
The predetermined time range in which the daily illuminance is high is a time zone after noon and noon,
The solar tracking panel inclination automatic compensation method according to claim 3 or 4, wherein the predetermined time range in which the daily illuminance is low includes morning and afternoon time zones.
前記電位差は、低電位信号と高電位信号との差であり、前記低電位信号を生成する前記光センサが設けられた前記受光端面の端部を、前記ソーラパネルの揺動に応じて上昇させ、前記高電位信号を生成する前記光センサが設けられた前記受光端面の端部を、前記ソーラパネルの揺動に応じて下降させる
ことを特徴とする請求項1に記載の太陽追尾パネルの傾斜自動補償方法。
The potential difference is a difference between a low potential signal and a high potential signal, and the end of the light receiving end surface provided with the photosensor that generates the low potential signal is raised according to the swing of the solar panel. The inclination of the solar tracking panel according to claim 1, wherein an end portion of the light receiving end face provided with the photosensor for generating the high potential signal is lowered according to the swing of the solar panel. Automatic compensation method.
互いに隣接して設けられた複数のソーラパネルと、
前記ソーラパネルを駆動し、太陽追尾方向で同期で揺動させる駆動ユニットと、
前記ソーラパネルの受光端面上に個別に設置し、太陽光照射を受けて合致した電位信号を生成する相対位置関係を有する2つ以上の光センサと、を備え、
前記光センサと前記駆動ユニットとの間に電気的に接続され、前記合致した電位信号を比較し、前記電位信号の間に電位差が存在し、前記電位信号の電位が等しくなって停止するまで、前記駆動ユニットにより前記ソーラパネルを同期で揺動させ、前記ソーラパネルの傾斜を補償し、前記受光端面全体で太陽光の照射を受ける
ことを特徴とする太陽追尾パネルの傾斜自動補償装置。
A plurality of solar panels provided adjacent to each other;
A drive unit for driving the solar panel and swinging in synchronization with the sun tracking direction;
Two or more photosensors that are individually installed on the light receiving end face of the solar panel and have a relative positional relationship that generates a matched potential signal by receiving sunlight, and
Electrically connected between the photosensor and the drive unit, comparing the matched potential signals, there is a potential difference between the potential signals, until the potential signals become equal and stop, An automatic tilt compensation device for a solar tracking panel, wherein the solar panel is swung synchronously by the drive unit, the tilt of the solar panel is compensated, and the entire light receiving end face is irradiated with sunlight.
前記受光端面は、前記パネル上の受光表面か、或いは前記受光表面に隣接して平行に設けられ、前記パネルに応じて揺動する特定位置を含む
ことを特徴とする請求項10に記載の太陽追尾パネルの傾斜自動補償装置。
11. The sun according to claim 10, wherein the light receiving end face includes a specific position that is provided in parallel with or adjacent to the light receiving surface on the panel and swings according to the panel. Automatic tilt compensation device for tracking panel.
前記ソーラパネルは、水平状に隣接して設けられるか、傾けて隣接して設けられる
ことを特徴とする請求項10に記載の太陽追尾パネルの傾斜自動補償装置。
The solar panel tilting automatic compensation device according to claim 10, wherein the solar panel is provided adjacent to each other in a horizontal manner or inclined and provided adjacent thereto.
前記2つ以上の光センサは、前記ソーラパネルの揺動軸心の端部の2つの隣接した側部にそれぞれ接続される
ことを特徴とする請求項10に記載の太陽追尾パネルの傾斜自動補償装置。
11. The automatic inclination compensation of a solar tracking panel according to claim 10, wherein the two or more optical sensors are respectively connected to two adjacent side portions of an end portion of a swing axis of the solar panel. apparatus.
前記2つ以上の光センサは、前記受光端面上の両端側に設けられる
ことを特徴とする請求項10に記載の太陽追尾パネルの傾斜自動補償装置。
11. The automatic inclination compensation device for a solar tracking panel according to claim 10, wherein the two or more optical sensors are provided on both ends of the light receiving end surface.
前記2つ以上の光センサは、前記受光端面上の両端側の先端角に設けられる
ことを特徴とする請求項10に記載の太陽追尾パネルの傾斜自動補償装置。
11. The automatic tilt compensation device for a solar tracking panel according to claim 10, wherein the two or more optical sensors are provided at tip angles on both ends on the light receiving end surface.
前記電位差は、低電位信号と高電位信号との差であり、前記低電位信号を生成する前記光センサが設けられた前記受光端面の端部を、前記ソーラパネルの揺動に応じて上昇させ、前記高電位信号を生成する前記光センサが設けられた前記受光端面の端部を、前記ソーラパネルの揺動に応じて下降させる
ことを特徴とする請求項10、13、14又は15の何れか1項に記載の太陽追尾パネルの傾斜自動補償装置。
The potential difference is a difference between a low potential signal and a high potential signal, and the end of the light receiving end surface provided with the photosensor that generates the low potential signal is raised according to the swing of the solar panel. The lower end of the light receiving end surface provided with the photosensor for generating the high potential signal is lowered according to the swing of the solar panel. An automatic tilt compensation device for a solar tracking panel according to claim 1.
JP2013519929A 2010-07-20 2010-08-06 Method and apparatus for automatically compensating tilt of solar tracking panel Pending JP2013531392A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010231173.6A CN102340264B (en) 2010-07-20 2010-07-20 Method and device for automatic compensation of tilt angles of solar tracking panels
CN201010231173.6 2010-07-20
PCT/CN2010/001199 WO2012009834A1 (en) 2010-07-20 2010-08-06 Angle automatic compensation method and device for solar energy sun-tracking panel

Publications (1)

Publication Number Publication Date
JP2013531392A true JP2013531392A (en) 2013-08-01

Family

ID=45496429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013519929A Pending JP2013531392A (en) 2010-07-20 2010-08-06 Method and apparatus for automatically compensating tilt of solar tracking panel

Country Status (5)

Country Link
US (1) US8716642B2 (en)
EP (1) EP2597397B1 (en)
JP (1) JP2013531392A (en)
CN (1) CN102340264B (en)
WO (1) WO2012009834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147356A (en) * 2017-06-26 2017-09-08 深圳市木树智库有限公司 A kind of solar power generation unit control method and system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3015649B1 (en) * 2013-12-19 2016-02-05 Exosun METHOD FOR EVALUATING THE PILOTAGE PARAMETERS OF A SOLAR FOLLOWER
CN105449706A (en) * 2014-09-25 2016-03-30 国家电网公司 Generation off-gird/grid-connected control method of urban solar power generation devices
CN105811868A (en) * 2016-03-22 2016-07-27 苏州合欣美电子科技有限公司 Rotation adjustment and control method of photovoltaic module
WO2017183304A1 (en) * 2016-04-21 2017-10-26 国立研究開発法人産業技術総合研究所 Static electricity distribution measuring device
JP6487590B1 (en) * 2018-06-12 2019-03-20 株式会社Katoホールディングス Solar house
US11914404B2 (en) * 2018-08-28 2024-02-27 Nextracker Llc Systems for and methods of positioning solar panels in an array of solar panels with spectrally adjusted irradiance tracking
CN113348623B (en) * 2020-05-19 2023-06-20 华为数字能源技术有限公司 Photovoltaic system
CN111884578B (en) * 2020-08-14 2021-06-08 江苏中信博新能源科技股份有限公司 Photovoltaic tracking system and method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317279A1 (en) * 1993-05-25 1994-12-01 Bernd E Weigl Solar-collector arrangement
CN2236636Y (en) * 1995-08-23 1996-10-02 北京有色金属研究总院 Matrix controller for automatic tracking solar energy collector
JPH10209482A (en) * 1997-01-17 1998-08-07 Kinya Eda Automatic solar beam tracking unit
US6128135A (en) * 1998-05-01 2000-10-03 Synertech Systems Corporation Three-reflection collection system for solar and lunar radiant energy
CN2562135Y (en) * 2002-05-30 2003-07-23 杨景常 Timing solar tracking devices with less power consumption
CN1525117A (en) * 2003-02-24 2004-09-01 潘俊煌 Solar energy tracking electric power storage system and application method thereof
CN2632583Y (en) * 2003-07-26 2004-08-11 王锡义 Solar water heater
CN1987289A (en) * 2005-12-23 2007-06-27 江志 Sun light tracking sensor
JP2007180257A (en) * 2005-12-28 2007-07-12 Hiji Denki:Kk Solar light tracking device
DE102006010419A1 (en) * 2006-03-04 2007-09-06 Johann Schilcher Incident light angle measuring device, has two photo-sensitive sensors arranged angularly to each other, which produce output signal depending on incident light radiation, where shielding unit defines incident light radiation of sensor
TWM317554U (en) 2006-12-21 2007-08-21 Semicons Entpr Co Ltd Sun-tracing support structure of solar panel
US8513514B2 (en) * 2008-10-24 2013-08-20 Suncore Photovoltaics, Inc. Solar tracking for terrestrial solar arrays with variable start and stop positions
CN201270001Y (en) * 2008-05-21 2009-07-08 李智良 Solar tracking apparatus
KR100913074B1 (en) * 2008-09-10 2009-08-21 (주) 파루 Solar tracking device and method for high-effective concentration photovoltaic
JP4901837B2 (en) * 2008-10-29 2012-03-21 関東自動車工業株式会社 Solar tracking device
CN201467027U (en) * 2009-03-19 2010-05-12 浙江海辰空间新能源有限公司 Fixed automatic tracking control system for photovoltaic generation
US8973570B2 (en) * 2009-08-31 2015-03-10 Robert Bosch Gmbh System and method of tracking solar radiation
TWI394349B (en) * 2010-02-05 2013-04-21 Univ Nat Chiao Tung Solar power management system with maximum power tracking
CN201854211U (en) * 2010-07-20 2011-06-01 威升开发股份有限公司 Automatic inclination compensating device of solar sun tracking panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107147356A (en) * 2017-06-26 2017-09-08 深圳市木树智库有限公司 A kind of solar power generation unit control method and system

Also Published As

Publication number Publication date
CN102340264A (en) 2012-02-01
EP2597397A4 (en) 2015-03-18
EP2597397B1 (en) 2017-11-29
WO2012009834A1 (en) 2012-01-26
EP2597397A1 (en) 2013-05-29
US20120174964A1 (en) 2012-07-12
CN102340264B (en) 2014-01-15
US8716642B2 (en) 2014-05-06

Similar Documents

Publication Publication Date Title
JP2013531392A (en) Method and apparatus for automatically compensating tilt of solar tracking panel
US10006665B2 (en) Solar tracker drive
CN103149947B (en) Solar energy tracking method with umbra versa tracking
KR101238444B1 (en) Reflecting mirror apparatus for solar power generation
US20100199971A1 (en) Controlling Apparatus for a Concentration Photovoltaic System
CN106933255B (en) Different-terrain self-adaptive solar tracking method
WO2021232257A1 (en) Photovoltaic system
KR20100098973A (en) Apparatus for photovoltaic power generation
KR20090003965A (en) System for taking in sunlight
Lee et al. A novel algorithm for single-axis maximum power generation sun trackers
KR100814974B1 (en) solar power plant having solar tracking apparatus
KR200426018Y1 (en) solar power plant having solar tracking apparatus
CN105322875A (en) Efficient solar panel system
CN205195642U (en) High -efficient solar panel system
KR101622764B1 (en) solar-cell module support structure
CN105337559A (en) Combined solar panel
CN205195623U (en) High -efficiency solar panel
CN114489155B (en) Novel solar street lamp is followed light device
CN205142101U (en) Take solar panel of optical detection
CN205142102U (en) Tracking formula solar panel
TWI407065B (en) Automatic Compensation Method and Device for Inclination of Solar Energy
JP4330508B2 (en) Tracking type photovoltaic power generation apparatus and control method thereof
CN103746646B (en) Improve the structure of solar panel generating efficiency and utilize the ecological house of this mechanism
KR101441617B1 (en) Solar power plant having angle adjustment device
CN105322873A (en) Solar panel with light detection