JP2013531333A - ビームがスキャンされるイオン注入装置における処理量の増大 - Google Patents

ビームがスキャンされるイオン注入装置における処理量の増大 Download PDF

Info

Publication number
JP2013531333A
JP2013531333A JP2013509040A JP2013509040A JP2013531333A JP 2013531333 A JP2013531333 A JP 2013531333A JP 2013509040 A JP2013509040 A JP 2013509040A JP 2013509040 A JP2013509040 A JP 2013509040A JP 2013531333 A JP2013531333 A JP 2013531333A
Authority
JP
Japan
Prior art keywords
ion beam
scan rate
ion
sectional area
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013509040A
Other languages
English (en)
Other versions
JP5904998B2 (ja
Inventor
アイズナー,エドワード
ヴァンダバーグ,ボー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axcelis Technologies Inc
Original Assignee
Axcelis Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axcelis Technologies Inc filed Critical Axcelis Technologies Inc
Publication of JP2013531333A publication Critical patent/JP2013531333A/ja
Application granted granted Critical
Publication of JP5904998B2 publication Critical patent/JP5904998B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • H01J37/3026Patterning strategy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30483Scanning
    • H01J2237/30488Raster scan
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31703Dosimetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本開示のいくつかの側面は、イオンビームの断面領域全体が素材の端を超えて延伸する前に、スキャンされたイオンビームのスキャンレートを変更することによって、従来において達成可能であった処理量を超えて、処理量を増加させる。このようにして、ここで開示された技法は、従来において達成可能であった処理量よりも多い処理量を提供することに役立つ。加えて、いくつかの実施例は、矩形(または他の円形でない形)のスキャンパターンを利用することができる。これにより、実際の注入の間、実時間のビーム束測定がウェハーなしで行われることを可能にする。これらの実施例では、ビーム束の実時間変化を考慮するように、素材注入ルーチンを実時間で変更することができる。このようにして、ここで開示された技術は、従来に達成可能であったよりも、向上した処理量を提供すること、および素材により正確なドーズプロファイルを提供することに役立つ。

Description

発明の詳細な説明
(背景)
半導体装置および他の製品の製造において、素材(例えば、半導体ウェハー、表示パネル、ガラス基板)中にドーパント(dopant)物質を与えるために、イオン注入システムが利用されている。これらのイオン注入システムは、一般的に「イオン注入装置」と呼ばれる。
イオン注入装置は、イオンビームを発生し、該イオンビームは、完全に素材の格子中に注入されることによって、そこで所望の機能を促進する。多くの素材は円形状であるので、従来の装置には、上記素材の平面内において、ビームの形状に依存して、略円形または楕円形の道筋をトレースするスキャンパターンに従って、上記素材を注入することを提案するものもある。このような楕円状のスキャンパターンは、素材の幾何学的形態およびビームの形状を正確に写像するので、各素材を注入するために必要とされる時間を限定するという点において、高い素材処理量を促進する結果につながる。しかしながら、この装置は、注入の間、ビーム束(ビームフラックス;beam flux)の動的な変化を測定することが困難であるという欠点を有する。そのため、ビーム束の変化を考慮しないことによって、楕円状のスキャンパターンを使用する装置によって与えられる実際のドーズプロファイル(dosing profile)は、時間超過で所望のドーズプロファイルから逸脱しがちである。そこで、高い処理量を維持する一方で、システムがビーム束の動的な変化を考慮することを可能にするフィードバックを提供することができる、最適化されたイオン注入方法が必要とされている。
(概要)
本発明は従来技術の限界を乗り越えるものである。そこで、以下では、本発明のいくつかの側面についての基本的な理解を提供するために、本発明の簡単な概要を説明する。この概要は本発明の詳細な全体像ではない。本発明の鍵となる点または不可欠な要素を特定するものではないし、本発明の目的を詳細に描写するものでもない。その目的は、後述するより詳細な説明の前章として、単純化された形式で、本発明のいくつかのコンセプトを説明することにある。
本開示のある側面は、イオンビームの断面領域全体が素材の端部を超えて延伸する前に、スキャンされるイオンビームのスキャンレート(scan rate)を変化させることによって、ビーム束の即時測定を実行する能力を維持する一方、従来において達成可能であった処理量を超えて処理量を増大する。これらの実施例では、ビーム束の実時間での変化を考慮するように、素材注入ルーチンを即時に変更することが可能である。例えば、素材が運ばれる並進速度および/またはイオンビームがスキャンされるスキャン速度は、ビーム束の変化を考慮して調整することができる。このようにして、ここで開示される技術は、従来において達成可能であったよりも向上した処理量、および、素材に対するより正確なドーズプロファイルを提供することに役立つ。
前述した目的およびそれに関連する目的を達成するために、本発明は、請求項において十分に説明され、かつ特定される、下記の特徴を備えている。以下の説明および添付図面は、本発明の具体的な実施例を詳細に説明するものである。これらの実施例は指標となるものであるが、本発明の原則を使用する様々な方法のうちの一部の指標となるものである。本発明の他の目的、利点、および新規な特徴点は、本発明の以下の詳細な説明を図面と組み合わせて考察することで、明らかになるであろう。
(図面の説明)
図1は、いくつかの実施例に従うイオン注入システムの一例の平面図である。
図2A−2Bは、該注入経路によってイオンが素材中に注入されるところの注入経路の平面図である。ここで、素材が第1の軸に沿って動かされるときに、上記注入経路は追跡(トレース;trace)される。一方で、同時に、第1の軸に対して垂直な第2の軸に沿って、イオンビームがスキャンされる。
図3A−3Fは、イオンビームが、素材の第1の表面部分に沿ってスキャンされる仕方の一例を示す。
図4は、いくつかの実施例に従う方法のフローチャートである。
図5は、素材の注入の間、束(フラックス;flux)の値を実時間で測定する仕方の一例を示す。
(詳細な説明)
ここでは、請求された対象の事物について、図面を参照して説明する。図面においては、全体を通して、同様の要素には同様の参照番号が使用される。以下の記述では、説明を目的として、請求された対象の事物の完全な理解を提供するために、多くの具体的な詳細が提示される。しかしながら、上記請求された対象の事物が、これらの具体的な詳細を用いることなく実施されてもよいことは明らかであろう。
図1は、ソースターミナル(source terminal)102、ビームラインアセンブリ(beamline assembly)104、スキャンシステム(scan system)106、および終端ステーション108を有するイオン注入システム100を示す。所望のドーズプロファイルに従って、素材110の格子中にイオンを注入するために、これらの部材は集合的に配置されている。特に、図1は、ハイブリッドスキャン式のイオン注入システム100を示している。上記システムは、所望のドーズプロファイルを達成するため、第1の軸に沿って素材110を移動させる一方で、同時に、第1の軸に垂直な第2の軸に沿ってビーム112をスキャンするように動作させることができる。
動作の間、ソースターミナル102中のイオンソース114は、高電圧の電源116と結合することによって、ドーパント分子(例えば、ドーパントガス分子)をイオン化して抽出し、これによりペンシルイオンビーム(pencil ion beam)118を形成する。
ソースターミナル102から素材110に向けて、ペンシルビーム118を操作するために、ビームラインアセンブリ104は質量分析器120を有している。質量分析器120では、双極性磁場が形成されることによって、分解開口部122を通して適切な電荷−質量比のイオンのみが通過するようになっている。適切でない電荷−質量比を有するイオンは、側壁124a、124bに突き当たるので、上記適切な電荷−質量比を有するイオンのみが残り、素材110中に通過することになる。ビームラインアセンブリ104は、イオンソース114と終端ステーション108との間で延伸する、様々なビーム形成用またはビーム成形用の構造物も含んでいてよい。延伸した内部空洞内、またはペンシルビーム118を素材110に輸送するための通路内で、上記構造物はペンシルビーム118を保持する。真空ポンプ126は、一般的に、イオンビームが通路を真空で輸送されることを保つことによって、イオンが空気分子に突き当たることによってビーム経路から偏向する可能性を減少させる。
ペンシルビーム118を受けると、スキャンシステムのスキャナ128は、すぐさま、ペンシルビームを(例えば、水平方向内で)後方または前方に逸らす、あるいは「スキャンする」。ある文脈において、このタイプのスキャンされたペンシルビームは、リボンビーム(ribbon beam)112と呼ばれる場合がある。上記スキャンシステムの平行器130は、連続的に素材110に突き当たるイオンが、同じ入射角で、しかし異なる位置で、上記素材の表面に突き当たるように、リボンビーム112の方向を変えることができる。
素材110は、スキャンされたビームに対して垂直(例えば、垂直方向)に動かされる移動可能なステージ132上に配置されていてもよい。コントローラ134は、素材110上において所望のドーズプロファイルを達成するように、リボンビーム112および素材110に分与された相対的な動きを制御することができる。上記素材に与えられたドーズプロファイルが、所望のドーズプロファイルに則ったものとなり、かつ、上記システムが、ビーム束における動的な変化を考慮することができることを保証することに役立てるため、イオンビーム検出部136(例えば、1つまたは複数のファラデーカップ)およびドーズ較正システム138も含まれる。
図2Aおよび2Bは、上記素材の平面内で、イオンビームが非円形の注入経路200および212を追跡するような、イオンビーム112と素材110との間での相対的な動作が実現される仕方についての2つの例を示す。イオンビーム112が図示された注入経路200および212を追跡するように、素材110は移動経路202(例えば、垂直軸)に沿って輸送され、イオンビーム112は第2の軸204(例えば、水平軸)に沿った一連のスキャンスイープ(scan sweep)としてスキャンされる。図示された実施例では、1つの輸送位置から次の輸送位置まで素材110は「断続的に動かされる」ので、隣接するスキャンスイープは互いに平行であり、このことは隣接するスキャンスイープが距離206をおいて分離されることを引き起こす。しかしながら、他の実施例では、輸送速度が連続的であって、これにより隣接するスキャンスイープ同士が互いに相対的に「傾斜して」いてもよい。
上記イオン注入システムの生産性を最適化するため(そして、各注入素材に必要な時間を限定するため)に、上記コントローラは、イオンビーム112が該レートにおいて、上記素材の外縁部140に関する任意のスキャンスイープでスキャンされるところのレートを変更することができる。発明者が認識していた通り、図2Aに示す従来の装置は、任意のスキャンスイープについて、高速なスキャンレートVFastScanと低速なスキャンレートVSlowScanとが変更されるものであったものの、スキャンレートにおけるこの変更は、イオンビーム112が完全に素材110を通り過ぎたときに、点210で起こっていた。
そこで、本開示のいくつかの側面は、イオンビーム112の全体的な断面領域が(図2Bに示す)素材の外縁部140を超えて延伸する前に、スキャンレートを変更することによって、従来に達成可能であった処理量を超えて、処理量が追加的に増加することを提供する。換言すれば、転移点214の円によって示されるように、ビームの断面領域の一部のみが上記素材の外縁部を超えて延伸するときに、上記スキャンレートは変更される。このようにして、ここで開示された技術は、従来に達成可能であったよりも大きな処理量を提供することに役立つ。
図3A−3Fは、一般的に、イオンビームが、表面部分ごとに異なるスキャン速度を用いて、2つの表面部分にわたってスキャンする仕方を示す。図3A−3Fは、1つのスキャンスイープを示すのみであるが、このスキャンスイープに関して説明されたコンセプトが、注入スキャン経路における任意のスキャンスイープおよび/または全てのスキャンスイープに適用可能であることは認められるであろう。
図3Aにおいて、外縁部302を有する素材300は、イオンビーム112に関する第1の移行位置304に配置されている。第1の移行位置304について、第1のペア点306a、306bは外縁部302に対応する。ここで、上記素材の第1の表面部分は、第1のペア点306a、306bの間で延伸する。イオンビーム112は、素材の外縁部302を超えていて、かつ第1のペア点306a、306bの外側にある、素材外の位置から開始する。次に、第1の表面部分に到達するまで、イオンビーム112は第1のスキャンレートでスキャンされる。ここで、第1のスキャンレートは、速度ベクトル308で示されるような、相対的に高い速度を有する。このようにして、第1のスキャンレートは、素材から外れた「停止時間」を最小化することに役立ち、また素材の処理量を向上させることに役立つ。
図3Bに示すように、上記イオンビームの断面領域の一部(全てから全くなし)が素材300に突き当たるまで、イオンビーム112は、連続的に、第1のスキャンレートでスキャンされることができる。そして、上記イオンビームの第1の部分が素材外にある一方で、上記イオンビームの第2の部分が素材上にある(例えば、図3Bに示すように)とき、イオンビーム112は第2のスキャンレートに減速することを開始する。第2のスキャンレートは、第1のスキャンレートよりも小さい瞬間速度ベクトル310を有する。ある実施例において、速度の減少は、瞬間ビーム流の約33%が上記素材に突き当たったときに生じる。換言すれば、スキャン速度の変更は、瞬間ビーム流の約66%が素材外にあるときに生じ得る。
図3C−3Dにおいて、イオンビーム112は、第1の移行位置304において、素材110の表面部分を横断して、(速度ベクトル310で示された)第2のスキャンレートでスキャンし続ける。速度ベクトル310によって示されるように、第2のスキャンレートは第1のスキャンレートよりも小さい。しばしば、任意のスキャンスイープにおいて第2のスキャンレートはほぼ一定である。しかしながら、例えば、ドーズの一様性を改善したり、または一様でないドーズプロファイルに合致させたりするために、第2のスキャンレートを、任意のスキャンスイープにおいて変更することができる。および/または第2のスキャンレートは、装置に依存して、異なるスキャンスイープ同士では異なっていることができる。
図3Eでは、イオンビーム112は、上記イオンビームの断面領域全体が、素材の境界を超えて延伸する前に、第2のスキャンレートから(瞬間速度ベクトル312として示されるような)第1のスキャンレートに加速してもよい。再度、上記イオンビームの一部がまだ素材上にある間における、スキャンレートのこの増加は、各素材に注入することに必要となる時間量を減少させることにより処理量を増大させる点で、従来技術のアプローチを超える改善である。1つの実施例では、速度におけるこの増加は、素材上に、瞬間ビーム流の約33%が突き当たったときに発生する。
最後に、図3Fにおいて、イオンビーム112の断面領域全体は素材の外縁部302を超えて延伸し 、また上記イオンビームは第2のスキャンレートでスキャンされる。再度、速度ベクトル314によって示されるように、第1のスキャンレートは第2のスキャンレートよりも速い。これにより、素材外のスキャンに必要となる時間を限定する。また、良好な処理量を促進することに役立つ。前に注意したように、素材が所望のドーププロファイルを受けるまで、他のスキャンスイープは類似の手法で行われてもよい。
図4は、本開示のいくつかの側面に従うフローチャートのフォーマットで方法400を示す。この方法は、動作または事象の並びとして以下に図示され、また説明されているが、本開示は、そのような動作または事象の順序に限定されるものではない。例えば、いくつかの動作は、ここで図示された、および/または説明されたことから離れて、異なる順序で、および/または他の動作または事象とともに生起されてもよい。加えて、図示された動作の全てが必須ではない。さらに、ここで記述された1つまたは複数の動作は、1つまたは複数の分離した動作または段階において実行されてもよい。
方法400は、一般的に、素材が配置されることなく実行される較正ルーチン402と、素材に対する注入が実際に行われる注入ルーチン404とに分解することができる。単一の素材についての注入は、図示された注入ルーチン404に示されるのみであるが、通常の当業者ならば、装置に依存して、1つまたは複数の素材は、一系列の手法で、または一団の手法で、注入され得ることが理解できるであろう。注入ルーチン404は、任意のスキャンスイープ(例えば、図3A−3Fを見よ)において、先に議論した様々なスキャン速度を用いてもよい。また、注入の間、ビーム束の即時測定を採用することもできるし、また、(以下でより詳細に説明するように)動的なビーム束の変化を考慮するように、上記イオンビームのスキャンレートおよび/または素材の移行速度を調整することもできる。
素材スキャンルーチンが、数多くの可能なそういったルーチンから選択されたとき、較正は406において開始される。上記スキャンルーチンは、素材上で生成されようとする、所望のドーププロファイル(doping profile)に基づいて選択される。例えば、上記所望のドーププロファイルは、ウェハー全体にわたって一様であってもよいし、または上記ウェハーの2つの各半分が異なるドーズを有してもよい。
408において、上記方法は、素材を配置することなく、選択された素材スキャンルーチンを開始する。上記素材スキャンルーチンは、イオンビームと素材注入領域との間で相対的な動作を示す。上記素材スキャンルーチンは、上記イオンビームが素材から外れた位置にあるとき、およびビームの一部が素材上にあるときに、高速なビームスキャン速度を示すことができる。また、上記イオンビームが素材上の残りの位置にあるときに、低速なビームスキャン速度を示すことができる。図3A−3Fに関して先に議論したように、この異なるスキャン速度は、上記イオン注入システムにおいて、素材の処理量を最適化することに役立つ。素材スキャンルーチンの間、素材上の位置および素材外の位置において、多数のビーム束の値が測定される。例えば、素材上の位置は、(較正の間、素材が配置されていない場合であっても)素材の中心部に対応する位置であってもよいし、また素材外の位置は、素材の外縁部を超えた場所に対応する位置であってもよい。
410において、上記方法は、測定されたビーム束の値に基づき、所望のドーププロファイルと、較正ルーチンの間に与えられたドーププロファイルとの間における差異を補償する較正関数を決定する。
412において、上記方法は、上記較正関数に基づき、選択された素材スキャンルーチンを調整する。一般的に、この調整は、上記スキャン速度の変更を含むことができ、上記スキャン速度の変更では、上記イオンビームが1つまたは複数のスイープスキャンにわたって動かされる。また/または、この調整は、1つのスイープスキャンと次のスイープスキャンとの間における、移行速度または距離の変更を含むことができる。
414において、素材は素材注入領域内(例えば、図1における移動可能ステージ132上)に配置される。
416において、上記方法は、所望のドーププロファイルを達成するように、調整された素材スキャンルーチンを素材上で実行する。上記イオンビームおよび素材の相対的な動作は、所望のドーププロファイルと、上記較正関数に従って与えられたドーププロファイルとの間の差異を考慮するように調整されるので、イオン注入装置が、多数の素材にわたって、非常に信頼することができるドーズプロファイルを提供することを、上記方法400は可能にする。
加えて、調整された素材スキャンルーチンの間、418において、上記方法は、各素材外の位置において、少なくとも1つのビーム束の瞬間値を測定する。一般的に、上記瞬間ビーム束は、注入の間、素材外の位置に配置されている、1つまたは複数の電流測定用装置(例えば、ファラデーカップ)を用いて測定される。
420において、上記方法は、上記瞬間ビーム束の値に基づいて、調整された素材スキャンルーチンの相対的な動作を調整する。例えば、ビームライン内で測定された圧力は、フォトレジスト(photoresist)の除気を補償するために、測定されたビーム束の値を調整することに使用されてもよい。注入の間に調整された瞬間ビーム束が、調整の間に測定された、対応するビーム束の値よりも大きい場合、上記方法は、素材が動かされる速度を増加させ、これにより、その時点で調整が行われた、増加したビーム束をオフセット(offset)することに役立ててもよい。逆に、注入の間においての瞬間ビーム束が、調整の間に測定された、対応するビーム束の値よりも小さい場合、上記方法は、素材が動かされる速度を減少させて、これにより、ここで調整が行われた、減少したビーム束をオフセットすることに役立ててもよい。このようにして、ここで説明された技法は、予期しない事象および動的に変化するビーム束の条件の下であっても、素材に対して、非常に正確なドーズプロファイルを与えることに役立つ。
図5は、上記イオンビームがスキャン経路に沿って追跡されるとき、電流測定装置502、504が瞬間ビーム測定値を得るために配置される仕方の一例を示す。図示のように、電流測定装置502、504は、しばしば、任意のスキャンスイープに沿って、素材110の端部(素材の境界)を超えて配置される。上記電流測定装置は、各電流スイープにおいて、イオンビーム束を測定することができるように、しばしば、スキャンされたイオンビームの平面内にある第2の軸204上に固定される。そのため、502A、504Aは、ビームが素材110の底部に沿ってスキャンされるときの、第1の時間インターバルの間における電流測定装置を表す。502B、504Bは、ビームが素材の中間部に沿ってスキャンされるときの、第2の時間インターバルにおける電流測定装置を表す;また、502C、504Cは、素材の上部に沿ってスキャンされるときの、第3の時間インターバルにおける電流測定装置を表す。
構造的な特徴および/または方法的な動作について、対象事象の特定の構成を説明してきたが、添付された請求項において定められた対象事象は、上述した特定の特徴または動作に限定されるものではないことは理解されるであろう。例えば、イオン注入システム100は、上記イオンビームが水平的にスキャンされ、かつ素材が垂直的に動かされると、上では説明されたが、上記イオンビームと素材との間での相対的な動作は、他の手法で実行されることができる。例えば、素材は、上記イオン注入システムに対して、固定的に搭載されてもよいし、また上記イオンビームは、所望の注入経路を追跡するように、水平的および垂直的にスキャンされてもよい。逆に、上記イオンビームは、上記イオン注入システムに対して固定されてもよいし、また素材は、所望の注入経路を追跡するように、水平的におよび垂直的に移動されてもよい。他の構成もまた可能であり、そのようなスキャンされた、またはスキャンされない全てのイオンビームが、本発明の範囲内に含まれることを意図している。
また、本開示は、1つまたは複数の装置について提示および説明されたが、当業者は、この記載および添付図面を読みまた理解することに基づいて、等価的な変更および修正に想到するであろう。本開示はそのような全ての修正および変更を含んでおり、下記請求項の範囲によってのみ限定されるものである。特に、前述した構成要素(例えば、素子および/またはリソース)によって実行される機能に関して、そのような構成要素を説明する用語は、明示されていない限り、ここで示された、本開示の例としての装置において上記機能を実行する本開示の構造に対して、構造的に等価ではないとしても、説明された構成要素の特定の機能(例えば、機能的に等価である)を実行する、どのような構成要素にも対応することを意図している。加えて、本開示の特定の特徴は、いくつかの装置の1つのみについて開示された場合があるが、そのような特徴は、任意のまたは特定の応用例において望ましく、かつ有利である可能性のある、他の装置における1つまたは複数の他の特徴と組み合わせてもよい。加えて、この応用例および添付された請求項中で使用される「ある(aおよびan)」という冠詞は、「1つまたはそれ以上」を意味するように解釈される。
さらに、詳細な説明または請求項のどちらでも使用されるところの、「含む(include)」、「有する(having, has)」、「所持して(with)」という用語、またはその変形の範囲について、そのような用語は、備える(comprising)という用語と同様に、包括的であることを意図している。
いくつかの実施例に従うイオン注入システムの一例の平面図である。 該注入経路によってイオンが素材中に注入されるところの注入経路の平面図である。ここで、上記注入経路は、素材が第1の軸に沿って動かされるときに、追跡される。一方で、同時に、第1の軸に対して垂直な第2の軸に沿って、イオンビームがスキャンされる。 該注入経路によってイオンが素材中に注入されるところの注入経路の平面図である。ここで、上記注入経路は、素材が第1の軸に沿って動かされるときに、追跡される。一方で、同時に、第1の軸に対して垂直な第2の軸に沿って、イオンビームがスキャンされる。 イオンビームが、素材の第1の表面部分に沿ってスキャンされる仕方の一例を示す。 イオンビームが、素材の第1の表面部分に沿ってスキャンされる仕方の一例を示す。 イオンビームが、素材の第1の表面部分に沿ってスキャンされる仕方の一例を示す。 イオンビームが、素材の第1の表面部分に沿ってスキャンされる仕方の一例を示す。 イオンビームが、素材の第1の表面部分に沿ってスキャンされる仕方の一例を示す。 イオンビームが、素材の第1の表面部分に沿ってスキャンされる仕方の一例を示す。 いくつかの実施例に従う方法のフローチャートである。 素材注入の間、実時間で束(フラックス)の値を測定する仕方の一例を示す。

Claims (21)

  1. 素材上にイオン注入を実行する方法であって、
    上記素材は外縁部において終端する表面を有しており、
    イオンビームの断面領域が、全体的に上記素材の上記表面上に突き当たっているとき、上記素材の上記表面を横断するように、第1のスキャンレートで上記イオンビームをスキャンすること、および、
    上記ビームの上記断面領域の一部であって、上記イオンビームの断面領域全体よりも小さい一部が、上記素材の外縁部を超えて延伸するとき、第1のスキャンレートを、第2のスキャンレートまで増加すること、を含む方法。
  2. 上記断面領域の上記一部が、上記イオンビームによって提供される瞬間ビーム流の約66パーセントに相当する、請求項1の方法。
  3. 上記イオンビームの断面領域全体が、上記素材の外縁部を超えて延伸するまで、上記第2のスキャンレートで上記イオンビームをスキャンし続けること、
    上記イオンビームを、上記第2のスキャンレートで、上記素材の外縁部に向けて戻るようにスキャンすること、および、
    上記ビームの上記断面領域の第2の部位が、上記素材の表面に突き当たったとき、上記第2のスキャンレートから上記第1のスキャンレートに減少させることをさらに含み、
    上記第2の部位は上記イオンビームの上記断面領域全体より小さい、請求項1の方法。
  4. 上記断面領域の上記第2の部位は、上記イオンビームによって供給される瞬間ビーム流の約33パーセントに相当する、請求項3の方法。
  5. 上記素材の端部を超えたところにある、素材から外れた位置において、実時間でのビーム束の値を測定すること、および、
    上記実時間でのビーム束の値に基づいて、上記素材および上記イオンビームの相対的な動作を調整することをさらに含む、請求項1の方法。
  6. 上記素材および上記イオンビームの相対的な動作を調整することは、上記素材を移動させる移行速度を調整することによって実現される、請求項5の方法。
  7. 上記素材と上記イオンビームとの間における上記相対的な動作の調整は、上記素材を移動させる上記移行速度、および上記イオンビームがスキャンされるレートの両者を協同的に調整することによって実現される、請求項5の方法。
  8. イオン注入の方法であって、
    外縁部を有する素材を、移行経路上に位置する第1の移行位置に配置すること、
    上記第1の移行位置について、上記素材の外縁部に対応する第1のペア点を決定すること、
    上記第1のペア点同士の間で、イオンビームの断面領域が第1の表面部分上に全体的に掛かるとき、第1のスキャンレートに従い、上記第1の表面部分にわたって上記イオンビームをスキャンすること、および、
    上記イオンビームの上記断面領域の第1の部位が、上記第1のペア点の外側に掛かるとき、上記イオンビームのスキャンレートを第2のスキャンレートに増加することを含み、
    上記素材の第1の表面部分は、上記第1のペア点同士の間で延伸しており、
    上記第1の部位は、上記イオンビームの上記断面領域全体より小さい、イオン注入の方法。
  9. 上記イオンビームの上記断面領域の上記第1の部位は、上記イオンビームの瞬間ビーム流の約66パーセントに相当する、請求項8の方法。
  10. 上記素材を上記移行経路上に配置することに先立って較正を行うこと、
    上記較正の間、上記第1のペアの点の外側に存在する第1の位置において、ビーム束の値の第1の組を測定すること、
    上記較正の間、上記第1のペアの点同士の間に存在する第2の点において、ビーム束の値の第2の組を測定すること、
    ビーム束の値の第1および第2の組に基づいて、上記較正の間に与えられたことが期待されるドーププロファイルを決定すること、
    所望のドーププロファイルと、期待されるドーププロファイルとの間に差異がある場合、その差異を分析すること、および、
    上記差異を補償するように較正関数を規定することを含む、請求項8の方法。
  11. 上記較正関数に基づいて第1のスキャンレートを設定することをさらに含む、請求項10の方法。
  12. 上記較正関数に基づいて第2のスキャンレートを設定することをさらに含む、請求項10の方法。
  13. 上記素材は、第1の移行位置と第2の移行位置との間で、移行速度に従って動かされ、
    上記移行速度は上記較正関数に基づいて設定される、請求項10の方法。
  14. 上記素材の注入の間、上記素材の端を超えた場所に存在する素材外の位置において、実時間のビーム束の値を測定することをさらに含む、請求項8の方法。
  15. 上記実時間のビーム束の値に基づいて、上記第1のスキャンレートを調整することをさらに含む、請求項14の方法。
  16. 上記実時間のビーム束の値に基づいて、上記第2のスキャンレートを調整することをさらに含む、請求項14の方法。
  17. 上記実時間でのビーム束の値の関数に基づいて、上記イオンビームに対して上記素材を移動させる移行速度を調整する、請求項8の方法。
  18. イオン注入システムであって、
    ビーム経路に沿ってイオンビームを提供するように構成されたイオンソースと、
    所望の物体が、選択的に、上記イオンビームから、上記ビーム経路に沿って、移動可能なステージの上に配置された素材に向かう方向を向くように構成されたビームラインアセンブリと、
    少なくとも上記ビーム経路に対して実質的に垂直な第1の軸に沿って、第1のレートで上記移動可能なステージを移動させるように構成されたステージコントローラと、
    少なくとも、上記ビーム経路、および上記第1の軸の両方に対して実質的に垂直な第2の軸に沿って、上記ビーム経路から上記イオンビームを逸らすように構成されたスキャナとを備えており、
    上記スキャナは、上記イオンビームが素材上にあり、かつ上記素材の端に向かって移動しているときに、第1のスキャンレートで上記イオンビームを逸らすように構成されており、かつ、さらに、上記イオンビームの断面領域全体が、上記素材の端を超えて延伸する前に、上記イオンビームの上記スキャンレートを増加させるように構成されている、イオン注入システム。
  19. 上記スキャナは、さらに、上記イオンビームの断面領域全体が上記素材の端を超えて延伸した後に、上記第1のスキャンレートより大きな第2のスキャンレートで上記イオンビームをスキャンするように構成されている、請求項18のイオン注入システム。
  20. 上記ビーム経路内に上記素材が存在しない状態で較正ルーチンを実行し、かつ、ビーム束内での動的な変化を補償することを促進する較正関数を決定するように構成された較正システムをさらに備えた、請求項18のイオン注入システム。
  21. 上記ステージコントローラおよび上記スキャナは、上記素材の平面内において上記素材の幾何学的形態とは異なっている注入経路を、上記素材の平面内で集合的に追跡する、請求項18のイオン注入システム。
JP2013509040A 2010-05-05 2011-04-27 ビームがスキャンされるイオン注入装置における処理量の増大 Active JP5904998B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/774,037 2010-05-05
US12/774,037 US20110272567A1 (en) 2010-05-05 2010-05-05 Throughput Enhancement for Scanned Beam Ion Implanters
PCT/US2011/000735 WO2011139340A1 (en) 2010-05-05 2011-04-27 Throughput enhancement for scanned beam ion implanters

Publications (2)

Publication Number Publication Date
JP2013531333A true JP2013531333A (ja) 2013-08-01
JP5904998B2 JP5904998B2 (ja) 2016-04-20

Family

ID=44504378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013509040A Active JP5904998B2 (ja) 2010-05-05 2011-04-27 ビームがスキャンされるイオン注入装置における処理量の増大

Country Status (6)

Country Link
US (1) US20110272567A1 (ja)
JP (1) JP5904998B2 (ja)
KR (1) KR101849387B1 (ja)
CN (1) CN102884607B (ja)
TW (1) TWI529772B (ja)
WO (1) WO2011139340A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576886B (zh) * 2012-06-27 2017-04-01 艾克塞利斯科技公司 離子佈植系統、分析器的束線操作列、從離子束移除不要之物種的方法
US8993980B1 (en) * 2013-10-22 2015-03-31 Varian Semiconductor Equipment Associates, Inc. Dual stage scanner for ion beam control
CN103972011B (zh) * 2014-05-20 2016-06-15 上海华力微电子有限公司 离子注入设备及离子注入方法
JP2017022359A (ja) * 2015-07-09 2017-01-26 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置の調整方法及び荷電粒子ビーム描画方法
US10553392B1 (en) * 2018-12-13 2020-02-04 Axcelis Technologies, Inc. Scan and corrector magnet designs for high throughput scanned beam ion implanter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241651A (ja) * 1989-11-07 1991-10-28 Varian Assoc Inc イオン注入装置における高効率走査のための方法及び装置
JPH1186774A (ja) * 1997-09-12 1999-03-30 New Japan Radio Co Ltd イオン注入装置およびこれを用いた半導体装置の製造方法
JP2005328048A (ja) * 2004-05-10 2005-11-24 Hynix Semiconductor Inc 半導体基板へのイオン注入方法及び半導体素子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699170B2 (ja) * 1986-04-09 1998-01-19 イクリプス・イオン・テクノロジー・インコーポレイテッド イオンビーム走査方法および装置
US20060113489A1 (en) * 2004-11-30 2006-06-01 Axcelis Technologies, Inc. Optimization of beam utilization
US7078707B1 (en) * 2005-01-04 2006-07-18 Axcelis Technologies, Inc. Ion beam scanning control methods and systems for ion implantation uniformity
US7566886B2 (en) * 2006-08-14 2009-07-28 Axcelis Technologies, Inc. Throughput enhancement for scanned beam ion implanters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241651A (ja) * 1989-11-07 1991-10-28 Varian Assoc Inc イオン注入装置における高効率走査のための方法及び装置
JPH1186774A (ja) * 1997-09-12 1999-03-30 New Japan Radio Co Ltd イオン注入装置およびこれを用いた半導体装置の製造方法
JP2005328048A (ja) * 2004-05-10 2005-11-24 Hynix Semiconductor Inc 半導体基板へのイオン注入方法及び半導体素子の製造方法

Also Published As

Publication number Publication date
JP5904998B2 (ja) 2016-04-20
CN102884607B (zh) 2016-01-27
US20110272567A1 (en) 2011-11-10
WO2011139340A1 (en) 2011-11-10
TWI529772B (zh) 2016-04-11
KR20130077834A (ko) 2013-07-09
CN102884607A (zh) 2013-01-16
KR101849387B1 (ko) 2018-04-16
TW201222619A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
KR101781644B1 (ko) 이온빔 스캔처리장치 및 이온빔 스캔처리방법
JP5072163B2 (ja) 高能率走査イオン注入器
JP3567749B2 (ja) 荷電粒子ビームの分布測定方法およびそれに関連する方法
KR101984731B1 (ko) 이온주입장치 및 그 제어방법
CN107204271B (zh) 离子注入方法及离子注入装置
JP5904998B2 (ja) ビームがスキャンされるイオン注入装置における処理量の増大
JP5074480B2 (ja) イオンビーム走査制御方法、及びイオンを均一に注入するためのシステム
JP2019532461A (ja) 走査イオン注入システムにおけるインサイチュでのイオンビーム電流の監視および制御
JP6195538B2 (ja) イオン注入方法及びイオン注入装置
CN106920741B (zh) 离子注入方法及离子注入装置
KR102573022B1 (ko) 이온 주입 장치 및 이온 주입 방법
US9984856B2 (en) Ion implantation apparatus
JP2010500736A (ja) 走査されたイオンビーム注入装置のための処理能力の向上
TWI654643B (zh) 離子植入系統及用於離子植入的方法
TWI821912B (zh) 離子植入機及射束調節裝置
US9263231B2 (en) Moveable current sensor for increasing ion beam utilization during ion implantation
JP6779880B2 (ja) 走査ビーム注入器のためのビームプロファイリング速度の向上
TWI466178B (zh) 離子植入系統
CN102194637B (zh) 离子注入系统及方法
CN103098167B (zh) 在光阻释气期间用于改进注入均匀性的方法
CN117747391A (zh) 一种离子注入剂量控制方法
TWI509665B (zh) 在光阻釋氣期間用於改善植入均勻性的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5904998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250