JP2010500736A - 走査されたイオンビーム注入装置のための処理能力の向上 - Google Patents

走査されたイオンビーム注入装置のための処理能力の向上 Download PDF

Info

Publication number
JP2010500736A
JP2010500736A JP2009524655A JP2009524655A JP2010500736A JP 2010500736 A JP2010500736 A JP 2010500736A JP 2009524655 A JP2009524655 A JP 2009524655A JP 2009524655 A JP2009524655 A JP 2009524655A JP 2010500736 A JP2010500736 A JP 2010500736A
Authority
JP
Japan
Prior art keywords
speed
wafer
workpiece
ion implantation
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009524655A
Other languages
English (en)
Other versions
JP5615546B2 (ja
Inventor
アイズナー,エドワード
ヴァンデルベルグ,ボ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axcelis Technologies Inc
Original Assignee
Axcelis Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axcelis Technologies Inc filed Critical Axcelis Technologies Inc
Publication of JP2010500736A publication Critical patent/JP2010500736A/ja
Application granted granted Critical
Publication of JP5615546B2 publication Critical patent/JP5615546B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30483Scanning
    • H01J2237/30488Raster scan

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

第1方向において軸に沿ってにイオンを走査することによって、イオンを被加工製品に注入するように構成されたイオン発生器と、第1方向と略直交の第2方向において被加工製品を移動させるように構成された可動式ステージと、被加工製品の略外縁においてイオン注入量を測定するように構成されたイオン検出装置と、オンウエハの高速走査速度またはオフウエハの高速走査速度で移動させる制御部からの指令を受け取る第1方向ドライバと、低速走査速度で被加工製品の可動式ステージを移動させる制御部からの指令を受け取る第2方向ドライバとを含む、生産性を最適化するイオン注入システム。

Description

本発明は、概して半導体処理システムに関するものであり、より具体的には、半導体基板に対するイオン注入についてのイオンビーム効率を最適化するためのシステムおよび方法に関する。
半導体産業では、多様な製品を得るために、通常は基板(例えば半導体ウエハまたは被加工製品)上で様々な製造処理が行われる。ウエハにおける一部の伝導性を変えるなど基板上または基板内での特定の性質を得るために、例えばイオン注入などの処理が行われる。所望の不純物物質をイオン化し、指定エネルギーのイオンビーム形成を速める。さらに、イオンビームをウエハの表面に照射する。ビームにおけるエネルギーイオンは半導体を貫通し、半導体における結晶格子の中に埋め込まれ、所望の伝導性領域を形成する。
イオン注入システムは、気体または固体材料をプラズマに変化させるためのイオンソースまたは発生器を含むことが多い。プラズマからイオンを抽出し、所望のエネルギーか、伝達エネルギー伝達かのいずれかまで速める。イオンビームを質量分析し、不要なイオン種を除去する。さらに、必要な場合は所望のエネルギーレベルを高め、目的の被加工製品上に照射する。イオン注入装置の大半は、直径においてウエハよりも大幅に小さいイオンビームを使用しており、ビームの走査、ウエハの機械的移動、ビーム走査とウエハ移動との組合せ、および同様のものによって、ウエハの端から端までイオンビームからの注入量を均一に分配する。
多くのシステムにおいて、ビームを一次元で高速走査し(高速走査)、均一のリボンビームを形成させる。続いて、リボンによる高速走査に対して垂直方向において、ウエハを低速走査する。完璧な表面均一性のための要件とは、両次元において被加工製品から完全に分離してビームを走査する必要があるということである。したがって、総注入領域が被加工製品よりも大きいと、ビームが完全には活用されない。ウエハサイズと総注入領域との比率によってビームの効率性を定義するが、それは常に1未満である。
他の発明において、生産性の向上を総合的な目的として、静電スキャナ、磁気スキャナ、および機械スキャナのための注入領域を減少させる、例えば全周などの最適化された走査波形が提唱されている。一般的にこれらの発明において、走査速度は一定に保たれているが、走査幅は低速走査を伴って変化する。したがって、注入領域が被加工製品の形状に近づき、効率性が高まる。しかし、ビームが常に電流測定機器(ドーズカップ(dose cup))を通過できるようにするため、正方形の注入領域(一定振幅走査)を有することが望ましい。当該電流測定機器は、通常、ウエハのエッジを越えたところに設置されており、均一性を向上させるために、測定された電流を帰還方式で使用することができる。
したがって、所望の一定振幅走査を維持しながらイオンビームの走査を最適化するための方法が必要とされている。
本発明は、先行技術の制限を克服するものである。
そのために、本発明の複数の形態についての基本理解を促すために本発明の概要を以下に記す。本概要は本発明の広範に及ぶ概観ではない。また、本発明の主要部または重要な要素を特定するものでも、本発明の範囲を限定するものでもない。その目的は、後述のより詳細な説明に先立って、簡易な形式で本発明の概念のいくつかを示すことにある。
本発明の形態によると、本発明は、略正方形または長方形の走査領域を用いた基板内へのイオン注入の間に、イオンビームの効率性を最適化するための方法を一般的に目的としている。ビームを被加工製品に照射しないとき、高速走査の速度が増すことで上記改善が見られる。すなわち、ビームのいずれかの部分を被加工製品に照射する間、高速走査速度は平均Vオンウエハ高速走査であり、一旦ビームがウエハを通過して離れると、高速走査速度は(Vオフウエハ高速走査)まで増大する。Vオフウエハ高速走査/Vオンウエハ高速走査の比率は通常2〜25の範囲内である。オフウエハの走査速度の増大によって、オフウエハで消費されるイオン量が減少し、注入領域が効果的に減少するので、効率性が上がる。
上述および関連の目標を達成するために、本発明は後に詳述されるとともに請求項において特に挙げられた特徴を備える。下記の説明および添付の図面は本発明に係る特定の図示された実施形態について詳述するものである。しかし、これらの実施形態は、本発明の原則が採用され得る様々な方法のうちの2、3を示すものである。下記の本発明の詳細な説明を図面とともに考慮すると、本発明に係る他の目的、利点、および新規な特徴が明らかとなるだろう。
本発明のある形態に係るイオン注入システム例を示す平面図である。 本発明の他の形態に係る走査システムのイオンビーム経路の例を示す平面図である。 本発明の他の例示形態に係る、イオン注入システムにおけるイオンビームの効率性を最適化するための方法の例を示すブロック図である。 本発明のさらなる他の形態に係る走査システムの例を示す略ブロック図である。 本発明の一つの形態に係る例を示すグラフであり、高速と低速との比率を比較して生産性の向上を示すものである。
本発明は、概して、イオン注入システムにおいてイオンビームを操作する際にイオンビームの利用効率を最適化するためのシステムおよび方法を目的とする。より具体的には、本方法において、高速走査軸における2つ以上の高速走査速度の使用に基づいて最適化が行われる。したがって、図面を参照しながら本発明を説明し、図面における部材番号は全文に渡って同様の部材を表すこととする。これらの形態についての説明は単なる具体例に過ぎず、限定的な意味で捉えるべきものではないことを理解されたい。下記の説明において、説明を目的として、本発明についての十分な理解を促すために数々の詳細を述べる。しかし、これらの詳述がなくとも、当業者であれば本発明を実施し得ることが明らかであろう。
イオン注入システムにおける生産性は概して複数の要因によって規定される。例えば、イオンビーム電流の一定量を発生させるシステムの送電容量、システムによって発生するイオン数と、基板(例えばシリコンウエハ)において実際に注入されるイオン数との比率、基板内にイオン注入する時間とイオン注入用の基板を配置するのにかかる時間との比率、および同様のものによって生産性を数値化し得る。発生したイオンと実際に基板に注入されたイオンとの比率は、例えば後述のように、「イオンビーム効率」と呼ばれる。
低濃度イオン注入(例えば注入量約1×1014cm未満のイオン注入)に関して、イオンビームの電流は一般的に、イオン注入システムの送電容量の制限を大幅に下回る。潜在的に低いイオンビーム効率を補うために、イオンビーム電流が増大し得る。しかし、高濃度イオン注入(例えば注入量約1×1015cmを上回るイオン注入)に関して、イオンビーム電流は一般的に、イオン注入システムの最大かまたはそれに近い送電容量であり、イオンビーム効率は、最適イオン注入のためのシステムの生産性にとってより一層重要である。上記のようなイオン注入は、ビーム電流が制限された注入(“beam current limited” implant)と呼ばれる。当該注入において、様々なタイプのイオン注入システムにおける最適な利用法を決定する上で、イオンビーム効率は重要な要因である。例えば、複数基板イオン注入システム、またはバッチ注入装置は、旧来より、単一基板システムよりも大幅に高いイオンビーム効率を有しているので、高濃度注入の選択のための従来装置には複数基板システムを用いている。しかし、単一基板イオン注入システムまたは連続システムは、汚染防止、処理ロットサイズ自由度、および、ある形態においては、入射ビーム角制御などの他の様々な利点を有する。したがって、生産性の向上が可能であれば、単一基板システムが非常に望ましい。
したがって、本発明は単一基板イオン注入システムにおけるイオンビーム利用効率の最適化を目的とする。当該発明において、イオン注入システムが行う個々の様々な処理の特性に基づいて、線形走査速度および基板の加速などの様々なイオン注入動作パラメータを制御する。しかし、上記バッチ注入装置などの他の様々なイオン注入システムにおいて本発明を実施することも可能であり、上記全ての実施が本発明の範囲内であるとすることを理解されたい。
本発明の好ましい実施形態において、一般的な単一基板または単一ウエハのイオン注入システムを用いた従来方法よりも優れた複数の利点が提供される。例えば、従来の単一基板イオン注入システムまたは連続システムは、概して1つ以上の軸(例えば、低速走査軸)における既定の線形走査速度および加速を有しており、一般的に、イオンビーム利用効率のために最適化されていない。しかし、後述のような様々なイオン注入動作パラメータの制御によって、各種生産性効率における向上が起こり得る。例えば、既定の処理方法のための2つ以上の軸における基板の線形走査速度と加速、またはイオンビーム走査を制御することによって、従来のイオン注入システムにおいては概して不可能であったイオンビーム効率の最適化が実施される。
ここで、本発明の例示の実施形態にしたがった図面を参照すると、図1は例示の複合走査、単一基板イオン注入システム100を示す。当該システムは、高速走査方向においてイオンビーム110を走査するように動作可能であり、直交低速走査方向において基板105を走査するように動作可能である。上述のように、図1の例示のシステム100を含む、ただしそれに限定されない、あらゆるタイプのイオン注入装置に関して、本発明に係る様々な形態が実施されてもよい。例示のイオン注入システム100は端子部112と、ビームラインアセンブリ114と、処理室(process chamber)を形成する末端ステーション116とを備える。当該処理室において、被加工製品の位置にイオンビーム110を照射する。電源122が端子部112におけるイオンソース120に電力を供給し、抽出されたイオンビームをビームラインアセンブリ114に供給する。イオンソース120は1つ以上の抽出電極(図示せず)を備えており、ソースの室からイオンを抽出し、それによって抽出されたイオンビーム110をビームラインアセンブリ114に導く。
ビームラインアセンブリ114は、例えば、ソース120に隣接した入射口と、分析スリット132(resolving aperture)を備えた出射口とを有するビームガイド130を備えており、さらに、質量分析器134をも備える。質量分析器134は、抽出されたイオンビーム110を受信し、双極子磁場を生成して、適した移動量またはその範囲内のイオン(例えば、所望の質量範囲のイオンを有する質量分析されたイオンビーム110)のみが分析スリット132を通過するように動作する。走査システムは高速走査方向においてビームを走査する。当該システムは電気的システム、磁気的システム、または他のシステムであってもよい。そして、ビームが並列システムを通過し、全走査角においてビームを並列にする。さらに、末端ステーション116と連結した被加工製品の走査システム136上にある基板105に、ビームを照射する。ビームラインアセンブリ114と連結する様々なビーム生成および形成機構(図示せず)は、ビーム経路に沿って被加工製品走査システム136上で支持された基板105にイオンビームが伝達されるときに、イオンビーム110をさらに維持してつなげるために提供される。
図1に示された末端ステーション116は、例えば真空処理室を備える連続型の末端ステーションである。当該処理室において、イオン注入用のビーム経路に沿って単一基板105(例えば半導体ウエハ、表示パネル、他の被加工製品など)を支持する。しかし、当然のことながら、バッチまたは他の型の末端ステーションを代用してもよく、その利用は本発明の範囲内である。本発明の代替的形態において、システム100は、高速走査方向と低速走査方向との両方において走査可能な被加工製品走査システムを備える。本発明に係るさらなる他の形態において、システム100は、両方のイオンビーム軸を電気的もしくは磁気的のいずれかで走査する、またはその組合せのシステムを備える。したがって、そのような走査済みまたは未走査のイオンビーム110の全てが本発明の範囲内であると予想される。
本発明のある形態によると、図2は被加工製品を越えるイオンビーム経路を示す平面図である。最も一般的な実施としては、固定された処理室に対して、イオンビームが高速走査方向において移動するとともに、被加工製品が低速走査方向において移動するというものであるが、図示されているのは相対移動である。被加工製品走査システム200は、たとえば、可動ステージ140(movable stage)を備える。可動ステージ140上に基板105が設置されており、可動ステージ140においてイオンビーム110が高速走査速度軸142に沿って基板105を走査するように動作可能であり、イオンビーム110に対して略直交低速走査軸144に沿ってウエハを移行させるように動作可能である。例えば、高速走査軸142(高速走査速度方向とも呼ばれる)に沿った既定のビーム速度が、低速走査軸144(低速走査方向とも呼ばれる)に沿った基板の速度よりも大幅に速い可能性がある。したがって、高速走査線145は水平に見える。低速走査速度が高速走査速度と関連して速くなるにつれ、高速走査線が傾斜する。便宜上、高速走査速度軸142に沿ったビームの速度は「オンウエハの高速走査速度」か、「オフウエハの高速走査速度」かのいずれかを指し、低速走査軸144に沿った基板の速度は「低速走査速度」を指す。オンウエハ速度とオフウエハ速度との間の移行は略円形境界105に沿って起こる。実質的にビームのどの部分もウエハに影響を及ぼさないように、境界とウエハとをできる限り近接させて設置する。ビームサイズおよび必要な注入量均一性から、変換の正確な位置を決定する。明示されているように、ビームが移動してウエハを離れる距離は、低速走査位置の作用(function)である。
本発明に係るさらなる他の例示の形態によると、図3は、例示の方法300の略ブロック図であり、図1の例示のイオン注入システム100などのイオン注入システムの例示の最適化を示す。ここに一連の行為および事象として例示の方法を示して説明した。しかし当然のことながら、本発明によると複数のステップが異なる順序で起こる可能性、および/または、ここに示され説明されたステップとは別のステップと同時に起こる可能性があるので、本発明は図示された上記行為および事象の順序によって制限されるものではない。加えて、図示されたステップが、本発明に依る手法を必ずしも全て実施する必要はない。さらに、ここに図示され説明されたシステムおよびここに図示されていない他のシステムと関連して、上記方法を実施する可能性があることを理解されたい。
図3に示すように、方法300は行為310によって開始され、イオン注入のための処理方法が提供される。処理方法は、例えば、1つ以上の所望のイオンビーム電流、イオンビームエネルギー、基板に注入するイオンの所望の注入量、および注入量の最大非均一性等を備える。
上記処理方法から、行為312(act 312)にビームプロファイルを設定する。適切な電流を処理室に伝達し、例えばビームサイズなどの多種の他のビームパラメータを調節する。2つの高速走査速度との境界が設定可能になるようにビームサイズを決める。通常は、ビームを介して高速走査軸に沿って走査され得るドーズカップを用いることによって、この測定が実施される。
行為314において、例えば一連の性能基準が提供され得る。ステップ316および318において、処理方法および測定済みビームプロファイルに基づいて、多種の走査速度を設定し得る。上記処理方法からの所望の注入量およびビーム電流が最小低速走査速度を決定し得る。最大速度は、ビームの高さおよび平均低速走査速度から決定することができ、均一性要件に基づいて設定することができる。例えば、通常、制御部は一連の規則および上述したインプットに基づいて最適値を選択することができる。高速走査ドライバの制限によって高速走査速度を決定し得る。ドライバが伝達し得る最大速度にオフウエハの高速走査速度を設定することができ、通常は2〜20の倍数でオンウエハの高速走査速度を減少させることができる。当該オンウエハの高速走査速度は両方向に向かう均質性によって決定され得るものであり、例えば通常はできる限り速くなるように設定される。行為320において、前述のステップにおいて設定されたビームを用いて基板に注入し得る。
ここで、図4を参照すると、本発明に係るイオン注入最適化のための例示のイオン注入システム400が概略的に示されている。図1のシステム100と類似の方法でイオン注入システム400が作動してもよい。図示された基板105を固定式または可動式ステージ140に取り付けることができる。例えば、可動式ステージ140を互いに略直交の1つの軸または2つの軸に移行し得る。しかし、本発明では複雑な非線形および回転移動が想定されている。例えば、固定式ウエハの両端にある単一軸においてイオンビームを走査することができる。そこで、走査済みイオンビームを越えて一方向にウエハを移行するか、または、代わりの実施形態において、固定式イオンビームまたはスポットビームに対して略直交軸にウエハを移行することができる。
基板105が、例えばイオン注入量生成器404から走査済みビーム402を受信する。図3の方法300におけるステップ312と類似の方法で初期ビーム設定が生成され得る。例えば、ビーム402が基板105の外縁を通過するように移動するときに、イオン検出装置404によってビーム402電流を測定することができる。本発明のある形態によると、オンウエハの高速走査速度からオンウエハの高速走査速度への加速、さらにオンウエハの高速走査速度に戻ることを考慮に入れて、システム400がビーム電流を決定することができる。例えば、システムは、イオン検出装置404を用いることによってイオンビーム402がオンウエハ位置からオフウエハ位置まで移動するのを決定することができる。図4に示すように、好ましくはシステム400に示されたように、イオンビーム402のいずれかの部分がウエハ105上にある場合、制御部406は、例えば、イオン注入量生成器410がオンウエハの高速走査速度(Vオンウエハ高速走査)においてウエハ105面の全面にわたって水平に走査するために、水平(第1方向)ドライバ408を導く。そして、イオンビームがオフウエハのときに、制御部406が水平ドライバ408に命令してイオン注入量生成器410がオフウエハの高速走査速度(Vオフウエハ高速走査)で走査するとともに、さらに逆方向に走査するように指示する。静電走査システムにおいて、Vオフウエハ高速走査とVオンウエハ高速走査との比率は高く、例えば20より大きくなり得る。さらに、磁気走査システムにおいて、ある例では静電システムと同様の比率でもあり得るが、大抵は、例えば3のように静電システムよりも低くなる。制御部406が、所望のイオンビームエネルギー、好適なイオンビーム直径、イオンビームを介する低速走査方向への基板の頻繁な通過、基板に注入するイオンの所望の注入量、および低速走査方向に向かう基板速度等の処理方法を用いて、Vオフウエハ高速走査およびVオンウエハ高速走査を最適化することも可能である。用語「制御部」とは、標準制御部、調節器、ドライバ、調節装置、ドライブエレクトロニクス、および同様のものを指すことを理解されたい。
制御部406が404からビーム電流測定を行い、当該測定を使用して低速走査速度を更新する低速走査ドライバ408に命令を送る。基板の位置をも考慮に入れ、位置センサ(図示せず)を経由して、オンウエハ高速走査速度とオフウエハ高速走査速度との間の境界を調節するように高速走査ドライバ412に命令する。
本発明に係るある実施形態において図5を参照すると、500に示すグラフは、様々な半径のイオンビームのデータと比較した、オンウエハ速度からオフウエハ速度の作用による、代表的な理論上の生産性向上を示すものである。グラフ500は、異なるビーム半径に対応するデータポイント502、504、506、508、および510という5つの異なる例示の群を含む。各グラフは30mm幅のドーズカップと300mm直径のウエハとを用いて構成されており、均一密度の円形ビームを想定している。例えば、カーブ502、504、506、508および510によって示されたビーム半径は、それぞれ5mm、41.25mm、77.5mm、113.75mm、および、150mmである。
例えば、曲線504において、生産性の向上は範囲全体で約49%変化していることがわかる。チャート500および曲線504を参照すると、例えば、比率低速に対する高速の比5で与えられる、半径41.25のペンシルビームに関して、生産性向上は約1.34、言い換えれば34%の生産性向上である。グラフの曲線504によると、比率低速に対する高速の比が倍の10であるとき、生産性向上は約1.41である。したがって、速度の増加によって最小生産性向上のみが生じる既定レベルの分だけオフウエハの高速走査速度を増大させるのが好ましい。さらにくりかえすと、グラフ502、506、508、および510のデータも同様のパターンを示す。
ある好ましい実施形態に関して本発明を図示および説明したが、当業者が本明細書と図面とを読んで理解すれば、直ちに、同等の代替および変更を思いつくことは明らかである。特に、上記構成材(アセンブリ、装置、回路など)によって実施される多種の機能に関して、そのような構成材を記述するのに用いる用語(「手段」を指すものを含む)は、別に明示されない限りは、上記構成材の特定の機能を実施する(すなわち、機能的に同等である)対応のいずれかの構成材を指す。この場合、当該構成材は、本発明に係る図示された例示の実施形態において機能を果たす開示の構造と、構造的に必ずしも同等でなくてもよい。加えて、複数の実施形態のうちの1つだけに関して本発明の具体的な特徴を開示していたとしても、そのような特徴を、既定または具体的な応用のいずれかに必要とされ、かつ、好適な他の実施形態の1つ以上の他の特徴と組み合わせてもよい。

Claims (29)

  1. 第1方向において、軸に沿ってイオンを走査させることによって、被加工製品の中に上記イオンを注入するように構成されたイオン発生器と、
    第1方向とは異なる第2方向において、上記被加工製品を移動させるように構成された可動式ステージと、
    制御部からの命令を受け取るとともに、オンウエハの高速走査速度およびオフウエハの高速走査速度を備える速度で上記イオンのビームを移動させるように構成された第1方向ドライバとを備えた、生産性を最適化するイオン注入システムであって、
    上記オフウエハの高速走査速度が上記オンウエハの高速走査速度よりも速く、上記オフウエハの高速走査速度と上記オンウエハの高速走査速度との間の境界が、第2方向における上記ウエハの位置によって調節される、イオン注入システム。
  2. 上記オンウエハの高速走査速度が、第2方向における上記イオンビームの位置によって調節される、請求項1に記載のイオン注入システム。
  3. 上記被加工製品における略外縁に設置されたイオン検出構成部品をさらに備えた、請求項1に記載のイオン注入システム。
  4. 第1方向と第2方向とが、互いに略直交であることを特徴とする請求項1に記載のイオン注入システム。
  5. 上記制御部からの命令を受け取るとともに、上記被加工製品の可動式ステージを第2方向において、低速走査速度で移動させるように構成された第2方向ドライバをさらに備えた、請求項1に記載のイオン注入システム。
  6. 上記オフウエハの高速走査速度が、上記オンウエハの高速走査速度よりも約2〜20倍速い、請求項1に記載のイオン注入システム。
  7. 上記オンウエハの高速走査速度が、約700cm/秒〜240000cm/秒である、請求項1に記載のイオン注入システム。
  8. 上記制御部が、処理方法、ビーム半径、所望のイオン注入量、実際に測定されたイオン注入量、被加工製品の直径、第2方向の走査速度、長方形のイオン分布パターン、およびドーズカップ幅を含む要素に基づいて、生産性を最適化するように構成されている、請求項1に記載のイオン注入システム。
  9. 上記イオン注入システムが、静電的システム、磁気的システム、および機械的システムのいずれか1つを備えた、請求項1に記載のイオン注入システム。
  10. 所望の最大非均一性は、上記被加工製品の全体にわたって、約0.5%の標準偏差を有する、請求項1に記載のイオン注入システム。
  11. 非加工製品にイオン注入する方法であって、
    上記被加工製品上における高速走査速度が上記被加工製品外における高速走査速度と異なるものである高速走査速度で、第1方向においてイオンビームを走査する工程と、
    第1方向とは異なる第2方向において、低速走査速度で上記被加工製品を走査する工程とを含む、非加工製品にイオン注入する方法。
  12. 上記被加工製品が低速走査方向において上記イオンビームを通過し、上記イオンビームが高速方向において上記被加工製品を走査する、請求項11に記載の方法。
  13. 上記イオンを被加工製品に注入するための処理方法を提供する工程をさらに含み、上記処理方法は、上記イオンビームの電流、イオンの注入量、低速走査方向における上記被加工製品のイオンビームの通過回数うちの少なくともいずれか1つを含む、請求項11に記載の方法。
  14. 所望の最大非均一性、上記被加工製品の処理時間、所望の最小イオンビーム電流、および少なくとも一つの被加工製品状態のうちの少なくともいずれか1つに基づいて上記処理方法を制御する、請求項11に記載の方法。
  15. 被加工製品に注入するイオンの投与量に基づいて、上記低速走査方向における複数の速度のうちの一つを選択する工程をさらに含む、請求項11に記載の方法。
  16. 上記処理方法を制御した後で、制御された上記処理方法に関するイオン注入の生産性に基づいて、複数の、上記高速走査方向におけるオンウエハの高速走査速度およびオフウエハの高速走査速度の他の一方を選択する工程をさらに含む、請求項11に記載の方法。
  17. 上記オフウエハの高速走査速度が上記オンウエハの高速走査速度の約2倍〜約20倍の間である、請求項11に記載の方法。
  18. 上記オンウエハの高速走査速度が、約700cm/秒〜約240000cm/秒の間である、請求項11に記載の方法。
  19. 上記低速走査速度が、約10mm/秒〜400mm/秒の間である、請求項11に記載の方法。
  20. 被加工製品にイオン注入する所望の上記最大非均一性が、上記被加工製品の全体にわたって、約0.5%の標準偏差を有する、請求項11に記載の方法。
  21. 上記オンウエハの高速走査速度において、上記高速走査方向における上記イオンビームが約10Hz〜約2000Hzの間で振動し、
    上記低速走査方向における上記被加工製品が約0.06Hz〜約1Hzの間で振動する、請求項11に記載の方法。
  22. 上記イオン発生器は、固定式ビームを介して、第1方向において上記被加工製品を移動させることによって、上記被加工製品の中にイオンを注入するように構成されている、請求項11に記載の方法。
  23. 被加工製品に対するイオン注入を最適化するのための方法であって、
    処理方法を提供するステップと、
    ビームプロファイルを決定するステップと、
    一連の性能基準を提供するステップと、
    性能基準およびビームプロファイルに基づいて第1方向におけるオンウエハの高速走査速度を選択するステップと、
    性能基準およびビームプロファイルに基づいて上記第1方向におけるオフウエハの高速走査速度を選択するステップと、
    第2方向における低速走査速度を選択するステップと、
    オフウエハの高速走査速度およびオンウエハの高速走査速度に基づいて上記処理方法を制御するステップとを含んでおり、
    第2方向が第1方向に対して略直交である、方法。
  24. さらに生産性に基づいて、第1走査方向における複数の上記オンウエハの高速走査速度と上記オフウエハの高速走査速度のうちの一つを選択する、請求項23に記載の方法。
  25. 上記オンウエハの高速走査速度が約700cm/秒〜240000cm/秒である、請求項23に記載の方法。
  26. 上記オフウエハの高速走査速度が上記オンウエハの高速走査速度の約2倍〜約20倍の間である、請求項23に記載の方法。
  27. 上記低速走査速度が約10mm/秒〜約400mm/秒の間である、請求項23に記載の方法。
  28. 上記高速走査方向における、複数の上記オンウエハの高速走査速度とオフウエハの高速走査の1つを選択する工程は、1つ以上の所望の被加工製品の状態からさらに構成される、請求項23に記載の方法。
  29. 処理方法、ビーム半径、所望のイオン投与量、実際に測定されたイオン投与量、ウエハ直径、低速走査速度、長方形のイオン分布パターン、およびドーズカップ幅を含む要因に基づいて、制御部が生産性を最適化する、請求項23に記載の方法。
JP2009524655A 2006-08-14 2007-08-13 走査されたイオンビーム注入装置のための処理能力の向上 Active JP5615546B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/503,685 US7566886B2 (en) 2006-08-14 2006-08-14 Throughput enhancement for scanned beam ion implanters
US11/503,685 2006-08-14
PCT/US2007/017935 WO2008021334A2 (en) 2006-08-14 2007-08-13 Throughput enhancement for scanned beam ion implanters

Publications (2)

Publication Number Publication Date
JP2010500736A true JP2010500736A (ja) 2010-01-07
JP5615546B2 JP5615546B2 (ja) 2014-10-29

Family

ID=39004817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009524655A Active JP5615546B2 (ja) 2006-08-14 2007-08-13 走査されたイオンビーム注入装置のための処理能力の向上

Country Status (7)

Country Link
US (1) US7566886B2 (ja)
EP (1) EP2054916A2 (ja)
JP (1) JP5615546B2 (ja)
KR (1) KR101394086B1 (ja)
CN (1) CN101501812B (ja)
TW (1) TWI442459B (ja)
WO (1) WO2008021334A2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248387B2 (en) * 2001-07-31 2007-07-24 Umax Data Systems, Inc. Scanning speed control device and method
US8008636B2 (en) * 2008-12-18 2011-08-30 Axcelis Technologies, Inc. Ion implantation with diminished scanning field effects
US20110272567A1 (en) * 2010-05-05 2011-11-10 Axcelis Technologies, Inc. Throughput Enhancement for Scanned Beam Ion Implanters
KR101915753B1 (ko) 2010-10-21 2018-11-07 삼성디스플레이 주식회사 이온 주입 시스템 및 이를 이용한 이온 주입 방법
JP5575025B2 (ja) * 2011-03-23 2014-08-20 株式会社Sen イオン注入方法及びイオン注入装置
JP5638995B2 (ja) * 2011-03-28 2014-12-10 株式会社Sen イオン注入方法及びイオン注入装置
JP5701201B2 (ja) 2011-12-19 2015-04-15 株式会社Sen イオン注入方法及びイオン注入装置
JP5904895B2 (ja) * 2012-07-12 2016-04-20 住友重機械イオンテクノロジー株式会社 イオン注入方法およびイオン注入装置
US8933424B1 (en) * 2013-11-21 2015-01-13 Axcelis Technologies, Inc. Method for measuring transverse beam intensity distribution
CN109786198A (zh) * 2019-02-28 2019-05-21 中国计量大学 一种制备单原子固态器件和阵列的原子掺杂方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241651A (ja) * 1989-11-07 1991-10-28 Varian Assoc Inc イオン注入装置における高効率走査のための方法及び装置
JPH05135730A (ja) * 1991-11-14 1993-06-01 Nec Corp イオン注入装置
WO2006060124A2 (en) * 2004-11-30 2006-06-08 Axcelis Technologies, Inc. Optimization of beam utilization

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815635B1 (ko) * 2000-05-15 2008-03-20 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 작업편에 이온을 주입하기 위한 방법 및 이온 주입 장치
US6710359B2 (en) * 2001-03-23 2004-03-23 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for scanned beam uniformity adjustment in ion implanters
US20020175297A1 (en) * 2001-05-25 2002-11-28 Scheuer Jay T. Methods and apparatus for ion implantation with variable spatial frequency scan lines
JP4061044B2 (ja) * 2001-10-05 2008-03-12 住友重機械工業株式会社 基板移動装置
US6908836B2 (en) * 2002-09-23 2005-06-21 Applied Materials, Inc. Method of implanting a substrate and an ion implanter for performing the method
US7282427B1 (en) * 2006-05-04 2007-10-16 Applied Materials, Inc. Method of implanting a substrate and an ion implanter for performing the method
GB2432039B (en) * 2004-01-09 2009-03-11 Applied Materials Inc Improvements relating to ion implantation
US6870170B1 (en) * 2004-03-04 2005-03-22 Applied Materials, Inc. Ion implant dose control
KR101123532B1 (ko) * 2004-04-05 2012-03-12 액셀리스 테크놀로지스, 인크. 이온 빔을 통해 공작물을 왕복 운동하는 방법
US7267520B2 (en) * 2004-04-09 2007-09-11 Axcelis Technologies, Inc. Wafer scanning system with reciprocating rotary motion utilizing springs and counterweights
US20060289800A1 (en) * 2005-03-22 2006-12-28 Murrell Adrian J Implanting a substrate using an ion beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241651A (ja) * 1989-11-07 1991-10-28 Varian Assoc Inc イオン注入装置における高効率走査のための方法及び装置
JPH05135730A (ja) * 1991-11-14 1993-06-01 Nec Corp イオン注入装置
WO2006060124A2 (en) * 2004-11-30 2006-06-08 Axcelis Technologies, Inc. Optimization of beam utilization

Also Published As

Publication number Publication date
WO2008021334A2 (en) 2008-02-21
US20080035862A1 (en) 2008-02-14
JP5615546B2 (ja) 2014-10-29
TW200820328A (en) 2008-05-01
CN101501812B (zh) 2014-06-04
TWI442459B (zh) 2014-06-21
US7566886B2 (en) 2009-07-28
EP2054916A2 (en) 2009-05-06
KR20090049056A (ko) 2009-05-15
KR101394086B1 (ko) 2014-05-13
WO2008021334A3 (en) 2008-05-08
CN101501812A (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
JP5615546B2 (ja) 走査されたイオンビーム注入装置のための処理能力の向上
JP5652583B2 (ja) ハイブリッド結合及び二重機械式走査構造を有するイオン注入システム及び方法
US7227160B1 (en) Systems and methods for beam angle adjustment in ion implanters
US20060243920A1 (en) Optimization of a utilization of an ion beam in a two-dimensional mechanical scan ion implantation system
US7982195B2 (en) Controlled dose ion implantation
US8637838B2 (en) System and method for ion implantation with improved productivity and uniformity
KR19990082593A (ko) 이온주입시스템에서 선량측정 제어를 위한 제어매카니즘
EP1721329A2 (en) Modulating ion beam current
CN110678954B (zh) 漂移模式和减速模式下具备束角控制的离子注入系统
JP5257576B2 (ja) イオンを加工物に注入するシステム及びその方法
KR102429397B1 (ko) 각도 에너지 필터를 사용한 각도 주사
JP5646619B2 (ja) 機械的二次元走査注入システムの均一性および生産性を改善するための、ビーム走査法の使用方法
US20060145095A1 (en) Methods and apparatus for ion implantation with control of incidence angle by beam deflection
US20230038392A1 (en) Blended energy ion implantation
TWI682420B (zh) 離子植入系統及具有可變能量控制的方法
KR20070069885A (ko) 고정식 패러데이를 구비하는 이온주입장치 및 이를 이용한도즈량 측정 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250