KR20090049056A - 스캔 비임 이온 주입기용 생산성 개선 - Google Patents

스캔 비임 이온 주입기용 생산성 개선 Download PDF

Info

Publication number
KR20090049056A
KR20090049056A KR1020097004214A KR20097004214A KR20090049056A KR 20090049056 A KR20090049056 A KR 20090049056A KR 1020097004214 A KR1020097004214 A KR 1020097004214A KR 20097004214 A KR20097004214 A KR 20097004214A KR 20090049056 A KR20090049056 A KR 20090049056A
Authority
KR
South Korea
Prior art keywords
workpiece
ion implantation
wafer
ion
scan
Prior art date
Application number
KR1020097004214A
Other languages
English (en)
Other versions
KR101394086B1 (ko
Inventor
에드워드 아이스너
보 반더베르크
Original Assignee
액셀리스 테크놀러지스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 액셀리스 테크놀러지스, 인크. filed Critical 액셀리스 테크놀러지스, 인크.
Publication of KR20090049056A publication Critical patent/KR20090049056A/ko
Application granted granted Critical
Publication of KR101394086B1 publication Critical patent/KR101394086B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30483Scanning
    • H01J2237/30488Raster scan

Abstract

생산성을 최적화하는 이온 주입 시스템은 제 1 방향으로 축선을 따라 이온들을 스캐닝함으로써 피가공재의 내측으로 이온을 주입하도록 구성되는 이온 발생기와, 상기 제 1 방향과 일반적으로 직교하는 제 2 방향으로 피가공재를 이동시키도록 구성되는 이동가능한 스테이지와, 피가공재의 대략 외측 에지에서 이온 선량을 측정하도록 구성되는 이온 검출 부품과, 웨이퍼 내측 고속 스캔 속도 또는 웨이퍼 외측 고속 스캔 속도로 이동시키도록 제어기로부터의 명령을 수용하는 제 1 방향 구동기, 및 피가공재를 이동시킬 수 있는 스테이지를 저속 스캔 속도로 이동시키도록 제어기로부터의 명령을 수용하는 제 2 방향 구동기를 포함한다.

Description

스캔 비임 이온 주입기용 생산성 개선 {THROUGHPUT ENHANCEMENT FOR SCANNED BEAM ION IMPLANTERS}
본 발명은 일반적으로 반도체 처리 시스템에 관한 것이며, 보다 구체적으로는 반도체 기판의 이온 주입과 관련하여 이온 비임의 효율을 최적화하기 위한 시스템 및 방법에 관한 것이다.
반도체 산업에 있어서, 다양한 결과를 달성하기 위해서 통상적으로 다수의 제조 공정이 기판(예를 들어, 반도체 웨이퍼 또는 피가공재) 상에 수행된다. 예를 들어, 이온 주입과 같은 공정은 웨이퍼 일부분의 전도성 변경과 같은 기판 상의 또는 기판 내에 특별한 특징을 달성하기 위해 수행될 수 있다. 소정의 불순물 재료가 주입되고 규정된 에너지의 이온 비임을 형성하도록 가속되며, 그 이온 비임은 웨이퍼 표면으로 지향된다. 비임 내의 활성화된 이온은 소정의 전도성을 갖는 영역을 형성하도록 반도체 재료 내측으로 침투하여 반도체 재료의 결정 격자 내에 개재된다.
이온 주입 시스템은 일반적으로 가스 또는 고체 재료를 플라즈마로 변환시키기 위해 이온 소오스 또는 발생기를 포함한다. 이온은 플라즈마로부터 추출되어 소정의 에너지 또는 이송 에너지로 가속된다. 이온 비임은 바람직하지 않은 이온 종을 제거하도록 질량 분석되며, 그 후에 필요하다면 소정의 에너지 레벨로 가속되어 목표 피가공재 상으로 지향된다. 대부분의 이온 주입기는 웨이퍼보다 훨씬 더 작은 직경을 가지는 이온 비임을 사용하며 비임을 스캐닝함으로써 웨이퍼 전반에 걸쳐서 균일하게 이온 비임으로부터의 선량(dose)을 분포시키며, 비임 스캐닝과 웨이퍼 운동 등의 조합에 의해 웨이퍼를 기계적으로 이동시킨다.
다수의 시스템에서 비임은 균일한 "리본" 비임을 형성하기 위해 한 방향으로 신속하게 스캐닝되며(고속 스캔), 그 후에 웨이퍼는 고속 스캔에 수직한 방향으로 리본을 통해 저속으로 스캐닝된다. 양호한 표면 균일성을 위한 요건은 양 방향으로 피가공재를 비임에 의해 완전히 스캐닝해야 한다는 것을 의미한다. 따라서 이온 주입된 전체 면적은 피가공재보다 더 켜서 비임은 완전하게 이용되지 못한다. 비임의 효율은 웨이퍼 크기 대 이온 주입된 전체 면적으로 정의되며 항상 1 보다 적다.
전체적으로 생산성 향상이라는 목표를 가지는 다른 발명에 있어서 정전기적, 자기적, 및 기계적 스캐너를 위한 이온 주입 면적을 감소시키기 위해 예를 들어, 원형의 최적화된 스캔 파형이 제안되었다. 통상적으로, 이들 발명에 있어서 스캔 비율은 일정하게 유지되지만 스캔 폭은 저속 스캔에 따라 변화된다. 따라서 이온 주입된 면적은 피가공재의 형상과 유사하여 효율을 증가시킨다. 그러나, 비임이 통상적으로 웨이퍼의 에지 너머에 바로 위치되는 전류 측정 장치(선량 컵) 위를 항상 통과하기 때문에 사각형 주입 면적(일정한 스캔 크기)를 갖는 것이 바람직하며, 측정된 전류는 균일도를 개선하기 위해 피이드백 시스템 내에 사용될 수 있다.
그러므로, 소정의 일정한 스캔 크기를 유지하면서 이온 비임의 스캐닝을 최적화하는 방법이 필요하다.
본 발명은 종래 기술의 한계점들을 극복한다. 따라서, 이후에 본 발명의 몇몇 일면들에 대한 기본적인 이해를 제공하기 위해서 본 발명을 간단히 요약한다. 이러한 요약은 본 발명을 광범위하게 요약한 것이 아니다. 이는 본 발명의 핵심 또는 중요한 구성 요소들을 동일시하거나 본 발명의 범주를 한정하려는 것이 아니다. 요약의 목적은 이후에 제시되는 더욱 상세한 설명에 대한 서두로서 간단한 형태로 본 발명의 몇몇 개념을 제시하고자 하는 것이다.
본 발명의 일면은 일반적으로 대략 정사각형 또는 직사각형 스캔 면적을 사용하여 기판 내측으로의 이온 주입 중에 이온 비임의 효율을 최적화하기 위한 방법에 관한 것이다. 비임이 피가공재 상으로 지향되지 않을 때 고속 스캔의 속도를 증가시킴으로써 개선된다. 따라서 비임의 임의의 부분이 피가공재 상으로 지향되는 동안에, 고속 스캔의 속도는 평균적으로 VFastScanOnWafer이며, 일단 비임이 웨이퍼를 통과하면 고속 스캔의 속도는 VFastScanOffWafer로 증가된다. VFastScanOffWafer/VFastScanOnWafer의 비율은 통상적으로 2 내지 25 범위이다. 웨이퍼 외측의 증가된 스캔 속도는 소모된 웨이퍼 외측의 선량을 감소시켜 이온 주입 면적을 효율적으로 감소시킴으로써, 효율을 증가시킨다.
전술한 관련 목적들을 달성하기 위해, 본 발명은 이후에 충분히 기재되며 특히 청구의 범위에서 지적된 특징들을 포함한다. 이후의 상세한 설명과 첨부 도면에는 본 발명의 상세한 임의의 예시적인 실시예들이 설정되어 있다. 그러나, 이들 실시예들은 본 발명의 원리가 사용될 수 있는 다양한 방식 중에 일부만을 제시한 것이다. 본 발명의 다른 목적, 장점 및 신규한 특징들은 첨부 도면과 연관하여 고려할 때 본 발명의 다음의 상세한 설명으로부터 명확해질 것이다.
도 1은 본 발명의 일면에 따른 예시적인 이온 주입 시스템의 평면도이며,
도 2는 본 발명의 다른 일면에 따른 예시적인 스캐닝 시스템의 이온 비임 통로를 도시하는 평면도이며,
도 3은 본 발명의 또 다른 일면에 따른 예시적인 이온 주입 시스템의 이온 비임 효율을 최적화하기 위한 예시적인 방법의 블록 선도이며,
도 4는 본 발명의 또 다른 일면에 따른 예시적인 스캐닝 시스템의 개략적인 블록 선도이며,
도 5는 본 고속 대 저속 비율에 비교한 생산성 개선도를 나타내는 본 발명의 일면에 따른 예시적인 그래프이다.
본 발명은 일반적으로 이온 주입 시스템 내의 이온 비임을 스캐닝할 때 이온 비임 사용 효율을 최적화하기 위한 시스템 및 방법에 관한 것이다. 보다 구체적으로, 상기 방법은 고속 스캔 축선 내에 두 개 또는 그 이상의 고속 스캔 속도를 사용하는 것에 기초하여 최적화를 제공한다. 따라서, 본 발명은 전반적으로 동일한 구성 요소를 지칭하는데 동일한 도면 부호가 사용되는 도면들을 참조하여 설명될 것이다. 이들 일면들에 대한 설명은 단지 예시적인 것이며 발명의 범주를 제한하는 방향으로 이해해서는 않된다. 다음의 설명에서, 설명의 목적으로 다수의 특정 세부 내용만이 본 발명의 철저한 이해를 위해 제공된다. 그러나, 본 발명은 이들 특정 세부 내용없이도 실시될 수 있다는 것은 본 기술 분야의 당업자들에게 분명할 것이다.
이온 주입 시스템의 생산성은 일반적으로 여러 인자들에 의해 정의된다. 예를 들어, 생산성은 특정량의 이온 전류를 발생시킬 수 있는 시스템의 성능, 기판(예를 들어, 실리콘 웨이퍼) 내에 실제로 주입되는 이온의 수에 대한 시스템에 의해 발생되는 이온의 수 사이의 비율, 기판 내에 이온 주입되는 시간의 양과 이온 주입을 위해 기판을 위치시키는데 소요된 시간의 양 사이의 비율 등에 의해 정량화될 수 있다. 예를 들어, 기판 내에 실제로 이온 주입되는 양과 발생되는 이온의 양의 비율은 후술하는 바와 같이, 일반적으로 "이온 비임 효율"로서 지칭된다.
낮은 선량의 이온 주입을 위해서(예를 들어, 대략 1 × 1014 ㎠ 미만의 선량), 이온 비임의 전류는 통상적으로 이온 주입 시스템 성능의 충분한 하한치 범위이며, 이온 비임 전류는 잠재적인 낮은 이온 비임 효율을 고려하여 증가될 수 있다. 그러나, 높은 선량의 이온 주입을 위해서(예를 들어, 대략 1 × 1015 ㎠ 초과의 선량), 이온 비임 전류는 통상적으로 이온 주입 시스템의 최대 성능 또는 최대 성능에 근접해 있으며, 이온 비임 효율은 최적 이온 주입을 위한 시스템의 생산성 에 대해 훨씬 더 큰 중요성을 가진다. 그러한 이온 주입은 "비임 전류 제한" 주입으로서 지칭되는데, 여기서 이온 비임의 효율은 다양한 형태의 이온 주입 시스템에 대한 가장 유리한 용도를 결정하는데 중요한 인자이다. 예를 들어, 다중 기판 이온 주입 시스템 또는 배치 이온 주입기는 통상적으로, 단일 기판 시스템보다 충분히 높은 이온 비임 효율을 가지므로, 높은 선량의 이온 주입을 위해 다중 기판 시스템을 통상적인 도구로서 선택하게 된다. 그러나, 단일 기판 이온 주입 시스템 또는 직렬 시스템은 오염 제어, 프로세스 로트 크기의 가변성, 및 몇몇 구성에서 있어서의 입사 비임의 제어와 같은 다수의 다른 장점들을 가진다. 그러므로, 생산성이 개선된다면 단일 기판 시스템을 이용하는 것도 매우 바람직할 것이다.
그러므로, 본 발명은 단일 기판 이온 주입 시스템에서 이온 비임 이용 효율의 최적화에 관한 것이며, 여기서 선형 스캔 속도 및 기판의 가속과 같은 다수의 이온 주입 작동 변수들이 이온 주입 시스템에 의해 수행되는 다수의 개별 공정의 특징에 기초하여 제어된다. 그러나, 본 발명은 전술한 형태의 배치식 주입기와 같은 다수의 다른 이온 주입 시스템에도 사용될 수 있으며 그러한 모든 실시도 본 발명의 범주 내에 있다고 이해해야 한다.
본 발명의 양호한 실시예에서, 통상적인 단일 기판 또는 단일 웨이퍼 이온 주입 시스템을 사용하는 종래 방법보다 여러 장점들이 제공된다. 예를 들어, 종래의 단일 기판 이온 주입 시스템 또는 직렬 주입기는 하나 또는 그 이상의 축선(예를 들어, 저속 스캔 축선) 방향으로 일반적으로 일정한 선형 스캔 속도와 가속도를 가지며 통상적으로 이온 주입 사용 효율에 최적합하지 않다. 그러나, 이후에 설명 하는 바와 같이 다수의 이온 주입 작동 변수의 제어는 다수의 생산성 효율의 증가를 초래할 수 있다. 예를 들어, 주어진 공정 레시피를 위해 두 개 또는 그 이상의 축선으로 기판 또는 이온 비임 스캔의 선형 스캔 속도 및 가속도를 제어하는 것에 의해 종래의 이온 주입 시스템에서는 일반적으로 불가능한 이온 비임 효율의 최적화를 제공할 수 있다.
이후 도면을 참조하면, 본 발명의 예시적인 일 실시예에 따라 도 1은 예시적인 하이브리드-스캔, 단일 기판 이온 주입 시스템(100)을 도시하며, 여기서 상기 시스템은 고속 스캔 방향으로 이온 비임(110)을 스캔하고 직교하는 저속 스캔 방향으로 기판(105)을 스캔하도록 작동할 수 있다. 전술한 바와 같이, 본 발명의 다수의 일면들이 도 1의 예시적인 시스템(100)을 포함한(이에 한정되지 않음) 임의의 형태의 이온 주입 장치와 관련하여 실시될 수 있다. 예시적인 이온 주입 시스템(100)은 터미널(112), 비임라인 조립체(114), 및 이온 비임(110)이 피가공재 위치로 지향되는 프로세스 챔버를 형성하는 엔드 스테이션(116)을 포함한다. 터미널(112) 내의 이온 소오스(120)는 추출된 이온 비임(110)을 비임라인 조립체(114)로 제공하기 위해 전력 공급원(122)에 의해 작동되며, 상기 이온 소오스(120)는 소오스 챔버로부터 이온을 추출하여 비임라인 조립체(114) 쪽으로 추출된 이온 비임(110)을 지향시키기 위한 하나 또는 그 이상의 추출 전극(도시 않음)을 포함한다.
예를 들어, 비임라인 조립체(114)는 이온 소오스(120) 근처의 입구와 분해 구멍(resolving aperture)을 갖는 출구를 구비한 비임 가이드(130)뿐만 아니라, 추 출된 이온 비임(110)을 수용하고 상기 분해 구멍(132)을 통해 적절한 모멘텀 또는 모멘텀 범위[예를 들어, 소정의 질량 범위의 이온을 갖는 질량 분석된 이온 비임(110)]의 이온만을 통과시키는 쌍극 자기장을 형성하는 질량 분석기(134)를 포함한다. 스캔 시스템은 고속 스캔 방향으로 비임을 스캔한다. 이는 정전기적, 자기적, 또는 몇몇 다른 시스템일 수 있다. 그 후 비임은 평행화 시스템을 통과하여 모든 스캔 각도에서의 비임을 평행하게 한다. 비임은 그 후 엔드 스테이션(116)과 관련되어 있는 피가공재 스캐닝 시스템(136) 상의 기판(105)으로 분배된다. 비임라인 조립체(114)와 관련된 다수의 비임 형성 및 형상화 구조물(도시 않음)이 이온 비임이 비임 통로를 따라 피가공재 스캐닝 시스템(136) 상에 지지된 기판(105)으로 이송될 때 이온 비임(110)을 한정하고 유지하도록 추가로 제공될 수 있다.
도 1에 도시된 엔드 스테이션(116)은 예를 들어, 단일 기판(105)(예를 들어, 반도체 웨이퍼, 디스플레이 패널, 다른 피가공재 등)이 이온 주입을 위해 비임 통로를 따라 지지되는 배기된 프로세스 챔버를 제공하는 "직렬"형 엔드 스테이션이다. 그러나, 이와는 달리 배치식 또는 다른 형태의 엔드 스테이션이 사용될 수 있으며 이는 모두 본 발명의 범주 내에 있다고 이해해야 한다. 본 발명의 다른 일면에서, 시스템(100)은 고속 및 저속 스캔 방향으로 스캐닝할 수 있는 피가공재 스캐닝 시스템을 포함한다. 본 발명의 또 다른 일면에서, 시스템(100)은 두 개의 이온 비임 축선이 전기적 또는 자기적으로 스캔되거나 이들의 조합 방식으로 스캔되는 시스템을 포함한다. 따라서, 그러한 모든 스캔 또는 비스캔된 이온 비임(110)들도 본 발명의 범주 내에 속하는 것으로 고려될 수 있다.
본 발명의 일면에 따라서, 도 2는 피가공재 위의 이온 비임 통로를 나타내는 평면도이다. 상기 도면은 상대적인 이동에 따른 것이며, 가장 일반적인 실시는 둘다 고정된 프로세스 챔버에 대해, 고속 스캔 방향으로 이동하는 이온 비임과 저속 스캔 방향으로 이동하는 피가공재이다. 피가공재 스캐닝 시스템(200)은 예를 들어, 상부에 기판(105)이 놓이는 가동 스테이지(140)를 포함하며, 여기서 이온 비임(110)은 고속 스캔 속도 축선(142)에 따라 기판(105)을 스캔하고 이온 비임(110)에 대해 일반적으로 직교하는 저속 스캔 축선(144)을 따라 웨이퍼를 병진운동시키도록 작동한다. 고속 스캔 속도 축선(142)을 따른(또한 "고속 스캔 속도 방향으로서 지칭되는) 비임의 주어진 속도는 예를 들어, 저속 스캔 축선(144)을 따른(또한 "저속 스캔 방향"으로서 지칭되는) 기판의 속도보다 충분히 빠를 수 있다. 따라서 고속 스캔 라인(145)이 수평으로 나타난다. 저속 스캔 속도가 고속 스캔 속도에 비해 증가하므로, 고속 스캔 라인이 경사지게 된다. 편리함을 위해, 고속 스캔 속도 축선(142)을 따른 비임의 속도는 "웨이퍼 내측 고속 스캔 속도(fast scan speed on wafer)" 또는 "웨이퍼 외측(off wafer) 고속 스캔 속도"로서 지칭되며, 저속 스캔 축선(144)에 따른 기판의 속도는 "저속 스캔 속도"로서 지칭될 것이다. 웨이퍼 내측과 웨이퍼 외측 속도 사이의 변이는 대략 원형 경계선(105)을 따라 발생한다. 경계선은 필수적으로 비임의 어느 부분도 웨이퍼와 충돌하지 않도록 웨이퍼에 가능한한 가깝게 놓인다. 변이의 정확한 위치는 비임의 크기와 필요한 선량의 균일도로부터 결정된다. 명확히 알 수 있듯이, 웨이퍼로부터 떨어진 비임의 거리는 저속 스캔 위치에 의존한다.
본 발명의 또 다른 예시적인 일면에 따라, 도 3은 도 1의 예시적인 이온 주입 시스템(100)과 같은 이온 주입 시스템의 예시적인 최적화를 설명하는 예시적인 방법(300)의 개략적인 블록 선도이다. 예시적인 방법이 일련의 단계들로서 도시되고 설명되었지만, 본 발명은 몇몇 단계들이 본 발명에 따라 도시되고 설명된 것과는 별도로 다른 단계들에 따라 및/또는 상이한 순서로 수행될 수 있으므로, 설명된 순서에만 한정되는 것이 아니라고 이해해야 한다. 또한, 본 발명에 따른 방법을 실시하는데 도시되지 않은 단계들도 필요할 수 있다. 또한, 본 발명에 따른 방법은 도시되고 설명된 시스템과 관련하여 실시될 수 있을 뿐만 아니라 도시되지 않은 다른 시스템과 관련해서도 실시될 수 있다.
도 3에 도시된 바와 같이, 방법(300)은 단계(310)에서 시작하며, 이온 주입을 위한 프로세스 레시피가 제공된다. 프로세스 레시피는 예를 들어, 소정의 이온 비임 전류, 이온 비임 에너지, 기판 내측으로 주입되는 소정의 이온 선량, 최대 선량 불균일도 등 중에서 하나 또는 그 이상을 포함한다.
프로세스 레시피로부터, 비임 프로파일은 단계(312)에 설정되어 있다. 적절한 전류가 프로세스 챔버로 분배되며 예를 들어, 비임 크기와 같은 다수의 다른 비임 변수들이 조절된다. 비임 크기는 두 개의 고속 스캔 속도들 사이의 경계가 설정될 수 있도록 결정된다. 이러한 측정은 통상적으로 고속 스캔 축선을 따른 비임을 통해 스캔될 수 있는 선량 컵(dose cup)으로 수행된다.
단계(314)에서, 예를 들어, 수행 준거(performance criteria)가 제공될 수 있다. 다수의 스캔 속도가 프로세스 레시피와 측정된 비임 프로파일에 기초하여 단계(316,318)에서 설정될 수 있다. 프로세스 레시피로부터 소정의 선량과 비임 전류는 최소 저속 스캔 속도를 결정할 수 있다. 최대 속도는 비임 높이와 평균 저속 스캔 속도로부터 결정될 수 있으며 균일도 요건에 기초하여 설정될 수 있다. 제어기는 통상적으로 예를 들어, 단지 규정된 인풋과 일련의 규칙에 기초하여 최적 값을 선택할 수 있다. 고속 스캔 속도는 고속 스캔 구동기의 한계에 의해 결정될 수 있다. 웨이퍼 외측 고속 스캔은 구동기가 분배할 수 있는 최대 속도로 설정될 수 있으며 웨이퍼 내측 고속 스캔 속도는 양 방향으로의 균일도에 의해 결정될 수 있는 배수, 통상적으로 2 내지 20 배수만큼 감소될 수 있으며, 통상적으로 예를 들어 가능한한 고속으로 설정된다. 기판은 이전의 단계에서 설정된 대로 비임에 의해 단계(320)에서 이온 주입될 수 있다.
이후 도 4를 참조하면, 본 발명에 따라 이온 주입을 최적화하기 위한 예시적인 이온 주입 시스템(400)의 개략적인 도면이 도시되어 있다. 이온 주입 시스템(400)은 도 1에서 시스템(100)과 유사한 방식으로 작동될 수 있다. 도시된 바와 같이 기판(105)은 고정식 또는 이동식 스테이지(140)에 장착될 수 있다. 예를 들어, 이동가능한 스테이지(140)는 일반적으로 서로 직교하는 두 개의 축선 또는 하나의 축선 방향으로 이동될 수 있다. 그러나, 본 발명에서는 복잡한 비선형 및 회전 이동도 고려될 수 있다. 예를 들어, 이온 비임은 고정된 웨이퍼를 가로질러 단일 축선 방향으로 스캔될 수 있으며, 여기서 웨이퍼는 스캔된 이온 비임을 지나서 한 방향으로 이동되거나, 다른 일면에서 웨이퍼는 정적인 이온 비임 또는 "스폿 비임"에 대해 일반적으로 직교하는 축선 방향으로 이동될 수 있다.
기판(105)은 예를 들어, 이온 선량 발생기(404)로부터의 스캔된 비임(402)을 수용한다. 초기 비임의 설정은 도 3의 방법(300)에서 단계(312)와 유사하게 발생될 수 있다. 비임(402) 전류는 예를 들어, 비임(402)이 기판(105) 외측 에지를 지나 이동할 때 이온 검출 요소(404)에 의해 측정될 수 있다. 본 발명의 일면에 따라, 시스템(400)은 "웨이퍼 내측 고속 스캔 속도"로부터 "웨이퍼 내측 고속 스캔 속도"로 복귀하는 "웨이퍼 외측 고속 스캔"로의 가속도를 고려하여 비임 전류를 결정할 수 있다. 시스템은 예를 들어, 이온 검출 요소(404)를 사용함으로써 이온 비임(402)이 "웨이퍼 내측" 위치로부터 "웨이퍼 외측" 위치로 이동되었는지를 결정할 수 있다. 도 4에 도시한 바와 같이, 이온 비임(402)의 임의의 부분이 웨이퍼 상에 있을 때 바람직한 시스템(400)의 제어기(406)는 "웨이퍼 내측 고속 스캔 속도"(VFastScanOnWsfer)에서 웨이퍼(105) 표면을 수평으로 가로질러 스캔하도록 예를 들어 수평(제 1 방향) 구동기(408)를 이온 선량 발생기(410)로 지향시킨다. 제어기(406)는 이온 비임이 웨이퍼를 벗어날 때, 수평 구동기(408)에 명령하여 이온 선량 발생기(410)가 "웨이퍼 외측 고속 스캔 속도"(VFastScanOffWsfer)에서 스캔하고 방향을 바꾸도록 지시한다. 정전기적 스캔 시스템에서 VFastScanOnWsfer 대 VFastScanOffWsfer의 비율은 예를 들어, 20 이상 높을 수 있으며, 자기 스캔 시스템에서 상기 비율은 몇몇 환경에서 정전기 시스템과 유사할 수 있으나, 대부분 예를 들어 3 정도 낮을 수 있다. 제어기(406)는 프로세스 레시피, 예를 들어 소정의 이온 비임 에너지, 양호한 이온 비임 직경, 저속 스캔 방향으로 이온 비임을 통해 기판이 통과하는 수, 기 판 내측에 주입된 소정의 이온 선량, 저속 스캔 방향으로의 기판 속도 등을 사용하여 VFastScanOffWsfer와 VFastScanOnWsfer를 최적화할 수 있다. 용어, 제어기는 표준 제어기, 조절기, 구동기, 조절 장치, 구동 전자부품 등을 지칭하는 것으로 이해해야 한다.
제어기(406)는 이온 검출 요소(404)로부터 비임 전류 측정값을 넘겨 받아 이를 사용하여 저속 스캔 속도를 업데이트하도록 저속 스캔 구동기(408)에 명령한다. 이는 위치 센서(도시 않음)를 통한 기판의 위치도 고려하여 온-웨이퍼와 오프-웨이퍼 고속 스캔 속도 사이의 경계를 조정하도록 고속 스캔 구동기(412)에 명령한다.
도 5를 참조하면, 본 발명의 일 실시예에 따라 가변하는 이온 비임 반경 데이타에 따른 오프-웨이퍼 대 온-웨이퍼 속도 함수로서 대표적인 이론적 생산성 개선도를 도시하는 그래프(500)가 도시되어 있다. 그래프(500)는 상이한 비임 반경에 대응하는 5 개의 상이한 예시적인 데이타 지점(502,504,506,508,510)을 포함한다. 각각의 그래프는 30 mm 폭의 선량 컵, 300 mm 직경의 웨이퍼, 및 균일한 밀도의 원형 비임이라는 가정하에서 작성되었다. 곡선(502,504,506,508,510)에 의해 나타낸 비임 반경은 예를 들어, 각각 5 mm, 41.25 mm, 77.5 mm, 113.75 mm, 및 150 mm이다.
예를 들어, 곡선(504)에서 생산성 개선도는 전체 구간에 걸쳐 대략 40 %로 변화했음을 알 수 있다. 챠트(500)와 곡선(504)을 참조하면, 예를 들어 41.25 반경의 펜슬 비임에 대해 생산성 개선도의 비율(고속 대 저속)은 약 1.34이거나, 환언하면, 생산성 개선도는 34%였다. 그래프(504)는 상기 비율(고속 대 저속)이 2배 로 10이라면 생산성 개선도는 대략 1.41이라는 것을 보여준다. 그러므로, 속도의 증가가 단지 최소 생산성 개선만을 제공하는 일정한 레벨로 웨이퍼 외측 고속 스캔 속도를 증가시키는 것이 유리할 수 있다. 또한, 그래프(502,506,508,510)을 위한 데이타는 유사한 패턴을 나타낸다.
본 발명이 임의의 양호한 실시예 또는 실시예들에 대해 도시하고 설명하였지만, 상세한 설명 및 첨부 도면을 읽고 이해함으로써 본 기술 분야의 당업자들은 변형예 및 변경예들이 있을 수 있다고 이해할 수 있을 것이다. 특히, 전술한 부품(조립체, 장치, 회로 등)들에 의해 수행되는 다수의 기능들과 관련하여, 그러한 성분들을 설명하는데 사용된 ("수단"에 관한 참조를 포함하여)용어들은 달리 언급하지 않는 한, 본 발명의 도시된 예시적인 실시예에서 기능을 수행하는 설명된 구성과 구조적으로 동등하지 않더라도 설명하는 성분의 특정 기능을 수행하는(즉, 기능적으로 동등한)임의의 성분에 대응하는 것이라고 이해해야 한다. 또한, 본 발명의 특징이 단지 여러 실시예들 중의 하나에 대해 설명하였지만, 그러한 특징은 임으로 주어진 또는 특정 적용에 바람직하고 유리한 것이라면 다른 실시예들의 하나 또는 그 이상의 특징과 조합될 수 있을 것이다.

Claims (29)

  1. 생산성을 최적화하는 이온 주입 시스템으로서,
    제 1 방향으로 축선을 따라 이온을 스캐닝함으로써 피가공재 내측으로 이온을 주입하도록 구성되는 이온 발생기와,
    상기 제 1 방향과 상이한 제 2 방향으로 상기 피가공재를 이동시키도록 구성되는 이동가능한 스테이지, 및
    제어기로부터의 명령을 수용하고 웨이퍼 내측 고속 스캔 속도와 웨이퍼 외측고속 스캔 속도를 포함하는 속도로 비임을 이동시키도록 구성되는 제 1 방향 구동기를 포함하며,
    상기 웨이퍼 외측 고속 스캔 속도는 상기 웨이퍼 내측 고속 스캔 속도보다 더 빠르며 상기 웨이퍼 외측 고속 스캔 속도와 상기 웨이퍼 내측 고속 스캔 속도 사이의 경계는 제 2 방향으로의 웨이퍼 위치에 의해 조절되는,
    생산성을 최적화하는 이온 주입 시스템.
  2. 제 1 항에 있어서,
    상기 웨이퍼 내측 고속 스캔 속도는 상기 제 2 방향으로의 이온 비임의 위치에 의해 조절되는,
    생산성을 최적화하는 이온 주입 시스템.
  3. 제 1 항에 있어서,
    상기 피가공재의 대략 외측 에지에 위치되는 이온 검출 부품을 더 포함하는,
    생산성을 최적화하는 이온 주입 시스템.
  4. 제 1 항에 있어서,
    상기 제 1 방향 및 제 2 방향은 일반적으로 서로 직교하는,
    생산성을 최적화하는 이온 주입 시스템.
  5. 제 1 항에 있어서,
    상기 제어기로부터의 명령을 수용하고 저속 스캔 속도로 상기 제 2 방향으로 상기 피가공재의 이동가능한 스테이지를 이동시키도록 구성되는 제 2 방향 구동기를 더 포함하는,
    생산성을 최적화하는 이온 주입 시스템.
  6. 제 1 항에 있어서,
    상기 웨이퍼 외측 고속 스캔 속도는 상기 웨이퍼 내측 고속 스캔 속도보다 약 2 내지 20 배 더 빠른,
    생산성을 최적화하는 이온 주입 시스템.
  7. 제 1 항에 있어서,
    상기 웨이퍼 내의 고속 스캔 속도는 약 700 cm/초 내지 240000 cm/초인,
    생산성을 최적화하는 이온 주입 시스템.
  8. 제 1 항에 있어서,
    상기 제어기는 프로세스 레시피, 비임 반경, 소정의 이온 선량, 실제 측정된 이온 선량, 피가공재 직경, 제 2 방향으로의 스캔 속도, 직사각형 이온 분포 패턴 및 선량 컵의 폭을 포함하는 인자들에 기초하여 생산성을 최적화하도록 구성되는,
    생산성을 최적화하는 이온 주입 시스템.
  9. 제 1 항에 있어서,
    상기 이온 주입 시스템은 정전기적, 자기적 및 기계적 이온 주입 시스템 중의 하나를 포함하는,
    생산성을 최적화하는 이온 주입 시스템.
  10. 제 1 항에 있어서,
    상기 소정의 최대 불균일도는 상기 피가공재 전체에 걸쳐서 0.5 % 정도의 표준 편차를 가지는,
    생산성을 최적화하는 이온 주입 시스템.
  11. 피가공재의 이온 주입 방법으로서,
    고속 스캔 속도에서 제 1 방향으로 이온 비임을 스캐닝하는 단계, 및
    저속 스캔 속도에서 제 2 방향으로 상기 피가공재를 스캐닝하는 단계를 포함하며,
    상기 피가공재 내측의 고속 스캔 속도는 피가공재 외측의 고속 스캔 속도와 상이하며, 상기 제 1 방향과 제 2 방향이 상이한,
    피가공재의 이온 주입 방법.
  12. 제 11 항에 있어서,
    상기 피가공재는 저속 스캔 방향으로 상기 이온 비임을 통과하며 상기 이온 비임은 고속 방향으로 상기 피가공재를 스캔하는,
    피가공재의 이온 주입 방법.
  13. 제 11 항에 있어서,
    상기 피가공재를 이온 주입하기 위한 프로세스 레시피를 제공하는 단계를 더 포함하며, 상기 프로세스 레시피는 이온 비임의 전류, 이온 선량, 및 상기 저속 스캔 방향으로 상기 이온 비임을 통과하는 상기 피가공재의 통과 수 중의 적어도 하나를 포함하는,
    피가공재의 이온 주입 방법.
  14. 제 11 항에 있어서,
    상기 프로세스 레시피의 제어는 소정의 최대 불균일도, 상기 피가공재의 처리 시간, 소정의 최소 이온 비임 전류, 및 적어도 하나의 피가공재 조건 중의 적어도 하나에 기초하여 제어되는,
    피가공재의 이온 주입 방법.
  15. 제 11 항에 있어서,
    상기 피가공재를 이온 주입하는 선량에 기초하여 상기 저속 스캔 방향으로의 복수의 속도 중에 하나를 선택하는 단계를 더 포함하는,
    피가공재의 이온 주입 방법.
  16. 제 11 항에 있어서,
    상기 제어된 프로세스 레시피와 관련된 이온 주입 생산성에 기초하여 상기 프로세스 레시피를 제어한 이후에 고속 스캔 방향으로의 복수의 웨이퍼 내측 고속 스캔 속도와 웨이퍼 외측 고속 스캔 속도 중의 다른 하나를 선택하는 단계를 더 포함하는,
    피가공재의 이온 주입 방법.
  17. 제 11 항에 있어서,
    상기 웨이퍼 외측 고속 스캔 속도는 상기 웨이퍼 내측 고속 스캔 속도의 약 2 배 내지 약 20 배 사이인,
    피가공재의 이온 주입 방법.
  18. 제 11 항에 있어서,
    상기 웨이퍼 내측 고속 스캔 속도는 약 700 cm/초 내지 240000 cm/초 인,
    피가공재의 이온 주입 방법.
  19. 제 11 항에 있어서,
    상기 저속 스캔 속도는 약 10 mm/초 내지 약 400 mm/초인,
    피가공재의 이온 주입 방법.
  20. 제 11 항에 있어서,
    상기 피가공재 이온 주입의 소정의 최대 불균일도는 상기 피가공재 전반에 걸쳐서 0.5 % 정도의 표준 편차를 가지는,
    피가공재의 이온 주입 방법.
  21. 제 11 항에 있어서,
    상기 이온 비임은 대략 10 ㎐ 내지 대략 2000 ㎐ 사이의 웨이퍼 내측 고속 스캔 속도에서 상기 고속 스캔 방향으로 진동하며, 상기 피가공재는 대략 0.06 ㎐ 내지 대략 1 ㎐ 사이의 상기 저속 스캔 방향으로 진동하는,
    피가공재의 이온 주입 방법.
  22. 제 11 항에 있어서,
    상기 이온 발생기는 정적 비임을 통과하는 상기 제 1 방향으로 상기 피가공재를 이동시킴으로써 상기 피가공재의 내측으로 이온을 주입하도록 구성되는,
    피가공재의 이온 주입 방법.
  23. 피가공재 이온 주입의 최적화 방법으로서,
    프로세스 레시피를 제공하는 단계와,
    비임 프로파일을 결정하는 단계와,
    수행 준거 세트를 제공하는 단계와,
    수행 준거와 비임 프로파일에 기초하여 제 1 방향으로의 웨이퍼 내측 고속 스캔 속도를 선택하는 단계와,
    수행 준거와 비임 프로파일에 기초하여 제 1 방향으로의 웨이퍼 외측 고속 스캔 속도를 선택하는 단계와,
    제 2 방향으로의 저속 스캔 속도를 선택하는 단계, 및
    웨이퍼 외측 고속 스캔 속도와 웨이퍼 내측 고속 스캔 속도에 기초하여 상기 프로세스 레시피를 제어하는 단계를 포함하며,
    상기 제 2 방향은 일반적으로 상기 제 1 방향에 직교하는,
    피가공재 이온 주입의 최적화 방법.
  24. 제 23 항에 있어서,
    상기 고속 스캔 방향으로의 복수의 웨이퍼 내측 고속 스캔 속도와 웨이퍼 외측 고속 스캔 속도 중의 하나를 선택하는 단계는 추가로 생산성에 기초하여 선택되는,
    피가공재 이온 주입의 최적화 방법.
  25. 제 23 항에 있어서,
    상기 웨이퍼 내측 고속 스캔 속도는 약 700 cm/초 내지 240000 cm/초 인,
    피가공재 이온 주입의 최적화 방법.
  26. 제 23 항에 있어서,
    상기 웨이퍼 외측 고속 스캔 속도는 상기 웨이퍼 내측 고속 스캔 속도의 약 2 배 내지 약 20 배 사이인,
    피가공재 이온 주입의 최적화 방법.
  27. 제 23 항에 있어서,
    상기 저속 스캔 속도는 약 10 mm/초 내지 약 400 mm/초 사이인,
    피가공재 이온 주입의 최적화 방법.
  28. 제 23 항에 있어서,
    상기 고속 스캔 방향으로의 복수의 웨이퍼 내측 고속 스캔 속도와 웨이퍼 외측 고속 스캔 속도 중의 하나를 선택하는 단계는 하나 및 하나 이상의 소정의 피가공재 조건으로 추가로 구성되는,
    피가공재 이온 주입의 최적화 방법.
  29. 제 23 항에 있어서,
    제어기는 프로세스 레시피, 비임 반경, 소정의 이온 선량, 실제 측정된 이온 선량, 웨이퍼 직경, 저속 스캔 속도, 직사각형 이온 분포 패턴 및 선량 컵의 폭을 포함하는 인자들에 기초하여 생산성을 최적화하는,
    피가공재 이온 주입의 최적화 방법.
KR1020097004214A 2006-08-14 2007-08-13 스캔 비임 이온 주입기용 생산성 개선 KR101394086B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/503,685 US7566886B2 (en) 2006-08-14 2006-08-14 Throughput enhancement for scanned beam ion implanters
US11/503,685 2006-08-14
PCT/US2007/017935 WO2008021334A2 (en) 2006-08-14 2007-08-13 Throughput enhancement for scanned beam ion implanters

Publications (2)

Publication Number Publication Date
KR20090049056A true KR20090049056A (ko) 2009-05-15
KR101394086B1 KR101394086B1 (ko) 2014-05-13

Family

ID=39004817

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097004214A KR101394086B1 (ko) 2006-08-14 2007-08-13 스캔 비임 이온 주입기용 생산성 개선

Country Status (7)

Country Link
US (1) US7566886B2 (ko)
EP (1) EP2054916A2 (ko)
JP (1) JP5615546B2 (ko)
KR (1) KR101394086B1 (ko)
CN (1) CN101501812B (ko)
TW (1) TWI442459B (ko)
WO (1) WO2008021334A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759798B2 (en) 2010-10-21 2014-06-24 Samsung Display Co., Ltd. Ion implantation system and ion implantation method using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248387B2 (en) * 2001-07-31 2007-07-24 Umax Data Systems, Inc. Scanning speed control device and method
US8008636B2 (en) * 2008-12-18 2011-08-30 Axcelis Technologies, Inc. Ion implantation with diminished scanning field effects
US20110272567A1 (en) * 2010-05-05 2011-11-10 Axcelis Technologies, Inc. Throughput Enhancement for Scanned Beam Ion Implanters
JP5575025B2 (ja) * 2011-03-23 2014-08-20 株式会社Sen イオン注入方法及びイオン注入装置
JP5638995B2 (ja) * 2011-03-28 2014-12-10 株式会社Sen イオン注入方法及びイオン注入装置
JP5701201B2 (ja) * 2011-12-19 2015-04-15 株式会社Sen イオン注入方法及びイオン注入装置
JP5904895B2 (ja) * 2012-07-12 2016-04-20 住友重機械イオンテクノロジー株式会社 イオン注入方法およびイオン注入装置
US8933424B1 (en) * 2013-11-21 2015-01-13 Axcelis Technologies, Inc. Method for measuring transverse beam intensity distribution
CN109786198A (zh) * 2019-02-28 2019-05-21 中国计量大学 一种制备单原子固态器件和阵列的原子掺杂方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980562A (en) * 1986-04-09 1990-12-25 Varian Associates, Inc. Method and apparatus for high efficiency scanning in an ion implanter
JP3125384B2 (ja) * 1991-11-14 2001-01-15 日本電気株式会社 イオン注入装置
WO2001088949A2 (en) * 2000-05-15 2001-11-22 Varian Semiconductor Equipment Associates, Inc. High efficiency scanning in ion implanters
US6710359B2 (en) * 2001-03-23 2004-03-23 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for scanned beam uniformity adjustment in ion implanters
US20020175297A1 (en) * 2001-05-25 2002-11-28 Scheuer Jay T. Methods and apparatus for ion implantation with variable spatial frequency scan lines
JP4061044B2 (ja) * 2001-10-05 2008-03-12 住友重機械工業株式会社 基板移動装置
US6908836B2 (en) * 2002-09-23 2005-06-21 Applied Materials, Inc. Method of implanting a substrate and an ion implanter for performing the method
US7282427B1 (en) * 2006-05-04 2007-10-16 Applied Materials, Inc. Method of implanting a substrate and an ion implanter for performing the method
GB2409928B (en) * 2004-01-09 2007-03-21 Applied Materials Inc Improvements relating to ion implantation
US6870170B1 (en) * 2004-03-04 2005-03-22 Applied Materials, Inc. Ion implant dose control
KR101123532B1 (ko) * 2004-04-05 2012-03-12 액셀리스 테크놀로지스, 인크. 이온 빔을 통해 공작물을 왕복 운동하는 방법
JP4840607B2 (ja) * 2004-04-09 2011-12-21 アクセリス テクノロジーズ インコーポレーテッド ばねと釣合重りを用いて往復回転運動を行うウエハ走査システム
US20060113489A1 (en) * 2004-11-30 2006-06-01 Axcelis Technologies, Inc. Optimization of beam utilization
KR20060102525A (ko) * 2005-03-22 2006-09-27 어플라이드 머티어리얼스, 인코포레이티드 이온빔을 이용한 기판 이온주입

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759798B2 (en) 2010-10-21 2014-06-24 Samsung Display Co., Ltd. Ion implantation system and ion implantation method using the same

Also Published As

Publication number Publication date
US7566886B2 (en) 2009-07-28
EP2054916A2 (en) 2009-05-06
CN101501812B (zh) 2014-06-04
TWI442459B (zh) 2014-06-21
WO2008021334A2 (en) 2008-02-21
CN101501812A (zh) 2009-08-05
US20080035862A1 (en) 2008-02-14
JP5615546B2 (ja) 2014-10-29
TW200820328A (en) 2008-05-01
WO2008021334A3 (en) 2008-05-08
KR101394086B1 (ko) 2014-05-13
JP2010500736A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
KR101394086B1 (ko) 스캔 비임 이온 주입기용 생산성 개선
US20060243920A1 (en) Optimization of a utilization of an ion beam in a two-dimensional mechanical scan ion implantation system
KR102429370B1 (ko) 가변 에너지 제어를 갖는 이온 주입 시스템 및 방법
KR100438646B1 (ko) 이온주입시스템에서선량측정제어를위한제어메커니즘
US20090084757A1 (en) Uniformity control for ion beam assisted etching
US7982195B2 (en) Controlled dose ion implantation
US6953942B1 (en) Ion beam utilization during scanned ion implantation
KR20070084347A (ko) 주사된 이온 주입 중 선량 균일도의 개선
JP5257576B2 (ja) イオンを加工物に注入するシステム及びその方法
KR102429397B1 (ko) 각도 에너지 필터를 사용한 각도 주사
KR101849387B1 (ko) 스캔빔 이온 주입장치에 있어서의 스루풋 증대
US20030122088A1 (en) Scan methods and apparatus for ion implantation
US20110001059A1 (en) Use of Beam Scanning to Improve Uniformity and Productivity of a 2D Mechanical Scan Implantation System
US20060145095A1 (en) Methods and apparatus for ion implantation with control of incidence angle by beam deflection
TW202320109A (zh) 混合能量離子佈植
TWI682420B (zh) 離子植入系統及具有可變能量控制的方法
US20220285126A1 (en) Ion implanter and ion implantation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 6