JP2013520030A - Deposition method of SiCOHLOW-K film - Google Patents

Deposition method of SiCOHLOW-K film Download PDF

Info

Publication number
JP2013520030A
JP2013520030A JP2012554022A JP2012554022A JP2013520030A JP 2013520030 A JP2013520030 A JP 2013520030A JP 2012554022 A JP2012554022 A JP 2012554022A JP 2012554022 A JP2012554022 A JP 2012554022A JP 2013520030 A JP2013520030 A JP 2013520030A
Authority
JP
Japan
Prior art keywords
oet
ome
hme
eto
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012554022A
Other languages
Japanese (ja)
Inventor
デュッサラ、クリスティアン
ドニア、フランソワ
アンダーソン、カーティス
マクアンドリュー、ジェームズ・ジェイ.エフ.
Original Assignee
レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of JP2013520030A publication Critical patent/JP2013520030A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

次世代の誘電体膜に適切な誘電率およびヤング率を有するSiCOH膜を成膜するために適合した前駆体が開示される。
【選択図】 なし
A precursor suitable for depositing a SiCOH film having a dielectric constant and Young's modulus suitable for next generation dielectric films is disclosed.
[Selection figure] None

Description

関連出願の相互参照Cross-reference of related applications

本願は、2010年2月17日に出願された米国仮出願第61/305,491の優先権を主張するものであり、その全体の内容を本明細書の一部として援用する。   This application claims priority of US Provisional Application No. 61 / 305,491, filed February 17, 2010, the entire contents of which are incorporated herein by reference.

半導体、太陽電池、LCD−TFT、またはフラットパネル型装置の製造における使用のための次世代誘電体膜として適切な誘電率およびヤング率を有するSiCOH膜を成膜するために適合した前駆体が開示される。   Disclosed is a precursor suitable for depositing a SiCOH film having a dielectric constant and Young's modulus suitable as a next generation dielectric film for use in the manufacture of semiconductor, solar cell, LCD-TFT, or flat panel type devices Is done.

発明の背景Background of the Invention

JSR(株)に付与されたEP2264219には、下記式を有するオルガノシラン化学気相成長化合物が開示されている。

Figure 2013520030
EP 2264219 granted to JSR Corporation discloses an organosilane chemical vapor deposition compound having the following formula.
Figure 2013520030

ここで、R1およびR2は、独立して、水素原子、1〜4の炭素原子を有するアルキル基、ビニル基、またはフェニル基を表わし、R3およびR4は、独立して、1〜4の炭素原子を有するアルキル基、アセチル基、またはフェニル基を表わし、mは0〜2の整数であり、nは1〜3の整数である。 Here, R 1 and R 2 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a vinyl group, or a phenyl group, and R 3 and R 4 independently represent 1 to Represents an alkyl group having 4 carbon atoms, an acetyl group, or a phenyl group, m is an integer of 0-2, and n is an integer of 1-3.

JSR(株)は、式に一致した170を超える特定の化合物を開示し、これらの化合物は、おそらく、式の通用する繰り返し(available iterations)の全てには及ばないであろう。JSRは、段落0033、0045、および0052において、開示された式の化合物は、合成、精製、および取り扱いの容易さの観点からはR1およびR2に取り込まれた0〜1つのHを、あるいは、化合物の沸点の低下および機械的強度の増加の観点からは、1〜2のHを有することを示している。 JSR Corporation discloses more than 170 specific compounds consistent with the formula, and these compounds probably do not reach all of the available iterations of the formula. JSR, in paragraphs 0033, 0045, and 0052, a compound of the disclosed formula may contain 0 to 1 H incorporated into R 1 and R 2 in terms of ease of synthesis, purification, and handling, or From the viewpoint of lowering the boiling point of the compound and increasing the mechanical strength, it indicates that it has H of 1-2.

JSR(株)は、ポロジェンを有する170を超える特定の化合物と、付加的なシラン化合物との組み合わせをさらに開示し、シラン化合物は、式R6 aSi(OR74-a,R8 b(R9O)3-bSi−Oe−Si(OR103-c11 c,および−[R13 f(R14O)2-fSi−(R15g]−を有し、R6,R8〜R11,R13およびR14は、独立して、H原子、F原子、または1価の有機基を表わし、R7は独立して1価の有機基を表わし、R15は、O原子、フェニレン基、または−(CH2n−で示される基を表わし、aは0〜4の整数であり、bおよびcは、独立して0〜3の整数であり、eは0または1であり、fは0〜2の整数であり、gは0または1であり、hは2から3の整数であり、およびnは1〜6の整数である(段落0062)。孔形成剤は、環構造を有する任意の化合物とすることができる(段落0094)。 “より優れた”機械的強度および低い比誘電率を示す絶縁膜を形成するために、数字的に困難な組み合わせ(numerically challenging combinations)が引き合いに出される(段落0067)。 JSR Corp. further discloses combinations of more than 170 specific compounds with porogens and additional silane compounds, wherein the silane compounds have the formula R 6 a Si (OR 7 ) 4-a , R 8 b (R 9 O) 3-b Si-O e -Si (oR 10) 3-c R 11 c, and - [R 13 f (R 14 O) 2-f Si- (R 15) g] - Yu R 6 , R 8 to R 11 , R 13 and R 14 each independently represents an H atom, an F atom, or a monovalent organic group, and R 7 independently represents a monovalent organic group. , R 15 represents an O atom, a phenylene group, or a group represented by — (CH 2 ) n —, a is an integer of 0 to 4, and b and c are independently an integer of 0 to 3. E is 0 or 1, f is an integer from 0 to 2, g is 0 or 1, h is an integer from 2 to 3, and n is an integer from 1 to 6 (paragraph 062). The pore-forming agent can be any compound having a ring structure (paragraph 0094). In order to form insulating films that exhibit “better” mechanical strength and low dielectric constant, numerically challenging combinations are cited (paragraph 0067).

前駆体の組み合わせを用いる成膜は、単独の前駆体により形成された膜の誘電率およびヤング率のほぼ平均である誘電率およびヤング率を有する膜を与えることができる。この現象は、本発明の比較例1において部分的に証明され、それはEP2264219の例2および14〜18を要約する。この現象は、比較例2,4、および5においてさらに実証される。   Film formation using a combination of precursors can provide a film having a dielectric constant and Young's modulus that is approximately the average of the dielectric constant and Young's modulus of a film formed by a single precursor. This phenomenon is partially demonstrated in Comparative Example 1 of the present invention, which summarizes Examples 2 and 14-18 of EP 2264219. This phenomenon is further demonstrated in Comparative Examples 2, 4, and 5.

さらに、特定の前駆体または前駆体の組み合わせについてのヤング率におけるいかなる改善も、誘電率の上昇を伴なう。この現象は、本発明の比較例1において証明され、それはEP2264219の例14〜17を要約する。この現象は、比較例6においてさらに証明される。   Furthermore, any improvement in Young's modulus for a particular precursor or combination of precursors is accompanied by an increase in dielectric constant. This phenomenon is demonstrated in Comparative Example 1 of the present invention, which summarizes Examples 14-17 of EP 2264219. This phenomenon is further proved in Comparative Example 6.

低い誘電率および高い機械的強度を有する絶縁膜についての必要性が残存する。   There remains a need for insulating films having low dielectric constants and high mechanical strength.

反応チャンバー内に配置された1以上の基板の上にSiCOH膜を形成する方法が提供される。n=1または2を有するSi−(CH2n−Si含有前駆体は、反応チャンバー内に導入される。Si−(CH2n−Si含有前駆体は、以下の群から選択される:

Figure 2013520030
A method is provided for forming a SiCOH film on one or more substrates disposed in a reaction chamber. A Si— (CH 2 ) n —Si containing precursor with n = 1 or 2 is introduced into the reaction chamber. The Si— (CH 2 ) n —Si containing precursor is selected from the following group:
Figure 2013520030

ここで、R1〜R4は、水素、メチル、エチル、プロピル、ビニル、およびC1−C3アルコキシからなる群から独立して選択され;R5は、メチル、エチル、およびプロピルからなる群から選択され;好ましくはR1〜R4の少なくとも1つはメチル、エチル、またはプロピルであり;R1〜R3の少なくとも1つは−OR5と同一または異なっていてもよいアルコキシである。ビニル含有前駆体は、反応チャンバー内に導入される。ビニル含有前駆体は、式Si(R1)x(O(R2))4-xを有し、ここで、少なくとも1つのR1はビニルであり、任意のもう1つのR1は、水素またはアルキル基、好ましくはメチルまたはエチルであり;およびxは1または2である。ポロジェンは、反応チャンバー内に導入される。Si−(CH2n−Si前駆体、ビニル含有前駆体、ポロジェン、および基板は、成膜プロセス、好ましくは化学気相成長を用いて接触して、少なくとも1つの基板の表面にSiCOH膜を形成する。方法は、以下の態様の1以上をさらに含むことができる:
・ビニル含有前駆体は、ビニルジエトキシシラン、ビニルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、およびビニルメチルジエトキシシランからなる群から選択され;
・ビニル含有前駆体は、ビニルトリエトキシシランまたはビニルメチルジエトキシシランからなる群から選択され;
・ポロジェンは、置換または非置換のビシクロ[2.2.1]ヘプタ−2,5−ジエンであり;
・成膜プロセスは、単一周波数PECVDであり;
・SiCOH膜を多孔質にし;
・R1〜R4はHではなく;
・Si−(CH2n−Si含有前駆体は、(EtO)3Si−CH2−Si(OEt)2H,Me(OEt)2Si−CH2−Si(OEt)2H,Me(OEt)2Si−CH2−Si(OEt)HMe,Me2(OEt)Si−CH2−Si(OEt)2H,(EtO)Me2SiCH2Si(OMe)2H,Me2(OEt)Si−CH2−Si(OEt)HMe,(OEt)3Si−CH2−Si(OEt)HMe,(EtO)3Si−CH2−Si(OMe)HMe,Me(OMe)2Si−CH2−Si(OMe)2H,Me(OMe)2Si−CH2−Si(OMe)HMe,Me2(OMe)SiCH2Si(OMe)2H,およびMe2(OEt)Si−CH2−Si(OMe)HMeからなる群から選択され;
・Si−(CH2n−Si含有前駆体は、Me(OEt)2Si−CH2−Si(OEt)2H,Me2(OEt)Si−CH2−Si(OEt)2H,およびMe(OEt)2Si−CH2−Si(OEt)HMeからなる群から選択され;
・Si−(CH2n−Si含有前駆体は、(EtO)3Si−CH2CH2−Si(OEt)2H,Me(OEt)2Si−CH2CH2−Si(OEt)2H,Me(OEt)2Si−CH2CH2−Si(OEt)HMe,Me2(OEt)Si−CH2CH2−Si(OEt)2H,(EtO)Me2SiCH2CH2Si(OMe)2H,Me2(OEt)Si−CH2CH2−Si(OEt)HMe,(OEt)3Si−CH2CH2−Si(OEt)HMe,(EtO)3Si−CH2CH2−Si(OMe)HMe,Me(OMe)2Si−CH2CH2−Si(OMe)2H,Me(OMe)2Si−CH2CH2−Si(OMe)HMe,Me2(OMe)SiCH2CH2Si(OMe)2H,およびMe2(OEt)Si−CH2CH2−Si(OMe)HMeからなる群から選択され;
・Si−(CH2n−Si含有前駆体は、Me(OEt)2Si−CH2CH2−Si(OEt)2H,Me2(OEt)Si−CH2CH2−Si(OEt)2H,およびMe(OEt)2Si−CH2CH2−Si(OEt)HMeからなる群から選択され;
・R1〜R3の一つのみがHであり;
・Si−(CH2n−Si含有前駆体は、MeH(OMe)Si−CH2−Si(OMe)HMe,(EtO)2HSi−CH2−Si(OEt)2H,(EtO)HMeSi−CH2−Si(OEt)HMe,および(iPrO)HMeSi−CH2−Si(OiPr)HMeからなる群から選択され;および
・SiCOH膜は、(1)Si−(CH2n−Si含有前駆体とポロジェンとによって形成されたSiCOH膜の誘電率、および(2)ビニル含有前駆体とポロジェンとによって形成されたSiCOH膜の誘電率のいずれよりも低い誘電率を有する。
Wherein R1 to R4 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, vinyl, and C1-C3 alkoxy; R5 is selected from the group consisting of methyl, ethyl, and propyl; Is at least one of R1 to R4 is methyl, ethyl or propyl; at least one of R1 to R3 is alkoxy which may be the same as or different from -OR5. A vinyl-containing precursor is introduced into the reaction chamber. The vinyl-containing precursor has the formula Si (R1) x (O (R2)) 4-x , where at least one R1 is vinyl and any other R1 is hydrogen or an alkyl group, Preferably it is methyl or ethyl; and x is 1 or 2. The porogen is introduced into the reaction chamber. The Si— (CH 2 ) n —Si precursor, vinyl-containing precursor, porogen, and substrate are contacted using a deposition process, preferably chemical vapor deposition, to form a SiCOH film on the surface of at least one substrate. Form. The method can further include one or more of the following aspects:
The vinyl-containing precursor is selected from the group consisting of vinyldiethoxysilane, vinyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinylmethyldiethoxysilane;
The vinyl-containing precursor is selected from the group consisting of vinyltriethoxysilane or vinylmethyldiethoxysilane;
The porogen is a substituted or unsubstituted bicyclo [2.2.1] hepta-2,5-diene;
The deposition process is single frequency PECVD;
-Making the SiCOH film porous;
R1 to R4 are not H;
· Si- (CH 2) n -Si-containing precursor, (EtO) 3 Si-CH 2 -Si (OEt) 2 H, Me (OEt) 2 Si-CH 2 -Si (OEt) 2 H, Me ( OEt) 2 SiCH 2 -Si (OEt ) HMe, Me 2 (OEt) SiCH 2 -Si (OEt) 2 H, (EtO) Me 2 SiCH 2 Si (OMe) 2 H, Me 2 (OEt) Si—CH 2 —Si (OEt) HMe, (OEt) 3 Si—CH 2 —Si (OEt) HMe, (EtO) 3 Si—CH 2 —Si (OMe) HMe, Me (OMe) 2 Si—CH 2 -Si (OMe) 2 H, Me (OMe) 2 SiCH 2 -Si (OMe) HMe, Me 2 (OMe) SiCH 2 Si (OMe) 2 H, and Me 2 (OEt) SiCH 2 -Si (OMe) selected from the group consisting of HMe;
Si— (CH 2 ) n —Si containing precursors are Me (OEt) 2 Si—CH 2 —Si (OEt) 2 H, Me 2 (OEt) Si—CH 2 —Si (OEt) 2 H, and Selected from the group consisting of Me (OEt) 2 Si—CH 2 —Si (OEt) HMe;
Si— (CH 2 ) n —Si containing precursor is (EtO) 3 Si—CH 2 CH 2 —Si (OEt) 2 H, Me (OEt) 2 Si—CH 2 CH 2 —Si (OEt) 2 H, Me (OEt) 2 SiCH 2 CH 2 -Si (OEt) HMe, Me 2 (OEt) SiCH 2 CH 2 -Si (OEt) 2 H, (EtO) Me 2 SiCH 2 CH 2 Si ( OMe) 2 H, Me 2 (OEt) Si—CH 2 CH 2 —Si (OEt) HMe, (OEt) 3 Si—CH 2 CH 2 —Si (OEt) HMe, (EtO) 3 Si—CH 2 CH 2 -Si (OMe) HMe, Me ( OMe) 2 SiCH 2 CH 2 -Si (OMe) 2 H, Me (OMe) 2 SiCH 2 CH 2 -Si (OMe) HMe, Me 2 (OMe) SiCH 2 CH 2 Si (OMe) 2 H, and Me 2 (OEt It is selected from Si-CH 2 CH 2 -Si ( OMe) group consisting HMe;
Si— (CH 2 ) n —Si containing precursor is Me (OEt) 2 Si—CH 2 CH 2 —Si (OEt) 2 H, Me 2 (OEt) Si—CH 2 CH 2 —Si (OEt) Selected from the group consisting of 2 H, and Me (OEt) 2 Si—CH 2 CH 2 —Si (OEt) HMe;
-Only one of R1-R3 is H;
Si— (CH 2 ) n —Si containing precursor is MeH (OMe) Si—CH 2 —Si (OMe) HMe, (EtO) 2 HSi—CH 2 —Si (OEt) 2 H, (EtO) HMeSi Selected from the group consisting of —CH 2 —Si (OEt) HMe, and (iPrO) HMeSi—CH 2 —Si (OiPr) HMe; and the SiCOH film comprises (1) Si— (CH 2 ) n —Si It has a dielectric constant lower than both the dielectric constant of the SiCOH film formed by the precursor and the porogen and (2) the dielectric constant of the SiCOH film formed by the vinyl-containing precursor and the porogen.

また、開示された方法によって形成された膜が開示される。好ましくは、開示された方法によって形成された膜は、約2.0〜約2.7、好ましくは約2.0〜約2.5の範囲の誘電率と、約4GPa〜約10GPa、好ましくは約5GPa〜約10GPaの範囲のヤング率とを有する。   Also disclosed is a film formed by the disclosed method. Preferably, the film formed by the disclosed method has a dielectric constant in the range of about 2.0 to about 2.7, preferably about 2.0 to about 2.5, and about 4 GPa to about 10 GPa, preferably And a Young's modulus in the range of about 5 GPa to about 10 GPa.

<表記および命名>
いくつかの略記、記号、および用語は、以下の説明および請求項にわたって用いられ、次を含む:略記「SiCOH」は、Si,C,O,およびH原子を含有する誘電体膜を表わす;略記「pSiCOH」は、多孔質とされた後のSiCOH膜をさす;略記「BCHD」は、2,5−ノルボルナジエンとも称されるビシクロ[2.2.1]ヘプタ−2,5−ジエンをさす;略記「VTEOS」は、ビニルトリエトキシシラン((HC=CH2)(EtO)3Si)をさす;略記「A」はオングストロームをさし、1オングストロームは100ピコメーターである;略記「PECVD」は、プラズマ化学気相成長をさす;略記「CVD」は、化学気相成長をさす;略記「MIM」は、金属絶縁体金属(キャパシターに用いられる構造)をさす;略記「DRAM」は、ダイナミックランダムアクセスメモリーをさす;略記「FeRAM」は、強誘電体ランダムアクセスメモリーをさす;略記「CMOS」は、相補型金属酸化物半導体をさす;略記「UV」は、紫外線をさす;および、略記「RF」は無線周波数をさす。
<Notation and naming>
Several abbreviations, symbols and terms are used throughout the following description and claims, including: The abbreviation “SiCOH” represents a dielectric film containing Si, C, O, and H atoms; “PSiCOH” refers to the SiCOH film after being made porous; the abbreviation “BCHD” refers to bicyclo [2.2.1] hepta-2,5-diene, also referred to as 2,5-norbornadiene; The abbreviation “VTEOS” refers to vinyltriethoxysilane ((HC═CH 2 ) (EtO) 3 Si); the abbreviation “A” refers to angstroms, 1 angstrom is 100 picometers; Abbreviation “CVD” refers to chemical vapor deposition; abbreviation “MIM” refers to metal insulator metal (structure used in capacitors); "DRAM" refers to dynamic random access memory; abbreviation "FeRAM" refers to ferroelectric random access memory; abbreviation "CMOS" refers to complementary metal oxide semiconductor; abbreviation "UV" refers to ultraviolet light And the abbreviation “RF” refers to radio frequency.

さらに、ここでの開示は、3つの前駆体(Si−(CH2n−Si前駆体、ビニル含有前駆体、およびポロジェン)のそれぞれの1以上の使用を予測し、それによって範囲を制限することを意図せずに単数または複数のそれぞれにおいて同じ意味をさす。 Furthermore, the disclosure herein anticipates the use of one or more of each of the three precursors (Si— (CH 2 ) n —Si precursor, vinyl containing precursor, and porogen), thereby limiting the scope. Without intending to mean the same thing in each of the singular or plural number.

用語「アルキル基」は、専ら炭素および水素原子を含有する飽和した官能基をさす。さらに、用語「アルキル基」は、直鎖状、分岐状、または環状のアルキル基をさす。アルキル基の例は制限されず、メチル基、エチル基、プロピル基、ブチル基などを含む。分岐したアルキル基の例は制限されず、t−ブチルを含む。環状アルキル基の例は制限されず、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などを含む。   The term “alkyl group” refers to a saturated functional group containing exclusively carbon and hydrogen atoms. Furthermore, the term “alkyl group” refers to a linear, branched, or cyclic alkyl group. Examples of the alkyl group are not limited, and include a methyl group, an ethyl group, a propyl group, a butyl group, and the like. Examples of branched alkyl groups are not limited and include t-butyl. Examples of the cyclic alkyl group are not limited, and include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.

ここで用いられる際、略記「Me」はメチル基をさし;略記「Et」はエチル基をさし;略記「Pr」はプロピル基をさし;略記「nPr」は鎖状(chain)プロピル基をさし;略記「iPr」はイソプロピル基をさし;略記「Bu」はブチル(n−ブチル)基をさし;略記「tBu」はtert−ブチル基をさし;略記「sBu」はsec−ブチル基をさし;略記「iBu」はiso−ブチル基をさし;および、略記「TMS」はトリメチルシリル基をさす。   As used herein, the abbreviation “Me” refers to a methyl group; the abbreviation “Et” refers to an ethyl group; the abbreviation “Pr” refers to a propyl group; the abbreviation “nPr” refers to a chain propyl. Abbreviation “iPr” refers to isopropyl group; abbreviation “Bu” refers to butyl (n-butyl) group; abbreviation “tBu” refers to tert-butyl group; abbreviation “sBu” abbreviation “iBu” refers to an iso-butyl group; and abbreviation “TMS” refers to a trimethylsilyl group.

元素の周期表からの元素の標準略記がここで用いられる。元素は、これらの略記によって参照され得ることが理解されるべきである(例えば、Siはシリコンをさし、Cは炭素をさす、など)   Standard abbreviations for elements from the periodic table of elements are used here. It should be understood that elements may be referred to by these abbreviations (eg, Si refers to silicon, C refers to carbon, etc.)

好ましい態様の説明Description of preferred embodiments

驚くべきことに、本出願人らは、特定のSi−(CH2n−Si含有前駆体(ここでnは1または2)、特定のビニルアルコキシシランまたはビニルアルキルアルコキシシラン前駆体、および特定のポロジェンの組み合わせを用いたCVD成膜は、いずれかの前駆体/ポロジェンのみの組み合わせから成膜されたSiCOH膜の誘電率およびヤング率と比較して、同等または改善された誘電率およびヤング率を有するSiCOH膜をもたらすことを見出した。本出願人らは、Si−(CH2n−Si含有前駆体中のSi−H結合は、ビニルアルコキシシランまたはビニルアルキルアルコキシシランにおけるビニル基と反応して、より低い誘電率および改善された機械的強度を有する膜を作り出すことを確信する。 Surprisingly, Applicants have identified certain Si— (CH 2 ) n —Si containing precursors (where n is 1 or 2), certain vinylalkoxysilanes or vinylalkylalkoxysilane precursors, and certain The CVD deposition using the porogen combination is equivalent or improved compared to the dielectric constant and Young's modulus of the SiCOH film deposited from any precursor / porogen-only combination. It was found to result in a SiCOH film having Applicants have found that Si—H bonds in Si— (CH 2 ) n —Si containing precursors react with vinyl groups in vinylalkoxysilanes or vinylalkylalkoxysilanes, resulting in lower dielectric constants and improvements. Be confident of creating a film with mechanical strength.

SiCOH膜は、蒸着、好ましくはCVD、より好ましくは、以下でより詳細に説明される1以上のSi−(CH2n−Si含有前駆体、1以上のもう1つのシリコン含有前駆体、および1以上のポロジェンを用いたPECVDにより成膜される。より低い誘電率を有するpSiCOH膜を作り出すために、膜は、紫外線または他のエネルギー源で硬化させて、ポロジェンを除去することが好ましい。 The SiCOH film is deposited, preferably CVD, more preferably one or more Si— (CH 2 ) n —Si containing precursors, one or more other silicon containing precursors, described in more detail below, and The film is formed by PECVD using one or more porogens. In order to create a pSiCOH film having a lower dielectric constant, the film is preferably cured with ultraviolet light or other energy source to remove the porogen.

本出願人らは、開示されるSi−(CH2n−Si含有前駆体は、Si−(CH2n−Si構造を含む膜を成膜するのに適合することを確信する。一般的に、Si−(CH2n−Si含有前駆体は、下記式で示すことができる:

Figure 2013520030
Applicants believe that the disclosed Si— (CH 2 ) n —Si containing precursors are suitable for depositing films containing Si— (CH 2 ) n —Si structures. In general, Si— (CH 2 ) n —Si containing precursors can be represented by the following formula:
Figure 2013520030

ここで、R1〜R4は、H,メチル、エチル、プロピル、ビニル、およびC1〜C3アルキルからなる群から独立して選択され;R5は、メチル、エチル、およびプロピルからなる群から選択され;好ましくは、R1〜R4の少なくとも1つはメチル、エチル、またはプロピルであり;および、R1〜R3の少なくとも1つは、−OR5と同一または異なっていてもよいアルコキシである。好ましくは、R1およびR2はMeであり、R3およびR4はOEtであり、およびR5はEtである。   Wherein R1-R4 are independently selected from the group consisting of H, methyl, ethyl, propyl, vinyl, and C1-C3 alkyl; R5 is selected from the group consisting of methyl, ethyl, and propyl; Is at least one of R1-R4 is methyl, ethyl, or propyl; and at least one of R1-R3 is alkoxy, which may be the same as or different from -OR5. Preferably, R1 and R2 are Me, R3 and R4 are OEt, and R5 is Et.

アルコキシ配位子、すなわち、メトキシ、エトキシまたはプロポキシは、SiCOH膜中に架橋したSi−O−Si構造をもたらす。それゆえ、十分な架橋を可能とするために、それぞれのSi原子において少なくとも1つのアルコキシ配位子が存在すべきである。Si−OMe基より幾分反応性が低く、それゆえ、貯蔵の間の前駆体の自己重合、または前駆体が環境に暴露される際の健康への悪影響をもたらすおそれが少ないことから、Si−OEt基が好ましい。   Alkoxy ligands, i.e. methoxy, ethoxy or propoxy, result in a crosslinked Si-O-Si structure in the SiCOH film. Therefore, at least one alkoxy ligand should be present at each Si atom to allow sufficient crosslinking. It is somewhat less reactive than Si-OMe groups and therefore less likely to cause self-polymerization of the precursor during storage or adverse health effects when the precursor is exposed to the environment. OEt groups are preferred.

Si−Me基は、開放容積または超微小孔を構造内に導入して、誘電率を低減する。それらはまた、最終的な膜の炭素含有率を高め、これはプラズマダメージおよびウェットエッチングに対する耐性の向上を助ける。高い炭素含有率は、“フロップオーバー(flopover)”に対する耐性を高めることも信じられている。“フロップオーバー”は、お互いの上への高アスペクト比倒壊の特徴となる密集した場所である。それゆえ、分子内に少なくとも1つのメチル基が望ましい。しかしながら、メチル基は、低減した架橋を導き、それゆえ機械的特性に弊害をもたらす。メチル基の数は、低い誘電率と所望される機械的特性とのバランスに応じて選択することができる。   Si-Me groups introduce an open volume or ultra-fine pores into the structure to reduce the dielectric constant. They also increase the carbon content of the final film, which helps improve resistance to plasma damage and wet etching. It is also believed that high carbon content increases resistance to “flopover”. “Flopover” is a dense place that is characteristic of high aspect ratio collapse on top of each other. Therefore, at least one methyl group is desirable in the molecule. However, the methyl group leads to reduced cross-linking and therefore adversely affects the mechanical properties. The number of methyl groups can be selected depending on the balance between low dielectric constant and desired mechanical properties.

Si−(CH2n−Si構造は、炭素の取り込みを可能にし、架橋を維持して機械的特性を保ちつつ、プラズマダメージおよびフロップオーバーに対する優れた耐性を与える。 The Si— (CH 2 ) n —Si structure allows carbon uptake and provides excellent resistance to plasma damage and flop over while maintaining cross-linking and maintaining mechanical properties.

前駆体中のSi−Hは、いくつかのポロジェンの好ましい取り込みを示してきた。しかしながら、膜中に残留したSi−Hは、雰囲気の酸素および/または水分と反応してSi−OHを形成し、これは、膜中への水分の取り込みおよびkの増加をもたらす。それゆえ、適切な数のSi−H結合を有することが重要である。本発明者らは、前駆体分子あたり1つのSi−H結合が最適となり得ることを確信する。   Si-H in the precursor has shown favorable incorporation of several porogens. However, Si—H remaining in the film reacts with atmospheric oxygen and / or moisture to form Si—OH, which results in moisture incorporation into the film and an increase in k. Therefore, it is important to have an appropriate number of Si-H bonds. We believe that one Si-H bond per precursor molecule can be optimal.

第1の態様においては、R1〜R4は水素ではなく、ただ1つのSi−H結合のみを有する前駆体を与える。例1および比較例4ならびに6に示されるように、ただ1つのみのSi−H結合を有するSi−(CH2n−Si含有前駆体とビニル含有前駆体とBCHDとの組み合わせ(例1)は、個々の前駆体/BCHDの組み合わせ(比較例4および6)により得られた膜と比較して、ヤング率の結果の最小の変化を伴なって改善された誘電率の結果を有する膜を形成する。これに対して、比較例2,3、および5に示されるように、Si−H結合を有しないSi−(CH2n−Si前駆体は、ビニル含有前駆体の添加に起因して、改善された誘電率またはヤング率を有する膜を生じない。本出願人らは、ビニル含有前駆体からのビニル基は、Si−(CH2n−Si前駆体のSi−H基と反応して、膜中の炭素取り込みをもたらすことを確信する。 In the first embodiment, R1-R4 are not hydrogen and give a precursor with only one Si-H bond. As shown in Example 1 and Comparative Examples 4 and 6, a combination of a Si— (CH 2 ) n —Si containing precursor having only one Si—H bond, a vinyl containing precursor and BCHD (Example 1) ) Films with improved dielectric constant results with minimal change in Young's modulus results compared to films obtained with individual precursor / BCHD combinations (Comparative Examples 4 and 6) Form. In contrast, as shown in Comparative Examples 2, 3, and 5, the Si— (CH 2 ) n —Si precursor having no Si—H bond is attributed to the addition of the vinyl-containing precursor. Does not result in films with improved dielectric constant or Young's modulus. Applicants believe that vinyl groups from vinyl-containing precursors react with the Si—H groups of the Si— (CH 2 ) n —Si precursor resulting in carbon incorporation in the film.

第1の実施形態の典型的な分子は、(EtO)3Si−CH2−Si(OEt)2H,Me(OEt)2Si−CH2−Si(OEt)2H,Me(OEt)2Si−CH2−Si(OEt)HMe,Me2(OEt)Si−CH2−Si(OEt)2H,(EtO)Me2SiCH2Si(OMe)2H,Me2(OEt)Si−CH2−Si(OEt)HMe,(OEt)3Si−CH2−Si(OEt)HMe,(EtO)3Si−CH2−Si(OMe)HMe,Me(OMe)2Si−CH2−Si(OMe)2H,Me(OMe)2Si−CH2−Si(OMe)HMe,Me2(OMe)SiCH2Si(OMe)2H,および/またはMe2(OEt)Si−CH2−Si(OMe)HMe、好ましくはMe(OEt)2Si−CH2−Si(OEt)2H,Me2(OEt)Si−CH2−Si(OEt)2H、および/またはMe(OEt)2Si−CH2−Si(OEt)HMeを含む。 A typical molecule of the first embodiment is (EtO) 3 Si—CH 2 —Si (OEt) 2 H, Me (OEt) 2 Si—CH 2 —Si (OEt) 2 H, Me (OEt) 2. SiCH 2 -Si (OEt) HMe, Me 2 (OEt) SiCH 2 -Si (OEt) 2 H, (EtO) Me 2 SiCH 2 Si (OMe) 2 H, Me 2 (OEt) SiCH 2 —Si (OEt) HMe, (OEt) 3 Si—CH 2 —Si (OEt) HMe, (EtO) 3 Si—CH 2 —Si (OMe) HMe, Me (OMe) 2 Si—CH 2 —Si ( OMe) 2 H, Me (OMe) 2 Si—CH 2 —Si (OMe) HMe, Me 2 (OMe) SiCH 2 Si (OMe) 2 H, and / or Me 2 (OEt) Si—CH 2 —Si ( OMe) HMe, preferably Me (OEt) 2 S Including -CH 2 -Si (OEt) 2 H , Me 2 (OEt) Si-CH 2 -Si (OEt) 2 H, and / or Me (OEt) 2 Si-CH 2 -Si (OEt) HMe.

あるいは、第1の態様のSi−(CH2n−Si含有前駆体は、(EtO)3Si−CH2CH2−Si(OEt)2H,Me(OEt)2Si−CH2CH2−Si(OEt)2H,Me(OEt)2Si−CH2CH2−Si(OEt)HMe,Me2(OEt)Si−CH2CH2−Si(OEt)2H,(EtO)Me2SiCH2CH2Si(OMe)2H,Me2(OEt)Si−CH2CH2−Si(OEt)HMe,(OEt)3Si−CH2CH2−Si(OEt)HMe,(EtO)3Si−CH2CH2−Si(OMe)HMe,Me(OMe)2Si−CH2CH2−Si(OMe)2H,Me(OMe)2Si−CH2CH2−Si(OMe)HMe,Me2(OMe)SiCH2CH2Si(OMe)2H、および/またはMe2(OEt)Si−CH2CH2−Si(OMe)HMe、好ましくはMe(OEt)2Si−CH2CH2−Si(OEt)2H,Me2(OEt)Si−CH2CH2−Si(OEt)2H,および/またはMe(OEt)2Si−CH2CH2−Si(OEt)HMeを含む。 Alternatively, the Si— (CH 2 ) n —Si-containing precursor of the first aspect is (EtO) 3 Si—CH 2 CH 2 —Si (OEt) 2 H, Me (OEt) 2 Si—CH 2 CH 2. -Si (OEt) 2 H, Me (OEt) 2 Si-CH 2 CH 2 -Si (OEt) HMe, Me 2 (OEt) Si-CH 2 CH 2 -Si (OEt) 2 H, (EtO) Me 2 SiCH 2 CH 2 Si (OMe) 2 H, Me 2 (OEt) SiCH 2 CH 2 -Si (OEt) HMe, (OEt) 3 SiCH 2 CH 2 -Si (OEt) HMe, (EtO) 3 Si-CH 2 CH 2 -Si ( OMe) HMe, Me (OMe) 2 Si-CH 2 CH 2 -Si (OMe) 2 H, Me (OMe) 2 Si-CH 2 CH 2 -Si (OMe) HMe, Me 2 (OMe) SiCH 2 CH 2 Si (OMe) 2 H, Preliminary / or Me 2 (OEt) Si-CH 2 CH 2 -Si (OMe) HMe, preferably Me (OEt) 2 Si-CH 2 CH 2 -Si (OEt) 2 H, Me 2 (OEt) Si-CH 2 CH 2 —Si (OEt) 2 H and / or Me (OEt) 2 Si—CH 2 CH 2 —Si (OEt) HMe.

第2の態様において、R1,R2,またはR3はHであり、それぞれのSiに結合した1つのHを有する前駆体を与える。理論的にいえば、本出願人は、第1の態様で説明したのと同様のビニル/Si−H反応メカニズムが、第2の態様において生じると信じる。しかしながら、1つの特定の分子での極僅かな予備的な試験結果は、予測された相乗効果を与えなかった。   In a second embodiment, R1, R2, or R3 is H, giving a precursor with one H bonded to the respective Si. In theory, Applicants believe that a vinyl / Si—H reaction mechanism similar to that described in the first aspect occurs in the second aspect. However, very few preliminary test results with one particular molecule did not give the expected synergistic effect.

第2の態様の典型的な分子は、MeH(OMe)Si−CH2−Si(OMe)HMe,(EtO)2HSi−CH2−Si(OEt)2H,(EtO)HMeSi−CH2−Si(OEt)HMe,および(iPrO)HMeSi−CH2−Si(OiPr)HMeを含む。 A typical molecule of the second aspect is MeH (OMe) Si—CH 2 —Si (OMe) HMe, (EtO) 2 HSi—CH 2 —Si (OEt) 2 H, (EtO) HMeSi—CH 2 —. Si (OEt) HMe, and (iPrO) HMeSi—CH 2 —Si (OiPr) HMe.

Si−CH2−Si前駆体の合成は、スキームにしたがって、従来の方法を用いて達成することができる:

Figure 2013520030
The synthesis of Si—CH 2 —Si precursors can be achieved using conventional methods according to the scheme:
Figure 2013520030

ここで、R’はエチルまたはメチルであり、グリニャール試薬R1R2R3SiCH2MgClは中間体として生成される。グリニャール試薬は、出発クロロ化合物(式3)をマグネシウムに滴下して乾燥し、テトラヒドロフラン(THF)のような溶媒で還元することによって生成することができる。メトキシまたはエトキシ化合物(式4)は、その後、グリニャール反応溶液に滴下して加えて目的の生成物(式1)を得る。反応のマグネシウム塩副生成物は、ろ過により除去することができ、次いで、溶媒の蒸発によって目的の生成物(式1)を溶液から単離する。グリニャール試薬によるSi−CH2−Si結合の形成のためのより詳細な手順は、米国特許第5,296,624号(Larsonら)および米国特許出願公開2009/0299086(Nobeら)に見ることができる。ここに述べられる全ての反応は、不活性雰囲気のもと、例えば乾燥窒素流のもので行なわれるべきである。 Here, R ′ is ethyl or methyl, and Grignard reagent R1R2R3SiCH 2 MgCl is produced as an intermediate. The Grignard reagent can be produced by dropping the starting chloro compound (Formula 3) dropwise onto magnesium, drying and reducing with a solvent such as tetrahydrofuran (THF). The methoxy or ethoxy compound (Formula 4) is then added dropwise to the Grignard reaction solution to give the desired product (Formula 1). The magnesium salt byproduct of the reaction can be removed by filtration and the desired product (Formula 1) is then isolated from the solution by evaporation of the solvent. More detailed procedures for the formation of Si—CH 2 —Si bonds with Grignard reagents can be found in US Pat. No. 5,296,624 (Larson et al.) And US Patent Application Publication No. 2009/0299086 (Nobe et al.). it can. All the reactions described here should be carried out under an inert atmosphere, for example in a dry nitrogen stream.

上述の手順によれば、好ましい化合物のための出発物質は、以下のとおりである:
(EtO)MeHSiCH2SiHMe(OEt) MeH(OEt)2SiCH2Cl+Si(OEt)2MeH
(EtO)3Si-CH2-Si(OEt)2H (EtO)3SiCH2Cl+Si(OEt)3H
Me(OEt)2Si-CH2-Si(OEt)2H Me(OEt)2SiCH2Cl+Si(OEt)3H
Me(OEt)2Si-CH2-Si(OEt)HMe Me(OEt)2SiCH2Cl+Si(OEt)2MeH
Me2(OEt)Si-CH2-Si(OEt)2H Me2(OEt)SiCH2Cl+Si(OEt)3H
Me2(OEt)Si-CH2-Si(OEt)HMe Me(OEt)2SiCH2Cl+Si(OEt)2MeH
(OEt)3Si-CH2-Si(OEt)HMe (OEt)3SiCH2Cl+Si(OEt)2MeH
これらの出発物質は市販されている。
According to the procedure described above, the starting materials for the preferred compounds are as follows:
(EtO) MeHSiCH 2 SiHMe (OEt) MeH (OEt) 2 SiCH 2 Cl + Si (OEt) 2 MeH
(EtO) 3 Si-CH 2 -Si (OEt) 2 H (EtO) 3 SiCH 2 Cl + Si (OEt) 3 H
Me (OEt) 2 Si-CH 2 -Si (OEt) 2 H Me (OEt) 2 SiCH 2 Cl + Si (OEt) 3 H
Me (OEt) 2 Si-CH 2 -Si (OEt) HMe Me (OEt) 2 SiCH 2 Cl + Si (OEt) 2 MeH
Me 2 (OEt) Si-CH 2 -Si (OEt) 2 H Me 2 (OEt) SiCH 2 Cl + Si (OEt) 3 H
Me 2 (OEt) Si-CH 2 -Si (OEt) HMe Me (OEt) 2 SiCH 2 Cl + Si (OEt) 2 MeH
(OEt) 3 Si-CH 2 -Si (OEt) HMe (OEt) 3 SiCH 2 Cl + Si (OEt) 2 MeH
These starting materials are commercially available.

別の合成方法は、対称分子のために最も適切であり、以下のスキームにしたがう:

Figure 2013520030
Another synthetic method is most appropriate for symmetric molecules and follows the following scheme:
Figure 2013520030

ここで、ROはアルコキシ基である。例えば、R1=R6=H、およびR=Etを有するスキームAは、(EtO)2HSiCH2SiH(OEt)2の合成に用いることができる。これらの出発物質は市販されている。反応は、THFのような溶媒中で行なうべきであり、試薬は攪拌しつつ徐々に添加する。RONaの替わりにアルコールROHを、トリアルキルアミンまたはピリジンなどの塩基とともに用いることができる。 Here, RO is an alkoxy group. For example, Scheme A with R1 = R6 = H and R = Et can be used for the synthesis of (EtO) 2 HSiCH 2 SiH (OEt) 2 . These starting materials are commercially available. The reaction should be carried out in a solvent such as THF, and the reagents are added gradually with stirring. Alcohol ROH can be used in place of RONa with a base such as trialkylamine or pyridine.

化合物(EtO)MeHSiCH2SiHMe(OEt)は、R=Et,R1=R6=H,R2=R5=Meを有する式Bにしたがって、HemidaらのJ.Mat.Sci 32 3485(1997)に記載された手順にしたがって調製された出発物質を用いて合成することができる。 The compound (EtO) MeHSiCH 2 SiHMe (OEt) can be prepared according to Hemida et al., J. Am., According to Formula B having R = Et, R1 = R6 = H, R2 = R5 = Me. Mat. Sci 32 3485 (1997) can be used to synthesize using starting materials prepared according to the procedure described.

Si−CH2CH2−Si前駆体の合成は、以下の典型的な方法を用いて達成することができる:

Figure 2013520030
The synthesis of Si—CH 2 CH 2 —Si precursor can be achieved using the following exemplary method:
Figure 2013520030

ここで、Rはアルキルまたはアルコキシ基とすることができる。生成物は、出発物質(式5および6)をトルエンのような乾燥溶媒中に、室温で攪拌しつつ順次滴下することによって生成することができる。塩化白金酸が混合物に加えられる。反応物は還流される。混合物を室温に冷却した後、混合物にピリジンが導入される。その後、所望のアルコールが滴下される。滴下後、混合物は室温で反応させる。反応の塩副生成物は、ろ過により除去することができ、次いで、分留して目的の生成物(式2)を単離する。Si−CH2CH2−Si結合の形成のための手順のさらなる詳細は、EP2264219およびGelestカタログの474ページに見ることができる。 Here, R can be an alkyl or alkoxy group. The product can be produced by sequentially dropping the starting materials (formulas 5 and 6) into a dry solvent such as toluene with stirring at room temperature. Chloroplatinic acid is added to the mixture. The reaction is refluxed. After cooling the mixture to room temperature, pyridine is introduced into the mixture. Thereafter, the desired alcohol is added dropwise. After the addition, the mixture is reacted at room temperature. The salt by-product of the reaction can be removed by filtration and then fractionated to isolate the desired product (Formula 2). Further details of the procedure for the formation of Si—CH 2 CH 2 —Si bonds can be found in EP 2264219 and on page 474 of the Gelest catalogue.

上述したようなSi−(CH2n−Si前駆体は、互いにまたはlow−k SiCOH膜の成膜に適切な1以上のビニル含有前駆体と組み合わせることができる。多くのビニル含有前駆体が文献に知られている。そのような前駆体の重要な種類は、式Si(R1)x(O(R2))4-xで表わされ、ここで、R1はビニルであり、および任意のもう一つのR1は水素またはアルキル基、好ましくはメチルまたはエチルであり;それぞれのR2は独立してアルキル基であり;およびxは1または2である。好ましくは、ビニル含有前駆体は、ビニルジエトキシシラン、ビニルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、およびビニルメチルジエトキシシランであり、およびより好ましくは、ビニルトリエトキシシランまたはビニルメチルジエトキシシランである。 Si— (CH 2 ) n —Si precursors as described above can be combined with one or more vinyl-containing precursors suitable for deposition of each other or low-k SiCOH films. Many vinyl-containing precursors are known in the literature. An important class of such precursors is represented by the formula Si (R1) x (O (R2)) 4-x , where R1 is vinyl and any other R1 is hydrogen or An alkyl group, preferably methyl or ethyl; each R 2 is independently an alkyl group; and x is 1 or 2. Preferably, the vinyl-containing precursor is vinyldiethoxysilane, vinyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinylmethyldiethoxysilane, and more preferably vinyltriethoxysilane. Silane or vinylmethyldiethoxysilane.

適切なポロジェンは、2,5−ノルボルナジエン(ビシクロ[2.2.1]ヘプター2,5−ジエン、すなわちBCHD)のような不飽和の多環炭化水素、および置換されたBCHDを含む。   Suitable porogens include unsaturated polycyclic hydrocarbons such as 2,5-norbornadiene (bicyclo [2.2.1] hepter 2,5-diene or BCHD), and substituted BCHD.

Si−(CH2n−Si前駆体、ビニル含有前駆体、およびポロジェンは、多孔質のSiCOH膜を基板上に形成するために用いることができ、従来知られている蒸着プロセスによって、その上に予め他の層を含んでも含まなくてもよい。典型的であるが限定されない蒸着プロセスは、米国特許第6,312,793号,第6,479,110号,第6,756,323号,第6,953,984号,第7,030,468号,第7,049,427号,第7,282,458号,第7,288,292号,第7,312,524号,第7,479,306号,および米国特許出願公開2007/0057235号に開示され、これらは参照として本明細書に取り込まれる。 Si- (CH 2) n -Si precursor, a vinyl-containing precursor, and porogen, a SiCOH film porous may be used to form on a substrate by conventionally known deposition process, on the May or may not include other layers in advance. Typical but not limited deposition processes are described in US Pat. Nos. 6,312,793, 6,479,110, 6,756,323, 6,953,984, 7,030, 468, 7,049,427, 7,282,458, 7,288,292, 7,312,524, 7,479,306, and US Patent Application Publication 2007 / No. 0057235, which are incorporated herein by reference.

例えば、ここに開示されるSi−(CH2n−Si前駆体、ビニル含有前駆体、およびポロジェンは、米国特許第7,479,306号、より具体的には実施例6に記載されたようなSiCOH誘電物質の成膜の開示された方法において使用することができる。実施例6に記載されているように、基板は、PECVD成膜反応チャンバー内の加熱されたサセプター(ウェハーチャックとしても知られている)の上に載置される。サセプターは300℃〜425℃、好ましくは350℃〜400℃に加熱されるが、温度は150℃〜300℃とすることもできる。前駆体流量は、100〜2000mg/minで変化させることができる。Heガスは、10〜500sccmの速度で流すことができる。ポロジェン流量は、50〜2000mg/minで変化させることができる。前駆体流は安定化して、1〜10Torr(133〜1333Pa)の範囲内の圧力に達する。RFラジエーションは、5〜500秒の時間、シャワーヘッドに適用される。当業者は、異なる成膜装置が異なるパラメータを必要とし得ることを理解するであろう。 For example, the Si— (CH 2 ) n —Si precursor, vinyl-containing precursor, and porogen disclosed herein are described in US Pat. No. 7,479,306, and more specifically in Example 6. It can be used in the disclosed method of deposition of such SiCOH dielectric materials. As described in Example 6, the substrate is placed on a heated susceptor (also known as a wafer chuck) in a PECVD deposition reaction chamber. The susceptor is heated to 300 ° C. to 425 ° C., preferably 350 ° C. to 400 ° C., but the temperature can also be 150 ° C. to 300 ° C. The precursor flow rate can be varied from 100 to 2000 mg / min. He gas can be flowed at a rate of 10-500 sccm. The porogen flow rate can be varied from 50 to 2000 mg / min. The precursor stream stabilizes and reaches a pressure in the range of 1 to 10 Torr (133 to 1333 Pa). RF radiation is applied to the showerhead for a period of 5 to 500 seconds. One skilled in the art will appreciate that different deposition apparatus may require different parameters.

ポロジェンとしてBCHDが用いられる場合、共に係属中の米国特許出願12/613260に開示されたような重合抑制剤をその中に取り込むことに留意すべきであり、その文献の内容の全体は本明細書の一部として援用する。これらのプロセスの共通する主要部分は、さらにここで説明される。   It should be noted that when BCHD is used as the porogen, it incorporates a polymerization inhibitor as disclosed in co-pending US patent application 12/613260, the entire contents of which are hereby incorporated herein by reference. Incorporated as part of The common main parts of these processes are further described here.

基板は、蒸着ツールの反応チャンバー内に載置される。絶縁膜の形成に用いられるSi−(CH2n−Si前駆体およびビニル含有前駆体とポロジェンとは、気相状態で反応チャンバー内に直接送られ、気化した液体として運ばれて反応チャンバー内に導入され、またはヘリウムまたはアルゴンを含むが限定されない不活性ガスによって運ばれる。好ましくは、Si−(CH2n−Si前駆体、ビニル含有前駆体、およびポロジェンは、約70℃から約150℃の温度で、HeまたはArのようなキャリアガスの存在下、反応チャンバー内に導入される前に気化される。 The substrate is placed in the reaction chamber of the deposition tool. The Si— (CH 2 ) n —Si precursor and the vinyl-containing precursor and porogen used for forming the insulating film are directly sent into the reaction chamber in a gas phase state and are transported as a vaporized liquid in the reaction chamber. Or carried by an inert gas including but not limited to helium or argon. Preferably, the Si— (CH 2 ) n —Si precursor, the vinyl-containing precursor, and the porogen are in the reaction chamber at a temperature of about 70 ° C. to about 150 ° C. in the presence of a carrier gas such as He or Ar. Vaporized before being introduced to.

その上にSiCOH膜が成膜され得る基板の種類は、意図される最終用途に応じて変わるであろう。基板は、ドープされたまたはアンドープのシリコン含有材料、SiCNなど、シリコン酸化物層で任意に被覆された層、および例えばタングステン、チタン、タンタル、ルテニウム、または銅などのそのような用途における導電材料として用いられる金属を含むことができる。あるいは、基板は銅配線、および他のlow−k材料などの絶縁領域を含むことができ、SiO2またはSiNなどの密封層で任意に被覆される。その上にpSiCOH膜を被覆することができる基板の他の例は、限定されないが、金属基板(例えば、Ru,Al,Ni,Ti,Co,Pt、およびTiSi2,CoSi2,およびNiSi2などのメタルシリサイド);金属窒化物含有基板(例えば、TaN,TiN,WN,TaCN,TiCN,TaSiN,およびTiSiN);半導体基板(例えば、Si,SiGe,GaAs,InP,ダイアモンド,GaN,およびSiC);絶縁体(例えば、SiO2,Si34,HfO2,Ta25,ZrO2,TiO2,Al23,およびチタン酸バリウム);または、これらの材料のいくつかの組み合わせを含む他の基板などの固体基板を含む。用いられる実用的な基板は、用いられるSiCOH層にも依存するであろう。 The type of substrate on which a SiCOH film can be deposited will vary depending on the intended end use. The substrate can be a doped or undoped silicon-containing material, a layer optionally coated with a silicon oxide layer, such as SiCN, and a conductive material in such applications such as tungsten, titanium, tantalum, ruthenium, or copper. The metal used can be included. Alternatively, the substrate can include copper interconnects and insulating regions such as other low-k materials, optionally covered with a sealing layer such as SiO 2 or SiN. Other examples of substrates that can be coated pSiCOH film thereon, but not limited to, a metal substrate (e.g., Ru, Al, Ni, Ti , Co, Pt, and TiSi 2, CoSi 2, and NiSi 2, etc. A metal nitride-containing substrate (eg, TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN); a semiconductor substrate (eg, Si, SiGe, GaAs, InP, diamond, GaN, and SiC); An insulator (eg, SiO 2 , Si 3 N 4 , HfO 2 , Ta 2 O 5 , ZrO 2 , TiO 2 , Al 2 O 3 , and barium titanate); or including some combination of these materials Includes solid substrates such as other substrates. The practical substrate used will also depend on the SiCOH layer used.

Si−(CH2n−Si含有前駆体、ビニル含有前駆体、およびポロジェンは、成膜チャンバー内に同時にまたはパルスシーケンス的に導入し、基板に接触させて、基板の少なくとも1つの表面に絶縁層を形成する。現在のところ、前駆体およびポロジェンは、PECVDチャンバー内に同時に導入される。成膜チャンバーは、任意の筐体またはその中で成膜方法が行なわれる装置のチャンバーとすることができ、限定されないが、並行平板型リアクター、コールドウォール型リアクター、ホットウォール型リアクター、シングルウェハーリアクター、マルチウェハーリアクター、または成膜システムの他のそのようなタイプである。 Si— (CH 2 ) n —Si containing precursor, vinyl containing precursor, and porogen are introduced into the deposition chamber simultaneously or in a pulse sequence and contact the substrate to insulate at least one surface of the substrate. Form a layer. Currently, the precursor and porogen are simultaneously introduced into the PECVD chamber. The film forming chamber can be any housing or chamber of an apparatus in which the film forming method is performed, and includes, but is not limited to, a parallel plate reactor, a cold wall reactor, a hot wall reactor, and a single wafer reactor. Multi-wafer reactors, or other such types of deposition systems.

当業者は、low−k膜の成膜の間に制御されるプロセス変数のための適切な値(RFパワー、前駆体混合物および流量、反応チャンバー内の圧力、および基板温度を含む。)を容易に選択することができる。   One of ordinary skill in the art can easily determine appropriate values for process variables that are controlled during deposition of the low-k film, including RF power, precursor mixture and flow rate, pressure in the reaction chamber, and substrate temperature. Can be selected.

絶縁膜の誘電率を下げるために、付加的な処理によって、SiCOH層はその後に多孔質にすることができる。そのような処理は、アニール、UV光、または電子ビームを含むが、それらに限定されない。   In order to lower the dielectric constant of the insulating film, the SiCOH layer can subsequently be made porous by an additional treatment. Such treatment includes, but is not limited to, annealing, UV light, or electron beam.

得られる膜は、好ましくは、(1)Si−(CH2n−Si含有前駆体とポロジェンとによって形成されたSiCOH膜の誘電率、および(2)ビニル含有前駆体とポロジェンとによって形成されたSiCOH膜の誘電率のいずれよりも低い誘電率を有する。得られる膜は、好ましくは、約2.0〜約2.7の範囲内の誘電率と、約4〜約10の範囲内のヤング率とを有する。 The resulting film is preferably formed by (1) a dielectric constant of a SiCOH film formed by a Si— (CH 2 ) n —Si containing precursor and a porogen, and (2) a vinyl containing precursor and a porogen. It has a lower dielectric constant than any of the dielectric constants of the SiCOH film. The resulting film preferably has a dielectric constant in the range of about 2.0 to about 2.7 and a Young's modulus in the range of about 4 to about 10.

以下の限定されない例は、本発明の実施形態をさらに説明するために与えられる。しかしながら、例は、全てを含むべきであることは意図されず、ここに述べる発明の範囲を限定することは意図されない。   The following non-limiting examples are given to further illustrate embodiments of the present invention. However, the examples are not intended to be all-inclusive and are not intended to limit the scope of the invention described herein.

比較例1を除く以下の例の全てにおいて、SiCOH膜は、DxZ成膜チャンバーおよびTEOS一式を備えたアプライドマテリアルP5000プラズマ化学気相成長装置を用いて成膜した。前駆体の流量は、マスフローコントローラーにより制御し、これらは調整されたTEOSまたはDMDMOSのいずれかである。ポロジェンの流量は、BCHDのために調整されたマスフローコントローラーによって制御した。   In all of the following examples except Comparative Example 1, the SiCOH film was deposited using an Applied Material P5000 plasma chemical vapor deposition apparatus equipped with a DxZ deposition chamber and a set of TEOS. The flow rate of the precursor is controlled by a mass flow controller, which is either a tuned TEOS or DMDMOS. The porogen flow rate was controlled by a mass flow controller tuned for BCHD.

成膜後、膜は、チャンバー蓋における溶融シリカ窓と、窓を通してウェハーを照射するUVランプとを含むように改良された別のカスタムチャンバー(同様にDxZチャンバーに基づく)の中で硬化させた。膜は、1トル圧力のもと、1 slmの窒素流、および400℃のサセプター温度で3〜30分間硬化させた。   After deposition, the film was cured in a separate custom chamber (also based on a DxZ chamber) modified to include a fused silica window in the chamber lid and a UV lamp that illuminates the wafer through the window. The membrane was cured for 3 to 30 minutes under 1 torr pressure with 1 slm nitrogen flow and 400 ° C. susceptor temperature.

比較例1以外の以下の例において成膜された膜の誘電率を評価するために、水銀プローブで誘電率を測定した。   In order to evaluate the dielectric constant of the film formed in the following examples other than Comparative Example 1, the dielectric constant was measured with a mercury probe.

比較例1以外の以下の例において成膜された膜の機械的特性を評価するために、ナノインデンテーションによりヤング率を測定した。代表的な測定を達成するために、それぞれの膜厚は、ナノインデンテーションチップの特徴寸法のほぼまたはその10倍より大きくした。この膜厚は、基板の影響を取り除くために選択された。それぞれのサンプルについてこの深さで測定されたヤング率は、一般的にその最小値であった。   In order to evaluate the mechanical properties of the films formed in the following examples other than Comparative Example 1, Young's modulus was measured by nanoindentation. In order to achieve representative measurements, each film thickness was approximately or greater than 10 times the feature size of the nanoindentation tip. This film thickness was selected to remove the effect of the substrate. The Young's modulus measured at this depth for each sample was generally at its minimum value.

<比較例1>
表1は、EP2264219の実施例においてJSR(株)により達成された結果をまとめる。
<Comparative Example 1>
Table 1 summarizes the results achieved by JSR Corp. in the examples of EP 2264219.

EP2264219の例2および14−18からの結果は、Si−(CH2n−Si含有前駆体と第2の前駆体とポロジェンとの提案された組み合わせは、誘電率およびヤング率の結果に顕著な変化を何等生じないことを明示するようである。残念ながら、(CH3CH2O)2CH3SiH+孔形成材についての結果は与えられていないので、2つの前駆体(すなわちSi−(CH2n−Si前駆体およびジエトキシメチルシラン前駆体)の混合から生じる平均効果は、具体的には示されていない。しかしながら、BCHDを伴なうSi−(CH2n−Si含有前駆体から形成された膜についての誘電率結果のほとんど、およびヤング率結果の全ては、Si−(CH2n−Si含有前駆体、ジエトキシメチルシラン前駆体、およびBCHDから形成された膜についての結果より優れており、当業者は、ジエトキシメチルシラン前駆体とBCHDとの組み合わせにより形成された膜についてのヤング率は、Si−(CH2n−Si含有前駆体とBCHDとにより形成された膜についての値より低いという結論を出すであろう。 The results from Examples 2 and 14-18 of EP 2264219 show that the proposed combination of Si— (CH 2 ) n —Si containing precursor, second precursor and porogen is prominent in dielectric constant and Young's modulus results. It seems to be clear that no major changes will occur. Unfortunately, (CH 3 CH 2 O) 2 CH 3 not result given for SiH + pore former, two precursors (i.e. Si- (CH 2) n -Si precursor and DEMS precursor The average effect resulting from the mixing of the body is not specifically shown. However, most of the dielectric constant results for films formed from Si— (CH 2 ) n —Si containing precursors with BCHD and all of the Young's modulus results are Si— (CH 2 ) n —Si containing Better than the results for films formed from precursors, diethoxymethylsilane precursors, and BCHD, those skilled in the art will find that Young's modulus for films formed by the combination of diethoxymethylsilane precursor and BCHD is It will be concluded that the value is lower than for the film formed by the Si— (CH 2 ) n —Si containing precursor and BCHD.

EP2264219の実施例16,14,17、および15からの結果は、この順に、特定の前駆体または前駆体の組み合わせについてのヤング率結果におけるいくらかの改善は、しばしば誘電率の増加を伴なって生じることを示す。   The results from Examples 2, 14, 17, and 15 of EP 2264219 show that, in this order, some improvement in Young's modulus results for a particular precursor or combination of precursors often accompanies an increase in dielectric constant. It shows that.

EP2264219の実施例1、3〜6、および比較例1ならびに2は、ポロジェンとしてBCHDを用いて形成された膜の結果をまとめる。EP2264219の実施例10,12,13、および比較例5ならびに6は、ポロジェンとしてp−キシレンを用いて形成された膜の結果をまとめる。EP2264219の実施例7〜9ならびに11、および比較例3ならびに4は、ポロジェンとしてシクロペンタンオキサイドを用いて形成された膜の結果をまとめる。EP2264219の実施例11を除いて、ポロジェンとしてBCHDまたはp−キシレンを用いて形成された膜は、シクロペンタンオキサイドを用いて形成された膜と比較して、より低い誘電率を有する。特定のポロジェンについての結果のなかでは、ヤング率結果は広範囲にわたって変わる(すなわち、ヤング率は、BCHDについては9.3〜16.5、シクロペンタンオキサイドについては11.2〜14.4、p−キシレンについては9.1〜14.2の範囲である)。最終的に、EP2264219の実施例3,4、および13からの結果は、成膜プロセスへの酸素の添加は、より高いヤング率を有する膜をもたらすことを示すようにみえる。   Examples 1 and 3-6 of EP 2264219 and Comparative Examples 1 and 2 summarize the results of films formed using BCHD as the porogen. EP 2,264,219, Examples 10, 12, 13 and Comparative Examples 5 and 6 summarize the results of films formed using p-xylene as the porogen. Examples 2-9 and 11 of EP 2264219 and Comparative Examples 3 and 4 summarize the results of films formed using cyclopentane oxide as the porogen. Except for Example 11 of EP 2264219, films formed using BCHD or p-xylene as the porogen have a lower dielectric constant compared to films formed using cyclopentane oxide. Among the results for a particular porogen, Young's modulus results vary widely (ie, Young's modulus is 9.3 to 16.5 for BCHD, 11.2 to 14.4 for cyclopentane oxide, p- Xylene is in the range of 9.1 to 14.2). Finally, the results from Examples 2, 4 and 13 of EP 2264219 appear to indicate that the addition of oxygen to the deposition process results in a film having a higher Young's modulus.

EP2264219における典型的な成膜方法は、二周波重畳プラズマCVD装置を用いたのに対し、本出願人は以下の実施例において単一周波数プラズマを用いたことに留意される。結果として、以下の表1におけるJSR(株)により与えられた実施例は、本出願人の以下の実施例とは比べものにならない。

Figure 2013520030
Figure 2013520030
It is noted that the typical deposition method in EP 2264219 used a dual frequency superimposed plasma CVD apparatus, whereas the applicant used single frequency plasma in the following examples. As a result, the examples given by JSR Corporation in Table 1 below are not comparable to the applicant's following examples.
Figure 2013520030
Figure 2013520030

<比較例2>: Me(EtO)2Si−CH2−SiMe(OEt)
Me(EtO)2Si−CH2−SiMe(OEt)2およびBCHDを用いて複数の試験を行なって、SiCOH膜を成膜した。Me(EtO)2Si−CH2−SiMe(OEt)2流量は、300mg/minから800mg/minまで変化させた。BCHD流量は、300mg/minから750mg/minまで変化させた。ヘリウムキャリアガス流量は、350sccmに保った。酸素流量は、5sccmから30sccmであった。サセプター温度は、260℃または300℃のいずれかに設定した。プラズマパワーは200Wから600Wであった。間隔(spacing)は、0.275インチ(6.985mm)から0.500インチ(12.7mm)に設定した。 “間隔”は、その上にウェハーが置かれるサセプターと、それを通してガスが導入される上部電極である“シャワーヘッド”との間の距離間隔をさす。得られた最もよい誘電率は、約2.5である。得られたフィルムは、約2.51のk値において約4.4GPaのヤング率を有していた。
<Comparative Example 2>: Me (EtO) 2 Si-CH 2 -SiMe (OEt)
A plurality of tests were performed using Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 and BCHD to form a SiCOH film. The Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 flow rate was changed from 300 mg / min to 800 mg / min. The BCHD flow rate was changed from 300 mg / min to 750 mg / min. The helium carrier gas flow rate was maintained at 350 sccm. The oxygen flow rate was 5 sccm to 30 sccm. The susceptor temperature was set to either 260 ° C or 300 ° C. The plasma power was 200W to 600W. The spacing was set from 0.275 inches (6.985 mm) to 0.500 inches (12.7 mm). “Spacing” refers to the distance between the susceptor on which the wafer is placed and the “shower head”, the upper electrode through which the gas is introduced. The best dielectric constant obtained is about 2.5. The resulting film had a Young's modulus of about 4.4 GPa at a k value of about 2.51.

<比較例3>: Me(EtO)2Si−CH2CH2−SiMe(OEt)2
Me(EtO)2Si−CH2CH2−SiMe(OEt)2およびBCHDを用いて複数の試験を行なって、SiCOH膜を成膜した。Me(EtO)2Si−CH2CH2−SiMe(OEt)2流量は、300mg/minから600mg/minまで変化させた。BCHD流量は、300mg/minから800mg/minまで変化させた。ヘリウムキャリアガス流量は、350sccmまたは1000sccmに保った。酸素流量は、5sccmから30sccmであった。サセプター温度は、260℃または300℃のいずれかに設定した。プラズマパワーは200Wから500Wであった。間隔は、0.275インチ(6.985mm)から0.500インチ(12.7mm)に設定した。得られた最もよい誘電率は、約2.4であった。得られた膜は、約3.5GPaのヤング率を有していた。
<Comparative Example 3>: Me (EtO) 2 Si-CH 2 CH 2 -SiMe (OEt) 2
A plurality of tests were performed using Me (EtO) 2 Si—CH 2 CH 2 —SiMe (OEt) 2 and BCHD to form a SiCOH film. The Me (EtO) 2 Si—CH 2 CH 2 —SiMe (OEt) 2 flow rate was changed from 300 mg / min to 600 mg / min. The BCHD flow rate was changed from 300 mg / min to 800 mg / min. The helium carrier gas flow rate was kept at 350 sccm or 1000 sccm. The oxygen flow rate was 5 sccm to 30 sccm. The susceptor temperature was set to either 260 ° C or 300 ° C. The plasma power was 200W to 500W. The spacing was set from 0.275 inches (6.985 mm) to 0.500 inches (12.7 mm). The best dielectric constant obtained was about 2.4. The resulting film had a Young's modulus of about 3.5 GPa.

<比較例4>: (HC=CH2)(EtO)3Si
(HC=CH2)(EtO)3SiおよびBCHDを用いた複数の試験を行なって、SiCOH膜を形成した。(HC=CH2)(EtO)3Si流量は、750mg/minであった。BCHD流量は、800mg/minであった。ヘリウムキャリアガス流量は、750sccmに保った。酸素流量は、0sccmに設定した。サセプター温度は260℃に設定した。プラズマパワーは150Wに設定した。間隔は、0.500インチ(12.7mm)に設定した。得られた最もよい誘電率は約2.31であった。得られた膜は、5.5GPaのヤング率を有していた。
<Comparative Example 4>: (HC = CH 2 ) (EtO) 3 Si
A plurality of tests using (HC = CH 2 ) (EtO) 3 Si and BCHD were conducted to form a SiCOH film. The flow rate of (HC = CH 2 ) (EtO) 3 Si was 750 mg / min. The BCHD flow rate was 800 mg / min. The helium carrier gas flow rate was kept at 750 sccm. The oxygen flow rate was set to 0 sccm. The susceptor temperature was set at 260 ° C. The plasma power was set to 150W. The spacing was set to 0.500 inch (12.7 mm). The best dielectric constant obtained was about 2.31. The resulting film had a Young's modulus of 5.5 GPa.

<比較例5>: Me(EtO)2Si-CH2-SiMe(OEt)2+(HC=CH2)(EtO)3Si
Me(EtO)2Si−CH2−SiMe(OEt)2、(HC=CH2)(EtO)3Si、およびBCHDを用いて試験を行なって、SiCOH膜を成膜した。Me(EtO)2Si−CH2−SiMe(OEt)2流量は200mg/minであった。(HC=CH2)(EtO)3Si流量は500mg/minであった。BCHD流量は、800mg/minであった。ヘリウムキャリアガス流量は、500sccmに保った。酸素流量は5sccmであった。サセプター温度は300℃に設定した。プラズマパワーは500Wであった。間隔は0.500(12.7mm)に設定した。得られた誘電率は約2.41であった。得られた膜は、約3.6GPaのヤング率を有していた。
<Comparative Example 5>: Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 + (HC = CH 2 ) (EtO) 3 Si
A SiCOH film was formed by performing a test using Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 , (HC═CH 2 ) (EtO) 3 Si, and BCHD. The Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 flow rate was 200 mg / min. The flow rate of (HC = CH 2 ) (EtO) 3 Si was 500 mg / min. The BCHD flow rate was 800 mg / min. The helium carrier gas flow rate was maintained at 500 sccm. The oxygen flow rate was 5 sccm. The susceptor temperature was set at 300 ° C. The plasma power was 500W. The interval was set to 0.500 (12.7 mm). The dielectric constant obtained was about 2.41. The resulting film had a Young's modulus of about 3.6 GPa.

Me(EtO)2Si−CH2−SiMe(OEt)2、(HC=CH2)(EtO)3Si、およびBCHDの組み合わせから形成された膜から得られた誘電率(すなわち2.41)は、Me(EtO)2Si−CH2−SiMe(OEt)2およびBCHDから形成された膜の誘電率(すなわち2.5)と、(HC=CH2)(EtO)3SiおよびBCHDから形成された膜の誘電率(すなわち2.31)とのほぼ正確な平均値である。さらに、ヤング率の結果は、Me(EtO)2Si−CH2−SiMe(OEt)2、(HC=CH2)(EtO)3Si、およびBCHDの組み合わせから形成された膜について、個々の前駆体/BCHDの組み合わせから形成された膜と比較してより低い。 The dielectric constant (ie 2.41) obtained from a film formed from a combination of Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 , (HC═CH 2 ) (EtO) 3 Si, and BCHD is , Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 and BCHD film dielectric constant (ie 2.5) and (HC═CH 2 ) (EtO) 3 Si and BCHD It is an almost accurate average value with the dielectric constant of the film (ie 2.31). In addition, Young's modulus results are shown for individual precursors for films formed from combinations of Me (EtO) 2 Si—CH 2 —SiMe (OEt) 2 , (HC═CH 2 ) (EtO) 3 Si, and BCHD. Lower compared to membranes formed from body / BCHD combinations.

<比較例6>: Me2(EtO)Si−CH2−SiH(OEt)2
Me2(EtO)Si−CH2−SiH(OEt)2およびBCHDを用いて複数の試験を行なって、SiCOH膜を形成した。Me2(EtO)Si−CH2−SiH(OEt)2流量は300mg/minから750mg/minまで変化させた。BCHD流量は、300mg/minから750mg/minまで変化させた。ヘリウムキャリアガス流量は、500sccmに保った。酸素流量は、0,5,15,30,または50sccmに設定した。サセプター温度は、260℃または300℃のいずれかに設定した。プラズマパワーは、250W,300W,400W,または500Wに設定した。間隔は、0.275インチ(6.985mm)または0.500インチ(12.7mm)のいずれかに設定した。得られた最もよい誘電率は、約2.3であった。得られた膜は、5sccmのO2で2.31のk値において4.2GPaのヤング率を、30sccmのO2で2.39のk値において6.5GPaのヤング率を有していた。この場合も、誘電率の増加によって、特定の前駆体の組み合わせについてのヤング率の改善が達成された。
<Comparative example 6>: Me 2 (EtO) Si—CH 2 —SiH (OEt) 2
A plurality of tests were performed using Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 and BCHD to form a SiCOH film. The flow rate of Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 was changed from 300 mg / min to 750 mg / min. The BCHD flow rate was changed from 300 mg / min to 750 mg / min. The helium carrier gas flow rate was maintained at 500 sccm. The oxygen flow rate was set to 0, 5, 15, 30, or 50 sccm. The susceptor temperature was set to either 260 ° C or 300 ° C. The plasma power was set to 250W, 300W, 400W, or 500W. The spacing was set to either 0.275 inches (6.985 mm) or 0.500 inches (12.7 mm). The best dielectric constant obtained was about 2.3. The resulting film, the Young's modulus of 4.2GPa in k value of O 2 at 2.31 5 sccm, had a Young's modulus of 6.5GPa in k value of 2.39 at 30sccm of O 2. Again, an improvement in Young's modulus for a particular precursor combination was achieved by increasing the dielectric constant.

<例1>: Me2(EtO)Si-CH2-SiH(OEt)2+(HC=CH2)(EtO)3Si
Me2(EtO)Si−CH2−SiH(OEt)2、(HC=CH2)(EtO)3SiおよびBCHDを用いて複数の試験を行なって、SiCOH膜を成膜した。Me2(EtO)Si−CH2−SiH(OEt)2流量は、250mg/minから500mg/minまで変化させた。(HC=CH2)(EtO)3Si流量は、250mg/minから500mg/minまで変化させた。BCHD流量は、800mg/minであった。ヘリウムキャリアガス流量は、500sccmであった。酸素流量は、5sccmから30sccmで変化させた。サセプター温度は、260℃または300℃のいずれかに設定した。プラズマパワーは、300Wまたは500Wのいずれかに設定した。反応チャンバーの圧力は、8Torrに設定した。間隔は0.500インチ(12.7mm)に設定した。得られた最もよい誘電率は、約2.17であり、これは、比較例4および6において得られた誘電率より予想外に優れていた。さらに、得られた膜は、2.28のk値において6.0GPaのヤング率を、2.23のk値において6.1GPaのヤング率を有していた。
<Example 1>: Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 + (HC = CH 2 ) (EtO) 3 Si
A plurality of tests were performed using Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 , (HC═CH 2 ) (EtO) 3 Si and BCHD to form a SiCOH film. The Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 flow rate was varied from 250 mg / min to 500 mg / min. The (HC = CH 2 ) (EtO) 3 Si flow rate was changed from 250 mg / min to 500 mg / min. The BCHD flow rate was 800 mg / min. The helium carrier gas flow rate was 500 sccm. The oxygen flow rate was varied from 5 sccm to 30 sccm. The susceptor temperature was set to either 260 ° C or 300 ° C. The plasma power was set to either 300W or 500W. The pressure in the reaction chamber was set at 8 Torr. The spacing was set to 0.500 inch (12.7 mm). The best dielectric constant obtained was about 2.17, which was unexpectedly superior to the dielectric constant obtained in Comparative Examples 4 and 6. Furthermore, the film obtained had a Young's modulus of 6.0 GPa at a k value of 2.28 and a Young's modulus of 6.1 GPa at a k value of 2.23.

表2に示されるように、Me2(EtO)Si−CH2−SiH(OEt)2,(HC=CH2)(EtO)3Si,およびBCHDの混合物により形成された膜の1つを除いて全てについての誘電率(測定されたk)は、Me2(EtO)Si−CH2−SiH(OEt)2とBCHDとから、または(HC=CH2)(EtO)3SiとBCHDとから得られた膜についての最もよい誘電率より低い。さらに、誘電率は低いが、組み合わせから形成された膜についてのヤング率結果は、Me2(EtO)Si−CH2−SiH(OEt)2/BCHD組み合わせから形成された膜についてのヤング率結果とほぼ同等である。

Figure 2013520030
As shown in Table 2, except for one of the films formed by a mixture of Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 , (HC═CH 2 ) (EtO) 3 Si, and BCHD. The dielectric constant (measured k) for all is from Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 and BCHD or (HC═CH 2 ) (EtO) 3 Si and BCHD. Below the best dielectric constant for the film obtained. In addition, the Young's modulus results for films formed from the combination with a low dielectric constant are the Young's modulus results for films formed from the Me 2 (EtO) Si—CH 2 —SiH (OEt) 2 / BCHD combination. It is almost equivalent.
Figure 2013520030

本発明の本質を説明するためにここに述べて説明されてきたが、詳細、材料、工程、および部品の配置における多くのさらなる変更は、添付した請求項に表現されるような本発明の本質および範囲内で当業者になされることが理解されるであろう。このように、本発明は、上で与えられた実施例および/または添付の図面における特定の態様に限定されることは意図されない。   While described and described herein for illustrating the nature of the invention, many further changes in details, materials, processes, and arrangements of parts will lie in the nature of the invention as expressed in the appended claims. It will be understood by those skilled in the art within the scope and scope. Thus, the present invention is not intended to be limited to the specific embodiments in the examples given above and / or the accompanying drawings.

Claims (13)

基板上にSiCOH膜層を形成する方法であって、
少なくとも1つの基板をその中に有する反応チャンバーを準備する工程、
以下の群から選択されるSi−(CH2n−Si含有前駆体(n=1または2を伴なう)を前記反応チャンバー内に導入する工程、
Figure 2013520030
ここで、R1からR4のそれぞれは、H,メチル,エチル,プロピル,ビニル,およびC1−C3アルコキシからなる群から独立して選択され;R5は、メチル,エチル,およびプロピルからなる群から独立して選択され;好ましくは、R1からR4の少なくとも1つは、メチル,エチル,またはプロピルであり;およびR1からR3の少なくとも1つは、−OR5と同一または異なってもよいアルコキシである;
前記反応チャンバー内に、式Si(R1)x(O(R2))4-xを有するビニル含有前駆体を導入する工程、ここで、少なくとも1つのR1はビニルであり、任意のもう一つのR1は水素またはアルキル基、好ましくはメチルまたはエチルであり;それぞれのR2は、アルキル基から、好ましくはメチルまたはエチルから独立して選択され;xは1または2である;および
前記反応チャンバー内にポロジェンを導入する工程;および
成膜プロセス、好ましくは化学気相成長を用いて、Si−(CH2n−Si前駆体、ビニル含有前駆体、ポロジェン、および基板を接触させて、前記基板の少なくとも1つの表面にSiCOH膜を形成する工程
を具備する方法。
A method of forming a SiCOH film layer on a substrate,
Providing a reaction chamber having at least one substrate therein;
Introducing a Si— (CH 2 ) n —Si containing precursor (with n = 1 or 2) selected from the following group into the reaction chamber;
Figure 2013520030
Wherein each of R1 to R4 is independently selected from the group consisting of H, methyl, ethyl, propyl, vinyl, and C1-C3 alkoxy; R5 is independent of the group consisting of methyl, ethyl, and propyl. Preferably, at least one of R1 to R4 is methyl, ethyl, or propyl; and at least one of R1 to R3 is alkoxy, which may be the same as or different from -OR5;
Introducing into the reaction chamber a vinyl-containing precursor having the formula Si (R1) x (O (R2)) 4-x , wherein at least one R1 is vinyl, and any other R1 Are hydrogen or alkyl groups, preferably methyl or ethyl; each R2 is independently selected from alkyl groups, preferably methyl or ethyl; x is 1 or 2; and porogens in the reaction chamber And using a film-forming process, preferably chemical vapor deposition, contacting the Si— (CH 2 ) n —Si precursor, the vinyl-containing precursor, the porogen, and the substrate to form at least one of said substrates A method comprising a step of forming a SiCOH film on one surface.
請求項1の方法であって、前記ビニル含有前駆体は、ビニルジエトキシシラン、ビニルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、およびビニルメチルジエトキシシランからなる群から、好ましくはビニルトリエトキシシランまたはビニルメチルジエトキシシランから選択される方法。   The method of claim 1, wherein the vinyl-containing precursor is from the group consisting of vinyldiethoxysilane, vinyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinylmethyldiethoxysilane. Preferably selected from vinyltriethoxysilane or vinylmethyldiethoxysilane. 請求項1または2のいずれかに記載の方法であって、前記ポロジェンは置換または非置換のビシクロ[2.2.1]ヘプタ−2,5−ジエンである方法。   3. The method according to claim 1 or 2, wherein the porogen is a substituted or unsubstituted bicyclo [2.2.1] hepta-2,5-diene. 請求項1乃至3のいずれか1項に記載の方法であって、前記成膜プロセスは単一周波数PECVDである方法。   4. The method according to any one of claims 1 to 3, wherein the film forming process is single frequency PECVD. 請求項1乃至4のいずれか1項に記載の方法であって、前記SiCOH膜を多孔質にする工程をさらに具備する方法。   5. The method according to claim 1, further comprising a step of making the SiCOH film porous. 6. 請求項1乃至5のいずれか1項に記載の方法であって、R1からR4はHではない方法。   6. The method according to any one of claims 1 to 5, wherein R1 to R4 are not H. 請求項6に記載の方法であって、前記Si−(CH2n−Si含有前駆体は、(EtO)3Si−CH2−Si(OEt)2H,Me(OEt)2Si−CH2−Si(OEt)2H,Me(OEt)2Si−CH2−Si(OEt)HMe,Me2(OEt)Si−CH2−Si(OEt)2H,(EtO)Me2SiCH2Si(OMe)2H,Me2(OEt)Si−CH2−Si(OEt)HMe,(OEt)3Si−CH2−Si(OEt)HMe,(EtO)3Si−CH2−Si(OMe)HMe,Me(OMe)2Si−CH2−Si(OMe)2H,Me(OMe)2Si−CH2−Si(OMe)HMe,Me2(OMe)SiCH2Si(OMe)2H,およびMe2(OEt)Si−CH2−Si(OMe)HMeか,好ましくはMe(OEt)2Si−CH2−Si(OEt)2H,Me2(OEt)Si−CH2−Si(OEt)2H,およびMe(OEt)2Si−CH2−Si(OEt)HMeからなる群から選択される方法。 The method according to claim 6, wherein the Si— (CH 2 ) n —Si-containing precursor is (EtO) 3 Si—CH 2 —Si (OEt) 2 H, Me (OEt) 2 Si—CH. 2 -Si (OEt) 2 H, Me (OEt) 2 SiCH 2 -Si (OEt) HMe, Me 2 (OEt) SiCH 2 -Si (OEt) 2 H, (EtO) Me 2 SiCH 2 Si (OMe) 2 H, Me 2 (OEt) Si—CH 2 —Si (OEt) HMe, (OEt) 3 Si—CH 2 —Si (OEt) HMe, (EtO) 3 Si—CH 2 —Si (OMe) HMe, Me (OMe) 2 Si—CH 2 —Si (OMe) 2 H, Me (OMe) 2 Si—CH 2 —Si (OMe) HMe, Me 2 (OMe) SiCH 2 Si (OMe) 2 H, and Me 2 (OEt) Si-CH 2 -Si (OMe) HM Or, preferably Me (OEt) 2 Si-CH 2 -Si (OEt) 2 H, Me 2 (OEt) Si-CH 2 -Si (OEt) 2 H, and Me (OEt) 2 Si-CH 2 -Si (OEt) A method selected from the group consisting of HMe. 請求項6に記載の方法であって、前記Si−(CH2n−Si含有前駆体は、(EtO)3Si−CH2CH2−Si(OEt)2H,Me(OEt)2Si−CH2CH2−Si(OEt)2H,Me(OEt)2Si−CH2CH2−Si(OEt)HMe,Me2(OEt)Si−CH2CH2−Si(OEt)2H,(EtO)Me2Si−CH2CH2Si(OMe)2H,Me2(OEt)Si−CH2CH2−Si(OEt)HMe,(OEt)3Si−CH2CH2−Si(OEt)HMe,(EtO)3Si−CH2CH2−Si(OMe)HMe,Me(OMe)2Si−CH2CH2−Si(OMe)2H,Me(OMe)2Si−CH2CH2−Si(OMe)HMe,Me2(OMe)Si−CH2CH2Si(OMe)2H,およびMe2(OEt)Si−CH2CH2−Si(OMe)HMeから,好ましくはMe(OEt)2Si−CH2CH2−Si(OEt)2H,Me2(OEt)Si−CH2CH2−Si(OEt)2H,およびMe(OEt)2Si−CH2CH2−Si(OEt)HMeからなる群から選択される方法。 The method according to claim 6, wherein the Si— (CH 2 ) n —Si-containing precursor is (EtO) 3 Si—CH 2 CH 2 —Si (OEt) 2 H, Me (OEt) 2 Si. -CH 2 CH 2 -Si (OEt) 2 H, Me (OEt) 2 Si-CH 2 CH 2 -Si (OEt) HMe, Me 2 (OEt) Si-CH 2 CH 2 -Si (OEt) 2 H, (EtO) Me 2 Si-CH 2 CH 2 Si (OMe) 2 H, Me 2 (OEt) Si-CH 2 CH 2 -Si (OEt) HMe, (OEt) 3 Si-CH 2 CH 2 -Si (OEt ) HMe, (EtO) 3 Si -CH 2 CH 2 -Si (OMe) HMe, Me (OMe) 2 Si-CH 2 CH 2 -Si (OMe) 2 H, Me (OMe) 2 Si-CH 2 CH 2 -Si (OMe) HMe, Me 2 (OMe) Si-CH 2 CH 2 Si OMe) 2 H, and the Me 2 (OEt) Si-CH 2 CH 2 -Si (OMe) HMe, preferably Me (OEt) 2 Si-CH 2 CH 2 -Si (OEt) 2 H, Me 2 (OEt ) Si-CH 2 CH 2 -Si (OEt) 2 H, and Me (OEt) 2 Si-CH 2 CH 2 -Si (OEt) method selected from the group consisting of HMe. 請求項1乃至5のいずれか1項に記載の方法であって、R1からR3の1つのみがHである方法。   6. The method according to any one of claims 1 to 5, wherein only one of R1 to R3 is H. 請求項9に記載の方法であって、前記Si−(CH2n−Si含有前駆体は、MeH(OMe)Si−CH2−Si(OMe)HMe,(EtO)2HSi−CH2−Si(OEt)2H,(EtO)HMeSi−CH2−Si(OEt)HMe,および(iPrO)HMeSi−CH2−Si(OiPr)HMeからなる群から選択される方法。 The method according to claim 9, wherein the Si— (CH 2 ) n —Si-containing precursor is MeH (OMe) Si—CH 2 —Si (OMe) HMe, (EtO) 2 HSi—CH 2 —. A method selected from the group consisting of Si (OEt) 2 H, (EtO) HMeSi—CH 2 —Si (OEt) HMe, and (iPrO) HMeSi—CH 2 —Si (OiPr) HMe. 請求項6に記載の方法であって、前記SiCOH膜は、(1)前記Si−(CH2n−Si含有前駆体と前記ポロジェンとによって形成されたSiCOH膜の誘電率、および(2)前記ビニル含有前駆体と前記ポロジェンとによって形成されたSiCOH膜の誘電率のいずれよりも低い誘電率を有する方法。 The method according to claim 6, wherein the SiCOH film includes: (1) a dielectric constant of a SiCOH film formed by the Si— (CH 2 ) n —Si containing precursor and the porogen, and (2) A method having a lower dielectric constant than any of the dielectric constants of the SiCOH film formed by the vinyl-containing precursor and the porogen. 請求項1乃至11のいずれか1項の方法により形成された膜。   A film formed by the method according to claim 1. 請求項12に記載の膜であって、前記膜は、約2.0〜約2.7、好ましくは約2.0〜約2.5の範囲の誘電率、および約4GPa〜約10GPa、好ましくは約5GPa〜約10GPaのヤング率を有する膜。   13. The film of claim 12, wherein the film has a dielectric constant in the range of about 2.0 to about 2.7, preferably about 2.0 to about 2.5, and about 4 GPa to about 10 GPa, preferably Is a film having a Young's modulus of about 5 GPa to about 10 GPa.
JP2012554022A 2010-02-17 2011-02-17 Deposition method of SiCOHLOW-K film Withdrawn JP2013520030A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30549110P 2010-02-17 2010-02-17
US61/305,491 2010-02-17
PCT/US2011/025234 WO2011103282A2 (en) 2010-02-17 2011-02-17 VAPOR DEPOSITION METHODS OF SiCOH LOW-K FILMS

Publications (1)

Publication Number Publication Date
JP2013520030A true JP2013520030A (en) 2013-05-30

Family

ID=44483561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012554022A Withdrawn JP2013520030A (en) 2010-02-17 2011-02-17 Deposition method of SiCOHLOW-K film

Country Status (8)

Country Link
US (1) US8932674B2 (en)
EP (1) EP2536867A4 (en)
JP (1) JP2013520030A (en)
KR (1) KR20130043084A (en)
CN (1) CN102762763B (en)
SG (1) SG183291A1 (en)
TW (1) TWI550121B (en)
WO (1) WO2011103282A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197575A (en) * 2012-03-23 2013-09-30 Renesas Electronics Corp Semiconductor device and manufacturing method of semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875166B1 (en) 2012-07-20 2018-04-11 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Organosilane precursors for ald/cvd silicon-containing film applications
CN103258734B (en) * 2013-05-16 2016-03-30 复旦大学 A kind of SiCOH thin film and preparation method thereof
TW201509799A (en) 2013-07-19 2015-03-16 Air Liquide Hexacoordinate silicon-containing precursors for ALD/CVD silicon-containing film applications
US9382268B1 (en) 2013-07-19 2016-07-05 American Air Liquide, Inc. Sulfur containing organosilane precursors for ALD/CVD silicon-containing film applications
US10570513B2 (en) 2014-12-13 2020-02-25 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications and methods of using the same
JP6803368B2 (en) * 2015-07-09 2020-12-23 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Alkylamino-substituted halocarbosilane precursor
KR102624608B1 (en) 2016-01-19 2024-01-16 삼성전자주식회사 Method for forming low k dielectric layer and method for manufacturing semiconductor device using the same
TWI753794B (en) 2016-03-23 2022-01-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 Si-containing film forming compositions and methods of making and using the same
US9831118B1 (en) 2016-05-24 2017-11-28 Sandisk Technologies Llc Reducing neighboring word line in interference using low-k oxide
US10249489B2 (en) * 2016-11-02 2019-04-02 Versum Materials Us, Llc Use of silyl bridged alkyl compounds for dense OSG films
US11600486B2 (en) * 2020-09-15 2023-03-07 Applied Materials, Inc. Systems and methods for depositing low-κdielectric films

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791308B2 (en) 1989-06-20 1995-10-04 信越化学工業株式会社 Trialkylsilylmethyl group-containing silane compound
US5296624A (en) 1992-11-25 1994-03-22 Huls America, Inc. Preparation of sterically-hindered organosilanes
US5989998A (en) 1996-08-29 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method of forming interlayer insulating film
US6159871A (en) 1998-05-29 2000-12-12 Dow Corning Corporation Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6312793B1 (en) 1999-05-26 2001-11-06 International Business Machines Corporation Multiphase low dielectric constant material
US6558747B2 (en) 1999-09-29 2003-05-06 Kabushiki Kaisha Toshiba Method of forming insulating film and process for producing semiconductor device
US6410151B1 (en) 1999-09-29 2002-06-25 Jsr Corporation Composition for film formation, method of film formation, and insulating film
US6953984B2 (en) 2000-06-23 2005-10-11 International Business Machines Corporation Hydrogenated oxidized silicon carbon material
US6756323B2 (en) 2001-01-25 2004-06-29 International Business Machines Corporation Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device
US6583048B2 (en) 2001-01-17 2003-06-24 Air Products And Chemicals, Inc. Organosilicon precursors for interlayer dielectric films with low dielectric constants
KR20030002993A (en) 2001-06-29 2003-01-09 학교법인 포항공과대학교 Process for the formation of low dielectric thin films
US7384471B2 (en) 2002-04-17 2008-06-10 Air Products And Chemicals, Inc. Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants
US6846515B2 (en) 2002-04-17 2005-01-25 Air Products And Chemicals, Inc. Methods for using porogens and/or porogenated precursors to provide porous organosilica glass films with low dielectric constants
US20080268177A1 (en) 2002-05-17 2008-10-30 Air Products And Chemicals, Inc. Porogens, Porogenated Precursors and Methods for Using the Same to Provide Porous Organosilica Glass Films with Low Dielectric Constants
US6936551B2 (en) 2002-05-08 2005-08-30 Applied Materials Inc. Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
JP3734463B2 (en) 2002-08-09 2006-01-11 錦湖石油化學株式會▲社▼ Gene sequence encoding dominant negative chalcone synthase and use thereof
US6797643B2 (en) 2002-10-23 2004-09-28 Applied Materials Inc. Plasma enhanced CVD low k carbon-doped silicon oxide film deposition using VHF-RF power
TWI282124B (en) 2002-11-28 2007-06-01 Tosoh Corp Insulating film material containing an organic silane compound, its production method and semiconductor device
US7288292B2 (en) 2003-03-18 2007-10-30 International Business Machines Corporation Ultra low k (ULK) SiCOH film and method
JP2004288979A (en) 2003-03-24 2004-10-14 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method for forming insulating film
US7241704B1 (en) 2003-03-31 2007-07-10 Novellus Systems, Inc. Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups
US20050260420A1 (en) 2003-04-01 2005-11-24 Collins Martha J Low dielectric materials and methods for making same
US8137764B2 (en) 2003-05-29 2012-03-20 Air Products And Chemicals, Inc. Mechanical enhancer additives for low dielectric films
US7022864B2 (en) 2003-07-15 2006-04-04 Advanced Technology Materials, Inc. Ethyleneoxide-silane and bridged silane precursors for forming low k films
US7345000B2 (en) * 2003-10-10 2008-03-18 Tokyo Electron Limited Method and system for treating a dielectric film
JP2005133060A (en) 2003-10-29 2005-05-26 Rohm & Haas Electronic Materials Llc Porous material
US7390537B1 (en) 2003-11-20 2008-06-24 Novellus Systems, Inc. Methods for producing low-k CDO films with low residual stress
US7030468B2 (en) 2004-01-16 2006-04-18 International Business Machines Corporation Low k and ultra low k SiCOH dielectric films and methods to form the same
DE102004008442A1 (en) 2004-02-19 2005-09-15 Degussa Ag Silicon compounds for the production of SIO2-containing insulating layers on chips
US20050196974A1 (en) 2004-03-02 2005-09-08 Weigel Scott J. Compositions for preparing low dielectric materials containing solvents
US7049247B2 (en) 2004-05-03 2006-05-23 International Business Machines Corporation Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made
JP2006024670A (en) 2004-07-07 2006-01-26 Sony Corp Manufacturing method for semiconductor device
EP1615260A3 (en) 2004-07-09 2009-09-16 JSR Corporation Organic silicon-oxide-based film, composition and method for forming the same, and semiconductor device
JP2006040936A (en) 2004-07-22 2006-02-09 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Method and apparatus of depositing insulating film
US7491658B2 (en) 2004-10-13 2009-02-17 International Business Machines Corporation Ultra low k plasma enhanced chemical vapor deposition processes using a single bifunctional precursor containing both a SiCOH matrix functionality and organic porogen functionality
JP2006111738A (en) 2004-10-15 2006-04-27 Jsr Corp Composition for surface hydrophobizing, surface hydrophobizing method, semiconductor device and its manufacturing method
US7229934B2 (en) 2004-10-18 2007-06-12 International Business Machines Corporation Porous organosilicates with improved mechanical properties
US7892648B2 (en) 2005-01-21 2011-02-22 International Business Machines Corporation SiCOH dielectric material with improved toughness and improved Si-C bonding
JP5324734B2 (en) 2005-01-21 2013-10-23 インターナショナル・ビジネス・マシーンズ・コーポレーション Dielectric material and manufacturing method thereof
US7202564B2 (en) 2005-02-16 2007-04-10 International Business Machines Corporation Advanced low dielectric constant organosilicon plasma chemical vapor deposition films
JP2006241305A (en) 2005-03-03 2006-09-14 Fuji Photo Film Co Ltd Composition for film formation, insulating film and its manufacturing method
FR2887252A1 (en) 2005-06-21 2006-12-22 Air Liquide Dielectric layer with weak dielectric constant useful to separate metal interconnections in integrated circuits, comprises carbon-doped silicon and/or carbon-doped silicon oxide, obtained from a precursor comprising a silicon-carbon chain
SG165359A1 (en) 2005-09-12 2010-10-28 Fujifilm Electronic Materials Additives to prevent degradation of cyclic alkene derivatives
US7381659B2 (en) 2005-11-22 2008-06-03 International Business Machines Corporation Method for reducing film stress for SiCOH low-k dielectric materials
US7521377B2 (en) 2006-01-11 2009-04-21 International Business Machines Corporation SiCOH film preparation using precursors with built-in porogen functionality
US20070173071A1 (en) 2006-01-20 2007-07-26 International Business Machines Corporation SiCOH dielectric
JP2007221039A (en) 2006-02-20 2007-08-30 National Institute For Materials Science Insulation film and insulation film material
EP2004872A1 (en) 2006-03-31 2008-12-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Novel pore-forming precursors composition and porous dielectric layers obtained there from
JP2007318067A (en) 2006-04-27 2007-12-06 National Institute For Materials Science Insulating film material, film forming method using the same, and insulating film
WO2008020592A1 (en) 2006-08-15 2008-02-21 Jsr Corporation Film-forming material, silicon-containing insulating film and method for forming the same
JP5170445B2 (en) 2007-02-14 2013-03-27 Jsr株式会社 Silicon-containing film forming material, silicon-containing insulating film and method for forming the same
US7500397B2 (en) 2007-02-15 2009-03-10 Air Products And Chemicals, Inc. Activated chemical process for enhancing material properties of dielectric films
US8026035B2 (en) 2007-03-30 2011-09-27 Cheil Industries, Inc. Etch-resistant disilane and saturated hydrocarbon bridged silicon-containing polymers, method of making the same, and method of using the same
WO2009008424A1 (en) 2007-07-10 2009-01-15 Jsr Corporation Method for producing silicon compound
US7998536B2 (en) 2007-07-12 2011-08-16 Applied Materials, Inc. Silicon precursors to make ultra low-K films of K<2.2 with high mechanical properties by plasma enhanced chemical vapor deposition
US7989033B2 (en) 2007-07-12 2011-08-02 Applied Materials, Inc. Silicon precursors to make ultra low-K films with high mechanical properties by plasma enhanced chemical vapor deposition
US7964442B2 (en) 2007-10-09 2011-06-21 Applied Materials, Inc. Methods to obtain low k dielectric barrier with superior etch resistivity
JP5316743B2 (en) 2007-11-01 2013-10-16 Jsr株式会社 Composition for forming silicon-containing film and method for forming silicon-containing insulating film
JP5304983B2 (en) 2008-02-12 2013-10-02 Jsr株式会社 Silicon-containing film forming composition
JP5251156B2 (en) 2008-02-12 2013-07-31 Jsr株式会社 Silicon-containing film and method for forming the same
JP5141885B2 (en) 2008-02-13 2013-02-13 Jsr株式会社 Silicon-containing insulating film and method for forming the same
US20110042789A1 (en) * 2008-03-26 2011-02-24 Jsr Corporation Material for chemical vapor deposition, silicon-containing insulating film and method for production of the silicon-containing insulating film
US20100143580A1 (en) 2008-05-28 2010-06-10 American Air Liquide, Inc. Stabilization of Bicycloheptadiene
JP5365785B2 (en) 2008-05-30 2013-12-11 Jsr株式会社 Method for producing organosilicon compound
US8298965B2 (en) * 2008-09-03 2012-10-30 American Air Liquide, Inc. Volatile precursors for deposition of C-linked SiCOH dielectrics
SG174296A1 (en) * 2009-03-10 2011-10-28 Air Liquide Cyclic amino compounds for low-k silylation
JP4379637B1 (en) 2009-03-30 2009-12-09 Jsr株式会社 Method for producing organosilicon compound
KR101263789B1 (en) 2009-07-13 2013-05-13 제이에스아이실리콘주식회사 Organo hydrochlorosilanes and method of preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197575A (en) * 2012-03-23 2013-09-30 Renesas Electronics Corp Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
WO2011103282A3 (en) 2012-02-02
US8932674B2 (en) 2015-01-13
KR20130043084A (en) 2013-04-29
EP2536867A4 (en) 2013-07-10
US20130042790A1 (en) 2013-02-21
CN102762763B (en) 2014-12-31
CN102762763A (en) 2012-10-31
WO2011103282A2 (en) 2011-08-25
EP2536867A2 (en) 2012-12-26
TW201134976A (en) 2011-10-16
TWI550121B (en) 2016-09-21
SG183291A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
TWI550121B (en) Vapor deposition methods of sicoh low-k films
JP6864086B2 (en) Compositions and Methods for Depositing Silicon Oxide Films
EP3254303B1 (en) Method for formation of carbon doped silicon containing films
JP6781165B2 (en) Method for depositing boron-containing compounds, compositions, and boron-containing films
US8298965B2 (en) Volatile precursors for deposition of C-linked SiCOH dielectrics
TWI680982B (en) Functionalized cyclosilazanes as precursors for high growth rate silicon-containing films
JP7554755B2 (en) Compositions for silicon-containing films and methods of using the compositions
JP6868640B2 (en) SI-containing film-forming composition and method for producing and using it
KR102442026B1 (en) Alkoxysilacyclic or acyloxysilacyclic compounds and methods for depositing films using same
TWI798765B (en) Compositions and methods using same for germanium seed layer
KR102409869B1 (en) Silicon compounds and methods for depositing films using same
JP6993394B2 (en) Silicon compounds and methods of depositing films using silicon compounds
CN110952074B (en) Silicon compound and method for depositing film using silicon compound
JPWO2022020705A5 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513