JP2013518710A - Catalyst production method and catalyst - Google Patents

Catalyst production method and catalyst Download PDF

Info

Publication number
JP2013518710A
JP2013518710A JP2012551724A JP2012551724A JP2013518710A JP 2013518710 A JP2013518710 A JP 2013518710A JP 2012551724 A JP2012551724 A JP 2012551724A JP 2012551724 A JP2012551724 A JP 2012551724A JP 2013518710 A JP2013518710 A JP 2013518710A
Authority
JP
Japan
Prior art keywords
carbon
metal
catalyst
catalytically active
containing support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012551724A
Other languages
Japanese (ja)
Other versions
JP2013518710A5 (en
Inventor
クヴェルナー,クラウディア
シュヴァプ,エッケハルト
エヴァルト,バスティアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2013518710A publication Critical patent/JP2013518710A/en
Publication of JP2013518710A5 publication Critical patent/JP2013518710A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本発明は、触媒の製造方法であって、前記触媒が触媒活性物質及び炭素含有担体を含み、第1工程において炭素含有担体を金属塩溶液に含浸させ、その後、金属塩溶液を含浸した炭素含有担体を不活性雰囲気中で少なくとも1500℃の温度に加熱して金属炭化物層を形成し、最後に金属炭化物層を備えた炭素含有担体に触媒活性材料を施す触媒の製造方法に関する。
さらに、本発明はこの方法により製造された触媒であって、炭素含有担体及び触媒活性物質を含み、この炭素含有担体が金属炭化物層を含有し、且つその触媒活性物質が金属炭化物層を備えた炭素含有担体に施された触媒を提供する。
【選択図】なし
The present invention is a method for producing a catalyst, wherein the catalyst contains a catalytically active substance and a carbon-containing support, and the carbon-containing support is impregnated in the metal salt solution in the first step, and then the carbon-containing impregnated metal salt solution is impregnated. The present invention relates to a method for producing a catalyst in which a support is heated to a temperature of at least 1500 ° C. in an inert atmosphere to form a metal carbide layer, and finally a catalytically active material is applied to a carbon-containing support provided with the metal carbide layer.
Furthermore, the present invention is a catalyst produced by this method, comprising a carbon-containing support and a catalytically active material, the carbon-containing support including a metal carbide layer, and the catalytically active material comprising a metal carbide layer. A catalyst applied to a carbon-containing support is provided.
[Selection figure] None

Description

本発明は、触媒の製造方法であって、その触媒が触媒活性物質及び改質炭素含有担体を含む触媒の製造方法に関する。さらに、本発明は、改質炭素含有担体及び触媒活性物質を含む触媒に関する。   The present invention relates to a method for producing a catalyst, the catalyst comprising a catalytically active substance and a modified carbon-containing support. The present invention further relates to a catalyst comprising a modified carbon-containing support and a catalytically active material.

触媒活性物質と炭素含有担体を含む触媒は、例えば、電気化学反応のための不均一系触媒として用いられる。電気化学反応のための触媒活性物質として、通常、白金族の金属、又は白金族金属の合金が用いられる。使用される合金成分は、通常、ニッケル、コバルト、バナジウム、鉄、チタン、銅、ルテニウム、パラジウム等の遷移金属であり、それぞれの場合に、個別であるか、又は1種以上のさらなる金属との組み合わせである。このような触媒は、特に、燃料電池において使用される。触媒は、アノード側とカソード側の両方に使用され得る。特にカソード側では、耐食性でもある活性カソード触媒を使用することが必要である。合金触媒は一般に活性カソード触媒として使用されている。   A catalyst containing a catalytically active substance and a carbon-containing support is used, for example, as a heterogeneous catalyst for an electrochemical reaction. As a catalytically active substance for an electrochemical reaction, a platinum group metal or a platinum group metal alloy is usually used. The alloying components used are usually transition metals such as nickel, cobalt, vanadium, iron, titanium, copper, ruthenium, palladium, in each case individually or with one or more additional metals It is a combination. Such catalysts are used in particular in fuel cells. The catalyst can be used on both the anode side and the cathode side. Particularly on the cathode side, it is necessary to use an active cathode catalyst that is also corrosion resistant. Alloy catalysts are commonly used as active cathode catalysts.

高い触媒表面積を得るためには、触媒は、通常担持される。電気化学的な施用では、用いられる担体は、導電性にされなければならない。炭素は、例えば、導電性カーボンブラックの形態で、一般的に担体として用いられる。使用される炭素担体は、通常、ナノ粒子として通常存在する触媒活性物質の粒子の微細分散を可能にする高比表面積を有する。BET表面積は一般に100m2/gを超える。しかしながら、約250m2/gのBET表面積を有するVulcan XC72又は約850m2/gのBET表面積を有するKetjen Black EC−300J等のこれらの炭素担体は、急速に腐食するという欠点を有している。炭素含有担体の腐食は、適宜に昇温下で、窒素の湿潤流又は電解質水溶液中等の水の存在下で1Vを超える電位にそれらを付すことにより比較され得る。ここで、炭素は二酸化炭素に転化され、生じた二酸化炭素が測定され得る。温度が高いほど、且つ電位が大きいほど、より急速に炭素含有担体は腐食する。したがって、例えば、Vulcan XC72の場合には1.1Vの電位で、15時間後に炭素の約60%が二酸化炭素に酸化することにより腐食して離れる。約60m2/gのBET比表面積を有するDenka Black等のより小さい比表面積を有するカーボンブラックの場合、カーボンブラック中の黒鉛の割合がより高いので担体の腐食安定性はより高い。1.1Vで15時間後、腐食はほんの8%の炭素の損失に相当する。より小さい表面積を有する炭素担体上の触媒粒子は、通常やや大きくなり、そしてそれゆえ、お互いにより接近する。しかしながら、担体に施された触媒活性物質の量のほんの一部しか触媒的に利用することができないので、これはしばしば性能の低下をもたらす。 In order to obtain a high catalyst surface area, the catalyst is usually supported. For electrochemical applications, the carrier used must be made conductive. Carbon is generally used as a carrier, for example, in the form of conductive carbon black. The carbon support used usually has a high specific surface area that allows fine dispersion of the particles of catalytically active material normally present as nanoparticles. The BET surface area is generally greater than 100 m 2 / g. However, these carbon supports such as Vulcan XC72 having a BET surface area of about 250 m 2 / g or Ketjen Black EC-300J having a BET surface area of about 850 m 2 / g have the disadvantage of rapidly corroding. The corrosion of the carbon-containing supports can be compared by subjecting them to a potential in excess of 1 V in the presence of water, such as a wet stream of nitrogen or an aqueous electrolyte solution, optionally at an elevated temperature. Here, the carbon is converted to carbon dioxide and the resulting carbon dioxide can be measured. The higher the temperature and the higher the potential, the more rapidly the carbon-containing support will corrode. Thus, for example, in the case of Vulcan XC72, at a potential of 1.1 V, after about 15 hours, about 60% of the carbon is eroded away by oxidation to carbon dioxide. In the case of carbon black having a smaller specific surface area, such as Denka Black, which has a BET specific surface area of about 60 m 2 / g, the support has a higher corrosion resistance due to the higher proportion of graphite in the carbon black. After 15 hours at 1.1 V, the corrosion corresponds to a loss of only 8% carbon. Catalyst particles on a carbon support with a smaller surface area are usually somewhat larger and therefore closer to each other. However, this often results in a decrease in performance since only a fraction of the amount of catalytically active material applied to the support can be utilized catalytically.

WO2006/002228によれば、低BET表面積を有するカーボン担体の使用とは別に、炭素含有担体を表面処理に付すことがまた知られている。表面処理の結果として、その炭素は金属炭化物層を備える。金属炭化物層を製造するために使用される金属は、例えば、チタン、タングステン又はモリブデンである。触媒活性物質は、続いて、金属炭化物層の上に付着される。   According to WO 2006/002228 it is also known to subject the carbon-containing support to a surface treatment apart from the use of a carbon support having a low BET surface area. As a result of the surface treatment, the carbon comprises a metal carbide layer. The metal used to produce the metal carbide layer is, for example, titanium, tungsten or molybdenum. The catalytically active material is subsequently deposited on the metal carbide layer.

金属炭化物層の製造のために、金属塩溶液がまず炭素含有担体の表面に施され、次いで、この溶液が金属へと還元される。続いて、その担体は金属を金属炭化物へと転化させるために加熱される。金属炭化物層を形成するための加熱は、850〜1100℃の範囲内の温度で実施される。しかしながら、WO−A2006/002228に記載される通りに製造された金属炭化物層は、腐食安定性における満足できる改善をもたらすには十分に安定ではないことがわかった。   For the production of the metal carbide layer, a metal salt solution is first applied to the surface of the carbon-containing support and then this solution is reduced to a metal. Subsequently, the support is heated to convert the metal to metal carbide. The heating for forming the metal carbide layer is performed at a temperature in the range of 850 to 1100 ° C. However, it has been found that metal carbide layers produced as described in WO-A 2006/002228 are not stable enough to provide a satisfactory improvement in corrosion stability.

炭素含有担体の腐食は、触媒活性物質の粒子の脱離をもたらし、それゆえ、性能の低下をもたらす。加えて、触媒粒子はまた、触媒的に活性な表面積を減少させる焼結をすることがある。   Corrosion of the carbon-containing support results in desorption of particles of catalytically active material, and hence performance degradation. In addition, the catalyst particles may also sinter, reducing the catalytically active surface area.

WO2006/002228WO2006 / 002228

本発明の目的は、電気化学反応のためのカソード触媒として用いられる際に腐食安定性を有する触媒が製造される、触媒の製造方法を提供することである。特に、触媒粒子がその表面領域と相互作用する触媒は、その粒子が担体上でほとんど変化しない、すなわち、ほとんど焼結せず、且つ担体から脱離しないような方法で製造されるべきである。   An object of the present invention is to provide a method for producing a catalyst in which a catalyst having corrosion stability is produced when used as a cathode catalyst for an electrochemical reaction. In particular, the catalyst in which the catalyst particles interact with the surface region should be produced in such a way that the particles hardly change on the support, i.e. hardly sinter and desorb from the support.

その目的は、触媒活性物質及び炭素含有担体を含む触媒の製造方法であって、以下の工程:
(a)金属塩溶液に炭素含有担体を含浸させる工程、
(b)この金属塩溶液が含浸した炭素含有担体を、少なくとも1200℃の温度に加熱して金属炭化物層を形成する工程、
(c)金属炭化物層を備えた炭素含有担体に触媒活性物質を施す工程
を含む方法により達成される。
The object is a method for producing a catalyst comprising a catalytically active substance and a carbon-containing support, comprising the following steps:
(A) impregnating a metal salt solution with a carbon-containing support;
(B) heating the carbon-containing support impregnated with the metal salt solution to a temperature of at least 1200 ° C. to form a metal carbide layer;
(C) A method comprising a step of applying a catalytically active material to a carbon-containing support provided with a metal carbide layer.

図1は、電気化学プロセスへの暴露前の比較例1による触媒を示す図である。FIG. 1 shows a catalyst according to Comparative Example 1 before exposure to an electrochemical process. 図2は、電気化学プロセスへの暴露後の比較例1による触媒を示す図である。FIG. 2 shows the catalyst according to Comparative Example 1 after exposure to an electrochemical process. 図3は、電気化学プロセスへの暴露前の例1による触媒を示す図である。FIG. 3 shows the catalyst according to Example 1 before exposure to an electrochemical process. 図4は、電気化学プロセスへの暴露後の例1による触媒を示す図である。FIG. 4 shows the catalyst according to Example 1 after exposure to an electrochemical process.

金属塩溶液に含浸させた炭素含有担体の少なくとも1200℃の温度への加熱の結果として、安定した金属炭化物層が形成される。担体上の金属炭化物層のおかげで、炭素はその表面に結合し、もはや担体の周囲の酸素とのいかなる反応も起こさない。炭素含有担体の腐食は、この方法で減らすことができ、さらには完全に回避される。さらなる利点は、触媒の触媒活性表面が金属炭化物層の形成によっても大きくは変更されておらず、したがって、常に高い触媒活性と長期間の安定性とが達成されることである。加えて、触媒の触媒活性が触媒活性物質の損失によって低下しないように、触媒活性物質の損失が金属炭化物層により未然に防止され得る。触媒活性物質がその担体から脱離しないという事実は、金属炭化物層の結果として担体に良好に付着する触媒活性物質の粒子に関連づけられている。触媒粒子がほとんど焼結せず、且つ担体から脱離しないという事実のために、触媒粒子の触媒表面積は、長期間にわたって安定であり、電極の性能は高く維持される。さらに、X線回折パターンでは酸化物相ではなく炭化物相のみが観察され得る。   As a result of heating the carbon-containing support impregnated in the metal salt solution to a temperature of at least 1200 ° C., a stable metal carbide layer is formed. Thanks to the metal carbide layer on the support, the carbon binds to its surface and no longer reacts with any oxygen surrounding the support. The corrosion of the carbon-containing support can be reduced in this way and even completely avoided. A further advantage is that the catalytically active surface of the catalyst is not significantly altered by the formation of the metal carbide layer, so that high catalytic activity and long-term stability are always achieved. In addition, the loss of catalytically active material can be prevented beforehand by the metal carbide layer so that the catalytic activity of the catalyst is not reduced by the loss of catalytically active material. The fact that the catalytically active material does not desorb from its support is associated with particles of catalytically active material that adhere well to the support as a result of the metal carbide layer. Due to the fact that the catalyst particles hardly sinter and do not desorb from the support, the catalyst surface area of the catalyst particles is stable over a long period of time and the performance of the electrode remains high. Furthermore, only the carbide phase, not the oxide phase, can be observed in the X-ray diffraction pattern.

触媒活性物質の付着性の向上は、例えば、透過型電子顕微鏡を用いて調べることができる。従って、Journal of Power Sources,2008,185,734〜739頁によれば、電気化学処理前と処理後の同じ場所で、電極触媒の画像を生成し、それによって引き起こされる触媒の変化を観察することができる。こうして、例えば、純粋な炭素担持触媒の場合に触媒活性物質の粒子の焼結又は脱離を見ることができる。一方で、本発明に係る触媒の場合には、同じ条件下でほとんどいかなる変化も生じない。   The improvement in the adhesion of the catalytically active substance can be examined using, for example, a transmission electron microscope. Therefore, according to Journal of Power Sources, 2008, 185, 734-739, generating an image of an electrocatalyst in the same place before and after electrochemical treatment and observing the catalyst change caused thereby. Can do. Thus, for example, in the case of a pure carbon supported catalyst, the sintering or desorption of particles of the catalytically active material can be seen. On the other hand, in the case of the catalyst according to the invention, almost no change occurs under the same conditions.

本発明の触媒のための好適な炭素含有担体は、好ましくはカーボンブラックである。カーボンブラックは当業者に公知の任意の方法により製造することができる。通常使用されるカーボンブラックは、例えば、ファーネスブラック、フレームブラック、アセチレンブラック又は当業者に公知の任意の他のカーボンブラックである。黒鉛化炭素、特に、低表面積を有する炭素の使用が、特に好ましい。本発明の目的のために、低表面積は、250m2/g以下、より好ましくは100m2/g以下のBET表面積を意味する。担体として用いることができる好適な炭素は、例えば、72m2/gのBET表面積を有するSKWカーボン、53m2/gのBET表面積を有するDenka Black、又は約30m2/gのBET表面積を有する、Evonik Degussa GmbHからのXMB206若しくはAT325である。本発明によれば、金属炭化物層が適切な炭素担体に施される。 A suitable carbon-containing support for the catalyst of the present invention is preferably carbon black. Carbon black can be produced by any method known to those skilled in the art. Commonly used carbon blacks are, for example, furnace black, frame black, acetylene black or any other carbon black known to those skilled in the art. The use of graphitized carbon, especially carbon having a low surface area, is particularly preferred. For the purposes of the present invention, low surface area means a BET surface area of 250 m 2 / g or less, more preferably 100 m 2 / g or less. Suitable carbon can be used as a support has, for example, SKW carbon having a BET surface area of 72m 2 / g, Denka Black having a BET surface area of 53m 2 / g, or a BET surface area of about 30 m 2 / g, Evonik XMB206 or AT325 from Degussa GmbH. According to the invention, a metal carbide layer is applied to a suitable carbon support.

用いられる触媒は、白金族の金属、遷移金属、これらの金属の合金、又は白金族の少なくとも1種の金属を含有する合金等を含む。触媒活性物質は、白金、パラジウム、これらの金属の合金、及びこれらの金属の少なくとも1種を含む合金の中から好ましくは選択される。触媒活性物質は、極めて特に好ましくは白金または白金含有合金である。好適な合金形成金属は、ニッケル、コバルト、鉄、バナジウム、チタン、ルテニウム及び銅等であり、特にニッケル及びコバルトである。白金族の少なくとも1種の金属を含有する好適な合金は、例えば、PtNi、PtFe、PtV、PtCr、PtTi、PtCu、PtPd、PtRu、PdNi、PdFe、PdCr、PdTi、PdCu及びPdRuからなる群から選択される。白金−ニッケル合金又は白金−コバルト合金が特に好ましい。合金が触媒活性物質として使用される場合は、合金中の白金族の金属の割合は、好ましくは25〜85原子%の範囲、より好ましくは40〜80原子%の範囲、さらにより好ましくは50〜80原子%の範囲、とりわけ60〜80原子%の範囲である。   The catalyst used includes platinum group metals, transition metals, alloys of these metals, alloys containing at least one metal of the platinum group, and the like. The catalytically active material is preferably selected from platinum, palladium, alloys of these metals, and alloys containing at least one of these metals. The catalytically active material is very particularly preferably platinum or a platinum-containing alloy. Suitable alloying metals are nickel, cobalt, iron, vanadium, titanium, ruthenium, copper and the like, in particular nickel and cobalt. Suitable alloys containing at least one platinum group metal are selected from the group consisting of, for example, PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu and PdRu Is done. A platinum-nickel alloy or a platinum-cobalt alloy is particularly preferred. When the alloy is used as a catalytically active substance, the proportion of platinum group metal in the alloy is preferably in the range of 25-85 atomic%, more preferably in the range of 40-80 atomic%, even more preferably in the range of 50- It is in the range of 80 atomic%, especially in the range of 60-80 atomic%.

上述の合金とは別に、三元合金系等の、2種以上の異なる金属を含有する合金を用いることもまた可能である。通常1質量%未満の割合で、金属酸化物等のさらなる成分を含有させることもまた可能である。   Apart from the alloys mentioned above, it is also possible to use alloys containing two or more different metals, such as ternary alloy systems. It is also possible to include further components such as metal oxides, usually in a proportion of less than 1% by weight.

本発明の触媒を製造するために、最初の工程において炭素含有担体は金属塩溶液で含浸される。炭素含有担体を金属塩溶液で含浸させるために、例えば、金属塩溶液中に炭素含有担体を分散させ、その後その分散液を濃縮することができる。   In order to produce the catalyst of the present invention, the carbon-containing support is impregnated with a metal salt solution in the first step. In order to impregnate the carbon-containing support with the metal salt solution, for example, the carbon-containing support can be dispersed in the metal salt solution, and then the dispersion can be concentrated.

含浸の結果として、金属塩溶液は、炭素含有担体の細孔に浸透する。金属塩の層はまた、炭素含有担体の外表面に形成される。   As a result of the impregnation, the metal salt solution penetrates into the pores of the carbon-containing support. A layer of metal salt is also formed on the outer surface of the carbon-containing support.

金属炭化物への炭素の完全な転化は、カーボンブラック等の使用される炭素の有利なベース構造が、そこから製造される触媒の性能又はその触媒の加工性があまりにも大きく影響されるような程度に失われるというリスクを伴うので、その表面が好ましくは金属炭化物へと転化される。   The complete conversion of carbon to metal carbide is such that the advantageous base structure of the carbon used, such as carbon black, is too greatly influenced by the performance of the catalyst produced therefrom or the processability of the catalyst The surface is preferably converted to metal carbide.

担体の全炭素が反応して金属炭化物を形成すること、及び金属炭化物層がその担体の表面にのみ形成されることを未然に防ぐために、炭素含有担体に含浸させるための金属塩溶液が好ましくは化学量論量で添加される。本発明の目的のために、化学量論とは、金属と炭素の合計に対して90質量%未満の金属が用いられることを意味する。金属の割合は、金属と炭素の合計に対して、それぞれの場合に、通常5〜75質量%、好ましくは20〜50質量%である。   A metal salt solution for impregnating the carbon-containing support is preferred in order to prevent all the carbon of the support from reacting to form metal carbide and forming a metal carbide layer only on the surface of the support. Added in stoichiometric amount. For the purposes of the present invention, stoichiometry means that less than 90% by weight of metal is used, based on the sum of metal and carbon. The ratio of the metal is usually 5 to 75% by mass, preferably 20 to 50% by mass in each case based on the sum of the metal and carbon.

炭素含有担体上に安定した金属炭化物層を得るためには、金属塩溶液の金属が、タングステン、モリブデン、チタン、バナジウム又はジルコニウムであり、好ましくはタングステン又はモリブデンである。その対応する金属塩溶液の使用の結果として、炭素含有担体上に形成された金属炭化物層は、タングステン炭化物層又はモリブデン炭化物層である。さらに、その層はまた、2種以上の金属の混合炭化物を含み得る。それはまた、金属炭化物層が第二の金属でドープされることを可能とする。金属炭化物層の利点は、炭素含有担体の有利な構造、伝導率及び表面特性が実質的に保持され、且つ耐食性が大きく改善されていることである。炭素含有担体の特性の保持は、担体表面上の炭化物含量に依存する。
炭素含有担体が含浸される金属塩溶液として、タングステン酸アンモニウム溶液等の、タングステン酸塩溶液等を用いることができる。
In order to obtain a stable metal carbide layer on the carbon-containing support, the metal of the metal salt solution is tungsten, molybdenum, titanium, vanadium or zirconium, preferably tungsten or molybdenum. As a result of the use of the corresponding metal salt solution, the metal carbide layer formed on the carbon-containing support is a tungsten carbide layer or a molybdenum carbide layer. Further, the layer can also include a mixed carbide of two or more metals. It also allows the metal carbide layer to be doped with a second metal. The advantage of the metal carbide layer is that the advantageous structure, conductivity and surface properties of the carbon-containing support are substantially retained and the corrosion resistance is greatly improved. The retention of the properties of the carbon-containing support depends on the carbide content on the support surface.
As the metal salt solution impregnated with the carbon-containing support, a tungstate solution such as an ammonium tungstate solution can be used.

金属炭化物層を製造するために、第2工程では、金属塩溶液を含浸させた炭素含有担体が少なくとも1200℃の温度へと不活性雰囲気中で加熱される。不活性雰囲気は、雰囲気がその担体の炭素又は金属塩と反応し得る任意の材料を含んでいないことを意味する。好適な雰囲気は、例えば、希ガス雰囲気または窒素雰囲気である。不活性雰囲気は、好ましくは窒素雰囲気である。   In order to produce the metal carbide layer, in the second step, the carbon-containing support impregnated with the metal salt solution is heated to a temperature of at least 1200 ° C. in an inert atmosphere. An inert atmosphere means that the atmosphere does not contain any material that can react with the carbon or metal salt of the support. A suitable atmosphere is, for example, a rare gas atmosphere or a nitrogen atmosphere. The inert atmosphere is preferably a nitrogen atmosphere.

金属塩溶液で含浸された炭素含有担体が加熱される温度は、少なくとも1200℃であり、好ましくは少なくとも1300℃、特に少なくとも1500℃である。   The temperature at which the carbon-containing support impregnated with the metal salt solution is heated is at least 1200 ° C., preferably at least 1300 ° C., in particular at least 1500 ° C.

炭素含有担体上に十分に安定な金属炭化物層を形成するために、金属塩溶液を含浸させた炭素含有担体は、少なくとも30分間、好ましくは少なくとも1時間、特に少なくとも2時間、金属塩溶液を含浸させた炭素含有担体が加熱された温度で維持される。その熱処理は、1500℃の温度で2時間実施されることが特に好ましい。これは、炭素含有担体表面上に形成される、炭素含有担体の腐食安定性を改善する金属炭化物層を結果としてもたらす。   In order to form a sufficiently stable metal carbide layer on the carbon-containing support, the carbon-containing support impregnated with the metal salt solution is impregnated with the metal salt solution for at least 30 minutes, preferably at least 1 hour, in particular at least 2 hours. The allowed carbon-containing support is maintained at a heated temperature. The heat treatment is particularly preferably carried out at a temperature of 1500 ° C. for 2 hours. This results in a metal carbide layer formed on the carbon-containing support surface that improves the corrosion stability of the carbon-containing support.

金属炭化物層の形成後、金属炭化物層を備えた炭素含有担体は冷却され、触媒活性物質が施される。触媒活性物質の施用は、当業者に公知の任意の方法によって実施され得る。触媒活性物質の施用は、例えば、溶液中の付着により実施され得る。そのためには、例えば、溶媒中に触媒活性物質を含有する金属化合物を溶解させることができる。その金属は、共有的に、イオン的に、又は錯体形成により、結合され得る。さらに、金属が前駆体として、または対応する水酸化物を析出させるためにアルカリを用いて、還元的に付着され得る。白金族の金属を付着させるさらに可能な方法は、金属を含有する溶液の含浸(初期湿潤)、化学蒸着(CVD)又は物理蒸着(PVD)法であり、及びまた、金属を付着させ得る方法を用いた、当業者に公知の全てのさらなる方法である。まず白金族の金属の塩を析出させることが好ましい。析出は、触媒を製造するための乾燥及び熱処理のあとに続く。   After formation of the metal carbide layer, the carbon-containing support provided with the metal carbide layer is cooled and applied with a catalytically active material. Application of the catalytically active material can be carried out by any method known to those skilled in the art. Application of the catalytically active substance can be carried out, for example, by deposition in solution. For this purpose, for example, a metal compound containing a catalytically active substance can be dissolved in a solvent. The metal can be bound covalently, ionicly, or by complexation. Furthermore, metals can be reductively deposited as precursors or using alkali to deposit the corresponding hydroxide. Further possible methods of depositing platinum group metals are impregnation of metal-containing solutions (primary wetting), chemical vapor deposition (CVD) or physical vapor deposition (PVD) methods, and also methods by which metals can be deposited. All the additional methods known to those skilled in the art used. First, it is preferable to deposit a platinum group metal salt. Precipitation follows after drying and heat treatment to produce the catalyst.

触媒活性物質が析出によって施される場合、エタノール中で、又はNaBH4を用いた硝酸白金からの白金等の、例えば、還元析出を実施することができる。別の方法として、金属炭化物層を備える炭素含有担体と混合される白金アセチルアセトナート等、H2/N2ガス混合物中での分解及び還元もまた可能である。エタノールを用いた還元析出が実施されることが好ましい。 When the catalytically active material is applied by precipitation, for example, reduction precipitation such as platinum from platinum nitrate using NaBH 4 can be carried out in ethanol. Alternatively, platinum acetylacetonate is mixed with the carbon-containing support with a metal carbide layer or the like, decomposition and reduction with H 2 / N 2 gas mixture are also possible. It is preferable to carry out reductive precipitation using ethanol.

パラジウム又は白金族の金属を含有する合金が触媒活性物質として白金の代わりに使用される場合、触媒活性物質が同様に施される。   If an alloy containing palladium or a platinum group metal is used in place of platinum as the catalytically active material, the catalytically active material is similarly applied.

本発明の方法により製造された触媒は、炭素含有担体及び触媒活性物質を含有し、その炭素含有担体は金属炭化物層を有し、その触媒活性物質は金属炭化物層を備えた炭素含有担体に施されている。前述したように、炭素担体の腐食、その結果、触媒活性物質の剥離と損失が金属炭化物層により大幅に低減され得る。   The catalyst produced by the method of the present invention contains a carbon-containing support and a catalytically active material, the carbon-containing support has a metal carbide layer, and the catalytically active material is applied to the carbon-containing support provided with the metal carbide layer. Has been. As described above, the corrosion of the carbon support and, as a result, delamination and loss of the catalytically active material can be greatly reduced by the metal carbide layer.

したがって、金属炭化物層を備える炭素含有担体の比表面積及びまたBET表面積はもともと使用される炭素含有担体に依存する。250m2/g以下のBET表面積を有する炭素含有担体であることが好ましい。100m2/g以下のBET表面積を有する炭素含有担体であることが特に好ましい。 Therefore, the specific surface area and also the BET surface area of a carbon-containing support with a metal carbide layer depends on the carbon-containing support originally used. A carbon-containing support having a BET surface area of 250 m 2 / g or less is preferred. A carbon-containing support having a BET surface area of 100 m 2 / g or less is particularly preferred.

本発明の触媒を、例えば、電気化学反応のための不均一系触媒として用いるためには、触媒活性物質が白金族の金属であるか、或いは少なくとも1種の白金族の金属を含む合金であるものが好ましい。白金属の好適な金属は、特に、白金及びパラジウムである。白金とパラジウムが混合物として触媒活性物質を形成することもまた可能である。   In order to use the catalyst of the present invention as, for example, a heterogeneous catalyst for an electrochemical reaction, the catalytically active substance is a platinum group metal or an alloy containing at least one platinum group metal. Those are preferred. Suitable metals for white metals are in particular platinum and palladium. It is also possible that platinum and palladium form a catalytically active material as a mixture.

触媒活性物質が少なくとも1種の白金族の金属を含有する合金である場合、この合金は好ましくはPtNi、PtFe、PtV、PtCr、PtTi、PtCu、PtPd、PtRu、PdNi、PdFe、PdCr、PdTi、PdCu及びPdRuからなる群から選択される。   When the catalytically active material is an alloy containing at least one platinum group metal, this alloy is preferably PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu And PdRu.

腐食の低減を達成するために、その触媒の金属炭化物層の金属は、好ましくは、タングステン、チタン、モリブデン、ジルコニウム、ニオブ、バナジウムおよびそれらの混合物からなる群から選択される。金属炭化物層の金属は、特に好ましくはタングステンである。   To achieve corrosion reduction, the metal of the metal carbide layer of the catalyst is preferably selected from the group consisting of tungsten, titanium, molybdenum, zirconium, niobium, vanadium and mixtures thereof. The metal of the metal carbide layer is particularly preferably tungsten.

本発明の触媒は、燃料電池における電極触媒としての使用のために特に好適である。ここで、触媒はカソード触媒として特に好適である。   The catalyst of the present invention is particularly suitable for use as an electrode catalyst in a fuel cell. Here, the catalyst is particularly suitable as a cathode catalyst.

電極触媒の腐食においては、一般に、2つの相の間で区別をする:第1に、白金等の触媒活性物質の焼結であり、第2に炭素の腐食である。触媒活性物質の焼結は比較的低電位で起こり、そして、炭素の腐食は、例えば、1Vを超えるより高い電位で起こる。燃料電池の運転中に、1.5Vまでの電位ピークで非常に短時間でさえ大量の炭素が腐食して分離し得るので、炭素の腐食は重大な意味を持つ。炭素の腐食の結果として、第1に、性能の低下をもたらし得る電極構造の変化があり、第2に、触媒活性物質への結合が損なわれ得る。その結果として、対応する触媒活性粒子がもはや触媒反応に利用できなくなり、そのうえ、その系から排出され得る。それは、性能の低下を引き起こすだけでなく、特に貴金属が使用される場合は、大きなコスト要因になり得る。   In electrocatalytic corrosion, a distinction is generally made between two phases: first, sintering of a catalytically active material such as platinum, and second, corrosion of carbon. Sintering of the catalytically active material occurs at a relatively low potential, and carbon corrosion occurs at a higher potential, for example, greater than 1V. During fuel cell operation, carbon corrosion is significant because a large amount of carbon can corrode and separate even at very short potential peaks up to 1.5V. As a result of the corrosion of the carbon, there are firstly changes in the electrode structure that can lead to performance degradation, and secondly, the binding to the catalytically active material can be impaired. As a result, the corresponding catalytically active particles are no longer available for catalytic reaction and can be discharged from the system. Not only does this cause performance degradation, but it can also be a significant cost factor, especially when noble metals are used.

腐食安定な担体の事前選択を行うために、加速劣化試験を実施することができる。こうして、触媒の変わりにその担体のみがカソード側で使用され、且つ窒素の加湿流がキャリアガスとして空気流の代わりに導入される燃料電池の構成におけるその担体の腐食安定性を試験することができる。1.1V又は1.2V等の、少なくとも1Vの電圧が施され、炭素担体の酸化により生成されてガス流中に排出されたCO2が測定され、そして担体の炭素の損失へと変換される。測定は通常、180℃等の昇温下で実施する。なぜなら、J. Power Sources,2008,444頁によると、この場合腐食速度が室温よりも約4桁も速いからである。 An accelerated aging test can be performed to preselect a corrosion stable carrier. Thus, it is possible to test the corrosion stability of the carrier in a fuel cell configuration where only the carrier is used on the cathode side instead of the catalyst, and a humidified nitrogen stream is introduced as the carrier gas instead of the air stream. . A voltage of at least 1 V, such as 1.1 V or 1.2 V, is applied, the CO 2 produced by the oxidation of the carbon support and discharged into the gas stream is measured and converted into carbon loss of the support . The measurement is usually carried out at an elevated temperature such as 180 ° C. Because J. According to Power Sources, 2008, page 444, the corrosion rate is about 4 orders of magnitude faster than room temperature.

例1:
DenkaBlackカーボンブラックの表面を改質するために、22gのアンモニウムヘプタタングステン酸塩を580gの水に溶解し、そこに15gのDenkaBlackカーボンブラックを加えた。混合物を30分間8000rpmでUltra−Turraxを用いて均質化した。カーボンブラック懸濁液をロータリーエバポレーターで濃縮し、窒素下において1500℃で6時間、400℃1時間の中間温度工程をはさみつつ管状炉中で加熱した。
Example 1:
In order to modify the surface of DenkaBlack carbon black, 22 g of ammonium heptungstate was dissolved in 580 g of water, and 15 g of DenkaBlack carbon black was added thereto. The mixture was homogenized using an Ultra-Turrax at 8000 rpm for 30 minutes. The carbon black suspension was concentrated on a rotary evaporator and heated in a tube furnace under nitrogen at 1500 ° C. for 6 hours and 400 ° C. for 1 hour.

タングステンの担持は47%であった。X線回折では、2つのタングステン炭化物相が観察された:WCは約40nmの粒径を有し、W2Cは約23nmの粒径を有する。この方法により製造した表面改質炭素担体を、以降、WC/Denkaと呼ぶことにする。 Tungsten loading was 47%. In X-ray diffraction, two tungsten carbide phases were observed: WC has a particle size of about 40 nm and W 2 C has a particle size of about 23 nm. Hereinafter, the surface-modified carbon support produced by this method will be referred to as WC / Denka.

白金触媒を製造するために、このようにして製造した担体7.0gを500mlの水に分散させ、15分間8000rpmでUltra−Turraxを用いて均質化した。5.13gの白金硝酸を100mlの水に溶解し、ゆっくりと担体分散液に添加した。200mlの水と800mlのエタノールを続いてその混合物に添加し、混合物を6時間還流した。一晩冷却した後、懸濁液を濾過し、固体を熱水2lで洗浄して硝酸塩を無くし、減圧下で乾燥させた。白金担持は29.8%であり、XRDにおける平均結晶子サイズは3.4nmであった。   In order to produce a platinum catalyst, 7.0 g of the support thus produced was dispersed in 500 ml of water and homogenized using an Ultra-Turrax for 15 minutes at 8000 rpm. 5.13 g of platinum nitric acid was dissolved in 100 ml of water and slowly added to the carrier dispersion. 200 ml of water and 800 ml of ethanol were subsequently added to the mixture and the mixture was refluxed for 6 hours. After cooling overnight, the suspension was filtered and the solid was washed with 2 liters of hot water to remove nitrates and dried under reduced pressure. The platinum loading was 29.8%, and the average crystallite size in XRD was 3.4 nm.

例2:
カーボンブラックC2(AT325 from Evonik Degussa GmbH)の表面を改質するために、5.9gのアンモニウムヘプタタングステン酸塩を580gの水に溶解し、16gのカーボンブラックC2をそこに添加した;全体を8000rpmで30分間Ultra−Turraxを用いて均質化した。カーボンブラック懸濁液をロータリーエバポレーターで濃縮し、窒素下において1500℃で6時間、400℃1時間の中間温度工程をはさみつつ管状炉中で加熱した。
Example 2:
To modify the surface of carbon black C2 (AT325 from Evonik Degussa GmbH), 5.9 g ammonium heptungstate was dissolved in 580 g water and 16 g carbon black C2 was added thereto; the whole was 8000 rpm And homogenized with an Ultra-Turrax for 30 minutes. The carbon black suspension was concentrated on a rotary evaporator and heated in a tube furnace under nitrogen at 1500 ° C. for 6 hours and 400 ° C. for 1 hour.

タングステンの担持は16%であった。X線回折では1つのタングステン炭化物相が観察された:WCは約65nmの結晶子の大きさを有していた。   Tungsten loading was 16%. X-ray diffraction observed one tungsten carbide phase: WC had a crystallite size of about 65 nm.

白金触媒を製造するために、このように製造した10.5gの担体を、500mlの水に分散させ、15分間8000rpmでUltra−Turraxを用いて均質化した。7.77gの白金硝酸を100mlの水に溶解し、ゆっくりと担体分散液に添加した。その後500mlの水と450mlのエタノールをその混合物に添加し、混合物を6時間還流した。一晩冷却した後、懸濁液を濾過し、固体を熱水2lで洗浄して硝酸塩を無くし、減圧下で乾燥させた。白金担持は28.4%であり、XRDにおける平均結晶子サイズは3.1nmであった。   To produce a platinum catalyst, 10.5 g of the support thus produced was dispersed in 500 ml of water and homogenized using an Ultra-Turrax for 15 minutes at 8000 rpm. 7.77 g of platinum nitric acid was dissolved in 100 ml of water and slowly added to the carrier dispersion. 500 ml of water and 450 ml of ethanol were then added to the mixture and the mixture was refluxed for 6 hours. After cooling overnight, the suspension was filtered and the solid was washed with 2 liters of hot water to remove nitrates and dried under reduced pressure. Platinum loading was 28.4%, and the average crystallite size in XRD was 3.1 nm.

比較例1
7.0gのカーボンブラックC1(XMB206 from Evonik Degussa GmbH)を500mlの水に分散し、15分間8000rpmでUltra−Turraxを用いて均質化した。5.13gの白金硝酸を100mlの水に溶解し、ゆっくりとカーボンブラック分散液に添加した。その後、200mlの水と800mlのエタノールを混合物に添加し、混合物を6時間還流した。一晩冷却した後、懸濁液を濾過し、固体を熱水2lで洗浄して硝酸塩を無くし、減圧下で乾燥させた。白金担持は27.1%であり、XRDにおける平均結晶子サイズは3.4nmであった。
Comparative Example 1
7.0 g of carbon black C1 (XMB206 from Evonik Degussa GmbH) was dispersed in 500 ml of water and homogenized using an Ultra-Turrax for 15 minutes at 8000 rpm. 5.13 g of platinum nitric acid was dissolved in 100 ml of water and slowly added to the carbon black dispersion. 200 ml of water and 800 ml of ethanol were then added to the mixture and the mixture was refluxed for 6 hours. After cooling overnight, the suspension was filtered and the solid was washed with 2 liters of hot water to remove nitrates and dried under reduced pressure. The platinum loading was 27.1%, and the average crystallite size in XRD was 3.4 nm.

比較例2
調整はカーボンブラック担体を除いては、比較例1に記載した方法と同様の方法で行った。カーボンブラックC2をカーボンブラックC1の代わりに使用した。白金担持は27.4%であり、XRDにおける平均結晶子サイズは3.1nmであった。
Comparative Example 2
The adjustment was performed in the same manner as described in Comparative Example 1 except for the carbon black support. Carbon black C2 was used instead of carbon black C1. The platinum loading was 27.4%, and the average crystallite size in XRD was 3.1 nm.

比較例3
表面の改質を実施例2に記載した方法と同様の方法で行なったが、カーバイド化工程を(WO2006/002228と類似の)850℃の温度で6時間、400℃で1時間の中間温度工程をはさみつつ実施した。タングステン担持は7%であった。計算値20%であった、すなわち、タングステンを定量的に付着させることができなかった。タングステンカーバイド相はXRDにおいて観察されず、H2WO4*H2Oのみが観察された。
Comparative Example 3
Surface modification was carried out in a manner similar to that described in Example 2, except that the carbideization step (similar to WO 2006/002228) was an intermediate temperature step of 6 hours at a temperature of 850 ° C. and 1 hour at 400 ° C. It was carried out while pinching. Tungsten loading was 7%. The calculated value was 20%, that is, tungsten could not be deposited quantitatively. No tungsten carbide phase was observed in XRD, and only H 2 WO 4 * H 2 O was observed.

このようにして製造した白金触媒は、(例2と類似の)28.9%の白金担持を有し、3.4nmの平均結晶子サイズを有していた。   The platinum catalyst thus produced had a 28.9% platinum loading (similar to Example 2) and an average crystallite size of 3.4 nm.

比較例3*
調製をWO2006/002228に記載された方法と類似の方法で行った。この目的のために、8gのVulcan XC72を1000gの水に懸濁し、8000rpmで30分間、Ultra−Turraxを用いて均質化した。3.2gのタングステン酸アンモニウムを200mlの水に溶解し、ゆっくりと懸濁液に添加した。さらに750mlの水を混合物に添加し、混合物を4時間還流した。その後、30.4gのNaBH4を100mlの水に溶解し、気体の活発な放出と共に1時間に亘って滴下し、混合物をさらに20分間還流した。反応混合物を濾過し、固形物を2lの水で洗浄した。まだ湿った濾過ケーキを管状炉で、最初に100℃で1時間、次いで900℃で1時間加熱した。
Comparative Example 3 *
The preparation was carried out in a manner similar to that described in WO2006 / 002228. For this purpose, 8 g Vulcan XC72 was suspended in 1000 g water and homogenized using an Ultra-Turrax for 30 minutes at 8000 rpm. 3.2 g ammonium tungstate was dissolved in 200 ml water and slowly added to the suspension. An additional 750 ml of water was added to the mixture and the mixture was refluxed for 4 hours. Thereafter, 30.4 g of NaBH 4 was dissolved in 100 ml of water and added dropwise over 1 hour with active release of gas and the mixture was refluxed for an additional 20 minutes. The reaction mixture was filtered and the solid was washed with 2 l of water. The still wet filter cake was heated in a tube furnace first at 100 ° C. for 1 hour and then at 900 ° C. for 1 hour.

白金触媒をこのようにして製造した担体上に製造した。白金担持は28.2%であり、XRDにおける平均結晶子サイズは2.0nmであった。タングステンのわずかな痕跡(0.05%)を検出することができた。   A platinum catalyst was produced on the support thus produced. The platinum loading was 28.2%, and the average crystallite size in XRD was 2.0 nm. A slight trace (0.05%) of tungsten could be detected.

比較例4
調整はカーボンブラック担体を除いて、比較例1に記載した方法と類似の方法で行った。カーボンブラックXC72をカーボンブラックC1の代わりに使用した。白金担持は27.7%であり、XRDにおける平均結晶子サイズは1.9nmであった。
Comparative Example 4
The adjustment was performed by a method similar to the method described in Comparative Example 1 except for the carbon black support. Carbon black XC72 was used instead of carbon black C1. The platinum loading was 27.7%, and the average crystallite size in XRD was 1.9 nm.

比較例5:
調整はカーボンブラック担体を除いて、比較例1に記載した方法と類似の方法で行った。 DenkaBlackカーボンブラックをカーボンブラックC1の代わりに使用した。白金担持は27.7%であり、XRDにおける平均結晶子サイズは3.7nmであった。
Comparative Example 5:
The adjustment was performed by a method similar to the method described in Comparative Example 1 except for the carbon black support. DenkaBlack carbon black was used instead of carbon black C1. The platinum loading was 27.7%, and the average crystallite size in XRD was 3.7 nm.

4つの異なる炭素担体のための質量の損失を表1に示す。   The mass loss for four different carbon supports is shown in Table 1.

Figure 2013518710
Figure 2013518710

カーボンブラックC1はEvonik Degussa GmbHからのXMB206であり、カーボンブラックC2はEvonik Degussa GmbHからのAT325であり、そしてWC/Denkaは実施例1の記載のように製造した表面改質炭素担体である。   Carbon Black C1 is XMB206 from Evonik Degussa GmbH, Carbon Black C2 is AT325 from Evonik Degussa GmbH, and WC / Denka is a surface modified carbon support prepared as described in Example 1.

サンプルC1とWC/Denkaの腐食速度が、大きくは違わないことが理解できる。よって、それぞれの担体を含有する触媒の間に観察された相違は、触媒粒子と担体との間の相互作用からのみ生じる。   It can be seen that the corrosion rates of sample C1 and WC / Denka are not significantly different. Thus, the differences observed between the catalysts containing the respective supports only arise from the interaction between the catalyst particles and the supports.

電極触媒の性能低下もまた、加速劣化試験によって推定することができる。したがって、例えば、酸素の還元(カソード反応)に関する触媒活性は、電位サイクルの前後で測定することができる。性能の低下を測定するために、0.5〜1.3Vの間の150電位サイクルを酸素飽和電解質中で50mV/sの速度で行った。結果を表2に示す。表2中、WC/DenkaはDenkaBlackカーボンブラック上のタングステン炭化物であり、WC/C1は、カーボンブラックC1上のタングステン炭化物であり、WC/CカーボンブラックC2上のタングステン炭化物である。   The degradation of the electrocatalyst performance can also be estimated by accelerated degradation tests. Thus, for example, the catalytic activity for oxygen reduction (cathode reaction) can be measured before and after the potential cycle. To measure the degradation in performance, a 150 potential cycle between 0.5 and 1.3 V was performed in an oxygen saturated electrolyte at a rate of 50 mV / s. The results are shown in Table 2. In Table 2, WC / Denka is tungsten carbide on DenkaBlack carbon black, WC / C1 is tungsten carbide on carbon black C1, and tungsten carbide on WC / C carbon black C2.

Figure 2013518710
Figure 2013518710

例1及びWC/Denka等、触媒無しの試験及び触媒活性物質を用いた試験の比較は、それぞれの担体を用いた触媒が純粋な担体のほぼ等しい大きな腐食にもかかわらず、大きな違いを示すことを示している。   Comparison of Example 1 and tests with no catalyst and tests with catalytically active materials, such as WC / Denka, show that the catalyst with each support shows a large difference despite the nearly equal large corrosion of the pure support. Is shown.

純粋な炭素担体の場合、すなわち、タングステン炭化物層を含まない担体の場合、触媒が施されていない純粋な炭素の腐食及び施された触媒の性能の低下の結果は、同じ分解メカニズムが想定できるので相互に関連を有する。   In the case of a pure carbon support, i.e. in the case of a support that does not contain a tungsten carbide layer, the result of the corrosion of pure uncatalyzed carbon and the reduced performance of the applied catalyst can be assumed by the same decomposition mechanism. They are related to each other.

金属炭化物層の施用が性能の低下にもまた影響を及ぼすことを、例1及び例2から理解することができる。より金属炭化物が担体に施されるほど、性能の低下はより小さくなる。さらに、WO−A 2006/002228等により公知の金属炭化物の製造方法では、担体の耐食性を向上させるためには不十分であることがわかった。これは、比較例2及び3、又は3*から理解することができる。   It can be seen from Examples 1 and 2 that the application of the metal carbide layer also affects the performance degradation. The more metal carbide is applied to the support, the smaller the performance degradation. Furthermore, it has been found from WO-A 2006/002228 and the like that the known metal carbide production method is insufficient for improving the corrosion resistance of the carrier. This can be understood from Comparative Examples 2 and 3, or 3 *.

図は、電気化学プロセスへの暴露前後の従来技術に係る触媒及び本発明に係る触媒をそれぞれの場合に表わした透過型電子顕微鏡写真を示している。
図1は、電気化学プロセスへの暴露前の比較例1による触媒を示しており、
図2は、電気化学プロセスへの暴露後の比較例1による触媒を示しており、
図3は、電気化学プロセスへの暴露前の例1による触媒を示しており、
図4は、電気化学プロセスへの暴露後の例1による触媒を示している。
図中、被覆されていない担体が符号1で示され、炭化物で被覆された担体が符号3で示され、白金粒子が符号2で示されている。
The figure shows transmission electron micrographs showing in each case the catalyst according to the prior art and the catalyst according to the invention before and after exposure to an electrochemical process.
FIG. 1 shows a catalyst according to Comparative Example 1 before exposure to an electrochemical process,
FIG. 2 shows the catalyst according to Comparative Example 1 after exposure to an electrochemical process,
FIG. 3 shows the catalyst according to Example 1 before exposure to an electrochemical process,
FIG. 4 shows the catalyst according to Example 1 after exposure to an electrochemical process.
In the figure, the uncoated carrier is indicated by reference numeral 1, the support coated with carbide is indicated by reference numeral 3, and the platinum particles are indicated by reference numeral 2.

電気化学プロセスへの暴露前後に同一の触媒領域を試験した透過型電子顕微鏡写真(TEMs)を例1と比較例1の触媒で撮影した。電気化学プロセスへの暴露は、0.4及び1.4Vの間での1V/sの増加で3600電位サイクルを用いて達成した。   Transmission electron micrographs (TEMs) of the same catalyst area tested before and after exposure to the electrochemical process were taken with the catalyst of Example 1 and Comparative Example 1. Exposure to the electrochemical process was achieved using a 3600 potential cycle with an increase of 1 V / s between 0.4 and 1.4V.

電極触媒は、同じ担体安定性にもかかわらず、電極触媒が大きく異なることがTEMsからわかる。比較例1による純粋な炭素担体上の、電気化学プロセスへの暴露前の図1及び電気化学プロセスへの暴露後の図2は、白金粒子2が担体1から脱離し、それゆえ触媒反応が失われたことを示している。対照的に、例1による炭化物層を有する担体3の場合は、担体への白金粒子2の結合が保持されていることがわかる。これは、電気化学プロセスへの暴露前の例1の触媒を表した図3及び電気化学プロセス後の例1の触媒を表した図4で理解することができる。   It can be seen from TEMs that the electrocatalysts differ greatly in spite of the same support stability. FIG. 1 before exposure to the electrochemical process and FIG. 2 after exposure to the electrochemical process on the pure carbon support according to Comparative Example 1 show that the platinum particles 2 are detached from the support 1 and therefore the catalytic reaction is lost. It shows that it was broken. In contrast, in the case of the support 3 having a carbide layer according to Example 1, it can be seen that the binding of the platinum particles 2 to the support is retained. This can be seen in FIG. 3 representing the catalyst of Example 1 before exposure to the electrochemical process and FIG. 4 representing the catalyst of Example 1 after the electrochemical process.

炭素担体からの白金の脱離の結果として、非常に耐食性のある炭素担体上であっても電極触媒の性能の大幅な低下が予想される。これに対抗するために、担体への白金粒子の密着性の向上が必要である。これは、炭化物層を用いた炭素表面の本発明に係る改質によって達成される。   As a result of the desorption of platinum from the carbon support, a significant reduction in the performance of the electrode catalyst is expected even on a highly corrosion resistant carbon support. In order to counter this, it is necessary to improve the adhesion of the platinum particles to the carrier. This is achieved by the modification according to the invention of the carbon surface with a carbide layer.

Claims (16)

触媒活性物質及び炭素含有担体を含む触媒の製造方法であって、
以下の工程:
(a)金属塩溶液に炭素含有担体を含浸させる工程、
(b)金属塩溶液が含浸した炭素含有担体を、不活性雰囲気中で1200℃の温度に加熱して金属炭化物層を形成する工程、
(c)金属炭化物層を備えた炭素含有担体に触媒活性物質を施す工程
を含む方法。
A method for producing a catalyst comprising a catalytically active material and a carbon-containing support,
The following steps:
(A) impregnating a metal salt solution with a carbon-containing support;
(B) heating the carbon-containing support impregnated with the metal salt solution to a temperature of 1200 ° C. in an inert atmosphere to form a metal carbide layer;
(C) applying a catalytically active material to a carbon-containing support provided with a metal carbide layer.
炭素含有担体を含浸させる金属塩溶液が化学量論量で添加される請求項1に記載の方法。   The method of claim 1, wherein the metal salt solution impregnating the carbon-containing support is added in a stoichiometric amount. 前記金属塩溶液の金属が、タングステン、モリブデン、又はこれらの金属の少なくとも1種を含む混合物若しくは合金である請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the metal of the metal salt solution is tungsten, molybdenum, or a mixture or alloy containing at least one of these metals. 前記金属塩溶液が、タングステン酸塩溶液である請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the metal salt solution is a tungstate solution. 工程(b)における加熱が、不活性雰囲気中で実施される請求項1〜4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein the heating in the step (b) is carried out in an inert atmosphere. 触媒活性金属が、白金属の金属であるか、或いは白金属の少なくとも1種の金属を含有する合金である請求項1〜5の何れかに記載の方法。   The method according to claim 1, wherein the catalytically active metal is a white metal or an alloy containing at least one metal of the white metal. 白金族の少なくとも1種の金属を含む合金が、PtNi、PtFe、PtV、PtCr、PtTi、PtCu、PtPd、PtRu、PdNi、PdFe、PdCr、PdTi、PdCu及びPdRuからなる群から選択される請求項6に記載の方法。   The alloy containing at least one platinum group metal is selected from the group consisting of PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu and PdRu. The method described in 1. 白金族の金属が、白金又はパラジウムである請求項6に記載の方法。   The method according to claim 6, wherein the platinum group metal is platinum or palladium. 触媒活性物質を、還元析出により、又はH2/N2ガス混合物中での分解及び還元により、金属炭化物層を備える炭素含有担体に施す請求項1〜8に記載の方法。 The method according to claim 1, wherein the catalytically active substance is applied to the carbon-containing support comprising the metal carbide layer by reduction deposition or by decomposition and reduction in a H 2 / N 2 gas mixture. 炭素含有担体が250m2/g以下のBET表面積を有する請求項1〜9の何れかに記載の方法。 The method according to claim 1, wherein the carbon-containing support has a BET surface area of 250 m 2 / g or less. 請求項1〜10の何れかに記載の方法により製造された触媒であって、
炭素含有担体と触媒活性物質を含有し、
該炭素含有担体は、金属炭化物層を有し、
前記触媒活性物質は、該金属炭化物層を備える炭素含有担体に施されていることを特徴とする触媒。
A catalyst produced by the method according to any one of claims 1 to 10,
Containing a carbon-containing support and a catalytically active substance,
The carbon-containing support has a metal carbide layer,
The catalyst, wherein the catalytically active substance is applied to a carbon-containing support having the metal carbide layer.
炭素含有担体が、250m2/g以下のBET表面積を有する請求項11に記載の触媒。 The catalyst according to claim 11, wherein the carbon-containing support has a BET surface area of 250 m 2 / g or less. 触媒活性物質が白金属の金属であるか、又は白金属の少なくとも1種の金属を含有する合金である請求項11又は12に記載の触媒。   The catalyst according to claim 11 or 12, wherein the catalytically active substance is a metal of a white metal or an alloy containing at least one metal of a white metal. 白金族の少なくとも1種の金属を含む合金が、PtNi、PtFe、PtV、PtCr、PtTi、PtCu、PtPd、PtRu、PdNi、PdFe、PdCr、PdTi、PdCu及びPdRuからなる群から選択される請求項13に記載の触媒。   The alloy comprising at least one platinum group metal is selected from the group consisting of PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu and PdRu. The catalyst according to 1. 金属炭化物層の金属が、タングステン及び/又はモリブデンを含む請求項11〜14の何れかに記載の触媒。   The catalyst according to any one of claims 11 to 14, wherein the metal of the metal carbide layer contains tungsten and / or molybdenum. 燃料電池の電気触媒として請求項11〜15の何れかに記載の触媒を使用する方法。   A method of using the catalyst according to any one of claims 11 to 15 as an electrocatalyst for a fuel cell.
JP2012551724A 2010-02-05 2011-02-03 Catalyst production method and catalyst Pending JP2013518710A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10152811 2010-02-05
EP10152811.5 2010-02-05
PCT/IB2011/050471 WO2011095943A1 (en) 2010-02-05 2011-02-03 Process for producing a catalyst and catalyst

Publications (2)

Publication Number Publication Date
JP2013518710A true JP2013518710A (en) 2013-05-23
JP2013518710A5 JP2013518710A5 (en) 2014-03-20

Family

ID=44355023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012551724A Pending JP2013518710A (en) 2010-02-05 2011-02-03 Catalyst production method and catalyst

Country Status (5)

Country Link
EP (1) EP2531295A4 (en)
JP (1) JP2013518710A (en)
KR (1) KR20120115559A (en)
CN (1) CN102762297B (en)
WO (1) WO2011095943A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531554A (en) * 2010-05-10 2013-08-08 ユーティーシー パワー コーポレイション Supported catalyst
WO2015141595A1 (en) * 2014-03-20 2015-09-24 国立大学法人九州大学 Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell
US9153823B2 (en) 2011-11-14 2015-10-06 Audi Ag Carbide stabilized catalyst structures and method of making
KR20170095407A (en) 2014-08-28 2017-08-22 엔.이. 켐캣 가부시키가이샤 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
JP2018509735A (en) * 2015-02-05 2018-04-05 プサン ナショナル ユニバーシティー インダストリー−ユニバーシティー コーオペレイション ファウンデーション Anode electrode for fuel cell and membrane-electrode assembly for fuel cell including the same
KR20210037799A (en) * 2019-09-27 2021-04-07 한국과학기술원 Highly Durable Metal Ensemble Catalysts with Full Dispersion and Reduced Metallic State
KR20210158118A (en) * 2020-06-23 2021-12-30 한국과학기술원 Single Atomic Platinum Catalysts and Preparing Method Thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687483A1 (en) 2012-07-16 2014-01-22 Basf Se Graphene containing nitrogen and optionally iron and/or cobalt
CN106537670B (en) * 2015-03-31 2018-12-04 恩亿凯嘉股份有限公司 Electrode catalyst and manufacturing method, gas-diffusion electrode and formation composition, MEA, fuel cell pack and composite particles
GB2550146A (en) * 2016-05-10 2017-11-15 The Argen Corp Metal alloy for dental Prosthesis
DE102016111981A1 (en) * 2016-06-30 2018-01-04 Volkswagen Ag Process for the preparation of a supported catalyst material for a fuel cell
KR102138261B1 (en) 2018-08-27 2020-07-28 울산과학기술원 Electrocatalysts for metal-air batteries and preparation method thereof
CN109686982A (en) * 2019-01-29 2019-04-26 冯良荣 A method of preparing load type carbon nitride
CN111957322A (en) * 2020-07-29 2020-11-20 广东工业大学 Ni-Ru/AC bimetallic catalyst, preparation and application in lignin degradation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH633497A5 (en) * 1977-03-30 1982-12-15 Kernforschungsanlage Juelich METHOD FOR REDUCING REDUCABLE POLLUTANTS IN AQUEOUS SOLUTIONS.
JP2003117398A (en) * 2001-10-12 2003-04-22 Toyota Motor Corp Wc carrying catalyst and production method thereof
CN1169621C (en) * 2002-04-10 2004-10-06 中国科学院大连化学物理研究所 Preparation method of transition metal carbide catalyst and its catalytic performance
US20050282061A1 (en) * 2004-06-22 2005-12-22 Campbell Stephen A Catalyst support for an electrochemical fuel cell
KR100825688B1 (en) * 2006-04-04 2008-04-29 학교법인 포항공과대학교 Nanoporous tungsten carbide catalyst and preparation method of the same
JP5122178B2 (en) * 2007-04-27 2013-01-16 勝 市川 Supported catalyst for hydrogenation / dehydrogenation reaction, production method thereof, and hydrogen storage / supply method using the catalyst
CN101108347B (en) * 2007-08-07 2010-09-29 北京交通大学 Method of manufacturing wolfram carbine/platinum compound catalyze material for fuel batter with proton exchange film
CN101229512A (en) * 2007-10-09 2008-07-30 新源动力股份有限公司 Method of increasing fuel cell catalyst stability
CN101342493A (en) * 2008-08-15 2009-01-14 哈尔滨工业大学 Direct alcohols fuel cell anode catalyst carrier wolfram carbine and process for preparing catalyst of Pt-Ni-Pb/WC
CN101362093B (en) * 2008-09-25 2010-10-13 华南师范大学 Carbon supported platinum composite catalyst of fuel cell and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531554A (en) * 2010-05-10 2013-08-08 ユーティーシー パワー コーポレイション Supported catalyst
US9147884B2 (en) 2010-05-10 2015-09-29 Audi Ag Fuel cell catalyst including carbon support particles with metal carbide layer and catalytic material and fuel cell using the same
US9991523B2 (en) 2010-05-10 2018-06-05 Audi Ag Fuel cell catalyst including carbon support particles with metal carbide layer and catalytic material and fuel cell using the same
US9153823B2 (en) 2011-11-14 2015-10-06 Audi Ag Carbide stabilized catalyst structures and method of making
WO2015141595A1 (en) * 2014-03-20 2015-09-24 国立大学法人九州大学 Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell
JPWO2015141595A1 (en) * 2014-03-20 2017-04-06 国立大学法人九州大学 ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
KR20170095406A (en) 2014-08-28 2017-08-22 엔.이. 켐캣 가부시키가이샤 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
KR101786408B1 (en) * 2014-08-28 2017-10-17 엔.이. 켐캣 가부시키가이샤 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
US9893365B2 (en) 2014-08-28 2018-02-13 N.E. Chemcat Corporation Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion elelctrode, membrane-electrode assembly, and fuel cell stack
KR20170095407A (en) 2014-08-28 2017-08-22 엔.이. 켐캣 가부시키가이샤 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
JP2018509735A (en) * 2015-02-05 2018-04-05 プサン ナショナル ユニバーシティー インダストリー−ユニバーシティー コーオペレイション ファウンデーション Anode electrode for fuel cell and membrane-electrode assembly for fuel cell including the same
KR20210037799A (en) * 2019-09-27 2021-04-07 한국과학기술원 Highly Durable Metal Ensemble Catalysts with Full Dispersion and Reduced Metallic State
KR102268466B1 (en) 2019-09-27 2021-06-24 한국과학기술원 Highly Durable Metal Ensemble Catalysts with Full Dispersion and Reduced Metallic State
KR20210158118A (en) * 2020-06-23 2021-12-30 한국과학기술원 Single Atomic Platinum Catalysts and Preparing Method Thereof
KR102391273B1 (en) 2020-06-23 2022-04-27 한국과학기술원 Single Atomic Platinum Catalysts and Preparing Method Thereof

Also Published As

Publication number Publication date
CN102762297B (en) 2015-06-10
EP2531295A4 (en) 2014-01-29
CN102762297A (en) 2012-10-31
EP2531295A1 (en) 2012-12-12
WO2011095943A1 (en) 2011-08-11
KR20120115559A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP2013518710A (en) Catalyst production method and catalyst
US8709964B2 (en) Process for producing a carbon-comprising support
JP6001793B2 (en) Method for producing fuel cell catalyst
EP2638963B1 (en) Carbon catalyst and process for production thereof, and electrode and battery each equipped with same
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
KR20140002628A (en) Process for produclng carbon-comprising support
US9397348B2 (en) Catalyst
Odetola et al. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier
US20110195347A1 (en) Process for producing a catalyst and catalyst
JP2018507097A (en) Carbon supported catalyst containing modifier and method for producing carbon supported catalyst
JP2015173132A (en) Fuel cell catalyst with metal oxide doped therein
Hsieh et al. Deposition and activity stability of Pt–Co catalysts on carbon nanotube-based electrodes prepared by microwave-assisted synthesis
WO2017126137A1 (en) Core-shell structure type nanosheet
EP4008431A1 (en) Metal-loaded catalyst, battery electrode and battery
US9905859B2 (en) Catalyst for solid polymer fuel cell and method for manufacturing the same
JP2016003396A (en) Synthesis of alloy nanoparticles as stable core for core-shell electrode catalysts
JP2012529135A (en) Catalyst for electrochemical applications
US11998903B2 (en) Method for producing catalysts with nanoparticles of platinum and its alloys with metals
Zignani et al. Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction
WO2018124193A1 (en) Oxygen reduction catalyst, membrane electrode assembly, and fuel cell
JP5313891B2 (en) Platinum / tungsten electrode catalyst supported on carbon and method for producing the same
JP2012035178A (en) Method for manufacturing catalyst, and catalyst
Fornazier Filho et al. Development of palladium catalysts modified by ruthenium and molybdenum as anode in direct ethanol fuel cell
JP2020145154A (en) Manufacturing method of platinum core-shell catalyst and fuel cell using the same
JP6815590B2 (en) Platinum catalyst, its manufacturing method, and fuel cells using the platinum catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510