JP2013518710A5 - - Google Patents

Download PDF

Info

Publication number
JP2013518710A5
JP2013518710A5 JP2012551724A JP2012551724A JP2013518710A5 JP 2013518710 A5 JP2013518710 A5 JP 2013518710A5 JP 2012551724 A JP2012551724 A JP 2012551724A JP 2012551724 A JP2012551724 A JP 2012551724A JP 2013518710 A5 JP2013518710 A5 JP 2013518710A5
Authority
JP
Japan
Prior art keywords
metal
carbon
containing support
catalytically active
carbide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012551724A
Other languages
Japanese (ja)
Other versions
JP2013518710A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2011/050471 external-priority patent/WO2011095943A1/en
Publication of JP2013518710A publication Critical patent/JP2013518710A/en
Publication of JP2013518710A5 publication Critical patent/JP2013518710A5/ja
Pending legal-status Critical Current

Links

Claims (16)

触媒活性物質及び炭素含有担体を含む触媒の製造方法であって、
以下の工程:
(a)金属塩溶液に炭素含有担体を含浸させる工程、
(b)金属塩溶液が含浸した炭素含有担体を、不活性雰囲気中で1200℃の温度に加熱して金属炭化物層を形成する工程、
(c)金属炭化物層を備えた炭素含有担体に触媒活性物質を施す工程
を含む方法。
A method for producing a catalyst comprising a catalytically active material and a carbon-containing support,
The following steps:
(A) impregnating a metal salt solution with a carbon-containing support;
(B) heating the carbon-containing support impregnated with the metal salt solution to a temperature of 1200 ° C. in an inert atmosphere to form a metal carbide layer;
(C) applying a catalytically active material to a carbon-containing support provided with a metal carbide layer.
炭素含有担体を含浸させる金属塩溶液が化学量論量で添加される請求項1に記載の方法。   The method of claim 1, wherein the metal salt solution impregnating the carbon-containing support is added in a stoichiometric amount. 前記金属塩溶液の金属が、タングステン、モリブデン、又はこれらの金属の少なくとも1種を含む混合物若しくは合金である請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the metal of the metal salt solution is tungsten, molybdenum, or a mixture or alloy containing at least one of these metals. 前記金属塩溶液が、タングステン酸塩溶液である請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the metal salt solution is a tungstate solution. 工程(b)における加熱が、不活性雰囲気中で実施される請求項1〜4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein the heating in the step (b) is carried out in an inert atmosphere. 触媒活性金属が、白金属の金属であるか、或いは白金属の少なくとも1種の金属を含有する合金である請求項1〜5の何れかに記載の方法。   The method according to claim 1, wherein the catalytically active metal is a white metal or an alloy containing at least one metal of the white metal. 白金族の少なくとも1種の金属を含む合金が、PtNi、PtFe、PtV、PtCr、PtTi、PtCu、PtPd、PtRu、PdNi、PdFe、PdCr、PdTi、PdCu及びPdRuからなる群から選択される請求項6に記載の方法。   The alloy containing at least one platinum group metal is selected from the group consisting of PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu and PdRu. The method described in 1. 白金族の金属が、白金又はパラジウムである請求項6に記載の方法。   The method according to claim 6, wherein the platinum group metal is platinum or palladium. 触媒活性物質を、還元析出により、又はH/Nガス混合物中での分解及び還元により、金属炭化物層を備える炭素含有担体に施す請求項1〜8に記載の方法。 The method according to claim 1, wherein the catalytically active substance is applied to the carbon-containing support provided with the metal carbide layer by reduction deposition or by decomposition and reduction in a H 2 / N 2 gas mixture. 炭素含有担体が250m/g以下のBET表面積を有する請求項1〜9の何れかに記載の方法。 The method according to claim 1, wherein the carbon-containing support has a BET surface area of 250 m 2 / g or less. 請求項1〜10の何れかに記載の方法により製造された触媒であって、
炭素含有担体と触媒活性物質を含有し、
該炭素含有担体は、金属炭化物層を有し、
前記触媒活性物質は、該金属炭化物層を備える炭素含有担体に施されていることを特徴とする触媒。
A catalyst produced by the method according to any one of claims 1 to 10,
Containing a carbon-containing support and a catalytically active substance,
The carbon-containing support has a metal carbide layer,
The catalyst, wherein the catalytically active substance is applied to a carbon-containing support having the metal carbide layer.
炭素含有担体が、250m/g以下のBET表面積を有する請求項11に記載の触媒。 The catalyst according to claim 11, wherein the carbon-containing support has a BET surface area of 250 m 2 / g or less. 触媒活性物質が白金属の金属であるか、又は白金属の少なくとも1種の金属を含有する合金である請求項11又は12に記載の触媒。   The catalyst according to claim 11 or 12, wherein the catalytically active substance is a metal of a white metal or an alloy containing at least one metal of a white metal. 白金族の少なくとも1種の金属を含む合金が、PtNi、PtFe、PtV、PtCr、PtTi、PtCu、PtPd、PtRu、PdNi、PdFe、PdCr、PdTi、PdCu及びPdRuからなる群から選択される請求項13に記載の触媒。   The alloy comprising at least one platinum group metal is selected from the group consisting of PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu and PdRu. The catalyst according to 1. 金属炭化物層の金属が、タングステン及び/又はモリブデンを含む請求項11〜14の何れかに記載の触媒。   The catalyst according to any one of claims 11 to 14, wherein the metal of the metal carbide layer contains tungsten and / or molybdenum. 燃料電池の電極として使用するための、請求項11〜15の何れかに記載の触媒。 For use as an electrode for a fuel cell, catalysts according to any one of claims 11 to 15.
JP2012551724A 2010-02-05 2011-02-03 Catalyst production method and catalyst Pending JP2013518710A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10152811 2010-02-05
EP10152811.5 2010-02-05
PCT/IB2011/050471 WO2011095943A1 (en) 2010-02-05 2011-02-03 Process for producing a catalyst and catalyst

Publications (2)

Publication Number Publication Date
JP2013518710A JP2013518710A (en) 2013-05-23
JP2013518710A5 true JP2013518710A5 (en) 2014-03-20

Family

ID=44355023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012551724A Pending JP2013518710A (en) 2010-02-05 2011-02-03 Catalyst production method and catalyst

Country Status (5)

Country Link
EP (1) EP2531295A4 (en)
JP (1) JP2013518710A (en)
KR (1) KR20120115559A (en)
CN (1) CN102762297B (en)
WO (1) WO2011095943A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142738A1 (en) * 2010-05-10 2011-11-17 Utc Power Corporation Supported catalyst
US9153823B2 (en) 2011-11-14 2015-10-06 Audi Ag Carbide stabilized catalyst structures and method of making
EP2687483A1 (en) 2012-07-16 2014-01-22 Basf Se Graphene containing nitrogen and optionally iron and/or cobalt
JP6624711B2 (en) * 2014-03-20 2019-12-25 国立大学法人九州大学 Fuel cell anode electrode material and method for producing the same, and fuel cell electrode, membrane electrode assembly, and polymer electrolyte fuel cell
KR101786408B1 (en) * 2014-08-28 2017-10-17 엔.이. 켐캣 가부시키가이샤 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
KR101679185B1 (en) * 2015-02-05 2016-12-06 부산대학교 산학협력단 An anode for fuel cell and membrane-electrode assembly for fuel cell comprising the same
EP3145008B1 (en) * 2015-03-31 2019-10-23 N.E. Chemcat Corporation Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, fuel cell stack and method for producing electrode catalyst
GB2550146A (en) * 2016-05-10 2017-11-15 The Argen Corp Metal alloy for dental Prosthesis
DE102016111981A1 (en) * 2016-06-30 2018-01-04 Volkswagen Ag Process for the preparation of a supported catalyst material for a fuel cell
KR102138261B1 (en) 2018-08-27 2020-07-28 울산과학기술원 Electrocatalysts for metal-air batteries and preparation method thereof
CN109686982A (en) * 2019-01-29 2019-04-26 冯良荣 A method of preparing load type carbon nitride
KR102268466B1 (en) * 2019-09-27 2021-06-24 한국과학기술원 Highly Durable Metal Ensemble Catalysts with Full Dispersion and Reduced Metallic State
KR102391273B1 (en) * 2020-06-23 2022-04-27 한국과학기술원 Single Atomic Platinum Catalysts and Preparing Method Thereof
CN111957322A (en) * 2020-07-29 2020-11-20 广东工业大学 Ni-Ru/AC bimetallic catalyst, preparation and application in lignin degradation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH633497A5 (en) * 1977-03-30 1982-12-15 Kernforschungsanlage Juelich METHOD FOR REDUCING REDUCABLE POLLUTANTS IN AQUEOUS SOLUTIONS.
JP2003117398A (en) * 2001-10-12 2003-04-22 Toyota Motor Corp Wc carrying catalyst and production method thereof
CN1169621C (en) * 2002-04-10 2004-10-06 中国科学院大连化学物理研究所 Preparation method of transition metal carbide catalyst and its catalytic performance
US20050282061A1 (en) * 2004-06-22 2005-12-22 Campbell Stephen A Catalyst support for an electrochemical fuel cell
KR100825688B1 (en) * 2006-04-04 2008-04-29 학교법인 포항공과대학교 Nanoporous tungsten carbide catalyst and preparation method of the same
JP5122178B2 (en) * 2007-04-27 2013-01-16 勝 市川 Supported catalyst for hydrogenation / dehydrogenation reaction, production method thereof, and hydrogen storage / supply method using the catalyst
CN101108347B (en) * 2007-08-07 2010-09-29 北京交通大学 Method of manufacturing wolfram carbine/platinum compound catalyze material for fuel batter with proton exchange film
CN101229512A (en) * 2007-10-09 2008-07-30 新源动力股份有限公司 Method of increasing fuel cell catalyst stability
CN101342493A (en) * 2008-08-15 2009-01-14 哈尔滨工业大学 Direct alcohols fuel cell anode catalyst carrier wolfram carbine and process for preparing catalyst of Pt-Ni-Pb/WC
CN101362093B (en) * 2008-09-25 2010-10-13 华南师范大学 Carbon supported platinum composite catalyst of fuel cell and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2013518710A5 (en)
Chen et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization
Huang et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene
Concepción et al. Chemoselective hydrogenation catalysts: Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder
Xu et al. Engineering Ni3+ cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation
Shen et al. MOFs-templated Co@ Pd core–shell NPs embedded in N-doped carbon matrix with superior hydrogenation activities
Wang et al. Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method
Luo et al. Identification of CuO species in high surface area CuO− CeO2 catalysts and their catalytic activities for CO oxidation
Sun et al. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer–Tropsch synthesis
Yang et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal–organic framework composites
Takale et al. Unsupported nanoporous gold catalyst for chemoselective hydrogenation reactions under low pressure: effect of residual silver on the reaction
Chakroune et al. Acetate-and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies
Jin et al. Oxidation of glycerol to dicarboxylic acids using cobalt catalysts
Onn et al. Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2
Liu et al. Oxide‐nanotrap‐anchored platinum nanoparticles with high activity and sintering resistance by area‐selective atomic layer deposition
Hayden Particle size and support effects in electrocatalysis
Shao et al. Pt monolayer on porous Pd− Cu alloys as oxygen reduction electrocatalysts
Zhang et al. High efficiency Cu-ZnO hydrogenation catalyst: the tailoring of Cu-ZnO interface sites by molecular layer deposition
Long et al. Aminopolymer–silica composite-supported Pd catalysts for selective hydrogenation of alkynes
Jin et al. Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets
Bera et al. Ionic dispersion of Pt over CeO2 by the combustion method: structural investigation by XRD, TEM, XPS, and EXAFS
Hanif et al. Study on the structure and formation mechanism of molybdenum carbides
Yang et al. Role of support–nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites
Rao et al. In situ embedded pseudo Pd–Sn solid solution in micropores silica with remarkable catalytic performance for CO and propane oxidation
Zhang et al. Metal particle size and structure of the metal− support interface of carbon-supported platinum catalysts as determined with EXAFS spectroscopy