JP2003117398A - Wc carrying catalyst and production method thereof - Google Patents

Wc carrying catalyst and production method thereof

Info

Publication number
JP2003117398A
JP2003117398A JP2001315742A JP2001315742A JP2003117398A JP 2003117398 A JP2003117398 A JP 2003117398A JP 2001315742 A JP2001315742 A JP 2001315742A JP 2001315742 A JP2001315742 A JP 2001315742A JP 2003117398 A JP2003117398 A JP 2003117398A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
supported
transition metal
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001315742A
Other languages
Japanese (ja)
Inventor
Shinji Tsuji
慎二 辻
Yusuke Ito
祐介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001315742A priority Critical patent/JP2003117398A/en
Publication of JP2003117398A publication Critical patent/JP2003117398A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst which does not use noble metal such as platinum and expresses catalytic action equal to noble metal such as platinum. SOLUTION: This catalyst features that WC is carried on a carrier. Preferably, average grain size of WC is 0.5-10 nm and transition metal is additionally carried. Such a catalyst is produced in such a manner that hollow carbon particles introducing tungsten into fine pores thereof are carried on the carrier and, subsequently, are sintered. This catalyst can be used for the catalyst for cleaning waste gas of internal combustion engine and the electrode catalyst of fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、触媒成分の貴金属
の代替を目的とした触媒、より詳しくは、炭化タングス
テン(WC)を触媒成分として使用した触媒に関する。
TECHNICAL FIELD The present invention relates to a catalyst for substituting a noble metal for a catalyst component, and more particularly to a catalyst using tungsten carbide (WC) as a catalyst component.

【0002】[0002]

【従来の技術】自動車用エンジン等の内燃機関から排出
される排気ガスには、一酸化炭素(CO)、炭化水素(H
C)、窒素酸化物(NOX)等が含まれ、これらの有害物質
は、一般に、白金(Pt)等の貴金属を主成分とする触媒
成分がアルミナ、ジルコニア、セリア-ジルコニアのよ
うな担体に担持された排気ガス浄化用触媒によって浄化
される。
2. Description of the Related Art Exhaust gas emitted from an internal combustion engine such as an automobile engine contains carbon monoxide (CO), hydrocarbon (H
C), nitrogen oxides (NO x ), etc., and these toxic substances generally have a catalyst component mainly composed of a noble metal such as platinum (Pt) on a carrier such as alumina, zirconia or ceria-zirconia. It is purified by the carried exhaust gas purification catalyst.

【0003】また、リン酸電解液燃料電池や高分子電解
質燃料電池のような燃料電池は、水素等の燃料をイオン
化させる負極と、そのイオン化した燃料を燃焼させる正
極を備えるが、これらの電極は、一般に、白金等の貴金
属を主成分とする触媒成分が導電性炭素材料等に担持さ
れて構成される。
Fuel cells such as phosphoric acid electrolyte fuel cells and polymer electrolyte fuel cells are provided with a negative electrode for ionizing a fuel such as hydrogen and a positive electrode for burning the ionized fuel. Generally, a catalyst component containing a noble metal such as platinum as a main component is supported on a conductive carbon material or the like.

【0004】しかるに、白金等の貴金属は、これらの排
気ガス浄化用触媒や燃料電池の触媒成分として良好に作
用するが、高価であり、採掘量にも限りがある。また、
さらなる環境保護のために排気ガス浄化用触媒の性能を
さらに向上させる必要があるが、それには貴金属の使用
量の増加を招くことになる。
However, although noble metals such as platinum act well as these exhaust gas purification catalysts and catalyst components of fuel cells, they are expensive and the amount of mining is limited. Also,
It is necessary to further improve the performance of the exhaust gas purifying catalyst for further environmental protection, but this will lead to an increase in the amount of precious metal used.

【0005】一方、燃料電池を自動車の動力源とするこ
とで、自動車の排気ガスをクリーン化することも期待さ
れている。しかし、例えば、水素を燃料とした燃料電池
の電極に使用される触媒成分の白金の量は、同じ動力を
発生するガソリン車の排気ガス浄化用触媒に使用される
白金の量よりも相当に多量である。
On the other hand, it is expected that the exhaust gas of the automobile will be cleaned by using the fuel cell as the power source of the automobile. However, for example, the amount of platinum as a catalyst component used in electrodes of hydrogen fueled fuel cells is considerably larger than the amount of platinum used in exhaust gas purification catalysts of gasoline vehicles that generate the same power. Is.

【0006】[0006]

【発明が解決しようとする課題】このように、内燃機関
の排気ガス浄化用触媒に使用される触媒成分と、燃料電
池の電極に使用される触媒成分は、いずれも、触媒成分
の貴金属の使用量を削減すること、又は触媒成分を貴金
属から別な成分に代替することが課題となっている。し
たがって、本発明は、白金等の貴金属を使用せず、白金
等の貴金属が使用された触媒と同等な触媒作用を発揮す
る触媒を提供することを目的とする。
As described above, both of the catalyst component used for the exhaust gas purifying catalyst of the internal combustion engine and the catalyst component used for the electrode of the fuel cell use the noble metal of the catalyst component. The challenge is to reduce the amount or replace the catalyst component with a noble metal. Therefore, an object of the present invention is to provide a catalyst that does not use a noble metal such as platinum and exhibits a catalytic action equivalent to that of a catalyst using a noble metal such as platinum.

【0007】[0007]

【課題を解決するための手段】上記の目的は、担体上に
WC(炭化タングステン)が担持されてなることを特徴と
する触媒によって達成される。即ち、本発明の触媒は、
触媒成分としてWCを使用する触媒である。かかる触媒
が触媒作用を発揮することができる理由は、WCの外殻
電子状態が、Ptの外殻電子状態と近似しているためと
考えられる。
The above object can be achieved by a catalyst characterized in that WC (tungsten carbide) is supported on a carrier. That is, the catalyst of the present invention is
The catalyst uses WC as a catalyst component. It is considered that the reason why such a catalyst can exert the catalytic action is that the outer shell electronic state of WC is close to the outer shell electronic state of Pt.

【0008】好ましい態様として、担体上のWCの平均
粒子径が0.5〜10nm(ナノメートル)である。WC
がかかる微細な粒子径を有することにより、触媒活性が
さらに高められるものと考えられる。
In a preferred embodiment, the WC on the carrier has an average particle size of 0.5 to 10 nm (nanometer). WC
It is considered that the catalyst activity is further enhanced by having such a fine particle size.

【0009】好ましい態様として、担体上にWCとさら
に遷移金属が担持されて触媒が構成される。かかる担持
により、WCの外殻電子状態が触媒機能について最適化
されるものと考えられる。この態様における本発明の触
媒の構成を図1にモデル的に示す。このような担体上に
WCが担持されて構成される触媒は、排気ガス浄化用触
媒として、又は燃料電池の電極触媒として好適に使用さ
れることができる。
In a preferred embodiment, WC and a transition metal are further supported on a carrier to form a catalyst. It is believed that such loading optimizes the outer shell electronic state of WC for catalytic function. The structure of the catalyst of the present invention in this embodiment is shown in model form in FIG. A catalyst in which WC is supported on such a carrier can be suitably used as an exhaust gas purifying catalyst or an electrode catalyst of a fuel cell.

【0010】[0010]

【発明の実施の形態】本発明の触媒は、担体上にWCが
担持されてなることを特徴とする。本発明の触媒を内燃
機関の排気ガス浄化用触媒に適用する場合、この担体
は、例えば、アルミナ、シリカ、ジルコニアのような酸
化物のほか、シリカ-アルミナ、ジルコニア-セリア、ア
ルミナ-セリア-ジルコニア、セリア-ジルコニア-イット
リア、ジルコニア-カルシアのような複合酸化物からな
るものが好適である。また、本発明の触媒を燃料電池の
電極に適用する場合、この担体は、例えば、アセチレン
ブラック等の導電性カーボンブラックが好適である。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention is characterized in that WC is supported on a carrier. When the catalyst of the present invention is applied to an exhaust gas purifying catalyst for an internal combustion engine, the carrier includes, for example, oxides such as alumina, silica and zirconia, as well as silica-alumina, zirconia-ceria, alumina-ceria-zirconia. Preferred are those composed of composite oxides such as, ceria-zirconia-yttria, and zirconia-calcia. Further, when the catalyst of the present invention is applied to an electrode of a fuel cell, the carrier is preferably conductive carbon black such as acetylene black.

【0011】このような担体にWCを担持するのは、例
えば、WCの粉末と上記のアルミナ等の粉末を水に分散
させてスラリーにし、ボールミル等を用いて混合し、次
いでそのスラリーを乾燥させることによって行うことが
できる。好ましくは、担体上に担持されたWCは、平均
粒子径が0.5〜10nmといった微細な粒子である。
To carry WC on such a carrier, for example, the powder of WC and the above-mentioned powder of alumina or the like are dispersed in water to form a slurry, which is mixed using a ball mill or the like, and then the slurry is dried. Can be done by Preferably, the WC carried on the carrier is fine particles having an average particle diameter of 0.5 to 10 nm.

【0012】このような微細なWCを担持するのは、例
えば、タングステン化合物をWC前駆体として用い、W
Cを担体上で微粒子として堆積させることによって行う
ことができる。より詳しくは、加熱された担体に、例え
ば、タングステンヘキサカルボニルW(CO)6のガスを
接触させ、又は塩化タングステンWCl6とメタン等の
炭化水素の混合ガスを接触させ、次いで必要により、不
活性雰囲気中で600〜2000℃に加熱することでW
Cの微粒子を担持させることができる。
To support such fine WC, for example, a tungsten compound is used as a WC precursor,
This can be done by depositing C as fine particles on the carrier. More specifically, for example, a gas of tungsten hexacarbonyl W (CO) 6 is brought into contact with the heated carrier, or a mixed gas of tungsten chloride WCl 6 and a hydrocarbon such as methane is brought into contact therewith, and then, if necessary, an inert gas. W by heating to 600-2000 ° C in the atmosphere
C fine particles can be supported.

【0013】また、このような微細なWCを担持するの
は、細孔内にタングステンが導入された中空の炭素粒子
を担体に担持し、次いで、焼成することによって行うこ
とができる。より詳しくは、微細な細孔を有する中空の
炭素粒子とタングステン金属塊を用意し、両者を真空に
保持した反応管内に配置した後、タングステン金属塊を
加熱することにより、タングステンがガス状で炭素粒子
に接触する状態を形成する。この状態をある時間にわた
って維持すると、ガス状のタングステンは一旦細孔内に
入ると細孔の外に逃散しないため、タングステンを、数
原子がまとまったクラスターの状態で、細孔内に高収率
で導入することができる。
The loading of such fine WC can be carried out by loading the hollow carbon particles having the tungsten introduced into the pores on the support and then firing. More specifically, hollow carbon particles having fine pores and a tungsten metal lump are prepared, and both are placed in a reaction tube kept in a vacuum, and then the tungsten metal lump is heated so that the tungsten becomes carbon in a gaseous state. Form a state of contact with the particles. If this state is maintained for a certain period of time, once the gaseous tungsten enters the pores, it does not escape to the outside of the pores. Can be introduced at.

【0014】次いで、この細孔内にタングステンが導入
された中空の炭素粒子を、例えば、上記のアルミナ等の
担体と混合・乾燥する等によって担体に担持し、次い
で、不活性雰囲気中で焼成することにより、炭素とタン
グステンを反応させてWCを生成させ、同時に担体にW
Cを担持することができる。この焼成温度は、600〜
1300℃が一応の目安である。
Next, the hollow carbon particles having tungsten introduced into the pores are supported on a carrier by, for example, mixing and drying with a carrier such as alumina described above, and then calcined in an inert atmosphere. As a result, carbon and tungsten are reacted with each other to generate WC, and at the same time W is added to the carrier.
C can be supported. The firing temperature is 600 to
1300 ° C is a rough standard.

【0015】この方法によると、0.5〜10nm、よ
り好ましくは0.5〜5nmといった微細な粒子径を有
するWCを容易に担体に担持することができる。この理
由としては、上記の焼成の過程で、タングステンクラス
ターは、それらを囲む炭素粒子の壁によって相互の接触
が遮られており、また、タングステンが導入された中空
の炭素粒子は、担体に担持されるにおいて、担体の構造
欠陥部位に固定されやすく、それによって焼成時の移動
によるWCの肥大化が抑制されることが推定される。
According to this method, WC having a fine particle size of 0.5 to 10 nm, more preferably 0.5 to 5 nm can be easily supported on the carrier. The reason for this is that in the above firing process, the tungsten clusters are blocked from contacting each other by the walls of the carbon particles surrounding them, and the hollow carbon particles into which tungsten has been introduced are not supported on the carrier. In this case, it is presumed that the WC is likely to be fixed to the structural defect site of the carrier, which suppresses the enlargement of WC due to the movement during firing.

【0016】このような中空の炭素粒子としては、約
0.5〜10nmの細孔径と、好ましくは、1〜10n
mの長さを有するものが適切であり、例えば、いわゆる
カーボンナノチューブやカーボンナノホーンが好適に使
用可能である。なお、こうしたカーボンナノチューブや
カーボンナノホーンは、メタン等の炭化水素を酸化鉄の
ような触媒の存在下で熱分解させる、又は固体状炭素に
レーザーを照射する等の方法によって製造することがで
き、このような製造方法の先行技術には、例えば、特開
2001−64004号公報がある。
Such hollow carbon particles have a pore size of about 0.5 to 10 nm and preferably 1 to 10 n.
Those having a length of m are suitable, and for example, so-called carbon nanotubes and carbon nanohorns can be preferably used. Such carbon nanotubes and carbon nanohorns can be produced by a method of thermally decomposing a hydrocarbon such as methane in the presence of a catalyst such as iron oxide, or irradiating solid carbon with a laser. As a prior art of such a manufacturing method, there is, for example, Japanese Patent Laid-Open No. 2001-64004.

【0017】好ましくは、本発明の触媒は、担体上に、
WCに加えて遷移金属が担持されて構成される。この遷
移金属の担持は、遷移金属の硝酸塩、塩化物、酢酸塩、
炭酸塩等を用い、蒸発乾固法、含浸法、沈殿法、イオン
交換法、吸着法、還元析出法等によって行うことができ
る。好ましくは、この遷移金属の担持は、水溶液中で遷
移金属のイオンを生成する化合物の水溶液に還元剤を添
加し、遷移金属のイオンを還元することによって不溶性
にし、遷移金属の粒子を析出させる還元析出により行
う。
Preferably, the catalyst of the present invention is on a support,
In addition to WC, a transition metal is supported and configured. This transition metal is supported by transition metal nitrates, chlorides, acetates,
It can be carried out by using a carbonate or the like by an evaporation dryness method, an impregnation method, a precipitation method, an ion exchange method, an adsorption method, a reduction precipitation method or the like. Preferably, the transition metal is supported by adding a reducing agent to an aqueous solution of a compound that produces a transition metal ion in an aqueous solution, reducing the transition metal ion to make it insoluble, and reducing the transition metal particles to precipitate. It is performed by precipitation.

【0018】具体的には、遷移金属の硝酸塩、硫酸塩、
塩化物、酢酸塩、炭酸塩等の化合物を、上記のWCを担
持した担体の水系スラリーに溶解させ、このスラリー
に、クエン酸三ナトリウム二水和物C65Na37・2
2O、ヒドラジンN24、チオ硫酸ナトリウムNa2
23、チオ硫酸カリウムK223、チオ硫酸アンモニ
ウム(NH4)223、亜硫酸ナトリウムNa2SO3、ホ
ウ水素化物、次亜リン酸塩、クエン酸塩、ギ酸CH
22、シュウ酸CH24等の還元剤と、L-アスコルビン
酸ナトリウムC676Na、エチレンジアミン四酢酸
塩等の緩衝剤を添加して遷移金属のイオンを還元し、遷
移金属の微粒子を析出させる。
Specifically, transition metal nitrates, sulfates,
Chloride, acetate, a compound such as carbonate, was dissolved in an aqueous slurry of the support carrying the above WC, to the slurry, trisodium citrate dihydrate C 6 H 5 Na 3 O 7 · 2
H 2 O, hydrazine N 2 H 4 , sodium thiosulfate Na 2 S
2 O 3 , potassium thiosulfate K 2 S 2 O 3 , ammonium thiosulfate (NH 4 ) 2 S 2 O 3 , sodium sulfite Na 2 SO 3 , borohydride, hypophosphite, citrate, formic acid CH
A reducing agent such as 2 O 2 or oxalic acid CH 2 O 4 and a buffering agent such as sodium L-ascorbate C 6 H 7 O 6 Na or ethylenediaminetetraacetic acid salt are added to reduce the transition metal ion and transition. Precipitate fine metal particles.

【0019】こうした還元析出によれば、直径約1nm
以下の遷移金属の微粒子を、実質的に全てWCの上に析
出させることが比較的容易である。この遷移金属とWC
の量は、限定されるものではないが、遷移金属/WCの
質量比で0.01〜0.2、より好ましくは、0.01〜
0.1が一応の目安である。ここで、遷移金属以外の金
属成分が、WCの質量を基準に数質量%以下の量で含ま
れていても、本発明の目的と効果において許容されるこ
とができる。
According to such reduction precipitation, the diameter is about 1 nm.
It is relatively easy to deposit substantially all of the following transition metal particles on WC. This transition metal and WC
Is not limited, but the transition metal / WC mass ratio is 0.01 to 0.2, and more preferably 0.01 to 0.2.
0.1 is a rough standard. Here, even if the metal component other than the transition metal is contained in an amount of several mass% or less based on the mass of WC, it is acceptable in the object and effect of the present invention.

【0020】なお、本発明における用語「遷移金属」
は、周期律表の3A〜7A族、8族、及び1B族のd-
ブロック元素とf-ブロック元素を含む元素であり、チ
タン(Ti)、バナジウム(V)、クロム(Cr)、マンガン
(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、
銅(Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニ
オブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ラ
ンタン(La)、セリウム(Ce)、プラセオジウム(P
r)、ネオジム(Nd)が例示され、より好ましくは、マ
ンガン、鉄、コバルト、ニッケル、イットリウム、モリ
ブデン、ルテニウム、銅、セリウム、ネオジムである。
以下、実施例によって本発明をより具体的に説明する。
The term "transition metal" in the present invention is used.
Is d- of the groups 3A to 7A, 8 and 1B of the periodic table.
An element containing a block element and an f-block element, titanium (Ti), vanadium (V), chromium (Cr), manganese
(Mn), iron (Fe), cobalt (Co), nickel (Ni),
Copper (Cu), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), lanthanum (La), cerium (Ce), praseodymium (P).
r) and neodymium (Nd) are exemplified, and more preferably manganese, iron, cobalt, nickel, yttrium, molybdenum, ruthenium, copper, cerium, and neodymium.
Hereinafter, the present invention will be described more specifically with reference to Examples.

【0021】[0021]

【実施例】実施例1 反応管内部に100gのγ-アルミナ粉末(比表面積約2
00m2/g)を配置して200℃に加熱保持し、反応管
内部にWC前駆体のW(CO)6(Pure Chemical社製)を窒
素ガスに同伴させて導き、W(CO)6をγ-アルミナ粉末
上で接触・分解させた。次いで、このγ-アルミナ粉末
に、窒素ガス雰囲気中で800℃×5時間の熱処理を行
い、γ-アルミナ粉末にWCが担持された本発明の触媒
を得た。この触媒上のWCの担持量は、γ-アルミナと
の合計質量を基準に2質量%であり、透過型電子顕微鏡
(TEM)観察によるγ-アルミナ上のWC粒子の平均粒
子径は4nmであった。
Example 1 100 g of γ-alumina powder (specific surface area of about 2
00 m 2 / g) was placed and heated and maintained at 200 ° C., and WC precursor W (CO) 6 (manufactured by Pure Chemical Co.) was introduced together with nitrogen gas into the reaction tube to introduce W (CO) 6 It was contacted and decomposed on γ-alumina powder. Next, this γ-alumina powder was heat-treated at 800 ° C. for 5 hours in a nitrogen gas atmosphere to obtain a catalyst of the present invention in which WC was supported on the γ-alumina powder. The amount of WC supported on this catalyst was 2% by mass based on the total mass of γ-alumina, and the amount of WC was carried by a transmission electron microscope.
The average particle size of the WC particles on γ-alumina as observed by (TEM) was 4 nm.

【0022】実施例2 反応管内部に、平均細孔径3nm×平均長さ7nmのカ
ーボンナノホーンを0.5g配置し、そのカーボンナノ
ホーンから約2cmの位置に0.5gのタングステン金
属塊を配置した。この反応管内部を10-5Paの真空度
に保ち、カーボンナノホーンを約600℃の温度に加熱
し、タングステン金属塊を約2000℃の温度に加熱し
て、タングステン蒸気をカーボンナノホーンに接触させ
た。この状態を24時間にわたって維持し、カーボンナ
ノホーンの細孔にタングステンを導入した。
Example 2 0.5 g of carbon nanohorns having an average pore diameter of 3 nm and an average length of 7 nm were placed inside the reaction tube, and 0.5 g of a tungsten metal block was placed at a position approximately 2 cm from the carbon nanohorns. The inside of the reaction tube was maintained at a vacuum degree of 10 −5 Pa, the carbon nanohorn was heated to a temperature of about 600 ° C., the tungsten metal block was heated to a temperature of about 2000 ° C., and the tungsten vapor was brought into contact with the carbon nanohorn. . This state was maintained for 24 hours, and tungsten was introduced into the pores of the carbon nanohorn.

【0023】次いで、上記のタングステンが導入された
カーボンナノホーンの0.5gと、γ-アルミナの10g
を、200gのイオン交換水中で2時間混合した後、蒸
発乾固した。次いで、この混合物を、窒素ガス雰囲気中
で1000℃×2時間焼成し、γ-アルミナ粉末にWC
が担持された本発明の触媒を得た。この触媒上のWCの
担持量は、γ-アルミナとの合計質量を基準に2質量%
であり、TEM観察によるγ-アルミナ上のWC粒子の
平均粒子径は2nmであった。
Next, 0.5 g of the above-mentioned carbon nanohorn in which tungsten is introduced and 10 g of γ-alumina.
Was mixed in 200 g of ion-exchanged water for 2 hours and then evaporated to dryness. Then, this mixture is fired in a nitrogen gas atmosphere at 1000 ° C. for 2 hours to give γ-alumina powder by WC.
Thus, the catalyst of the present invention carrying The supported amount of WC on this catalyst is 2% by mass based on the total mass of γ-alumina.
And the average particle size of the WC particles on γ-alumina as observed by TEM was 2 nm.

【0024】実施例3 実施例1と同様にして得られたWC担持γ-アルミナ粉
末の20gを1300ccの60℃のイオン交換水に分
散させたスラリーに、下記の濃度となる量で試薬を順次
に添加し、穏やかな攪拌下に24時間置くことで硝酸マ
ンガンMn(NO3)2からMnを還元析出させた。 Mn(NO3)2 2×10-2質量% Na223・5H2O 1×10-1質量% Na2SO3 2×10-1質量% C676Na 1質量%
Example 3 20 g of the WC-supporting γ-alumina powder obtained in the same manner as in Example 1 was dispersed in 1300 cc of ion-exchanged water at 60 ° C., and the reagents were successively added in the following concentrations. And manganese nitrate Mn (NO 3 ) 2 was deposited for 24 hours under mild stirring to reduce and precipitate Mn. Mn (NO 3) 2 2 × 10 -2 wt% Na 2 S 2 O 3 · 5H 2 O 1 × 10 -1 wt% Na 2 SO 3 2 × 10 -1 wt% C 6 H 7 O 6 Na 1 mass %

【0025】この還元析出の後、スラリーを濾過・洗浄
し、大気中で120℃×2時間の乾燥を行い、次いで、
大気中で500℃×2時間の熱処理を行った。これによ
り、γ-アルミナ粉末の上に2質量%のWCと0.2質量
%のMnが担持された本発明の触媒を得た。
After this reduction precipitation, the slurry is filtered and washed, and dried in air at 120 ° C. for 2 hours, and then,
Heat treatment was performed at 500 ° C. for 2 hours in the atmosphere. As a result, the catalyst of the present invention was obtained in which 2% by mass of WC and 0.2% by mass of Mn were supported on the γ-alumina powder.

【0026】実施例4〜6 硝酸マンガンに代えて、硝酸鉄Fe(NO3)2・6H
2O、硝酸コバルトCo(NO3)2、硝酸ニッケルNi(N
3)2をそれぞれ用いた以外は、実施例3と同様にし
て、表1に摘要を示すγ-アルミナ粉末の上にWCと、
Fe、Co、Niがそれぞれ担持された本発明の触媒を
得た。
[0026] Instead of Examples 4-6 manganese nitrate, iron nitrate Fe (NO 3) 2 · 6H
2 O, cobalt nitrate Co (NO 3 ) 2 , nickel nitrate Ni (N
In the same manner as in Example 3 except that O 3 ) 2 was used, WC was formed on the γ-alumina powder whose summary is shown in Table 1.
A catalyst of the present invention on which Fe, Co, and Ni were respectively supported was obtained.

【0027】比較例1 WCが担持されていないγ-アルミナ粉末に、硝酸ニッ
ケルNi(NO3)2を用いてNiを還元析出させた以外
は、実施例6と同様にして、表1に摘要を示すγ-アル
ミナ粉末の上にNiが担持された比較例の触媒を得た。
Comparative Example 1 Table 1 is summarized in the same manner as in Example 6 except that nickel nitrate Ni (NO 3 ) 2 was used to reduce and precipitate Ni on γ-alumina powder on which WC was not supported. A catalyst of Comparative Example in which Ni was supported on the γ-alumina powder was obtained.

【0028】比較例2 γ-アルミナに、白金ジニトロジアンミンPt(NH3)
2(NO2)2溶液を含浸させ、乾燥の後600℃×2時間
の焼成を行い、γ-アルミナに2質量%のPtが担持さ
れた比較例の触媒を得た。
Comparative Example 2 γ-alumina was mixed with platinum dinitrodiammine Pt (NH 3 ).
A 2 (NO 2 ) 2 solution was impregnated, dried and then calcined at 600 ° C. for 2 hours to obtain a catalyst of Comparative Example in which 2% by mass of Pt was supported on γ-alumina.

【0029】実施例7〜12 γ-アルミナ粉末の担体を、アセチレンブラック(粒子径
20〜40nm)に代えた以外は、それぞれ実施例1〜
6と同様にして、表2に摘要を示す本発明の触媒を得
た。
Examples 7 to 12 Examples 1 to 12 respectively, except that the carrier of the γ-alumina powder was replaced by acetylene black (particle size 20 to 40 nm).
In the same manner as in 6, a catalyst of the present invention whose summary is shown in Table 2 was obtained.

【0030】比較例3〜4 γ-アルミナ粉末の担体を、アセチレンブラック(粒子径
20〜40nm)に代えた以外は、それぞれ比較例1〜
2と同様にして、表2に摘要を示す比較例の触媒を得
た。なお、表1〜2における「担持量」は、触媒成分の
WC、遷移金属、又はPtと、担体の合計質量を基準と
した値であり、「平均粒子径」はTEM像から求めた値
である。
Comparative Examples 3 to 4 Comparative Examples 1 to 4 except that the carrier of γ-alumina powder was changed to acetylene black (particle size 20 to 40 nm).
In the same manner as in 2, a catalyst of Comparative Example whose summary is shown in Table 2 was obtained. The "supported amount" in Tables 1 and 2 is a value based on the total mass of WC, transition metal, or Pt of the catalyst component and the carrier, and "average particle size" is a value obtained from a TEM image. is there.

【0031】−触媒性能の評価(1)− 上記の実施例1〜6と比較例1〜2の各触媒を圧縮・解
砕して、直径約1.5mmのペレットにした。これらの
ペレット触媒の各2ccを固定床流通反応装置に配置
し、下記の組成のモデル排気ガスを流通させ、触媒温度
を高めながらC36の50%浄化温度(T50)を測定し
た。 モデル排気ガスの組成: 0.7%CO+1000ppmC36+1500ppmNO+
10.0%CO2+0.7%O2+10.0%H2O+5.0
%H2 (残余N2
-Evaluation of catalyst performance (1) -The above-mentioned catalysts of Examples 1 to 6 and Comparative Examples 1 and 2 were compressed and crushed into pellets having a diameter of about 1.5 mm. 2 cc of each of these pellet catalysts was placed in a fixed bed flow reactor, a model exhaust gas of the following composition was circulated, and the 50% purification temperature (T50) of C 3 H 6 was measured while increasing the catalyst temperature. Model exhaust gas composition: 0.7% CO + 1000ppm C 3 H 6 + 1500ppm NO +
10.0% CO 2 + 0.7% O 2 + 10.0% H 2 O + 5.0
% H 2 (residual N 2 )

【0032】この排気ガス浄化性能試験において、モデ
ル排気ガスの流量は5リットル/分で、触媒の昇温速度
は25℃/分とした。この結果を図2に示す。図2に示
した結果より、微細なWCが担持された実施例の触媒
は、Ptが担持された比較例の触媒よりも触媒性能が劣
るが、ある程度の触媒性能を示すこと、また、WCに加
えて遷移金属を担持することによりPtの触媒性能に近
づくことが分かる。
In this exhaust gas purification performance test, the flow rate of the model exhaust gas was 5 liters / minute, and the temperature rising rate of the catalyst was 25 ° C./minute. The result is shown in FIG. From the results shown in FIG. 2, the catalyst of the example in which the fine WC was supported was inferior in catalytic performance to the catalyst of the comparative example in which Pt was supported, but showed a certain level of catalytic performance. In addition, it can be seen that the catalytic performance of Pt is approached by supporting the transition metal.

【0033】−触媒性能の評価(2)− 上記の実施例7〜12と比較例3〜4の各触媒を圧縮・
解砕して、直径約1.5mmのペレットにした。これら
のペレット触媒の各2ccを反応管内部に配置し、従来
より電極触媒の性能評価として簡便的に行われている下
記のアセトンの水素化反応における触媒性能を評価し
た。この結果を、比較例2のPt触媒における触媒性能
を基準として図3に示す。 (CH3)2CO + H2 → CH3CH(OH)CH3
-Evaluation of catalyst performance (2) -Compression of each catalyst of Examples 7 to 12 and Comparative Examples 3 to 4
It was crushed into pellets having a diameter of about 1.5 mm. 2 cc of each of these pellet catalysts was placed inside the reaction tube, and the catalytic performance in the following hydrogenation reaction of acetone, which has been simply performed as a performance evaluation of the electrode catalyst, was evaluated. The results are shown in FIG. 3 based on the catalytic performance of the Pt catalyst of Comparative Example 2. (CH 3 ) 2 CO + H 2 → CH 3 CH (OH) CH 3

【0034】図3に示した結果は、図2と同様な結果で
あり、微細なWCが担持された実施例の触媒は、ある程
度の触媒性能を示すこと、WCに加えて遷移金属を担持
することにより触媒性能が向上することが分かる。
The results shown in FIG. 3 are the same as those in FIG. 2, and the catalyst of the example in which the fine WC is supported shows some catalytic performance, and the transition metal is supported in addition to WC. As a result, it can be seen that the catalyst performance is improved.

【0035】−合金触媒の形態観察− 上記の実施例の各触媒について、TEMによる形態観察
と、分解能約1nmのエネルギー分散型X線分光分析
(EDX)による電子顕微鏡像のスポット領域における元
素分析を行った。
-Morphological observation of alloy catalyst- For each catalyst of the above-mentioned examples, morphological observation by TEM and energy dispersive X-ray spectroscopic analysis with a resolution of about 1 nm
Elemental analysis was performed in the spot area of the electron microscope image by (EDX).

【0036】これらのTEM観察からは、実施例3〜6
と実施例9〜12において担持された遷移金属はいずれ
も観察されなかった。しかし、EDXによるスポット領
域における元素分析では、遷移金属は、γ-アルミナと
アセチレンブラックの上には検出されず、WC粒子の上
にのみ検出された。このことから、遷移金属は、直径約
1nm未満のサイズで、WCの上に図1のような状態で
担持されているものと判断される。
From these TEM observations, Examples 3 to 6 were obtained.
And no transition metal supported in Examples 9 to 12 was observed. However, by elemental analysis in the spot area by EDX, the transition metal was not detected on γ-alumina and acetylene black, but only on the WC particles. From this, it is judged that the transition metal has a diameter of less than about 1 nm and is loaded on the WC in a state as shown in FIG.

【0037】[0037]

【発明の効果】白金等の貴金属の代替としてWCを使用
し、排気ガス浄化用触媒又は燃料電池の電極触媒として
の触媒作用を発揮する触媒を提供することができる。
By using WC as a substitute for a noble metal such as platinum, it is possible to provide a catalyst that exhibits a catalytic action as an exhaust gas purification catalyst or an electrode catalyst of a fuel cell.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の触媒の構成をモデル的に示す図であ
る。
FIG. 1 is a model view showing the structure of a catalyst of the present invention.

【図2】排気ガス浄化用触媒の性能を比較したグラフで
ある。
FIG. 2 is a graph comparing the performance of exhaust gas purifying catalysts.

【図3】電極用触媒の性能を比較したグラフである。FIG. 3 is a graph comparing the performance of electrode catalysts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 8/10 B01D 53/36 C Fターム(参考) 4D048 AA06 AA13 AA18 AB01 AB02 AB05 BA03X BA27X BA28X BA36X BA37X BA38X BA41X BA45X BB01 4G069 AA03 AA08 BA01A BA01B BA08C BA26C BB02B BB02C BB15A BB15B BC29A BC60A BC60B BC60C BC62B BC66B BC67B BC68B BE42C CA02 CA03 CC32 EC27 FA02 FB15 FB16 FB29 5H018 AA04 AA06 AS01 BB01 BB05 BB06 BB12 BB17 EE02 EE05 EE11 EE12 HH01 5H026 AA04 AA06 EE02 EE05 EE11 HH01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // H01M 8/10 B01D 53/36 CF term (reference) 4D048 AA06 AA13 AA18 AB01 AB02 AB05 BA03X BA27X BA28X BA36X BA37X BA38X BA41X BA45X BB01 4G069 AA03 AA08 BA01A BA01B BA08C BA26C BB02B BB02C BB15A BB15B BC29A BC60A BC60B BC60C BC62B BC66B BC67B BC68B BE42C CA02 CA03 CC32 EC27 FA02 FB15 FB16 FB29 5H018 AA04 AA06 AS01 BB01 BB05 BB06 BB12 BB17 EE02 EE05 EE11 EE12 HH01 5H026 AA04 AA06 EE02 EE05 EE11 HH01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 担体上にWCが担持されてなることを特
徴とする触媒。
1. A catalyst in which WC is supported on a carrier.
【請求項2】 前記WCの平均粒子径が0.5〜10n
mである請求項1に記載の触媒。
2. The average particle diameter of the WC is 0.5 to 10 n.
The catalyst according to claim 1, which is m.
【請求項3】 遷移金属がさらに担持されてなる請求項
1又は2に記載の触媒。
3. The catalyst according to claim 1, which further comprises a transition metal.
【請求項4】 細孔内にタングステンが導入された中空
の炭素粒子を担体に担持し、次いで、焼成することを特
徴とする請求項1又は2に記載の触媒の製造方法。
4. The method for producing a catalyst according to claim 1, wherein hollow carbon particles having tungsten introduced into the pores are supported on a carrier and then calcined.
【請求項5】 排気ガス浄化用触媒として使用される請
求項1〜3のいずれか1項に記載の触媒。
5. The catalyst according to claim 1, which is used as an exhaust gas purification catalyst.
【請求項6】 燃料電池の電極触媒として使用される請
求項1〜3のいずれか1項に記載の触媒。
6. The catalyst according to claim 1, which is used as an electrode catalyst for a fuel cell.
JP2001315742A 2001-10-12 2001-10-12 Wc carrying catalyst and production method thereof Withdrawn JP2003117398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315742A JP2003117398A (en) 2001-10-12 2001-10-12 Wc carrying catalyst and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315742A JP2003117398A (en) 2001-10-12 2001-10-12 Wc carrying catalyst and production method thereof

Publications (1)

Publication Number Publication Date
JP2003117398A true JP2003117398A (en) 2003-04-22

Family

ID=19133861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315742A Withdrawn JP2003117398A (en) 2001-10-12 2001-10-12 Wc carrying catalyst and production method thereof

Country Status (1)

Country Link
JP (1) JP2003117398A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032569A (en) * 2003-07-14 2005-02-03 Toagosei Co Ltd Complex of fluororesin and carbon particulate, gas diffusion electrode, and fuel cell
JP2006012773A (en) * 2004-03-31 2006-01-12 Mitsubishi Chemicals Corp Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
JP2006107987A (en) * 2004-10-07 2006-04-20 Hitachi Maxell Ltd Catalyst for fuel cell, fuel cell and membrane electrode junction using catalyst
JP2006202687A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metal cluster
JP2006223915A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Catalytic structure and exhaust gas treatment system having the same
JP2007508677A (en) * 2003-10-17 2007-04-05 ゼネラル・モーターズ・コーポレーション Control of polymer surface distribution on diffusion media for improved fuel cell performance
JP2007275883A (en) * 2006-04-04 2007-10-25 Postech Foundation Nanoporous tungsten carbide catalyst and preparation method thereof
JP2008123810A (en) * 2006-11-10 2008-05-29 Hitachi Ltd Electrode catalyst for fuel cell, its manufacturing method, and fuel cell
JP2008273778A (en) * 2007-04-27 2008-11-13 Masaru Ichikawa Supported catalyst for hydrogenation/dehydrogenation reaction, its manufacturing method and hydrogen storing/feeding method using the catalyst
WO2010017681A1 (en) * 2008-08-14 2010-02-18 中国科学院大连化学物理研究所 Tungsten carbide catalyst, its preparation method and its use in obtaining ethylene glycol by cellulose
US7799485B2 (en) 2004-07-09 2010-09-21 Nissan Motor Co., Ltd. Fuel cell system and composition for electrode
EP2531295A1 (en) * 2010-02-05 2012-12-12 Basf Se Process for producing a catalyst and catalyst
JP2013502682A (en) * 2009-08-20 2013-01-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Catalyst layer
JP2013508148A (en) * 2009-10-27 2013-03-07 中国科学院大▲連▼化学物理研究所 Tungsten carbide catalyst supported on mesoporous carbon, its preparation and application
JP2013531554A (en) * 2010-05-10 2013-08-08 ユーティーシー パワー コーポレイション Supported catalyst
US8791043B2 (en) 2008-12-31 2014-07-29 Samsung Electronics Co., Ltd. Ordered mesoporous carbon composite catalyst, method of manufacturing the same, and fuel cell using the same
CN104307546A (en) * 2014-11-03 2015-01-28 太仓派欧技术咨询服务有限公司 Transition metal catalyst with Pt-group metal dotted active points
JPWO2013058382A1 (en) * 2011-10-19 2015-04-02 株式会社環境・エネルギーナノ技術研究所 Dense material containing carbon nanohorn and use thereof
US9112196B2 (en) 2005-12-15 2015-08-18 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
US9153823B2 (en) 2011-11-14 2015-10-06 Audi Ag Carbide stabilized catalyst structures and method of making

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032569A (en) * 2003-07-14 2005-02-03 Toagosei Co Ltd Complex of fluororesin and carbon particulate, gas diffusion electrode, and fuel cell
JP2007508677A (en) * 2003-10-17 2007-04-05 ゼネラル・モーターズ・コーポレーション Control of polymer surface distribution on diffusion media for improved fuel cell performance
JP4838721B2 (en) * 2003-10-17 2011-12-14 ゼネラル・モーターズ・コーポレーション Control of polymer surface distribution on diffusion media for improved fuel cell performance
JP2006012773A (en) * 2004-03-31 2006-01-12 Mitsubishi Chemicals Corp Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
US7799485B2 (en) 2004-07-09 2010-09-21 Nissan Motor Co., Ltd. Fuel cell system and composition for electrode
JP2006107987A (en) * 2004-10-07 2006-04-20 Hitachi Maxell Ltd Catalyst for fuel cell, fuel cell and membrane electrode junction using catalyst
JP2006202687A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metal cluster
JP2006223915A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Catalytic structure and exhaust gas treatment system having the same
US9112196B2 (en) 2005-12-15 2015-08-18 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
JP4713533B2 (en) * 2006-04-04 2011-06-29 ポステック・ファウンデーション Nanoporous tungsten carbide catalyst and method for producing the same
JP2007275883A (en) * 2006-04-04 2007-10-25 Postech Foundation Nanoporous tungsten carbide catalyst and preparation method thereof
JP2008123810A (en) * 2006-11-10 2008-05-29 Hitachi Ltd Electrode catalyst for fuel cell, its manufacturing method, and fuel cell
WO2008136264A1 (en) * 2007-04-27 2008-11-13 Hrein Energy, Inc. Supported catalyst for hydrogenation/dehydrogenation reaction, method for production of the catalyst, and hydrogen storage/supply method using the catalyst
JP2008273778A (en) * 2007-04-27 2008-11-13 Masaru Ichikawa Supported catalyst for hydrogenation/dehydrogenation reaction, its manufacturing method and hydrogen storing/feeding method using the catalyst
WO2010017681A1 (en) * 2008-08-14 2010-02-18 中国科学院大连化学物理研究所 Tungsten carbide catalyst, its preparation method and its use in obtaining ethylene glycol by cellulose
US8791043B2 (en) 2008-12-31 2014-07-29 Samsung Electronics Co., Ltd. Ordered mesoporous carbon composite catalyst, method of manufacturing the same, and fuel cell using the same
JP2013502682A (en) * 2009-08-20 2013-01-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Catalyst layer
JP2013508148A (en) * 2009-10-27 2013-03-07 中国科学院大▲連▼化学物理研究所 Tungsten carbide catalyst supported on mesoporous carbon, its preparation and application
EP2531295A1 (en) * 2010-02-05 2012-12-12 Basf Se Process for producing a catalyst and catalyst
EP2531295A4 (en) * 2010-02-05 2014-01-29 Basf Se Process for producing a catalyst and catalyst
JP2013531554A (en) * 2010-05-10 2013-08-08 ユーティーシー パワー コーポレイション Supported catalyst
US9147884B2 (en) 2010-05-10 2015-09-29 Audi Ag Fuel cell catalyst including carbon support particles with metal carbide layer and catalytic material and fuel cell using the same
US9991523B2 (en) 2010-05-10 2018-06-05 Audi Ag Fuel cell catalyst including carbon support particles with metal carbide layer and catalytic material and fuel cell using the same
JPWO2013058382A1 (en) * 2011-10-19 2015-04-02 株式会社環境・エネルギーナノ技術研究所 Dense material containing carbon nanohorn and use thereof
US9153823B2 (en) 2011-11-14 2015-10-06 Audi Ag Carbide stabilized catalyst structures and method of making
CN104307546A (en) * 2014-11-03 2015-01-28 太仓派欧技术咨询服务有限公司 Transition metal catalyst with Pt-group metal dotted active points

Similar Documents

Publication Publication Date Title
JP2003117398A (en) Wc carrying catalyst and production method thereof
Corti et al. Progress towards the commercial application of gold catalysts
KR101319137B1 (en) A Catalyst for Decomposing Hydrocarbons, a Method for Decomposing Hydrocarbons using the Same and a Method for Preparing Hydrogen, and an Electric Generating System
Li et al. Modulating the surface segregation of PdCuRu nanocrystals for enhanced all-pH hydrogen evolution electrocatalysis
JP4560621B2 (en) Method for producing fine particle catalyst, alloy fine particle catalyst or composite oxide fine particle catalyst, apparatus therefor, and method for using the same
CN111889101B (en) Modified composite oxide catalyst for synergistic purification of VOCs and NO and preparation method thereof
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
JP2008018414A (en) Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
Fonseca et al. Ceria-zirconia supported Au as highly active low temperature Water-gas shift catalysts
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP5072200B2 (en) Methane steam reforming catalyst, method for producing the same, and method for producing hydrogen using the same
JP5416497B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2003313011A (en) Method for producing metal oxide
JP5105709B2 (en) Water gas shift reaction catalyst
JP2010089032A (en) Metal-particle supporting catalyst, and method of producing the same
JP2003268386A (en) Method of desulfurization of hydrocarbon, and fuel cell system
CN113019394B (en) Ammonia decomposition hydrogen production Ni-Pt/CeO2Catalyst, preparation method and application thereof
JP3757248B2 (en) Composite ultrafine particles useful as catalysts for methanol synthesis and reforming, and methods for producing the same
JP4720592B2 (en) Electrochemical catalyst for exhaust gas purification
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP4075412B2 (en) Particulate combustion catalyst and method for producing the same
CN115151339A (en) Catalyst for exhaust gas purification
JP4112933B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP5738621B2 (en) Hydrocarbon and carbon combustion catalyst and method for producing the combustion catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061220