JP2003313011A - Method for producing metal oxide - Google Patents

Method for producing metal oxide

Info

Publication number
JP2003313011A
JP2003313011A JP2002120941A JP2002120941A JP2003313011A JP 2003313011 A JP2003313011 A JP 2003313011A JP 2002120941 A JP2002120941 A JP 2002120941A JP 2002120941 A JP2002120941 A JP 2002120941A JP 2003313011 A JP2003313011 A JP 2003313011A
Authority
JP
Japan
Prior art keywords
metal oxide
porous material
catalyst
metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002120941A
Other languages
Japanese (ja)
Inventor
Kazunobu Ishibashi
一伸 石橋
Yusuke Ito
祐介 伊藤
Akihiko Suda
明彦 須田
Hideo Sofugawa
英夫 曽布川
Naoki Takahashi
直樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002120941A priority Critical patent/JP2003313011A/en
Publication of JP2003313011A publication Critical patent/JP2003313011A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal oxide suitable for use as a catalyst carrier of a catalyst for cleaning of exhaust gas of an internal combustion engine and maintaining a large specific surface area with age and to provide a method for producing a multiple metal oxide having a widely selective composition and a large specific surface area. <P>SOLUTION: In the method for producing a metal oxide, a solution prepared by dissolving at least one metal compound is impregnated into a porous material having pores and reducible to ashes, and after firing in a non-oxidizing atmosphere the porous material is burned and removed. Preferably the pores have 2-40 nm average pore diameter. When the multiple metal oxide is produced, preferably a solution prepared by dissolving at least two metal compounds is impregnated into the above porous material and the porous material is exposed to gaseous ammonia and fired in a non-oxidizing atmosphere. In the case where the metal compound is an aluminum compound, α-alumina is produced. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物の製造
方法に関し、より詳しくは、排気ガス浄化用触媒等の触
媒担体に適する微細な金属酸化物の製造方法、及び排気
ガス浄化用触媒に関する。
TECHNICAL FIELD The present invention relates to a method for producing a metal oxide, and more particularly to a method for producing a fine metal oxide suitable for a catalyst carrier such as an exhaust gas purifying catalyst, and an exhaust gas purifying catalyst. .

【0002】[0002]

【従来の技術】ガス中に含まれる反応成分の反応を促進
させる触媒は、一般に、触媒坦体に触媒成分等を坦持し
て構成される。例えば、自動車用エンジン等の内燃機関
から排出される排気ガスは、排気ガス中に含まれる反応
成分の窒素酸化物(NOx)を分解し、炭化水素(HC)と
一酸化炭素(CO)を燃焼させる三元触媒によって浄化さ
れ、また、従来の三元触媒にリーン雰囲気でNOxを吸
蔵する機能を付加させ、NOx浄化能力を高めた吸蔵還
元型NOx浄化用触媒によって浄化される。これらの排
気ガス浄化用触媒は、一般に、γ-アルミナのような触
媒坦体に、白金等の貴金属の触媒成分と場合によりNO
x吸蔵剤のような助触媒成分を坦持して構成される。
2. Description of the Related Art A catalyst for accelerating the reaction of reaction components contained in a gas is generally constructed by supporting a catalyst component and the like on a catalyst carrier. For example, exhaust gas emitted from an internal combustion engine such as an automobile engine decomposes nitrogen oxides (NO x ) which are reaction components contained in the exhaust gas, and decomposes hydrocarbons (HC) and carbon monoxide (CO). It is purified by a burning three-way catalyst, and is also purified by a storage-reduction type NO x purification catalyst having a function of absorbing NO x in a lean atmosphere added to a conventional three-way catalyst and having an enhanced NO x purification capability. These exhaust gas purifying catalysts generally include a catalyst carrier such as γ-alumina, a catalyst component of a noble metal such as platinum, and, in some cases, NO.
x It is configured to carry a co-catalyst component such as an occlusion agent.

【0003】ここで、触媒が反応成分の浄化を効率的に
促進するためには、ガスが触媒に効率的に接触するよう
に、触媒がガスに高い表面積を提供することが必要であ
り、この高い表面積は、一般に、高い比表面積を有する
触媒坦体上に触媒成分等が坦持されることによって形成
される。そして、この高い表面積は、触媒が使用される
条件下で経時的に維持されることが必要である。
[0003] Here, in order for the catalyst to efficiently promote the purification of the reaction components, it is necessary for the catalyst to provide a high surface area to the gas so that the gas contacts the catalyst efficiently. The high surface area is generally formed by supporting a catalyst component or the like on a catalyst carrier having a high specific surface area. And this high surface area needs to be maintained over time under the conditions in which the catalyst is used.

【0004】例えば、自動車用エンジンの排気ガス浄化
用触媒の場合、常温と約1000℃の間で温度が繰り返
して変動し、かつ比較的HCとCOの濃度が高くてO2
濃度が低い還元性雰囲気と、比較的HCとCOの濃度が
低くてO2濃度が高い酸化性雰囲気が繰り返される条件
下で、この高い表面積が維持される必要がある。
For example, in the case of a catalyst for purifying exhaust gas of an automobile engine, the temperature repeatedly fluctuates between room temperature and about 1000 ° C., and the concentration of HC and CO is relatively high, and O 2
This high surface area must be maintained under conditions where a reducing atmosphere with a low concentration and an oxidizing atmosphere with a relatively low HC and CO concentration and a high O 2 concentration are repeated.

【0005】したがって、排気ガス浄化用触媒の触媒坦
体には、こうした厳しい条件下でも耐久性を有する比表
面積が高い材料が選択され、通常、約180m2/gの
比表面積を有するγ-アルミナが使用される。このγ-ア
ルミナは、現状では、高い比表面積と優れた耐久性を最
もバランス良く有する排気ガス浄化用触媒の触媒坦体材
料とされている。
Therefore, for the catalyst carrier of the exhaust gas purifying catalyst, a material having a high specific surface area which is durable even under such severe conditions is selected. Normally, γ-alumina having a specific surface area of about 180 m 2 / g is selected. Is used. At present, this γ-alumina is regarded as a catalyst carrier material of an exhaust gas purifying catalyst having a high specific surface area and excellent durability in the best balance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、かかる
γ-アルミナにおいても、高温下での比表面積の安定性
が十分でなく、高温下に長期間曝されると、結晶構造が
変化するとともに比表面積が低下する。ここで、アルミ
ナの高温型結晶構造はα型であり、α-アルミナであれ
ば、それ以上の結晶構造の変化は生ぜず、高温下でも比
表面積が安定するものと予測される。
However, even in such γ-alumina, the stability of the specific surface area at high temperature is not sufficient, and when it is exposed to high temperature for a long time, the crystal structure changes and the specific surface area also changes. Is reduced. Here, the high temperature type crystal structure of alumina is α type, and if it is α-alumina, further change in crystal structure does not occur and it is predicted that the specific surface area will be stable even at high temperature.

【0007】したがって、γ-アルミナのような高い比
表面積を有するα-アルミナを提供することが望まれる
が、かかる高い比表面積を有するα-アルミナは、通常
の粉砕等によって製造することは極めて困難である。
Therefore, it is desired to provide α-alumina having a high specific surface area such as γ-alumina. However, it is extremely difficult to produce α-alumina having such a high specific surface area by usual grinding or the like. Is.

【0008】一方、酸化物に複数の元素を含ませること
によって耐久性を高めることが検討され、例えば、特開
平10−182155号公報に、塩溶液から酸化物前駆
体を形成する工程を含んで製造される複合金属酸化物が
記載されている。
On the other hand, it has been studied to improve durability by including a plurality of elements in an oxide. For example, JP-A-10-182155 includes a step of forming an oxide precursor from a salt solution. The composite metal oxides produced are described.

【0009】また一方、特定の複合金属酸化物は、耐久
性のみならず、酸素ストレージ性能、酸素イオン伝導
性、酸塩基点、吸着性等の機能性を有する。このため、
これらの機能性を有する触媒坦体を白金等の触媒成分と
組み合わせれば、排気ガスの浄化性能が著しく改良され
た排気ガス浄化用触媒を提供できる可能性がある。この
ため、本出願人等は、特願2001−165418号に
おいて、超臨界流体を利用して製造した高い比表面積を
有する触媒担体を提案している。
On the other hand, the specific composite metal oxide has not only durability but also functionality such as oxygen storage performance, oxygen ion conductivity, acid-base point, and adsorptivity. For this reason,
If a catalyst carrier having these functionalities is combined with a catalyst component such as platinum, there is a possibility that an exhaust gas purification catalyst with significantly improved exhaust gas purification performance can be provided. Therefore, the present applicants have proposed in Japanese Patent Application No. 2001-165418 a catalyst carrier having a high specific surface area, which is manufactured by using a supercritical fluid.

【0010】本発明は、これらの先行技術とは全く異な
る方法により、とりわけ、内燃機関の排気ガス浄化用触
媒の触媒担体として使用され、経時的に高い比表面積を
維持することができる金属酸化物の製造方法を提供する
こと、また、広範囲に選択可能な組成を有する比表面積
の高い複合金属酸化物の製造方法を提供することを目的
とする。
The present invention uses a metal oxide which can be used as a catalyst carrier of an exhaust gas purifying catalyst for an internal combustion engine and can maintain a high specific surface area with time by a method completely different from those of the prior art. Another object of the present invention is to provide a method for producing a composite metal oxide having a high specific surface area and having a composition that can be selected over a wide range.

【0011】[0011]

【課題を解決するための手段】上記の目的は、細孔を有
する焼失性の多孔質材料に、少なくとも1種の金属化合
物を溶解した溶液を含浸し、非酸化性雰囲気中で焼成し
た後、前記多孔質材料を燃焼除去することを特徴とする
金属酸化物の製造方法によって達成される。
The above object is to impregnate a burnable porous material having pores with a solution in which at least one metal compound is dissolved, and after firing in a non-oxidizing atmosphere, This is achieved by a method for producing a metal oxide, which comprises burning and removing the porous material.

【0012】即ち、本発明の方法は、金属化合物の溶液
を含浸させることにより、多孔質材料の各々の細孔内に
金属化合物を析出させ、次いで、非酸化性雰囲気中で焼
成することにより、金属酸化物又はその前駆体を生成さ
せ、そして、多孔質材料を燃焼除去することにより、目
的とする金属酸化物を得る。
That is, the method of the present invention comprises impregnating a solution of a metal compound to deposit the metal compound in each of the pores of the porous material, followed by firing in a non-oxidizing atmosphere. A target metal oxide is obtained by producing a metal oxide or a precursor thereof and burning and removing the porous material.

【0013】細孔内の金属化合物の析出は、金属化合物
が1種の場合は、含浸させた後に溶液を乾燥することで
行うことができる。この場合、細孔の各々が乾燥容器と
なり、細孔サイズよりも格段に微細な粒子として金属化
合物を析出させることができる。
The precipitation of the metal compound in the pores can be carried out by impregnating and then drying the solution when the metal compound is one kind. In this case, each of the pores serves as a drying container, and the metal compound can be deposited as fine particles significantly smaller than the pore size.

【0014】また、複合金属酸化物の製造を目的として
複数種の金属化合物を用いる場合、好ましくは、複数の
金属化合物を溶解させた水溶液を多孔質材料に含浸させ
た後、乾燥の前に、多孔質材料をアンモニアガスに曝
し、細孔内で水溶液から複数の金属化合物を共沈によっ
て析出させる。この場合、細孔の各々が反応容器とな
り、細孔サイズよりも格段に微細な粒子として複数の金
属化合物を同時に析出させることができる。
When a plurality of kinds of metal compounds are used for the purpose of producing a composite metal oxide, it is preferable that the porous material be impregnated with an aqueous solution in which a plurality of metal compounds are dissolved and then dried. The porous material is exposed to ammonia gas and a plurality of metal compounds are coprecipitated from the aqueous solution in the pores. In this case, each of the pores serves as a reaction container, and a plurality of metal compounds can be simultaneously deposited as fine particles having a size significantly smaller than the pore size.

【0015】次の焼成においては、1種又は複数種の金
属化合物を用いる場合のいずれも、細孔の各々が焼成容
器となり、析出させた金属化合物の一体化が抑制された
状態で金属酸化物又はその前駆体を生成させることがで
きる。この焼成温度は、好ましくは、金属酸化物の前駆
体である水酸化物を生成させ、水等の溶媒を蒸発させる
温度以下とする。これにより、多孔質材料を燃焼除去
し、適切な温度で加熱することにより、高温型結晶構造
の金属酸化物を微細な状態で得ることができる。
In the subsequent firing, in each case where one kind or a plurality of kinds of metal compounds are used, each of the pores serves as a firing container, and the metal oxide is deposited in a state where the precipitation of the metal compound is suppressed. Alternatively, a precursor thereof can be produced. The firing temperature is preferably set to a temperature not higher than a temperature at which a hydroxide that is a precursor of a metal oxide is generated and a solvent such as water is evaporated. Thus, by burning away the porous material and heating it at an appropriate temperature, a metal oxide having a high temperature type crystal structure can be obtained in a fine state.

【0016】このように、本発明は、多孔質材料の細孔
を、乾燥容器又は反応容器として利用し、さらに焼成容
器として利用して、目的とする微細な金属酸化物を製造
するものである。好ましくは、多孔質材料として平均細
孔径が2〜40nmのものを選択することにより、排気
ガス浄化用触媒の触媒担体として適する高い比表面積の
金属酸化物を得ることができる。
As described above, according to the present invention, the fine pores of the porous material are used as a drying container or a reaction container, and further as a baking container to produce the desired fine metal oxide. . Preferably, by selecting a porous material having an average pore diameter of 2 to 40 nm, it is possible to obtain a metal oxide having a high specific surface area suitable as a catalyst carrier for an exhaust gas purification catalyst.

【0017】なお、本発明の金属酸化物の製造方法は、
金属化合物を溶解した「溶液」を利用する点で、上記の
先行技術である「超臨界流体」を利用する方法とは相違
するが、超臨界流体を利用する方法は、多孔質材料の細
孔の形状を転写した細孔サイズと同等の金属酸化物が得
られるのに対し、本発明の溶液を利用する方法は、細孔
内で金属化合物を析出させる方法であるため、細孔サイ
ズよりも格段に微細な金属酸化物を得ることができる点
で、得られる金属酸化物もまた相違する。
The method for producing a metal oxide of the present invention is
Although it differs from the above-mentioned method using the “supercritical fluid” in the prior art in that the “solution” in which the metal compound is dissolved is used, the method using the supercritical fluid is the pores of the porous material. While a metal oxide equivalent to the pore size obtained by transferring the shape of is obtained, the method utilizing the solution of the present invention is a method of precipitating a metal compound in the pores, and The obtained metal oxide is also different in that a remarkably fine metal oxide can be obtained.

【0018】[0018]

【発明の実施の形態】本発明の方法は、先ず、細孔を有
する焼失性の多孔質材料に、少なくとも1種の金属化合
物を溶解した溶液を含浸させる。この焼失性の多孔質材
料は、種々の活性炭、カーボンナノチューブ、カーボン
ナノホーン、又はケッチェンブラック(中空カーボンブ
ラック、Ketjen Black)等から選択することができ、好
ましくは、2〜40nmの平均細孔径を有するものが使
用される。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, first, a burnable porous material having pores is impregnated with a solution in which at least one metal compound is dissolved. This burnable porous material can be selected from various activated carbons, carbon nanotubes, carbon nanohorns, Ketjen black (hollow carbon black, Ketjen Black), etc., and preferably has an average pore diameter of 2 to 40 nm. Those that have are used.

【0019】少なくとも1種の金属化合物は、各種の金
属元素の化合物であることができ、s-ブロック金属元
素、d-ブロック金属元素、p-ブロック金属元素、f-
ブロック金属元素から広範囲に選択することができ、具
体的には、ナトリウム(Na)、カリウム(K)、カルシウ
ム(Ca)、バリウム(Ba)、ストロンチウム(Sr)、ラ
ンタン(La)、イットリウム(Y)、セリウム(Ce)、プ
ラセオジウム(Pr)、ネオジム(Nd)、サマリウム(S
m)、ユウロピウム(Eu)、ガドリニウム(Gd)、チタ
ン(Ti)、錫(Sn)、ジルコニウム(Zr)、マンガン
(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、
クロム(Cr)、ニオブ(Nb)、銅(Cu)、バナジウム
(V)、モリブデン(Mo)、タングステン(W)、亜鉛(Z
n)、アルミニウム(Al)、ケイ素(Si)、及びタンタ
ル(Ta)等であることができる。
The at least one metal compound can be a compound of various metal elements, including s-block metal elements, d-block metal elements, p-block metal elements, f-
It can be selected from a wide range of block metal elements, specifically, sodium (Na), potassium (K), calcium (Ca), barium (Ba), strontium (Sr), lanthanum (La), yttrium (Y). ), Cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (S
m), europium (Eu), gadolinium (Gd), titanium (Ti), tin (Sn), zirconium (Zr), manganese
(Mn), iron (Fe), cobalt (Co), nickel (Ni),
Chromium (Cr), Niobium (Nb), Copper (Cu), Vanadium
(V), molybdenum (Mo), tungsten (W), zinc (Z
n), aluminum (Al), silicon (Si), tantalum (Ta), or the like.

【0020】好ましくは、少なくとも1種の金属化合物
は、排気ガス浄化用触媒の触媒担体として適する金属酸
化物、例えば、アルミナ、シリカ、ジルコニア等の金属
酸化物、及びシリカ-アルミナ、ジルコニア-セリア、ア
ルミナ-セリア-ジルコニア、セリア-ジルコニア-イット
リア、ジルコニア-カルシア等の複合金属酸化物を構成
する金属の化合物である。これらの金属は、酢酸塩、硝
酸塩、炭酸塩、塩化物、アルコキシド、アセチルアセト
ナト等の化合物にすることにより、適切な溶媒に溶解し
た溶液を形成することができる。
Preferably, the at least one metal compound is a metal oxide suitable as a catalyst carrier for an exhaust gas purification catalyst, for example, a metal oxide such as alumina, silica or zirconia, and silica-alumina, zirconia-ceria, It is a compound of a metal forming a composite metal oxide such as alumina-ceria-zirconia, ceria-zirconia-yttria, and zirconia-calcia. By converting these metals into compounds such as acetates, nitrates, carbonates, chlorides, alkoxides and acetylacetonates, a solution dissolved in a suitable solvent can be formed.

【0021】本発明の方法において、これらの金属化合
物の溶液を上記の焼失性の多孔質材料に含浸させる。こ
の含浸は、例えば、常圧下で多孔質材料を金属化合物の
溶液に分散させてスラリーにし、必要により、減圧にし
て多孔質材料を脱泡させ、多孔質材料の細孔の内部まで
金属化合物の溶液を浸入させることにより行うことがで
き、次いで、乾燥させることにより、金属化合物を多孔
質材料の細孔内に析出させることができる。
In the method of the present invention, the above-mentioned burnable porous material is impregnated with a solution of these metal compounds. This impregnation is carried out, for example, by dispersing the porous material in a solution of the metal compound under normal pressure to form a slurry and, if necessary, depressurizing the porous material to degas the porous material, and then to the inside of the pores of the porous material. This can be carried out by immersing the solution, and then by drying, the metal compound can be precipitated in the pores of the porous material.

【0022】金属化合物が1種の場合、溶液の溶媒は、
かかる含浸と乾燥に適する溶媒であれば足り、金属化合
物を溶解させ得る実質的に任意の溶媒であることができ
る。ここで、複数種の金属化合物を用いて複合金属酸化
物を製造する場合、好ましくは、溶媒を水とし、多孔質
材料に少なくとも2種の金属化合物を溶解した溶液を含
浸した後、多孔質材料をアンモニアガスに曝して、複数
種の金属化合物を多孔質材料の細孔内に共沈させる。即
ち、溶液をアンモニアガスに曝すことで、細孔内に含浸
した溶液のpHを、細孔内で複数の金属化合物の共沈が
生じるpHにし、これにより、微細に金属が混合された
析出物を得ることができる。次いで、乾燥させて溶媒を
蒸発させる。
When the metal compound is one, the solvent of the solution is
A solvent suitable for such impregnation and drying is sufficient, and it can be substantially any solvent capable of dissolving the metal compound. Here, when a composite metal oxide is produced using a plurality of types of metal compounds, preferably, the solvent is water, and the porous material is impregnated with a solution in which at least two types of metal compounds are dissolved, and then the porous material is used. Are exposed to ammonia gas to coprecipitate a plurality of metal compounds in the pores of the porous material. That is, by exposing the solution to ammonia gas, the pH of the solution impregnated into the pores is adjusted to a pH at which co-precipitation of a plurality of metal compounds occurs in the pores, whereby a precipitate containing finely mixed metals is obtained. Can be obtained. Then it is dried and the solvent is evaporated.

【0023】このようにして得られた析出物は、次い
で、非酸化性雰囲気、即ち、多孔質材料が焼失しない雰
囲気下で焼成される。この雰囲気は、N2ガス、CO2
ス、H 2ガス、真空等であることができる。焼成温度
は、目的とする金属酸化物に応じて適宜選択されるが、
好ましくは、この焼成温度は、好ましくは、金属酸化物
の前駆体である水酸化物を生成させ、水等の溶媒を蒸発
させる温度以下とする。次いで、多孔質材料を燃焼除去
することにより、高温型結晶構造の金属酸化物を微細な
状態で得ることができる。かかる高温型結晶構造の金属
酸化物は、一般に、排気ガス雰囲気下に長期間曝されて
も、結晶構造が安定であるため、比表面積の低下が生じ
ることはない。
The precipitate thus obtained is
In a non-oxidizing atmosphere, that is, an atmosphere in which the porous material is not burned out.
It is fired in the atmosphere. This atmosphere is N2Gas, CO2Moth
Su, H 2It can be gas, vacuum or the like. Firing temperature
Is appropriately selected according to the intended metal oxide,
Preferably, the firing temperature is preferably a metal oxide.
Produces hydroxide, which is a precursor of, and evaporates water and other solvents
The temperature is set to the temperature or lower. Then burn off the porous material
By doing so, the high-temperature type crystal structure metal oxide can
Can be obtained in the state. Such high temperature type crystal structure metal
Oxides are generally exposed to exhaust gas for long periods of time.
However, since the crystal structure is stable, the specific surface area decreases.
There is no such thing.

【0024】得られた金属酸化物は、そのままで又は必
要により軽度の解砕を施して、触媒坦体として使用する
ことができる。好ましくは、こうした方法によって製造
された金属酸化物は、白金(Pt)、パラジウム(Pd)、
ロジウム(Rh)等の触媒金属が担持され、排気ガス浄化
用触媒として使用される。この触媒金属の担持は、一般
な方法としての白金ジニトロジアンミンPt(NH3)
2(NO2)2、硝酸パラジウムPd(NO3)2、硝酸ロジウ
ムRh(NO3)3等の金属化合物の溶液を、金属酸化物に
含浸させた後、乾燥と焼成に供することにより行うこと
ができる。以下、実施例によって本発明をより具体的に
説明する。
The obtained metal oxide can be used as a catalyst carrier as it is or after subjecting it to mild crushing if necessary. Preferably, the metal oxide produced by such a method is platinum (Pt), palladium (Pd),
A catalytic metal such as rhodium (Rh) is carried and used as an exhaust gas purifying catalyst. As a general method, the catalyst metal is supported by platinum dinitrodiammine Pt (NH 3 )
2 (NO 2 ) 2 , palladium nitrate Pd (NO 3 ) 2 , rhodium nitrate Rh (NO 3 ) 3 and the like are impregnated with a solution of a metal compound, which is then dried and fired. You can Hereinafter, the present invention will be described more specifically with reference to Examples.

【0025】[0025]

【実施例】実施例1 200gのイオン交換水に100gの硝酸アルミニウム
無水和物Al(NO3)3を溶解させ、100gの活性炭A
(比表面積718m2/g、細孔容積0.66cc/g、
ピーク細孔径6.5nm)に、この溶液の75gを含浸さ
せた。次いで、この硝酸アルミニウムを含浸させた活性
炭Aを120℃×5時間の乾燥に供した後、H2ガスを
2体積%で含むN2ガス雰囲気中で400℃×2時間の
焼成に供した。次いで、大気雰囲気中で600℃×3時
間の加熱を行って活性炭を燃焼除去した後、大気雰囲気
中で1200℃×3時間の加熱を行った。これにより得
られた粉末は、粉末X線回折によりα-アルミナである
ことが確認され、BET法による比表面積は286m2
/gであった。また、このα-アルミナ粉末は、画像解
析による測定の結果、図1に示す粒子径分布を有してい
た。
Example 1 100 g of aluminum nitrate anhydrous hydrate Al (NO 3 ) 3 was dissolved in 200 g of ion-exchanged water to obtain 100 g of activated carbon A.
(Specific surface area 718 m2 / g, pore volume 0.66 cc / g,
The peak pore size of 6.5 nm) was impregnated with 75 g of this solution. Next, the activated carbon A impregnated with aluminum nitrate was dried at 120 ° C. for 5 hours, and then baked at 400 ° C. for 2 hours in an N 2 gas atmosphere containing 2 % by volume of H 2 gas. Then, the activated carbon was burned and removed by heating at 600 ° C. for 3 hours in the air atmosphere, and then the heating was performed at 1200 ° C. for 3 hours in the air atmosphere. The powder thus obtained was confirmed to be α-alumina by powder X-ray diffraction, and the specific surface area by BET method was 286 m 2.
/ G. Further, this α-alumina powder had a particle size distribution shown in FIG. 1 as a result of measurement by image analysis.

【0026】実施例2 実施例1における活性炭Aを活性炭B(比表面積794
m2/g、細孔容積1.38cc/g、ピーク細孔径13
nm)に代えた以外は実施例1と同様にして、α-アルミ
ナ粉末を得た。このα-アルミナは、比表面積は122
2/gであり、画像解析による測定の結果、図1に示
す粒子径分布を有していた。なお、活性炭AとBの細孔
径分布測定装置アサップ2000(島津製作所販売)によ
るBJH法に基づく細孔径分布の測定結果を図2に示
す。
Example 2 Activated carbon A in Example 1 was replaced with activated carbon B (specific surface area 794).
m2 / g, pore volume 1.38 cc / g, peak pore diameter 13
nm-) was used to obtain α-alumina powder in the same manner as in Example 1. This α-alumina has a specific surface area of 122
m 2 / g, and as a result of measurement by image analysis, it had a particle size distribution shown in FIG. 1. 2 shows the measurement results of the pore size distribution based on the BJH method using a pore size distribution measuring device Asap 2000 (sold by Shimadzu Corporation) for activated carbons A and B.

【0027】比較例1 200gのイオン交換水に100gの硝酸アルミニウム
無水和物を溶解させ、この溶液の75gを乾燥させ、次
いで、大気雰囲気中で250℃×2時間の加熱を行った
後、大気雰囲気中で1200℃×3時間の加熱を行っ
た。これにより得られた粉末は、粉末X線回折によりα
-アルミナであることが確認され、BET法による比表
面積は1.6m2/gであった。また、このα-アルミナ
粉末は、画像解析による測定の結果、300nmを上回
る平均粒子径を有していた。
Comparative Example 1 100 g of aluminum nitrate anhydrate was dissolved in 200 g of ion-exchanged water, 75 g of this solution was dried, and then heated in an air atmosphere at 250 ° C. for 2 hours, then in the air. Heating was performed at 1200 ° C. for 3 hours in the atmosphere. The powder thus obtained has an α value determined by powder X-ray diffraction.
-Alumina was confirmed, and the specific surface area by the BET method was 1.6 m 2 / g. The α-alumina powder had an average particle size of more than 300 nm as a result of measurement by image analysis.

【0028】実施例3 200gのイオン交換水に108.6gの硝酸セリウム
Ce(NO3)3・6H2Oと56.3gの硝酸ジルコニウム
Zr(NO3)2・2H2Oを溶解させ、100gの上記の
活性炭Aに、この溶液の75gを含浸させた。次いで、
この溶液を含浸させた活性炭Aを、NH3ガスを10体
積%含む20℃のN2ガスに2時間曝した後、120℃
×5時間の乾燥に供した。次いで、大気雰囲気中で60
0℃×3時間の加熱を行って活性炭を燃焼除去した後、
800℃×3時間の加熱を行った。
Example 3 108.6 g of cerium nitrate Ce (NO 3 ) 3 .6H 2 O and 56.3 g of zirconium nitrate Zr (NO 3 ) 2 .2H 2 O were dissolved in 200 g of ion-exchanged water to obtain 100 g. 75 g of this solution was impregnated into activated carbon A above. Then
Activated carbon A impregnated with this solution was exposed to N 2 gas at 20 ° C. containing 10% by volume of NH 3 gas for 2 hours, and then 120 ° C.
It was subjected to drying for 5 hours. Then, in the atmosphere, 60
After heating at 0 ° C for 3 hours to burn off the activated carbon,
The heating was performed at 800 ° C. for 3 hours.

【0029】これにより得られた粉末は、粉末X線回折
によりセリウム-ジルコニウム複合酸化物であることが
確認され、BET法による比表面積は205.1m2/g
であった。また、このセリウム-ジルコニウム複合酸化
物粉末は、画像解析による測定の結果、図1に示す粒子
径分布を有し、平均粒子径は4.5nmであった。
The powder thus obtained was confirmed to be a cerium-zirconium composite oxide by powder X-ray diffraction, and the specific surface area by the BET method was 205.1 m 2 / g.
Met. The cerium-zirconium composite oxide powder had a particle size distribution shown in FIG. 1 as a result of measurement by image analysis, and had an average particle size of 4.5 nm.

【0030】−触媒性能評価− 実施例1のα-アルミナ粉末に、ジニトロジアンミン白
金水溶液を含浸させ、120℃×2時間の乾燥の後、大
気雰囲気中で500℃×2時間の焼成に供し、98質量
部のα-アルミナに2質量部のPtを担持し、本発明の
触媒Aを調製した。同様にして、ジルコニウムのα-ア
ルミナ、及び比較例1のα-アルミナにPtを担持し、
本発明の触媒B、及び比較例の触媒aを調製した。ま
た、同様にして98質量部のγ-アルミナに2質量部の
Ptを担持して、比較例の触媒bを調製した。
-Catalyst Performance Evaluation- The α-alumina powder of Example 1 was impregnated with an aqueous dinitrodiammine platinum solution, dried at 120 ° C for 2 hours, and then calcined at 500 ° C for 2 hours in the atmosphere, Catalyst A of the present invention was prepared by supporting 2 parts by mass of Pt on 98 parts by mass of α-alumina. Similarly, supporting Pt on α-alumina of zirconium and α-alumina of Comparative Example 1,
The catalyst B of the present invention and the catalyst a of the comparative example were prepared. Similarly, 98 parts by mass of γ-alumina was loaded with 2 parts by mass of Pt to prepare a catalyst b of a comparative example.

【0031】これらの各触媒を圧縮・解砕して直径1〜
2mmのペレットとし、各触媒サンプルの1gを固定床
流通反応装置で温度特性評価を行った。各触媒サンプル
は、固定床流通反応装置に配置した後、下記のリーンガ
スとリッチガスが7リットル/分の流量で1秒毎に切り
替わる雰囲気下で、触媒床温度を10℃/分の速度で昇
温させながら、HC(C36)の50%浄化温度を測定し
た。また、各触媒サンプルを固定床流通反応装置に配置
し、A/F=14.6相当のモデルガス雰囲気中で、触
媒床温度1000℃で5時間加熱する耐久処理に供した
後、同様にしてHC(C36)の50%浄化温度を測定し
た。この結果を、それぞれ初期、耐久処理後として、表
1にまとめて示す。
Each of these catalysts is compressed and crushed to have a diameter of 1 to
A 2 mm pellet was prepared, and 1 g of each catalyst sample was subjected to temperature characteristic evaluation by a fixed bed flow reactor. After placing each catalyst sample in a fixed bed flow reactor, the catalyst bed temperature was raised at a rate of 10 ° C./minute in an atmosphere in which the following lean gas and rich gas were switched at a flow rate of 7 liters / minute every 1 second. While doing so, the 50% purification temperature of HC (C 3 H 6 ) was measured. Also, each catalyst sample was placed in a fixed bed flow reactor, subjected to a durability treatment of heating at a catalyst bed temperature of 1000 ° C. for 5 hours in a model gas atmosphere corresponding to A / F = 14.6, and then similarly. The 50% purification temperature of HC (C 3 H 6 ) was measured. The results are summarized in Table 1 as the initial stage and after the endurance treatment.

【0032】リッチガス組成: 0.15%C36 + 1.05%CO + 0.33%O2
+ 0.3%NO+ 0.35%H2 + 14.19%CO2
+ 10.0%H2O (残余:窒素) リーンガス組成: 0.05%C36 + 0.14%CO + 0.94%O2
+ 0.34%NO+ 14.27%CO2 + 10.0%H
2O (残余:窒素)
Rich gas composition: 0.15% C 3 H 6 + 1.05% CO + 0.33% O 2
+ 0.3% NO + 0.35% H 2 + 14.19% CO 2
+ 10.0% H 2 O (remainder: nitrogen) Lean gas composition: 0.05% C 3 H 6 + 0.14% CO + 0.94% O 2
+ 0.34% NO + 14.27% CO 2 + 10.0% H
2 O (remainder: nitrogen)

【0033】[0033]

【表1】 [Table 1]

【0034】表1の結果から、実施例の触媒AとBは、
比較例の触媒aとbよりも初期と耐久処理後のいずれも
HCの50%浄化温度かなり低いことが分かる。また、
初期と耐久処理後の触媒のBET比表面積を比較する
と、本発明の触媒では実質的に変化がないのに対し、比
較例の触媒bは顕著な低下が見られ、比較例の触媒aで
は、初期より極めて低いBET比表面積となっているこ
とが分かる。
From the results shown in Table 1, the catalysts A and B of the examples are
It can be seen that the 50% purification temperature of HC is considerably lower both in the initial stage and after the endurance treatment than the catalysts a and b of the comparative example. Also,
Comparing the BET specific surface areas of the catalyst after the initial treatment and after the durability treatment, the catalyst of the present invention shows substantially no change, whereas the catalyst b of the comparative example shows a remarkable decrease, and the catalyst a of the comparative example shows that It can be seen that the BET specific surface area is extremely lower than in the initial stage.

【0035】これらの結果から、本発明の方法によって
得られる比表面積の高いα-アルミナを触媒担体とする
ことにより、耐久処理後にも触媒担体の高い比表面積が
維持され、それによって、耐久処理後にも高い触媒性能
が維持されるものと判断される。
From these results, by using α-alumina having a high specific surface area obtained by the method of the present invention as the catalyst carrier, the high specific surface area of the catalyst carrier is maintained even after the durability treatment, whereby the durability of the catalyst carrier after the durability treatment is maintained. It is judged that the high catalyst performance is maintained.

【0036】[0036]

【発明の効果】内燃機関の排気ガス浄化用触媒の触媒担
体に適する経時的に高い比表面積を維持する金属酸化物
の製造方法を提供し、また、広範囲に選択可能な組成を
有する比表面積の高い複合金属酸化物の製造方法を提供
することができる。
The present invention provides a method for producing a metal oxide suitable for a catalyst carrier of an exhaust gas purifying catalyst for an internal combustion engine, which maintains a high specific surface area over time, and has a specific surface area having a composition that can be selected over a wide range. It is possible to provide a method for producing a high composite metal oxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法によって得られた金属酸化物の粒
子径分布を示すグラフである。
FIG. 1 is a graph showing a particle size distribution of a metal oxide obtained by the method of the present invention.

【図2】活性炭の細孔径分布を示すグラフである。FIG. 2 is a graph showing the pore size distribution of activated carbon.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01F 7/30 B01D 53/36 104A C01G 25/00 B01J 23/56 301A (72)発明者 伊藤 祐介 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 須田 明彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 曽布川 英夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 高橋 直樹 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4D048 AA06 AA13 AA18 AB05 BA01X BA08X BA19X BA30X BB01 BB17 4G042 DA01 DA02 DB10 DB26 DB31 DC03 DD06 DE06 DE12 4G048 AA03 AB02 AB06 AC08 AD04 AD06 AE07 4G069 AA01 AA03 AA08 BA01A BA01B BA08C BB02A BB02B BB06A BB06B BC43A BC43B BC51A BC51B BC75A BC75B CA03 CA09 EA01Y EB18Y FA01 FB14 FB20 FB36 FC03 4G076 AA02 AB07 AB30 BA39 BA42 BB01 CA12 CA28 DA01 FA02─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C01F 7/30 B01D 53/36 104A C01G 25/00 B01J 23/56 301A (72) Inventor Yusuke Ito Aichi 1 Toyota Town, Toyota City, Toyota Motor Co., Ltd. (72) Inventor, Akihiko Suda, Aichi District, Nagakute Town, Aichi District, Aichi Prefecture, No. 41, Yokoshiro, Toyota Central Research Institute Co., Ltd. (72) Inventor, Hideo Sofugawa, Aichi Prefecture 1 in 41 Yokomichi, Nagakute-machi, Aichi-gun 1 in Toyota Central Research Laboratory Co., Ltd. (72) Inventor Naoki Takahashi 1 in 41, Nagakute-machi, Nagakute-machi, Aichi-gun 1 in Toyota Central Research Laboratory F-term ( Reference) 4D048 AA06 AA13 AA18 AB05 BA01X BA08X BA19X BA30X BB01 BB17 4G042 DA01 DA02 DB10 DB26 DB31 DC03 DD06 DE06 DE12 4G048 AA03 AB02 AB06 AC08 AD04 AD06 AE07 4G069 AA01 AA03 AA08 BA01A BA01B BA08C BB02A BB02B BB06A BB06B BC43A BC43B BC51A BC51B BC75A BC75B CA03 CA09 EA01Y EB01 BA01 FA02 BA01 BA02 BA02 FA02 AB02 FC02 AB02 A02A02 A02A02 A02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 細孔を有する焼失性の多孔質材料に、少
なくとも1種の金属化合物を溶解した溶液を含浸し、非
酸化性雰囲気中で焼成した後、前記多孔質材料を燃焼除
去することを特徴とする金属酸化物の製造方法。
1. A method of impregnating a burnable porous material having pores with a solution in which at least one metal compound is dissolved, firing the material in a non-oxidizing atmosphere, and then burning and removing the porous material. A method for producing a metal oxide, comprising:
【請求項2】 前記細孔が2〜40nmの平均細孔径を
有する請求項1に記載の金属酸化物の製造方法。
2. The method for producing a metal oxide according to claim 1, wherein the pores have an average pore diameter of 2 to 40 nm.
【請求項3】 前記多孔質材料に少なくとも2種の金属
化合物を溶解した溶液を含浸した後、前記多孔質材料を
アンモニアガスに曝し、次いで、非酸化性雰囲気中で焼
成する請求項1又は2に記載の金属酸化物の製造方法。
3. The porous material is impregnated with a solution in which at least two metal compounds are dissolved, the porous material is exposed to ammonia gas, and then fired in a non-oxidizing atmosphere. The method for producing a metal oxide according to 1.
【請求項4】 前記金属化合物がアルミニウム化合物で
あり、前記金属酸化物がα-アルミナである請求項1に
記載の金属酸化物の製造方法。
4. The method for producing a metal oxide according to claim 1, wherein the metal compound is an aluminum compound and the metal oxide is α-alumina.
【請求項5】 前記多孔質材料が活性炭である請求項1
〜4のいずれか1項に記載の金属酸化物の製造方法。
5. The porous material is activated carbon.
5. The method for producing a metal oxide according to any one of 4 to 4.
【請求項6】 請求項1〜5のいずれか1項に記載の方
法によって製造された金属酸化物に触媒金属を担持して
なる排気ガス浄化用触媒。
6. An exhaust gas purifying catalyst comprising a metal oxide produced by the method according to any one of claims 1 to 5 and a catalytic metal supported on the metal oxide.
JP2002120941A 2002-04-23 2002-04-23 Method for producing metal oxide Pending JP2003313011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120941A JP2003313011A (en) 2002-04-23 2002-04-23 Method for producing metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120941A JP2003313011A (en) 2002-04-23 2002-04-23 Method for producing metal oxide

Publications (1)

Publication Number Publication Date
JP2003313011A true JP2003313011A (en) 2003-11-06

Family

ID=29537026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120941A Pending JP2003313011A (en) 2002-04-23 2002-04-23 Method for producing metal oxide

Country Status (1)

Country Link
JP (1) JP2003313011A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106231A1 (en) * 2003-05-29 2004-12-09 Riken Method for producing nanotube material and nanotube material
WO2005070819A1 (en) * 2004-01-23 2005-08-04 Very Small Particle Company Pty Ltd Method for making metal oxides
JP2009102223A (en) * 2007-10-25 2009-05-14 Samsung Electro-Mechanics Co Ltd Method of manufacturing vanadium oxide nanoparticles
CN100554144C (en) * 2004-01-23 2009-10-28 超微粒股份有限公司 The manufacture method of metal oxide
JP2010037183A (en) * 2008-08-05 2010-02-18 Samsung Electro-Mechanics Co Ltd Method for producing magnesium vanadium multiple oxide nanoparticle and magnesium vanadium multiple oxide nanoparticle produced thereby
TWI391183B (en) * 2005-06-28 2013-04-01 Very Small Particle Company Pty Ltd Method for making metal oxides
KR101272200B1 (en) 2012-05-23 2013-06-07 한국에너지기술연구원 Preparation method for highly loaded and dispersed metal-oxide on carbon nanocatalyst support using porous carbon templates via melt-infiltration process and highly loaded and dispersed metal-oxide on carbon nanocatalyst support thereof
KR101272210B1 (en) 2012-12-17 2013-06-11 한국에너지기술연구원 Manufacturing method for carbon based multi-composite metal-oxide nanocatalysts support via melt-infiltration process and carbon based multi-composite metal-oxide nanocatalyst support thereof
JP2013141637A (en) * 2012-01-11 2013-07-22 Nippon Soken Inc Honeycomb body base material, method for manufacturing the same, and exhaust gas cleaning filter
WO2014126296A1 (en) * 2013-02-12 2014-08-21 한국화학연구원 Method for forming metal-containing particles by using porous carbon material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592039B2 (en) 2003-05-29 2009-09-22 Riken Method for producing nanotube material and nanotube material
WO2004106231A1 (en) * 2003-05-29 2004-12-09 Riken Method for producing nanotube material and nanotube material
US7919068B2 (en) 2004-01-23 2011-04-05 Very Small Particle Company Limited Method for making metal oxides
JP4928273B2 (en) * 2004-01-23 2012-05-09 ベリー スモール パーティクル コンパニー リミテッド Method for producing porous composite oxide
AU2005206221B2 (en) * 2004-01-23 2009-09-10 Very Small Particle Company Pty Ltd Method for making metal oxides
JP2007518659A (en) * 2004-01-23 2007-07-12 ベリー スモール パーティクル コンパニー ピーティーワイ リミテッド Method for producing metal oxide
CN100554144C (en) * 2004-01-23 2009-10-28 超微粒股份有限公司 The manufacture method of metal oxide
WO2005070819A1 (en) * 2004-01-23 2005-08-04 Very Small Particle Company Pty Ltd Method for making metal oxides
TWI391183B (en) * 2005-06-28 2013-04-01 Very Small Particle Company Pty Ltd Method for making metal oxides
JP2009102223A (en) * 2007-10-25 2009-05-14 Samsung Electro-Mechanics Co Ltd Method of manufacturing vanadium oxide nanoparticles
JP2010037183A (en) * 2008-08-05 2010-02-18 Samsung Electro-Mechanics Co Ltd Method for producing magnesium vanadium multiple oxide nanoparticle and magnesium vanadium multiple oxide nanoparticle produced thereby
JP2013141637A (en) * 2012-01-11 2013-07-22 Nippon Soken Inc Honeycomb body base material, method for manufacturing the same, and exhaust gas cleaning filter
KR101272200B1 (en) 2012-05-23 2013-06-07 한국에너지기술연구원 Preparation method for highly loaded and dispersed metal-oxide on carbon nanocatalyst support using porous carbon templates via melt-infiltration process and highly loaded and dispersed metal-oxide on carbon nanocatalyst support thereof
KR101272210B1 (en) 2012-12-17 2013-06-11 한국에너지기술연구원 Manufacturing method for carbon based multi-composite metal-oxide nanocatalysts support via melt-infiltration process and carbon based multi-composite metal-oxide nanocatalyst support thereof
WO2014098366A1 (en) * 2012-12-17 2014-06-26 한국에너지기술연구원 Production method for a carbon-based composite metal oxide nanocatalyst carrier, and composite metal oxide nanocatalyst carrier therefrom
US9498774B2 (en) 2012-12-17 2016-11-22 Korea Institute Of Energy Research Composite body in which first metal-containing particles and second metal-containing particles are supported on carbon material or connected by carbon material, and method for producing same
WO2014126296A1 (en) * 2013-02-12 2014-08-21 한국화학연구원 Method for forming metal-containing particles by using porous carbon material

Similar Documents

Publication Publication Date Title
EP2050497B1 (en) Exhaust gas purifying catalyst and method of preparation
JP4959129B2 (en) Exhaust gas purification catalyst
EP1810749A1 (en) Exhaust gas purification catalyst
JP5014845B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst
US8133839B2 (en) Exhaust gas-purifying catalyst
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
US20100298132A1 (en) Exhaust gas-purifying catalyst
JP4831753B2 (en) Exhaust gas purification catalyst
JP2003313011A (en) Method for producing metal oxide
JP4450763B2 (en) Precious metal-containing composite metal oxide for exhaust gas purification catalyst and method for producing the same
JP2005254047A (en) Exhaust emission control catalyst, metal oxide particle, and production method thereof
JP4655436B2 (en) Method for treating exhaust gas purification catalyst
JP2000262898A (en) Catalyst for purifying exhaust gas
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP4666007B2 (en) Exhaust gas purification catalyst
JP2006122793A (en) Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
JP2001129399A (en) Catalyst for cleaning exhaust gas
JP4120862B2 (en) Catalyst for CO shift reaction
JP2003010646A (en) Apparatus and method for cleaning diesel exhaust
JP2006341152A (en) Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst
JP2007260564A (en) Exhaust gas-purifying catalyst and method for regenerating the same
JP2003305363A (en) Catalyst carrier and catalyst for exhaust gas treatment
JP4775954B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028