JP2013506139A - 光遅延に基づく無線周波数、マイクロ波又はミリ波信号における位相雑音の測定 - Google Patents

光遅延に基づく無線周波数、マイクロ波又はミリ波信号における位相雑音の測定 Download PDF

Info

Publication number
JP2013506139A
JP2013506139A JP2012531046A JP2012531046A JP2013506139A JP 2013506139 A JP2013506139 A JP 2013506139A JP 2012531046 A JP2012531046 A JP 2012531046A JP 2012531046 A JP2012531046 A JP 2012531046A JP 2013506139 A JP2013506139 A JP 2013506139A
Authority
JP
Japan
Prior art keywords
signal
light
optical
port
delay line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012531046A
Other languages
English (en)
Other versions
JP5619902B2 (ja
Inventor
エリヤフ,ダニー
マーレキー,リュート
ザイデル,デビッド
Original Assignee
オーイーウェイブス,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーイーウェイブス,インコーポレーテッド filed Critical オーイーウェイブス,インコーポレーテッド
Publication of JP2013506139A publication Critical patent/JP2013506139A/ja
Application granted granted Critical
Publication of JP5619902B2 publication Critical patent/JP5619902B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Measuring Phase Differences (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

光遅延に基づき、無線周波(RF)、マイクロ波又はミリ波信号内の位相雑音を測定する技術及びデバイス。
【選択図】図2

Description

優先権の主張及び関連出願
本出願は、2009年9月23日に出願された米国仮出願番号61/244,959、発明の名称「Multiple optical wavelength delays over fiber for microwave phase noise measurement」及び2010年5月11日に出願された米国仮出願番号61/333,665、発明の名称「Short fiber, small size, low noise floor phase noise test system (PNTS)」の優先権を主張する。
米国の出願では、本出願は、2008年11月13日に出願された、米国特許出願番号12/270,845、発明の名称「Photonic-based cross-correlation homodyne detection with low phase noise」の一部継続出願であり、これは、更に、2007年11月13日に出願された、米国仮出願番号61/002,918、発明の名称「Photonic-based cross-correlation homodyne detection with low phase noise」の優先権を主張している。
上述した特許文献の開示内容は、参照によって本願の一部として援用される。
本発明は、無線周波数(radio frequency:RF)、マイクロ波又はミリ波信号における位相雑音を測定する技術及びデバイスに関する。
RF、マイクロ波又はミリ波信号は、それぞれのスペクトル範囲で動作する発振器によって生成することができる。発振器の出力は、通信及び他の用途で使用することができる。発振器の雑音が低く、適切に測定できることが望ましい場合、発振器の発振周波数を周波数基準として使用することができる。発振器を特徴付けるための測定装置は、低雑音でなければならない。
本明細書では、光遅延に基づき、無線周波(RF)、マイクロ波又はミリ波信号内の位相雑音を測定する技術及びデバイスを開示する。
一側面においては、信号内の位相雑音を測定するデバイスを提供し、このデバイスは、供試発振器からの発振信号を受け取る入力ポートと、発振信号を処理して、第1の分岐出力信号を生成する第1の光信号処理分岐回路と、発振信号を処理して、第2の分岐出力信号を生成する第2の光信号処理分岐回路とを備える。第1及び第2の光信号処理分岐回路は、共通の光学モジュールを共有し、共通の光学モジュールは、第1及び第2の波長において、連続波レーザ光を生成する共有されたレーザと、第1及び第2の波長におけるレーザ光を変調して、発振信号を搬送する変調されたレーザ光を生成する共有された光変調器と、共有された光変調器から変調されたレーザ光を受け取る共有された光遅延と、共有された光遅延によって出力される変調されたレーザ光を、第1の光信号処理分岐回路によって処理されて、第1の分岐出力信号を生成する第1の波長の第1の変調されたレーザビームと、第2の光信号処理分岐回路によって処理されて、第2の分岐出力信号を生成する第2の波長の第2の変調されたレーザビームとに分離する波長選択性光デバイスとを含む。このデバイスは、第1及び第2の分岐出力信号を受け取り、受け取った発振信号内の雑音を測定し、第1及び第2の光信号処理分岐回路及び受け取った発振信号内の雑音の測定を制御する回路を備える。
他の側面では、信号内の位相雑音を測定するデバイスを提供し、このデバイスは、供試発振器からの発振信号を受け取る入力ポートと、発振信号を処理して、出力信号を生成する光信号処理回路と、出力信号を受け取って処理し、受け取った発振信号内の雑音を測定し、光信号処理回路及び受け取った発振信号内の雑音の測定を制御する回路とを備える。光信号処理回路は、第1の偏光で連続波レーザ光を生成するレーザと、レーザ光を変調して、発振信号を搬送する第1の偏光である変調されたレーザ光を生成する光変調器と、第1のポートにおいて、光変調器から第1の光学的経路に沿って、第1の偏光の変調されたレーザ光を受け取り、受け取った変調されたレーザ光を、第1の偏光で、第2のポートに向け、第2のポートにおいて受け取った光を、第1の偏光に直交する第2の偏光で、第3のポートに向ける光ビーム結合器と、第2のポートに接続され、光ビーム結合器から光を受け取るファイバ遅延線と、ファイバ遅延線に接続され、偏光を90度回転させて、ファイバ遅延線に光を反射するファラデー回転子ミラーと、光ビーム結合器の第3のポートから光を受け取り、検出器信号を生成するように接続された光検出器と、発振信号のコピーを受け取り、発振信号のコピーの位相を変更して、位相シフトされた発振信号を生成する電圧制御移相器と、検出器信号及び位相シフトされた発振信号を混合して、出力信号を生成する信号ミキサとを含む。
他の側面では、信号内の位相雑音を測定するデバイスを提供し、このデバイスは、供試発振器からの発振信号を受け取る入力ポートと、第1の偏光で第1の連続波レーザビームを生成する第1のレーザと、第1のレーザビームを変調して、発振信号を搬送する第1の変調されたレーザ光を生成する第1の光変調器と、第1の偏光の第1の変調されたレーザ光を受け取る第1のポートと、第1のポートからの光を出力する第2のポートと、第2のポートにおいて受け取った光を出力する第3のポートとを有する第1の光サーキュレータと、第1の偏光と直交する第2の偏光で第2の連続波レーザビームを生成する第2のレーザと、第2のレーザビームを変調して、発振信号を搬送する第2の変調されたレーザ光を生成する第2の光変調器と、第2の偏光の第2の変調されたレーザ光を受け取る第1のポートと、第1のポートからの光を出力する第2のポートと、第2のポートにおいて受け取った光を出力する第3のポートとを有する第2の光サーキュレータとを備える。このデバイスは、第1のポート、第2のポート及び第3のポートを含む光ビーム結合器を備える。第1のポートは、第1の光サーキュレータの第2のポートに接続され、第1の偏光で第1の変調されたレーザ光を受け取り、光ビーム結合器の第2のポートに向ける。光ビーム結合器は、第2のポートにおいて受け取った第2の偏光の光を第3のポートに向け、第2のポートにおいて受け取った第2の偏光の光を第1のポートに向け、光ビーム結合器の第3のポートは、第2の光サーキュレータの第2のポートから、第2の偏光の第2の変調されたレーザビームの光を受け取るように接続されている。このデバイスは、光ビーム結合器の第2のポートに接続され、光ビーム結合器から光を受け取り、第1及び第2の変調されたレーザビームの両方に位相遅延を導入するファイバ遅延線と、ファイバ遅延線に接続され、偏光を90度回転させてファイバ遅延線に光を反射するファラデー回転子ミラーと、第2の光サーキュレータの第3のポートから光を受け取り、第1の検出器信号を生成するように接続された第1の光検出器と、第1の光サーキュレータの第3のポートから光を受け取り、第2の検出器信号を生成するように接続された第2の光検出器と、発振信号のコピーを受け取り、発振信号のコピーの位相を変更して、第1の位相シフトされた発振信号を生成する第1の電圧制御移相器と、第1の検出器信号及び第1の位相シフトされた発振信号を混合して、第1の出力信号を生成する第1の信号ミキサと、発振信号の他のコピーを受け取り、発振信号の他のコピーの位相を変更して、第2の位相シフトされた発振信号を生成する第2の電圧制御移相器と、第2の検出器信号及び第2の位相シフトされた発振信号を混合して、第2の出力信号を生成する第2の信号ミキサとを備える。このデバイスは、更に、第1及び第2の出力信号を受け取り、受け取った発振信号内の雑音を測定し、第1及び第2の電圧制御移相器及び受け取った発振信号の雑音の測定を制御する回路を備える。
更に他の側面として、本明細書では、発振器を特徴付けるためのシステムの具体例を提供する。このシステムは、供試発振器からの発振信号を受け取る入力ポートと、受信した発振信号を第1の発振信号及び第2の発振信号に分割する入力ポート信号スプリッタと、第1の発振信号を処理して第1の分岐出力信号を生成する第1の光信号処理分岐回路と、第2の発振信号を処理して、第2の分岐出力信号を生成する第2の光信号処理分岐回路と、第1及び第2の分岐出力信号を受け取り、受信した発振信号内の雑音を測定する二重チャネル信号解析器と、第1及び第2の光信号処理分岐回路及び二重チャネル信号解析器を制御して、受信した発振信号内の雑音の測定を制御するコンピュータコントローラとを備える。
上述のシステムの一具体例では、第1の光信号処理分岐回路は、第1の発振信号を第1の分岐信号及び第2の分岐信号に分割する第1の信号スプリッタと、第1の分岐信号を受け取り、レーザビームを生成するレーザを含む光分岐と、第1の分岐信号に応じてレーザビームを変調して、第1の分岐信号を搬送する変調されたレーザビームを生成する光変調器と、変調されたレーザビームを伝送して、変調されたレーザビームに遅延を生じさせる光遅延ユニットと、変調されたレーザビームを検出器信号に変換する光検出器と、第2の分岐信号を受け取る電気分岐であって、第2の分岐信号を受け取って、第2の分岐信号の位相を変更して出力信号を生成する電圧制御移相器を含む電気分岐と、検出器信号及び出力信号を混合して第1の分岐出力信号を生成する信号ミキサとを含む。
これら及び他の側面、並びに関連する特徴及びこれらの具体例については、図面、説明及び特許請求の範囲に更に詳細に開示されている。
自動化された光電子相互相関ホモダイン位相雑音セットアップの具体例によって様々な技術的特徴を示す図である。 共有された光変調器及び共有されたレーザに基づく相互相関位相雑音測定デバイスの具体例を示す図である。 共有された光変調器及び共有されたレーザに基づく相互相関位相雑音測定デバイスの具体例を示す図である。 共有された光変調器及び共有されたレーザに基づく相互相関位相雑音測定デバイスの具体例を示す図である。 偏光及びファラデー回転子ミラーを用いてファイバ遅延線の物理的長さを削減する位相雑音測定デバイスの具体例を示す図である。 偏光及びファラデー回転子ミラーを用いてファイバ遅延線の物理的長さを削減する位相雑音測定デバイスの具体例を示す図である。 偏光及びファラデー回転子ミラーを用いてファイバ遅延線の物理的長さを削減する位相雑音測定デバイスの具体例を示す図である。 偏光及びファラデー回転子ミラーを用いてファイバ遅延線の物理的長さを削減する位相雑音測定デバイスの具体例を示す図である。 偏光及びファラデー回転子ミラーを用いてファイバ遅延線の物理的長さを削減する位相雑音測定デバイスの具体例を示す図である。
本明細書は、RF、マイクロ波又はミリ波信号における位相雑音を測定し、光部品(photonic components)に基づいて、RF、マイクロ波又はミリ波のスペクトル範囲内で発振器を特徴付ける技術、デバイス及びシステムを開示する
図1は、自動化された光電子相互相関ホモダイン位相雑音セットアップ(automated opto-electronics cross-correlation homodyne phase noise setup)に基づく位相雑音測定デバイスの具体例によって、様々な技術的特徴を示す図である。この例示的なセットアップは、長い遅延線として機能する光ファイバによって実現される。デュアルホモダインセットアップ(dual homodyne setup)は、信号解析器において、相互相関され、供試発振器(oscillator under test)に相関しない雑音を平均化することによって、各ホモダイン分岐の雑音を低減する。
高純度の電磁波信号を生成するRFマイクロ波又はミリ波発振器の位相雑音測定では、低位相雑音測定セットアップが必要である。この技術を用いて2つの測定セットアップの信号を相互相関させることによって、単一のホモダイン測定セットアップのノイズフロアを低減することができる。2つの測定セットアップのそれぞれからの非相関雑音は、信号解析器において平均化される。相互相関されたデュアルシステムの位相ノイズフロアは、Nを平均の数として、(dB単位で)5log(N)向上させることができる。
2つの測定セットアップのそれぞれは、2つの信号分岐を有する電子光学ホモダインセットアップである。信号スプリッタは、発振器101から受け取った信号を2つの分岐に分割する。供試発振器101は、入力ポートスプリッタ102を含むシステムの入力ポートに接続されている。2つの信号分岐は、それぞれ、分岐信号スプリッタ102A、102Bを含む。各スプリッタ102A、102Bは、受け取った信号を2つの分岐のための2つの信号に分割する。
第1の信号分岐は、マイクロ波/RF信号に応じて、レーザ110又はレーザ120からのCWレーザビームを変調して、マイクロ波/RF信号を搬送する変調された光信号を生成する高速光変調器(high-speed optical modulator:MOD)111又は高速光変調器121を含む光信号分岐(photonic signal branch)である。変調された光信号は、信号遅延線112又は信号遅延線122として機能する光ファイバを経由し、これによって、雑音の効率的な弁別が実現する。ファイバ112又はファイバ122を長くすると、信号の遅延が大きくなり、セットアップの近接位相雑音(close-in phase noise)が低減される。光検出器(photodetector:PD)113又は光検出器123は、変調された光を変換して、マイクロ波又はRF信号に戻し、増幅器114又は増幅器124は、これを増幅する。第2の信号分岐は、電圧制御移相器(voltage controlled phase shifter:VCP)115又は電圧制御移相器125、及び信号増幅器116又は信号増幅器126を含む。信号ミキサ117又は信号ミキサ127は、2つの分岐を結合し、2つの分岐からの信号を混合して、ビート信号を生成するために使用される。VCP115又はVCP125は、第2の分岐における信号の位相遅延を制御して、信号ミキサ117又は信号ミキサ127において、2つの分岐の信号間に所望の相対位相、例えば、2つの信号間に90度の位相シフトを生成し、これは、信号ミキサ117又は信号ミキサ127の直交セッティング(quadrature setting)と呼ばれ、この場合、位相雑音は、ビート信号内で直流電圧によって表される。二重チャネル信号解析器130は、2つの測定セットアップからビート信号を受け取り、FFTデータとしてのビート信号に高速フーリエ変換(Fast Fourier Transform:FFT)を施す。2つの測定セットアップの信号の相互相関は、基準発振器又は位相同期ループを使用することなく、2つの測定セットアップのそれぞれからの非相関雑音を効果的に抑制し、発振器における位相雑音を測定するための低雑音測定システムを提供する。
光遅延線112又は光遅延線122は、デバイスのノイズフロアを所望のレベル以下に低減するために十分な大きさの所望の長い光遅延を提供する。遅延の長さが大きくなるに従って信号損失が深刻になる傾向がある同軸RF遅延線とは異なり、光遅延線は、比較的小さい光損失で長時間の遅延を提供できる。したがって、例えば、数キロメートルの範囲のファイバによる長い光遅延をファイバループによって達成できる。レーザ110は、連続波レーザ光を生成し、光変調器111は、供試発振器101からのRF、マイクロ波又はミリ波領域の発振信号を光領域に集合的に変換し、光遅延線112又は光遅延線122は、光領域において所望の位相遅延を導入するために使用される。そして、光検出器113又は光検出器123は、位相遅延された光信号をRF、マイクロ波又はミリ波領域に変換する。
このようなシステムは、電圧制御移相器(VCP)及びコンピュータコントローラ140を用いて自動化できる。VCP115、125を用いて、セットアップを(電圧から位相に)較正し、及びミキサが直交セッティングになるように第2の分岐における信号の位相を調整し、これによって、ミキサ出力は、発振信号内の位相雑音に敏感になる。コンピュータ又はマイクロプロセッサ140は、自動的に測定を行うために使用される。コンピュータは、較正係数を測定し、ミキサを直交にする。また、コンピュータ140は、信号解析器パラメータ、例えば、周波数、平均の数、分解能、帯域幅等を制御する。更に、コンピュータ140を用いて、モニタ上に位相雑音のプロットを生成することができ、及びデータを保存することができる。
様々な具体例において、信号解析器130の機能及びコンピュータコントローラ140の機能は、様々な構成でグループ化又は個別化することができる。幾つかの具体例では、信号処理及び制御回路モジュールが、ここに例示し、説明したような信号解析器130及びコンピュータコントローラ140の機能を提供するように実現してもよい。この回路モジュールは、信号解析器130及びコンピュータコントローラ140としての機能の同じ区分を有することなく実現してもよい。例えば、信号解析器130の代わりにアナログ/デジタル変換器(analog-to-digital converter:ADC)を用いて、ミキサ117、127からの出力を受け取る場合、コンピュータコントローラ140を用いて、ADCからのデジタル化されたデータを収集し、受け取ったデータに基づいてFFT演算を行うことができる。
以下、図1の相互相関ホモダイン位相雑音セットアップのためのチューニング及び較正手順を説明する。コンピュータは、この手順を自動的に実行するように動作させることができる。この手順は、較正、直交セッティング及び位相雑音測定を含む。
1.較正
較正プロセスでは、コンピュータ140を用いて、VCP115、125に制御信号を送り、VCP115、125上でバイアス電圧を掃引する。同時に、コンピュータ140は、ミキサ117、127のそれぞれと通信し、アナログ/デジタル(A/D)変換カードを介して、ミキサ出力電圧応答を記録する。
次に、コンピュータ140は、2つの測定セットアップのそれぞれについて、VCPのバイアス電圧φ(VVCP)の関数として、電圧制御移相器のために保存されている較正用の式を用いて、ミキサ電圧に対する様々なVCP位相の較正応答を算出する(Vmixer=0においてΔφ/ΔVmixer)。これによって較正プロセスが完了する。
2.直交セッティング
コンピュータ140は、較正データに基づいて、各VCPのバイアス電圧をチューニングして、各ミキサがゼロDC出力になるように位相をシフトさせる。これによって、ミキサは、直交に設定され、各ミキサの出力は、位相雑音に敏感になり、飽和における振幅雑音には、低感度になる。
3.位相雑音測定
図1における入力発振信号の位相雑音を測定するために、コンピュータ140は、信号解析器130を制御して、測定周波数の範囲、帯域幅分解能、平均の数及び他のパラメータを含む様々な動作パラメータを設定する。ユーザは、ユーザインタフェースソフトウェアによってこれらのパラメータを制御できる。信号解析器130の動作パラメータが設定された後に、入力信号は、入力ポートスプリッタ102に供給され、コンピュータ140を用いてデータ取得が実行され、2つのミキサ117、127によって生成される出力電圧変動及び信号解析器130からのFFTデータが読み出される。
データ取得の間、コンピュータ140は、2つのミキサ117、127によって生成される出力電圧変動を監視する。発振器周波数ドリフト及び/又は遅延温度ドリフトのために、ミキサからの出力電圧が許容範囲を超えてドリフトした場合、コンピュータ140は、信号解析器130を一時停止モードに設定して、データ取得を中断する。次に、コンピュータ140は、VCP115、125を制御して、システムを再び直交セッティングにし、FFT測定を再開する。
そして、コンピュータ140によって読み出されたFFTデータは、較正の間に測定された較正値及びファイバ遅延長係数を用いて、位相雑音スペクトル密度に変換される。データは、コンピュータ140の画面上にプロットすることができ、オプションとして、ファイルに保存することもできる。
システムのノイズフロアは、FFT平均の数であるNを増加させることによって向上させることができる。ノイズフロアは、5・log(N)(dB単位)だけ低減される。
上述の手順は、図1のデバイスのソフトウェアの動作モードの1つのみを開示している。図1のデバイスの他の動作モードは、2つのホモダインセットアップの1つだけを使用し、又は(能動/受動デバイス位相雑音測定のために)ミキサ電圧スペクトル密度を直接測定することを含む。図1のデバイスは、ユーザがファイバ遅延線112の遅延長を制御できるように設計してもよい。
図1の位相雑音測定デバイスは、第2の発振器及び位相同期に依存することなく、直接的に位相雑音を測定できる利点がある。このようなデバイスのRF搬送波周波数領域は、広範囲に亘り、RF増幅器及びVCPによって制約されることがある。図1のデバイスの幾つかの具体例は、6〜12GHzの間のRF搬送波周波数で使用することができ、ノイズフロアは、100Hzの周波数オフセットで−110dBc/Hzを上回り、1kHzの周波数オフセットで−140dBc/Hzを上回り、10kHz以上の周波数オフセットで−170dBc/Hzを上回る。
2つの測定分岐間の相互相関に基づく図1の位相雑音測定デバイスでは、2つの測定分岐において、2組のレーザ、光変調器及びファイバ遅延線が使用される。このようなレーザ及び光変調器によって、デバイスコストが上昇する。各ファイバ遅延線の長さが数キロメートルである幾つかの用途では、ファイバ遅延線は、嵩張る傾向がある。図2、図3及び図4は、異なる測定分岐間で光部品を共有する設計の具体例を示している。
図2は、2つの異なる波長λ1、λ2の光を用いて、同じ光変調器及び光ファイバ遅延線を通過させ、図1のデバイス内の2つの測定分岐における2つの個別の光アーム(photonic arms)を実現する具体例を示している。図2の設計は、単一のファイバ上での複数の遅延を利用するマイクロ波、RF又はミリ波光相互相関位相雑音測定システムを表している。この構成では、それぞれ光波長が異なる複数の光信号を単一のファイバに供給する。この構成によって、必要な遅延の数だけ必要な遅延長が削減され、システムのサイズを大幅に縮小することができる。光信号を異なる波長でルーティングするために、受動光カプラ及びWDMフィルタが使用される。図2の設計は、遅延時間に亘る複数の信号の信号モーメント及び相関係数の高次統計演算のための単純化された構成を提供する。
図2では、パワースプリッタ201を用いて、供試発振器101からの入力発振信号を2つの発振信号261、262に分割する。発振信号261は、光変調器220に供給され、発振信号262は、更に発振信号271、272に分割される。
光源210は、2つの異なる波長λ1、λ2で、連続波レーザ光を生成する。光源210は、様々な構成で実現することができ、例えば、レーザ光212の波長λ1、λ2を生成するデュアルモードレーザ、又はそれぞれが波長λ1、λ2の2つのレーザビームを生成する2つのレーザを含む光源であってもよい。波長λ1、λ2のCW光は、光変調器220に供給され、光変調器220は、パワースプリッタ201から発振信号261を受け取り、供給された光を変調して、波長λ1、λ2において発振信号261を搬送する変調された光を生成する。波長λ1、λ2において発振信号261を搬送する変調された光は、単一のファイバ遅延線230に接続される。単一のファイバ遅延線230から出力された光は、波長選択性光デバイス240に供給され、波長選択性光デバイス240は、この光を、波長λ1における第1の光ビーム241と、波長λ2における第2の光ビーム242とに分割し、これらは何れも発振信号261を搬送し、ファイバ遅延線230を伝播することによって生じた遅延を有する。光デバイス240は、様々な構成で実現することができる。例えば、光デバイス240は、2つの波長分割多重(wavelength-division multiplexing:WDM)フィルタを有し、光を2つの部分に分割して、2つのWDMフィルタに供給する光カプラであってもよい。第1のWDMフィルタは、波長λ2の光を排除して、波長λ1の光を選択的に出力し、第2のWDMは、波長λ1の光を排除して、波長λ2の光を選択的に出力する。他の具体例では、2つの波長において、光を、2つの出力ビーム241、242に選択的に分離する光デバイス240として、単一のアッド/ドロップ型光フィルタ(add-drop optical filter)を使用することができ、2つの出力ビーム241、242は、別個のファイバに接続することができる。そして、2つの出力ビーム241、242は、2つの光検出器113、122にそれぞれ供給され、光検出器113、122は、供給された光をRF、マイクロ波又はミリ波領域に変換する。図2の光検出器113、123からの検出器出力信号は、図1の2つの測定分岐の2つの光信号経路の光検出器113、123からの2つの検出器出力信号と同等に機能する。
発振信号271は、VCP115に供給され、VCP115は、図1のコンピュータ140からの制御信号に応じて、信号271の位相を調整する。同様に、発振信号272は、VCP125に供給され、VCP125は、図1のコンピュータ140からの他の制御信号に応じて、信号272の位相を調整する。そして、VCP115からの出力信号は、ミキサ117において、光検出器113からの検出器出力信号と混合され、VCP125からの出力信号は、ミキサ127において、光検出器123からの検出器出力信号と混合される。そして、ミキサ117、127からの出力信号は、信号解析器130に供給される。
したがって、図2における光変調器220、単一のファイバ遅延線230、光デバイス240、光検出器113は、図1の第1の測定分岐において、光変調器111、光ファイバ遅延線112及び光検出器113によって構成されるフォトニックアームの均等物を構成する。図2におけるパワースプリッタ201及びVCP115は、図1の第1の測定分岐において、スプリッタ102A及びVCP115によって構成される他方のアームの均等物を構成する。同様に、図2における光変調器220、単一のファイバ遅延線230、光デバイス240、光検出器123は、図1の第2の測定分岐において、光変調器121、光ファイバ遅延線122及び光検出器123によって構成されるフォトニックアームの均等物を構成する。図2におけるパワースプリッタ201及びVCP125は、図1の第2の測定分岐において、スプリッタ102B及びVCP125によって構成される他のアームの均等物を構成する。
図2の設計は、3個以上の測定分岐を備えるデバイスに拡張できる。図3は、3個の測定分岐を備える共通の光変調器320及び共通のファイバ遅延線330を共有する他の具体例を示している。光源310は、3つの異なる波長λ1、λ2、λ3で連続波レーザ光312を生成する。光デバイス340は、受け取った光を、それぞれ波長λ1、λ2、λ3の3つのビーム341、342、343に分割するために使用される。第3の光検出器350、第3のVCP380及び第3のミキサ360は、波長λ3の光に基づいて動作する第3の測定分岐の一部を構成する。
図4は、光スイッチ又はスプリッタ410によって、異なる測定分岐が、図1のデバイスのように個別のレーザ及び個別の光変調器を用いることなく、同じレーザ110と同じ光変調器111を共有することができる他の具体例を示している。共有された光変調器111から出力される変調された光は、2つの異なる測定分岐のための2つの異なるファイバ遅延線に供給される。
上述の位相雑音測定では、遅延線を使用することによって、位相雑音を測定する。マイクロ波フォトニックス光リンクは、小型で、低損失で、長いファイバに亘って、光搬送波によって発振信号を搬送することによって長時間の遅延を提供できる。システムノイズフロアの低減は、非相関遅延を介する相互相関解析の補助によって達成できる。また、長いファイバ遅延の使用に関連するシステムの人工的スプリアス(artificial spurs)を取り除くためには、図1のデバイスに示すような複数の光ファイバ遅延線を必要とすることがある。図2及び図3における設計は、相互相関のために、異なる測定分岐によって、デバイスの光部品の一部が共有され、この結果、単一のファイバによって必要な総ファイバ長セグメントが低減された共有された構成を提供する。異なる測定分岐によって共有される単一の光ファイバは、異なる光搬送波波長に亘って複数のマイクロ波信号を搬送するために使用にされる。そして、各信号が抽出され、別個の光検出器に供給されて解析される。例えば、二重遅延線相互相関セットアップは、ファイバ端に単一のカプラ及び2個のWDMフィルタを有する単一のファイバを使用することができる。各信号は、光検出器及びミキサの補助によってダウンコンバートされる。そして、ダウンコンバートされた2つの信号の相互相関が、二重チャネル信号解析器によって解析される(ノイズフロアが低減される)。
他の具体例では、ファイバ遅延に起因する人工的スプリアス(artificial spurs)の排除のために、複数のファイバ長を必要とする。これは、単一の光ファイバ上で、同じRF/マイクロ波信号を搬送する幾つかの光波長を有することによって達成できる。そして、それぞれの波長は、(適切なファイバ長/遅延を通過した後)光カプラ及びWDMフィルタを介して、光検出器に接続される。
図3に示す3個以上の測定分岐を用いる上述した技術は、統計モーメント(statistical moments)及び高次相関係数(higher order correlation coefficients)の測定等の複雑な信号解析に用いることができる。例えば、3個以上の測定分岐から信号を受け取るマルチチャネル信号解析器を用いて、高次平均値及び相関を測定でき、したがって、検査される統計的パラメータの統計的分布関数をより良好に推定することができる。
上述のように、本明細書において開示する遅延弁別器設計(delay discriminator design)に基づいて、長いファイバ遅延線によって、位相雑音測定におけるフロアノイズを低減することができる。様々な具体例において、長いファイバによる各遅延線は、数キロメートルになることもあり、この結果、嵩張り、デバイス内で大きな空間を占有することがある。様々な用途では、小型のデバイスが好まれ、ファイバ遅延線によって達成される所望の長時間の遅延を維持しながら、ファイバ遅延線の実際の長さを短くすることが望まれる。一具体例では、光の光学的偏光特性を利用して、ファイバ遅延線に光を2回通過させ、必要なファイバ長を半分に削減する。以下では、このような設計のための幾つかの具体例を説明する。
図5は、2つの直交する偏光及びファラデー反射器(Faraday reflectors)を用いて、ファイバ遅延線に光を2回通過させる光学モジュール510に基づく2つの測定分岐を有する二重チャネル相互相関位相雑音測定デバイスの具体例を示している。図5の2つの測定分岐は、図2の設計と同様に構造化されているが、図5及び図2における光遅延線設計は、異なる。図5では、偏光ベースの光学モジュール510を設け、発振器101によって生成されたパワースプリッタ201からの発振信号を用いて2つの直交する偏光でレーザ光を変調し、発振信号を搬送する2つの変調された光ビーム511、512を生成して、光位相遅延を適用する。変調された光ビーム511、512は、2つの光検出器113、123にそれぞれ供給される。2つの変調された光ビーム511、512は、2つの互いに直交する偏光の光を結合及び分離する偏光ベースの光ビーム結合器(photonic beam combiner:PBC)を用いて2つのビームを分離するために、2つのビームの偏光が直交している限り、同じ波長であってもよく、又は図5において符号を付しているように、2つの異なる波長であってもよい。発振器101からの発振信号は、3つのパワースプリッタ201を用いて、2つの測定分岐における4つの信号アームのために、発振信号の4つのコピーに分割される。
図6Aは、図5の偏光ベースの光学モジュール510の1つの例示的な具体例を示している。2つのレーザ610、620は、2つのレーザビームを生成し、これらは、互いに直交する偏光として2つの光変調器612、622にそれぞれ供給される。偏光維持(polarization maintaining:PM)ファイバを用いて、レーザ610、620からの2つのレーザビームを、2つの直交する直線偏光で、2つの光変調器612、622に誘導することができ、また、PMファイバは、それらの互いに直交する偏光が維持される他の箇所でも用いられる。2つの光変調器612、622は、発振信号の2つのコピーを受け取り、発振信号を、レーザ610、620からの2つの光ビームにそれぞれ変調するように接続されている。2つの光変調器612、622によって出力される変調された光ビームは、互いに直交する偏光で維持され、2つの光サーキュレータ614、624にそれぞれ供給される。図に示すように、光サーキュレータ614、624は、光検出器123、113及び偏光ベースの光ビーム結合器(PBC)630に光学的に接続されている。詳しくは、光サーキュレータ614は、第1の光変調器612から変調された光ビームを受け取り、光路631(例えば、PMファイバ)に沿ってPBC630に光を向け、及びPBC630からの光を、光路631に沿って第2の光検出器123に向けるように接続され、光サーキュレータ624は、第2の光変調器622から変調された光ビームを受け取り、光路632(例えば、PMファイバ)に沿ってPBC630に光を向け、及びPBC630からの光を、光路632に沿って第1の光検出器113に向けるように接続される。
PBC630は、光路631、632から受け取った2つの互いに直交するように偏光されたビームを結合して、結合されたビームを生成し、結合されたビームをファイバ遅延線640、例えば、シングルモードファイバ(single mode fiber:SFM)遅延線に接続するように設計されている。ファイバ遅延線640は、ファラデー回転子ミラー(Faraday rotator mirror:FRM)650において終端され、FRM650は、ファイバ遅延線640に光を反射して、PBC630に戻す。FRM650は、単一の光路内の偏光を45度回転させるファラデー回転子と、ファラデー回転子を透過した光を反射して、ファラデー回転子に光を戻し、2回目の透過を実現する反射器とを含む。したがって、FRM650からの戻り光の偏光は、90度回転する。2つの光路631、632を介してPBC630に入る2つの光ビームは、FRM650によって反射されてPBC630に戻されたとき、偏光が直交したままの状態を保っているが、それらの偏光は、入れ替わっている。PBC630は、戻りビームをそれらの偏光によって分離し、光路631の偏光と同じ偏光の戻り光をPBC630によって光路631に向け、光路632の偏光と同じ偏光の戻り光をPBC630によって光路632に向けるように設計されている。したがって、光路631を介してPBC630に入る光は、FRM650による反射の後に、PBC630によって、光路632を経由して光サーキュレータ624に向けられ、続いて、光サーキュレータ624は、第1の光検出器113に光を向け、一方、光路632を介してPBC630に入る光は、FRM650による反射の後に、PBC630によって、光路631を経由して光サーキュレータ614に向けられ、続いて、光サーキュレータ614は、第2の光検出器123に光を向ける。
図6Bは、偏光ビームスプリッタキューブを用いてPBC630を実現するための一具体例を示しており、偏光ビームスプリッタキューブは、光路631内における第1の偏光の光を反射し、光路632における第2の偏光の光を透過する。
したがって、上述のように光サーキュレータ614、624、PBC630及びFRM650を用いることによって、2つのレーザ610、620からの2つの信号を直交する偏光で単一の低コストのシングルモードファイバ640に結合することができる。ファイバ640内の光は、単一のチャネルで必要なファイバ長の半分を進んだ後、同様に各偏光を90度回転させるFRM650を用いて反射される。これによって、ファイバ640に沿ったあらゆる偏光回転が補償され、元の偏光状態から90度回転された信号が、PBC630に返される。そして、PBC630は、互いに直交するように偏光された2つの信号を2つの別個のファイバ631、632に分割する。サーキュレータ614、624は、これらの遅延信号を別個の光検出器113(PD1)、123(PD2)に接続することができるPMサーキュレータであってもよい。そして、各信号は、それぞれのPD113又はPD123及びそれぞれのミキサ117又は127(図5)の補助によってダウンコンバートされる。そして、ダウンコンバートされた2つの信号の相互相関が、二重チャネル信号解析器130によって解析される(ノイズフロアが低減される)。
図5、図6A及び図6Bの設計の下では、2つの個別の信号がファイバ遅延線640内を二回通過し、望まれる遅延に必要なファイバ長は、図1における2つの別個のファイバの相互相関構成の設計に基づく2つのチャネルに必要であるファイバ遅延長の4分の1に短縮される。
図7は、偏光ベースの光学モジュール510の他の具体例を示しており、ここでは、2つのFRM710、720を用いて、ファイバ遅延線640にリンクするための2つの代替の光路を提供する。光学1×2スイッチ730は、ファイバ遅延線640を2つのFRM710、720の何れかに接続し、2つの異なる光遅延を提供している。図7の具体例では、第2のファイバ遅延線740は、光スイッチ730とFRM710との間に接続され、このため、FRM710によって反射される光のための光遅延は、FRM720によって反射される光のための光遅延より長い。光スイッチ730は、それぞれ、2つの異なる総ファイバ長L1及び(L1+L2)のファイバを切換えるように動作し、2つのFRM710、720を用いる二重光路構成のために、実現されるファイバ長は、2xL1、2x(L1+L2)である。
図7の設計は、2つより多くのFRM光路を有するマルチファイバ長PNTSに拡張して、ファイバ長に関連する周波数の高調波における人工的スプリアス(artificial spurs)を排除することができる。異なる遅延を有するN個のファイバ光路及びそれぞれのFRMを切換えるために、単一の1xN光スイッチが使用される。
上述のFRMの使用は、図8に示す単一チャネルPNTSにおいて実現することができる。この具体例では、レーザ光の偏光は、光サーキュレータなしで、図6A、図6B及び図7における偏光制御に基づいて制御される。この場合、節減されるのは、単一のチャネルの場合に必要となるファイバ長の半分である。図7の設計と同様に、図8においても、単一の1xNスイッチを用いてN個ファイバを切換えることによって、FRM及び異なる遅延を有する2つ以上の光路を実現することができる。
図8に示す単一チャネルPNTSは、ミキサ117からビート信号を受け取り、受け取ったビート信号のFFTデータを生成する信号解析器810を含む。コンピュータ制御820は、VCP115に制御信号を供給し、VCP115上でバイアス電圧を掃引するために使用される。また、コンピュータ制御820は、ミキサ117と通信して、アナログ/デジタル(A/D)変換カードを介して、ミキサ出力電圧応答を記録する。較正及び直交セッティング手順は、位相雑音測定を実行する前に実行される。
図5〜図8に示す技術及び設計によって、偏光を用いる二重光路構成に基づいて、ファイバ遅延線の物理的長さが削減された光位相雑音測定システムを提供することができる。相互相関システムでは、この構成は、それぞれが異なる(直交する)偏光を有する2つの信号を共に単一のファイバに供給する。PBCは、直交する偏光の2つの信号を単一のファイバに結合するために使用される。PM光サーキュレータは、FRMと連携して、この他の場合にノイズフロアの同様の性能を達成するために必要なファイバ長の4分の1を2回通過した後、2つの偏光を2つの光検出器に分離する。この構成によって、位相雑音測定システムのサイズを大幅に削減することができる。
本明細書は、多くの詳細事項を含んでいるが、これらの詳細事項は、発明の範囲又は特許請求の範囲を限定するものとは解釈されず、特定の実施の形態の特定の特徴の記述として解釈される。本明細書おいて、別個の実施の形態の文脈で開示した幾つかの特徴を組み合わせて、単一の実施の形態として実現してもよい。逆に、単一の実施の形態の文脈で開示した様々な特徴は、複数の実施の形態に別個に具現化してもよく、適切な如何なる部分的組合せとして具現化してもよい。更に、以上では、幾つかの特徴を、ある組合せで機能するものと説明しているが、初期的には、そのように特許請求している場合であっても、特許請求された組合せからの1つ以上の特徴は、幾つかの場合、組合せから除外でき、特許請求された組合せは、部分的組合せ又は部分的な組合せの変形に変更してもよい。
幾つかの具体例のみを説明した。この説明に基づいて、ここに開示した具体例及び他の具体例の変形及び拡張を想到することができる。

Claims (14)

  1. 信号内の位相雑音を測定するデバイスにおいて、
    供試発振器からの発振信号を受け取る入力ポートと、
    前記発振信号を処理して、第1の分岐出力信号を生成する第1の光信号処理分岐回路と、
    前記発振信号を処理して、第2の分岐出力信号を生成する第2の光信号処理分岐回路であって、前記第1及び第2の光信号処理分岐回路は、共通の光学モジュールを共有し、前記共通の光学モジュールは、第1及び第2の波長において、連続波レーザ光を生成する共有されたレーザと、前記第1及び第2の波長におけるレーザ光を変調して、前記発振信号を搬送する変調されたレーザ光を生成する共有された光変調器と、前記共有された光変調器から前記変調されたレーザ光を受け取る共有された光遅延と、前記共有された光遅延によって出力される前記変調されたレーザ光を、前記第1の光信号処理分岐回路によって処理されて、前記第1の分岐出力信号を生成する前記第1の波長の第1の変調されたレーザビームと、前記第2の光信号処理分岐回路によって処理されて、前記第2の分岐出力信号を生成する前記第2の波長の第2の変調されたレーザビームとに分離する波長選択性光デバイスとを含む、第2の光信号処理分岐回路と、
    前記第1及び第2の分岐出力信号を受け取り、前記受け取った発振信号内の雑音を測定し、前記第1及び第2の光信号処理分岐回路及び前記受け取った発振信号内の雑音の測定を制御する回路とを備えるデバイス。
  2. 前記第1の光信号処理分岐回路は、前記第1の変調されたレーザビームを第1の検出器信号に変換する第1の光検出器と、前記発振信号の第1のコピーを受け取り、前記発振信号の第1のコピーの位相を変更して、前記発振信号の第1の位相シフトされたコピーを生成する第1の電圧制御移相器を含む第1の電気分岐と、前記発振信号の第1の検出器信号及び前記第1の位相シフトされたコピーを混合して、前記第1の分岐出力信号を生成する第1の信号ミキサとを備え、
    前記第2の光信号処理分岐回路は、前記第2の変調されたレーザビームを第2の検出器信号に変換する第2の光検出器と、前記発振信号の第2のコピーを受け取り、前記発振信号の第2のコピーの位相を変更して、前記発振信号の第2の位相シフトされたコピーを生成する第2の電圧制御移相器を含む第2の電気分岐と、前記発振信号の第2の検出器信号及び前記第2の位相シフトされたコピーを混合して、前記第2の分岐出力信号を生成する第2の信号ミキサとを備える請求項1記載のデバイス。
  3. 前記光遅延は、ファイバ遅延線を含む請求項2記載のデバイス。
  4. 前記第1及び第2の電圧制御移相器は、前記回路によって制御される請求項2記載のデバイス。
  5. 前記回路は、前記第1及び第2の電圧制御移相器のそれぞれを制御して、前記第1及び第2の信号ミキサのそれぞれの位相を直交状態に設定する請求項4記載のデバイス。
  6. 前記回路は、
    前記第1及び第2の分岐出力信号を受け取り、前記受け取った発振信号内の雑音を測定するチャネル信号解析器と、
    前記第1及び第2の光信号処理分岐回路及びチャネル信号解析器を制御して、前記受け取った発振信号内の雑音の測定を制御するコントローラとを備える請求項1記載のデバイス。
  7. 信号内の位相雑音を測定するデバイスにおいて、
    供試発振器からの発振信号を受け取る入力ポートと、
    前記発振信号を処理して、出力信号を生成する光信号処理回路と、
    前記出力信号を受け取って処理し、前記受け取った発振信号内の雑音を測定し、前記光信号処理回路及び前記受け取った発振信号内の雑音の測定を制御する回路とを備え、
    前記光信号処理回路は、第1の偏光で連続波レーザ光を生成するレーザと、前記レーザ光を変調して、前記発振信号を搬送する前記第1の偏光である変調されたレーザ光を生成する光変調器と、第1のポートにおいて、前記光変調器から第1の光学的経路に沿って、前記第1の偏光の前記変調されたレーザ光を受け取り、前記受け取った変調されたレーザ光を、前記第1の偏光で、第2のポートに向け、前記第2のポートにおいて受け取った光を、前記第1の偏光に直交する第2の偏光で、第3のポートに向ける光ビーム結合器と、前記第2のポートに接続され、前記光ビーム結合器から光を受け取るファイバ遅延線と、前記ファイバ遅延線に接続され、偏光を90度回転させて、前記ファイバ遅延線に光を反射するファラデー回転子ミラーと、前記光ビーム結合器の第3のポートから光を受け取り、検出器信号を生成するように接続された光検出器と、前記発振信号のコピーを受け取り、前記発振信号のコピーの位相を変更して、位相シフトされた発振信号を生成する電圧制御移相器と、前記検出器信号及び前記位相シフトされた発振信号を混合して、出力信号を生成する信号ミキサとを含むデバイス。
  8. 前記光変調器及び前記光ビーム結合器の第1のポートを接続し、前記第1の偏光に光を維持する偏光維持ファイバを備える請求項7記載のデバイス。
  9. 前記ファイバ遅延線と前記ファラデー回転子ミラーとの間に接続され、前記ファイバ遅延線とファラデー回転子ミラーとの間の接続を接続又は切断する光スイッチと、
    前記第1のファイバ遅延線から分離された第2のファイバ遅延線と、
    前記第2のファイバ遅延線に接続され、前記第2のファイバ遅延線から光を受け取り、偏光を90度回転させて、前記第2のファイバ遅延線に光を反射する第2のファラデー回転子ミラーとを備え、
    前記光スイッチは、更に、前記ファイバ遅延線と第2のファイバ遅延線との間に更に接続されて、前記ファイバ遅延線と第2のファイバ遅延線との間の接続を接続又は切断する請求項7記載のデバイス。
  10. 前記回路は、
    前記出力信号を受け取って処理し、前記受け取った発振信号内の雑音を測定する信号解析器と、
    前記第1の光信号処理回路及び信号解析器を制御して、前記受け取った発振信号内の雑音の測定を制御するコントローラとを備える請求項7記載のデバイス。
  11. 信号内の位相雑音を測定するデバイスにおいて、
    供試発振器からの発振信号を受け取る入力ポートと、
    第1の偏光で第1の連続波レーザビームを生成する第1のレーザと、
    前記第1のレーザビームを変調して、前記発振信号を搬送する第1の変調されたレーザ光を生成する第1の光変調器と、
    前記第1の偏光の前記第1の変調されたレーザ光を受け取る第1のポートと、前記第1のポートからの光を出力する第2のポートと、前記第2のポートにおいて受け取った光を出力する第3のポートとを有する第1の光サーキュレータと、
    前記第1の偏光と直交する第2の偏光で第2の連続波レーザビームを生成する第2のレーザと、
    前記第2のレーザビームを変調して、前記発振信号を搬送する第2の変調されたレーザ光を生成する第2の光変調器と、
    前記第2の偏光の第2の変調されたレーザ光を受け取る第1のポートと、前記第1のポートからの光を出力する第2のポートと、前記第2のポートにおいて受け取った光を出力する第3のポートとを有する第2の光サーキュレータと、
    第1のポート、第2のポート及び第3のポートを含む光ビーム結合器であって、前記第1のポートは、前記第1の光サーキュレータの第2のポートに接続され、前記第1の偏光で前記第1の変調されたレーザ光を受け取り、前記光ビーム結合器の第2のポートに向け、前記光ビーム結合器は、前記第2のポートにおいて受け取った前記第2の偏光の光を前記第3のポートに向け、前記第2のポートにおいて受け取った前記第2の偏光の光を前記第1のポートに向け、前記光ビーム結合器の第3のポートは、前記第2の光サーキュレータの第2のポートから、前記第2の偏光の前記第2の変調されたレーザビームの光を受け取るように接続されている光ビーム結合器と、
    前記光ビーム結合器の第2のポートに接続され、前記光ビーム結合器から光を受け取り、前記第1及び第2の変調されたレーザビームの両方に位相遅延を導入するファイバ遅延線と、
    前記ファイバ遅延線に接続され、偏光を90度回転させて前記ファイバ遅延線に光を反射するファラデー回転子ミラーと、
    前記第2の光サーキュレータの第3のポートから光を受け取り、第1の検出器信号を生成するように接続された第1の光検出器と、
    前記第1の光サーキュレータの第3のポートから光を受け取り、第2の検出器信号を生成するように接続された第2の光検出器と、
    前記発振信号のコピーを受け取り、前記発振信号のコピーの位相を変更して、第1の位相シフトされた発振信号を生成する第1の電圧制御移相器と、
    前記第1の検出器信号及び前記第1の位相シフトされた発振信号を混合して、第1の出力信号を生成する第1の信号ミキサと、
    前記発振信号の他のコピーを受け取り、前記発振信号の他のコピーの位相を変更して、第2の位相シフトされた発振信号を生成する第2の電圧制御移相器と、
    前記第2の検出器信号及び第2の位相シフトされた発振信号を混合して、第2の出力信号を生成する第2の信号ミキサと、
    前記第1及び第2の出力信号を受け取り、前記受け取った発振信号内の雑音を測定し、前記第1及び第2の電圧制御移相器及び前記受け取った発振信号の雑音の測定を制御する回路とを備えるデバイス。
  12. 前記第1の光サーキュレータ及び前記光ビーム結合器の第1のポートを接続し、前記第1の偏光に光を維持する第1の偏光維持ファイバと、
    前記第2の光サーキュレータ及び前記光ビーム結合器の第3のポートを接続し、前記第2の偏光に光を維持する第2の偏光維持ファイバとを備える請求項11記載のデバイス。
  13. 前記ファイバ遅延線と前記ファラデー回転子ミラーとの間に接続され、前記ファイバ遅延線とファラデー回転子ミラーとの間の接続を接続又は切断する光スイッチと、
    前記第1のファイバ遅延線から分離された第2のファイバ遅延線と、
    前記第2のファイバ遅延線に接続され、前記第2のファイバ遅延線から光を受け取り、偏光を90度回転させて、前記第2のファイバ遅延線に光を反射する第2のファラデー回転子ミラーとを備え、
    前記光スイッチは、更に、前記ファイバ遅延線と第2のファイバ遅延線との間に更に接続されて、前記ファイバ遅延線と第2のファイバ遅延線との間の接続を接続又は切断する請求項11記載のデバイス。
  14. 前記回路は、
    前記第1及び第2の出力信号を受け取り、前記受け取った発振信号内の雑音を測定する信号解析器と、
    前記第1及び第2の電圧制御移相器及び前記信号解析器を制御して、前記受け取った発振信号内の雑音の測定を制御するコントローラとを備える請求項11記載のデバイス。
JP2012531046A 2009-09-23 2010-09-23 光遅延に基づく無線周波数、マイクロ波又はミリ波信号における位相雑音の測定 Expired - Fee Related JP5619902B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US24495909P 2009-09-23 2009-09-23
US61/244,959 2009-09-23
US33366510P 2010-05-11 2010-05-11
US61/333,665 2010-05-11
PCT/US2010/050083 WO2011038166A2 (en) 2009-09-23 2010-09-23 Measuring phase noise in radio frequency, microwave or millimeter signals based on photonic delay

Publications (2)

Publication Number Publication Date
JP2013506139A true JP2013506139A (ja) 2013-02-21
JP5619902B2 JP5619902B2 (ja) 2014-11-05

Family

ID=43796497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012531046A Expired - Fee Related JP5619902B2 (ja) 2009-09-23 2010-09-23 光遅延に基づく無線周波数、マイクロ波又はミリ波信号における位相雑音の測定

Country Status (5)

Country Link
EP (1) EP2480902B1 (ja)
JP (1) JP5619902B2 (ja)
CN (2) CN102667506B (ja)
CA (2) CA2863718C (ja)
WO (1) WO2011038166A2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155914B2 (en) 2007-11-13 2012-04-10 Oewaves, Inc. Measuring phase noise in radio frequency, microwave or millimeter signals based on photonic delay
WO2011119232A2 (en) 2010-03-23 2011-09-29 Oewaves, Inc. Optical gyroscope sensors based on optical whispering gallery mode resonators
CN104459360B (zh) * 2014-12-18 2017-05-24 南京航空航天大学 基于微波光子混频技术的微波源相位噪声测试方法及装置
CN104698275B (zh) * 2015-03-28 2017-05-03 山东大学 一种能产生小角度相移并能进行检测的系统
CN104777376B (zh) * 2015-05-13 2017-10-31 中国人民解放军国防科学技术大学 一种激光放大器相位噪声测量系统
US9967048B1 (en) * 2016-10-14 2018-05-08 Juniper Networks, Inc. Optical transceiver with external laser source
CN106569046B (zh) * 2016-10-17 2017-09-01 西安科技大学 改进的基于中频延迟线鉴频法的相位噪声测试装置及方法
EP3343194B1 (en) 2016-12-28 2019-08-28 ID Quantique S.A. Measuring device and method for optical fibers
CN106936498B (zh) * 2017-03-07 2019-05-31 赵杰 一种基于超宽带相位噪声测试系统的信号分析方法
CN106771689B (zh) * 2017-03-07 2019-06-21 张家港市欧微自动化研发有限公司 一种超宽带相位噪声测试系统
CN106771688B (zh) * 2017-03-07 2019-06-21 张家港市欧微自动化研发有限公司 一种超宽带相位噪声测试系统的使用方法
CN107835055B (zh) * 2017-09-29 2020-09-15 北京大学 一种微波源相位噪声测量方法及系统
CN110716092B (zh) * 2019-10-22 2021-09-07 上海交通大学 基于激光鉴频和互相关处理的相位噪声测量装置和测量方法
CN115280690B (zh) * 2020-03-10 2024-03-19 哲库科技(上海)有限公司 用于基于延迟线的收发器校准的方法、装置、系统和介质
CN111913052A (zh) * 2020-06-03 2020-11-10 北京无线电计量测试研究所 一种光载无线电控制模块和光载无线电互相关检测系统
CN114184849A (zh) * 2021-12-08 2022-03-15 北京航空航天大学 一种微波光子学接收天线
CN114498273B (zh) * 2021-12-31 2023-10-13 北京无线电计量测试研究所 一种微波信号处理装置
CN114019610B (zh) * 2022-01-05 2022-03-29 成都明夷电子科技有限公司 一种用于射频信号调制强化的调制器及其调制方法
CN116381597B (zh) * 2023-05-29 2023-08-25 成都唯博星辰科技有限公司 一种宽带单通道测向系统及实现方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115038A (ja) * 2003-10-08 2005-04-28 Honda Tsushin Kogyo Co Ltd 光分波器および光分波機能を備えた光レセプタクル
JP2005308509A (ja) * 2004-04-21 2005-11-04 Agilent Technol Inc 位相雑音を測定する方法および位相雑音測定装置
US20090208205A1 (en) * 2007-11-13 2009-08-20 Danny Eliyahu Photonic Based Cross-Correlation Homodyne Detection with Low Phase Noise

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918373A (en) * 1988-03-18 1990-04-17 Hughes Aircraft Company R.F. phase noise test set using fiber optic delay line
US5608331A (en) * 1995-06-06 1997-03-04 Hughes Electronics Noise measurement test system
US5687261A (en) * 1996-01-24 1997-11-11 California Institute Of Technology Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same
US6580532B1 (en) * 1999-01-28 2003-06-17 California Institute Of Technology Opto-electronic techniques for reducing phase noise in a carrier signal by carrier supression
US6570458B2 (en) * 2001-06-12 2003-05-27 Teradyne, Inc. Low noise microwave synthesizer employing high frequency combs for tuning drift cancel loop
CA2550284A1 (en) * 2003-12-23 2005-07-07 Sirific Wireless Corporation Method and apparatus for reduced noise band switching circuits
JP2005201764A (ja) * 2004-01-15 2005-07-28 Alps Electric Co Ltd 位相雑音測定方法、位相雑音測定装置及び信号レベル調整装置
CA2590790C (en) * 2004-12-14 2014-09-02 Luna Innovations Inc. Compensating for time varying phase changes in interferometric measurements
US7397567B2 (en) * 2005-12-09 2008-07-08 Massachusetts Institute Of Technology Balanced optical-radiofrequency phase detector
US8078060B2 (en) * 2006-04-04 2011-12-13 The Regents Of The University Of California Optical synchronization system for femtosecond X-ray sources
US20070297716A1 (en) * 2006-06-23 2007-12-27 Helkey Roger J Reconfigurable photonic delay line filter
US7534990B2 (en) * 2006-09-05 2009-05-19 General Photonics Corporation Compact optical delay devices
CN100524943C (zh) * 2006-11-23 2009-08-05 杭州电子科技大学 低相位噪声高功率效率平面微波振荡器
MX2009007650A (es) * 2007-01-17 2009-10-12 Omniphase Res Lab Inc Sistema automatizado de medicion de ruido.
CN101453269B (zh) * 2007-11-30 2012-01-04 富士通株式会社 频差补偿装置和方法、光相干接收机
US20100021166A1 (en) * 2008-02-22 2010-01-28 Way Winston I Spectrally Efficient Parallel Optical WDM Channels for Long-Haul MAN and WAN Optical Networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115038A (ja) * 2003-10-08 2005-04-28 Honda Tsushin Kogyo Co Ltd 光分波器および光分波機能を備えた光レセプタクル
JP2005308509A (ja) * 2004-04-21 2005-11-04 Agilent Technol Inc 位相雑音を測定する方法および位相雑音測定装置
US20090208205A1 (en) * 2007-11-13 2009-08-20 Danny Eliyahu Photonic Based Cross-Correlation Homodyne Detection with Low Phase Noise

Also Published As

Publication number Publication date
CA2863718A1 (en) 2011-03-31
EP2480902A2 (en) 2012-08-01
CN104764941B (zh) 2018-01-09
EP2480902A4 (en) 2017-07-26
CA2772941C (en) 2016-04-26
CN104764941A (zh) 2015-07-08
CA2863718C (en) 2018-01-16
EP2480902B1 (en) 2020-03-25
CN102667506A (zh) 2012-09-12
WO2011038166A2 (en) 2011-03-31
WO2011038166A3 (en) 2011-08-18
CA2772941A1 (en) 2011-03-31
CN102667506B (zh) 2015-03-11
JP5619902B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5619902B2 (ja) 光遅延に基づく無線周波数、マイクロ波又はミリ波信号における位相雑音の測定
US9234937B2 (en) Measuring phase noise in radio frequency, microwave or millimeter signals based on photonic delay
US10876827B2 (en) Multi-cavity wavelength tunable laser device
US8155913B2 (en) Photonic-based cross-correlation homodyne detection with low phase noise
WO2020043096A1 (zh) 一种相干检测的实现装置、系统及方法
US20170195062A1 (en) Photonic integrated circuit
JP6719414B2 (ja) 位相共役光発生装置及び光通信システム、並びに位相共役光発生方法
CN106062568B (zh) 双向电光探测器
JP5334619B2 (ja) 光路長制御装置
JP3697350B2 (ja) 光送信器
WO2017077612A1 (ja) レーザレーダ装置
CN214538272U (zh) 基于偏振复用的双通道微波源相位噪声测试装置
US9261635B2 (en) Rotator external to photonic integrated circuit
CN113175999A (zh) 基于偏振复用的双通道微波源相位噪声测试方法及装置
WO2022096575A1 (en) Photonic integrated circuit
JP6100656B2 (ja) 電気光変換装置
CN215222199U (zh) 一种微波源相位噪声测量装置
KR102136554B1 (ko) 편광 선별 공진기를 이용한 밀리미터파 또는 마이크로파 생성장치
CN113438022A (zh) 一种微波源相位噪声测量装置及方法
JPH11271179A (ja) 光ファイバの波長分散測定装置
JP3831393B2 (ja) 光送信器
FR2725076A1 (fr) Systeme de commande optique d'antenne a balayage electronique
JPS63272131A (ja) 偏波ダイバシテイ光受信方法及びその装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20121119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees