JP2013502094A - 低密度パリティ検査符号および配位図マッピングを使ったデータ受信 - Google Patents

低密度パリティ検査符号および配位図マッピングを使ったデータ受信 Download PDF

Info

Publication number
JP2013502094A
JP2013502094A JP2012523596A JP2012523596A JP2013502094A JP 2013502094 A JP2013502094 A JP 2013502094A JP 2012523596 A JP2012523596 A JP 2012523596A JP 2012523596 A JP2012523596 A JP 2012523596A JP 2013502094 A JP2013502094 A JP 2013502094A
Authority
JP
Japan
Prior art keywords
substream
bits
symbol
ldpc
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012523596A
Other languages
English (en)
Inventor
チョウ,ウェイ
ゾウ,リー
ザオ,ユピン
ザン,シャオシン
リュー,ペン
ワン,チャールズ,チュアンミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of JP2013502094A publication Critical patent/JP2013502094A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/655UWB OFDM
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/6552DVB-T2
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

現代の符号化および変調技法は信号の送受信を大幅に改善した。信号を受信し、該信号を第一および第二のサブストリームにマッピング解除し、低密度パリティ検査デコード・プロセスを使って第一および第二のサブストリームをデコードし、第一および第二のデコードされたサブストリームを単一のデータ・ストリームに組み合わせる段階を含む方法が記載される。信号を受信して該信号中の変調シンボルを第一および第二のサブストリームにマッピング解除するシンボル・マッピング解除器(710)と、前記第一のサブストリームを第一のデコード・レートで低密度パリティ検査符号化プロセスを使ってデコードする第一のデコーダ(730)と、前記第二のサブストリームを第二の符号化率でデコードする第二のデコーダ(732)と、第一のサブストリームおよび第二のサブストリームを組み合わせて単一のデータ・ストリームにする組み合わせ器(740)とを含む装置(700)が記載される。

Description

本願は概括的にはマルチキャリア伝送信号におけるデータの送受信に、より詳細には、パリティ検査符号(parity check coding)および配位図マッピング(constellation mapping)を使った、直交周波数分割多重化(OFDM: Orthogonal Frequency Division Multiplexing)デジタル・テレビジョン信号のような放送信号の復号に関する。
この節は、読者に技術の諸側面を紹介するために意図されている。それらの側面は、下記に記載および/または特許請求される本発明のさまざまな側面に関係することがありうる。この議論は、読者に、本開示のさまざまな側面のよりよい理解を容易にする背景情報を与える助けになると思われる。よって、これらの陳述はこの観点で読まれるべきであって、従来技術の自認として読まれるべきではないことを理解しておくべきである。
デジタル・テレビジョン信号システムは、信号生成、信号送信、信号受信および顧客ディスプレイにおいてデジタル信号処理を用いる、テレビジョン放送の新世代を表している。世界的に、デジタル・テレビジョン信号伝送のためのいくつかの規格が採用されており、主として米国における先進テレビジョン・システム委員会(ATSC: Advanced Television Systems Committee)規格ならびに主として欧州および世界の他の部分におけるデジタル・ビデオ放送‐地上波(DVB−T: Digital Video Broadcast−Terrestrial)規格が含まれる。DVB−ハンドヘルド(DVB−H)として知られるDVB−Tの変形は、DVB−T規格に基づく、小さなハンドヘルドおよびモバイル装置用の規格である。DVB−TおよびDVB−Hはいずれも、変調レイヤー・フォーマット技術としてOFDMを使っている。
OFDMはチャネルを通じて効率的にデータを伝送するための堅牢な技法である。この技法は、データを伝送するために、チャネル帯域幅内の複数のサブキャリア周波数(サブキャリア)を使う。これらのサブキャリアは、従来の周波数分割多重(FDM: frequency division multiplexing)に比べて最適な帯域幅効率のために構成されている。FDMは、サブキャリア周波数スペクトルを分離および孤立化し、それによりキャリア間干渉(ICI: inter−carrier interference)を回避するためにチャネル帯域幅の諸部分を無駄にすることがある。これに対し、OFDMサブキャリアの周波数スペクトルは、OFDMチャネル帯域幅内で有意に重なり合うものの、それでもOFDMは各サブキャリア上に変調された情報の分離(resolution)および回復を許容する。
DVB−TおよびDVB−Hで使われるようなOFDM伝送システムは、高レートのデータ・ストリームを、いくつかのサブキャリアを通じて同時に伝送されるいくつかの並列ストリームに分割する。送信機では、データ・ビットは、位相偏移符号化(PSK: phase shift keying)または直交振幅変調(QAM: quadrature amplitude modulation)配位図マッピングのいずれかを使ってサブキャリア上に変調される。OFDMシステムはまた、処理チェーンにおいてデータ源のほうの近くに存在する外側エンコード・プロセスおよび信号変調および送信のほうの近く存在する内側エンコード・プロセスを用いる、連結エンコード・プロセスを使ってもよい。
信号符号化プロセスの一部として使われる誤り訂正システムの進歩により、特にOFDMのような伝送システムと組み合わされるときに、信号伝送パフォーマンスのさらなる改善が可能になった。一つのそのような誤り訂正システムは低密度パリティ検査(LDPC: low−density parity−check)符号化として知られる。LDPC符号は一般に、特に長めの符号長とともに使われるとき、シャノン限界に近づく符号として認識されている。結果として、LDPCエンコードは、DVB−TおよびDVB−Hのような連結信号符号化システムを含む多くの信号伝送システムにおいて使用できる。
LDPC符号化は、ある種の信号伝送システムと一緒に使われるときには、最適な符号化パフォーマンスを提供しないことがある。特に、LDPC符号化は、16レベル直交振幅変調(16−QAM)、64−QAMおよび256−QAMのようなより高次の変調配位図マッピングとともに使われるときに最適な符号化パフォーマンスを生じないことがある。パフォーマンス劣化は、変調配位図内のシンボルの相対的な信頼度と、各シンボルにマッピングされるデータに与えられる誤り保護との間の関係のためでありうる。改善のための提案も存在しており、受信機における多段復号および配位図中のシンボルのビット・インターリーブされた符号化といったものがある。しかしながら、これらの解決策は機能において限られており、結果として、高次の変調とLDPC符号化に関わる問題に十分に対処しない。したがって、LDPC符号化および高次変調フォーマットの機能を改善するようなLDPC符号化およびシンボル・マッピング・プロセスのための装置および方法を創り出すことが望ましい。
本開示のさらにもう一つの側面によれば、信号を受信する方法であって、変調シンボルを含む信号を受信する段階と、前記変調シンボルをマッピング解除して、第一のサブストリームを生じるシンボル配位図マップの第一の領域からのビットの第一の集合および第二のサブストリームを生じる前記シンボル配位図マップの第二の領域からのビットの第二の集合にする段階と、低密度パリティ検査復号プロセスを使って前記第一のサブストリームおよび前記第二のサブストリームを復号する段階と、第一の復号されたサブストリームおよび第二の復号されたサブストリームを組み合わせて単一のデータ・ストリームにする段階とを含む方法が記述される。
本開示のもう一つの側面によれば、信号を受信する装置であって、変調シンボルを含む信号を受信し、前記変調シンボルをマッピング解除して、ビットの第一の集合を含む第一のサブストリームおよびビットの第二の集合を含む第二のサブストリームにするシンボル・マッピング解除器と、前記マッピング解除器に結合され、第一の復号レートで低密度パリティ検査符号化プロセスを使って前記第一のサブストリームを復号する第一の復号器と、前記マッピング解除器に結合され、第二のエンコード・レートで低密度パリティ検査符号化プロセスを使って前記第二のサブストリームを復号する第二の復号器と、第一の復号されたサブストリームおよび第二の復号されたサブストリームを組み合わせて単一のデータ・ストリームにする組み合わせ器とを含む装置が記述される。
本開示のもう一つの側面によれば、信号を受信する装置であって、変調シンボルを含む信号を受信する手段と、前記変調シンボルをマッピング解除して、第一のサブストリームを生じるシンボル配位図マップの第一の領域からのビットの第一の集合および第二のサブストリームを生じる前記シンボル配位図マップの第二の領域からのビットの第二の集合にする手段と、低密度パリティ検査復号プロセスを使って前記第一のサブストリームおよび前記第二のサブストリームを復号する手段と、第一の復号されたサブストリームおよび第二の復号されたサブストリームを組み合わせて単一のデータ・ストリームにする手段とを含む装置が記述される。
本開示の諸側面に基づく送信機の実施形態のブロック図である。 本開示の諸側面に基づくLDPCエンコーダおよびシンボル・マッピング器の実施形態のブロック図である。 本開示の諸側面に基づくシンボル配位図マップの実施形態の図である。 本開示の諸側面に基づくシンボル配位図マップのもう一つの実施形態の図である。 本開示の諸側面に基づくシンボル配位図マップのさらなる実施形態の図である。 本開示の諸側面に基づく受信機の実施形態のブロック図である。 本開示の諸側面に基づくシンボル・マッピング解除器およびLDPC復号器の実施形態のブロック図である。 本開示の諸側面に基づくLDPCエンコードおよびシンボル・マッピングのプロセスの実施形態のフローチャートである。 本開示の諸側面に基づくシンボル・マッピング解除およびLDPCデコードのプロセスの実施形態のフローチャートである。 本開示の特徴および利点は、例として与えられる以下の記述から、より明白となるであろう。
本開示の一つまたは複数の個別的実施形態について以下で述べる。該実施形態の簡潔な記述を与えようとする努力において、実際の実装のすべての特徴が本明細書で記述されるわけではない。そのようないかなる実際の実装の開発においても、いかなる工学または設計プロジェクトにおけるのとも同様に、実装によって変わりうるシステム関係またはビジネス関係の制約への準拠といった開発者の固有の目標を達成するために、数多くの実装固有の決定がなされる必要があることは理解しておくべきである。さらに、そのような開発努力は複雑で時間がかかることがありうるが、それでも、本開示の恩恵を受けた当業者にとっては設計、製作および製造の日常的な業務であろう。
以下は、DVB−TおよびDVB−Hのような放送信号環境において信号を送信および受信するために使われる、回路およびプロセスを含むシステムを記述する。他のネットワークにおいて他の型の信号を送信および受信するために利用される他のシステムも非常に似通った構造を含むことがありうる。当業者は、本稿に記載される回路の実施形態が単に一つの潜在的な実施形態であることを理解するであろう。よって、代替的な実施形態では、システムの個別的な属性に基づいて、本システムの構成要素が配置し直されたり、省略されたり、あるいは追加的な構成要素が追加されたりしてもよい。たとえば、軽微な修正により、記載される回路は、電気電子技術者協会(IEEE)802.11無線ネットワークのような他の無線ネットワークにおける使用のために構成されてもよい。さらに、記載される実施形態は、チャネル要領を改善するために複数入力複数出力(MIMO: multiple input multiple output)技術と容易に組み合わされうる。
以下で記載される実施形態は、主として、信号の送信および受信に関する。これらの実施形態の、これに限られないがある種の制御信号および電源接続を含むある種の側面は、説明したり図示したりしていないが、当業者は容易に見きわめることができるであろう。これらの実施形態は、マイクロプロセッサおよびプログラム・コードまたはカスタム集積回路の使用を含め、ハードウェア、ソフトウェアまたは両者の任意の組み合わせを使って実装されうることを注意しておくべきである。これらの実施形態の一部は逐次反復処理および該実施形態のさまざまな要素間の接続を含むことがあることも注意しておくべきである。本稿に記載される逐次反復的な実施形態の代わりに、あるいはこれに追加して、直列的に接続された、反復された同一の要素を用いるパイプライン・アーキテクチャを使う代替的な実施形態も可能でありうる。
以下に記載される実施形態は、OFDM変調との関連で、さらにリード・ソロモン符号化のようなブロック符号化プロセスとの関連で、LDPC符号化を使う符号化変調信号伝送方式を利用する。特に、諸実施形態は、ビットストリームの別個の諸部分のために非二元LDPC符号化のような並列LDPC符号化と、ビットストリームの前記諸部分のLDPC符号化に合わせて調整されたシンボル・マッピング・プロセスを使うことを記述する。シンボル・マッピングは、第一部分サブストリーム(first portion substream)からのビットの集合をシンボル配位図マップの第一の領域にマッピングし、第二部分サブストリーム(second portion substream)からのビットの集合をシンボル配位図マップの第二の領域にマッピングしてシンボルの集合を生成し、典型的な高次多シンボル配位図マップの諸部分に現れるビット信頼性の本来的な不均等を克服する。記載されるシンボル・マッピング・プロセスは、これに限られないが、16−QAM、64−QAMおよび256−QAM変調配位図を含む。これらの実施形態の一つまたは複数の側面の実装は、高次変調フォーマットを使う信号について、改善された全体的な符号化パフォーマンスおよび改善された符号化効率の恩恵をもたらす。
ここで図面に目を転じる。まず図1を参照すると、本開示の諸側面を使う送信機100のある実施形態のブロック図が示されている。送信機100は一般に、OFDM変調を使う放送信号をエンコードおよび送信するために使われる動作上の諸側面を表す。ある好ましい実施形態では、送信機100はOFDM信号をエンコードし、DVB−T伝送規格に基づいて送信されるOFDM信号に送信する。
送信機100では、トランスポート・ストリームを表す入力信号がパケット化器/ランダム化器110に与えられる。パケット化器/ランダム化器110の出力は外側エンコーダ120に接続される。外側エンコーダ120の出力は外側インターリーバ130に接続される。外側インターリーバの出力はLDPCエンコーダ140に接続される。LDPCエンコーダ140の出力は内側インターリーバ150に接続される。内側インターリーバ150の出力はシンボル・マッピング器160に接続される。さらに、パイロットおよびTPS挿入器165の出力がシンボル・マッピング器160の入力に接続される。シンボル・マッピング器160の出力はフレーム化器170に接続される。フレーム化器170の出力はOFDM変調器180に接続される。OFDM変調器180の出力は保護区間挿入器190に接続される。保護区間挿入器190の出力は上方変換器195に接続される。上方変換器195の出力は、当該信号の送信のための出力として与えられる。
入力信号は、トランスポート・ストリーム中に編成された一つまたは複数の源エンコードされたプログラムを表すデータ・ビットの連続的なシーケンスを表す。源エンコードは、源符号化ブロック(図示せず)において実行されてもよいし、オーディオ、ビデオまたはデータ・コンテンツについての符号化および圧縮アルゴリズムを含んでいてもよい。ある好ましい実施形態では、オーディオおよびビデオ圧縮および符号化は、MPEG−2圧縮を使って実行される。トランスポート・ストリームはパケット化器/ランダム化器110に与えられる。パケット化器/ランダム化器110ははいってくるトランスポートの諸部分をパケットに編成する。そうしたパケットは、可変長であってもよいし、あるいは188バイトのような固定長であってもよい。はいってくるストリームをパケットに編成することは、誤り訂正エンコード・バイトが生成されてパケットにアペンドされることを許容する。パケット化器/ランダム化器110はまた、非ランダムな信号伝送に関わる潜在的な問題を防止するために、はいってくるデータ・パケットをランダム化または脱相関化する。パケット化器/ランダム化器110は、データ・パケット中の各バイトに、既知の乱数列の乱数値を表す第二のバイトを乗算することによって、データ・パケット中のデータを脱相関化してもよい。
データ・パケットの脱相関化されたデータ・ストリームは、外側エンコーダ120に与えられる。外側エンコーダはデータ・パケットに対して第一の誤り訂正を与える。典型的には、第一の誤り訂正プロセスは、追加的な冗長性、あるいはパリティ・バイトもしくはパケットを生成して、そうしたバイトまたはパケットをもとのデータ・バイトまたはパケットにアペンドするブロック・エンコード・プロセスを使う。エンコード・プロセスの型およびもとのデータ・バイトまたはパケットに追加される冗長な情報の量は、訂正できる誤りの量を決定する。ある好ましい実施形態では、外側エンコーダ120は各データ・パケット中の188バイトを使って26パリティ・バイトを生成して204バイトのデータを含むリード・ソロモン・パケットを形成する、リード・ソロモン・エンコード・プロセスを使う。リード・ソロモン(204,188)プロセスは、各パケットにおいて8バイトまでの誤りを訂正できる。さらに、外側エンコーダは、データ・パケットに含まれる情報の識別のために使われる追加的なバイトをもアペンドしてもよい。たとえば、プログラム・ストリーム・コンテンツおよび源エンコード・レートについての情報を含む3バイトのヘッダが、204バイトのリード・ソロモン・パケットに追加されてもよい。
外側エンコードされたパケットを含むストリームは、外側インターリーバ130に与えられる。外側インターリーバ130は、信号のランダム性を維持するために、外側エンコードされたパケット中のバイトを並べ替えるまたは再配列する。外側インターリーバ130は、これに限られないが、固定された畳み込みインターリーブ・プロセスまたは固定されたブロック・インターリーブ・プロセスを含むいくつもの既知のインターリーブ・プロセスの一つを使用しうる。インターリーブ・プロセスおよびパターンは、送信機および受信機の両者に知られている。外側インターリーバ130によって使用されうるような畳み込みインターリーブは、受信機が伝送プロセスにおけるある型の損傷から回復する能力を改善するために、バイトを再配列する。畳み込みインターリーブは、伝送中の信号への短いバースト的な干渉があるときに受信を改善するよう最適化されてもよいし、あるいは代替的に、信号への定常的な連続的な形の干渉があるときに受信を改善するように最適化されてもよい。外側インターリーバ130は、インターリーブ・プロセスを容易にするために、はいってくるストリームの一部または出力のインターリーブされたストリームの一部を記憶するためのメモリを含んでいてもよい。
外側インターリーブされたパケットはLDPCエンコーダ140に与えられる。LDPCエンコーダ140は、LDPCエンコード・プロセスを使って外側インターリーブされたパケットをエンコードする。LDPCエンコーダ140は、いかなる既知のLDPCエンコード・プロセスを使ってもよい。それには、これに限られないが、フォーニー因子マップ(Forney factor map)を使ったビットの再グループ化と、疎なパリティ検査行列(sparse parity check matrix)アルゴリズムに基づく生成行列(generator matrix)の生成とに基づくLDPCアルゴリズムが含まれる。たとえば、入力メッセージ長および出力符号長に関連する一組の定義された希少性(scarcity)制約条件のもとで、疎なパリティ検査行列がランダムに生成され、生成行列を生成するために使用されてもよい。さらに、疎なパリティ検査行列は、代数的な方法を使って構築されてもよい。たとえば、所与のパリティ検査行列Hについて、生成行列Gは式:
G・H=0 (1)
から導出されうる。
LDPCエンコーダ140は、エンコードがはいってくるビットに対して、式:
C=I・G (2)
に基づいて直接実行されるよう動作してもよい。
ここで、Iは、エンコードされるビットストリーム中のビットの集合であり、Cはエンコード・プロセスから帰結する符号語またはビットの集合である。受信機において実行されるデコード・プロセスでは、デコードは、次の式:
C・H=0 (3)
を使って適用される信頼伝搬(belief propagation)アルゴリズムを使ってなされてもよいことを注意しておくことが重要である。
LDPCエンコーダ140は、エンコードが、二元〔バイナリー〕LDPC符号化として知られるプロセスにおいて、外側インターリーブされたパケット中のビットに対して直接実行されるよう動作しうる。あるいはまた、LDPCエンコーダ140は、非二元LDPC符号化と称されるプロセスにおいて、二つ以上のビットのグループから形成されるLPDCシンボルに対して動作してもよい。たとえば、2ビットの集合が、4元LPDC符号化プロセスを使ったエンコードのために、LDPCシンボルにグループ化されてもよい。数学的な体GF(2)上で定義される二元LDPC符号化と異なり、非二元LDPC符号語はGF(q)上で定義される。ここで、qは2より大きい。上記の式(1)ないし(3)は、I、C、G、HがGF(q)上で定義されるというだけで、非二元LDPC符号化にも当てはまることを注意しておくことが重要である。
LDPCエンコードされたデータ・ストリームは、内側インターリーバ150に与えられる。内側インターリーバ150は外側インターリーバ130について述べたのと同様のプロセスを実行する。内側インターリーバ150は、これに限られないが、固定された畳み込みインターリーブ・プロセスまたは固定されたブロック・インターリーブ・プロセスを含むいくつもの既知のインターリーブ・プロセスの一つを使用しうる。ここで、使用されるプロセスおよびパターンは、送信機および受信機の両者に知られている。ある好ましい実施形態では、外側インターリーバ130は伝送チャネルに起因する誤りの長いシーケンスの効果を最小限にするよう最適化される。内側インターリーバ150は、個々のビットおよびデータ・ストリーム中のビットのグループの両方のランダム化を含むブロック・インターリーブ・プロセスを使う。これは、伝送チャネルに起因する短いバースト誤りの効果を最小限にするよう最適化される。内側インターリーバ150は、インターリーブ・プロセスを容易にするために、はいってくるストリームの一部または出力のインターリーブされたストリームの一部を記憶するためのメモリを含んでいてもよい。
誤り訂正エンコードされたデータ・ストリームはシンボル・マッピング器160に与えられる。シンボル・マッピング器160は、誤り訂正エンコードされたデータ・ストリーム中のビットをグループ化し、配列して、一組のシンボルにする。シンボル・マッピングは、所望される変調方式のためのシンボル配位図に基づいて選ばれる。典型的には、変調方式はPSKまたはQAM変調に基づく配位図マッピングを用いる。ある好ましい実施形態では、シンボル・マッピング器160はビットをグループ化し、配列して、QPSk、16−QAMまたは64−QAMを使う変調方式で使うためのシンボルにする。ビットのシンボルへのマッピングは、いくつものマッピング方式に基づいて実行されうる。それには、これに限られないが、グレイ符号マッピング、二重グレイ符号マッピングおよびパリティ・マッピングが含まれる。LDPCエンコーダ140、外側インターリーバ150およびシンボル・マッピング器160の本発明の諸側面を含むさらなる処理は後述する。伝統的なシンボル・マッピングは、2としてのQPSKまたはQAMシンボル配位図へのマッピングのためのnビットの配位図マップに関わる。ある好ましい実施形態では、mはn未満であるとして、mビットのグループが2としてQPSKまたはQAMシンボル配位図マップの一部にマッピングされる。mビットのマッピングはグループ・マッピングと称される。mビットの同じグループが、グループ・マッピングまたはグループ・インターリーブとして知られるプロセスにおいて、マッピングに先立ってインターリーブされてもよい。
誤り訂正エンコードされたデータ・ストリームを受け取ってマッピングすることに加えて、シンボル・マッピング器160は、トレーニング信号挿入器165からの信号も受け取る。トレーニング信号挿入器165は、送信された信号の受信を支援するために受信機によって使用される特別なトレーニング信号を生成する。受信機における信号同期を改善するために、パイロット信号が、典型的には配位図マップ中のシンボルを表すビットのグループとして、加えられる。パイロット信号は、受信機における伝送チャネル決定および等化の際のトレーニングのためにも使用されてもよい。パイロット信号の一つまたは複数に加えて、またはその代わりに、伝送パラメータ信号伝達(TPS: transmission parameters signaling)信号も生成され、挿入されてもよい。TPS信号は、送信機位置および変調方式といった伝送属性を特定的に同定するための情報を含む。TPS信号は、信号またはチャネルのスイッチオーバー、パラメータの変化または初期信号取得の際に受信機を支援しうる。シンボル・マッピング器160はパイロット信号およびTPS信号を受信し、それらをシンボル配位図マップ中の諸位置にマッピングする。パイロット信号およびTPS信号についての前記諸位置は典型的には受信機に既知であり、しばしば使用される伝送規格に基づいて決定されていることを注意しておくことが重要である。
シンボル・マッピング器160からのシンボルとして構成されるデータのストリームは、フレーム化器(framer)170に与えられる。フレーム化器170は、前記シンボルを、ビット数において一定の長さをもつブロックにグループ化する。たとえば、QPSK、16−QAMおよび64−QAM配位図を用いる変調方式については、ブロックは、上述した各配位図についてそれぞれブロック当たり6048、3024または1512シンボルを含んでいてもよい。フレーム化器170はさらに、シンボルのブロックをグループ化して、68個のブロックを含むフレームを形成してもよい。フレーム化器170はまた、4個のフレームの集合をスーパーフレームにグループ化してもよい。フレーム化器170は、OFDM変調プロセスの一部として実行される、高速フーリエ変換処理のような変換処理を容易にするために、シンボルをブロック、フレームおよびスーパーフレームにグループ化する。
フレーム化器170はまた、OFDM変調のための準備において、データ・シンボルのストリームを、シリアル信号から一組の並列信号に変換してもよい。並列ストリームの数は、出力OFDM変調信号におけるサブキャリアの数などの、OFDM変調プロセスに関連するパラメータによって決定される。並列信号データ・ストリームのそれぞれのデータ・レートは、シリアル信号のもとのデータ・レートを生成される並列信号の数で割ったものに関係する。シリアルから並列への変換は、シンボル・マッピング器160またはLDPCエンコーダ140のような、フレーム化器170の前のブロックに含められてもよいことを注意しておくことが重要である。変換は、シリアル信号を維持し、個々の並列データ信号の多重(multiplexes)としてタイミング・インジケータを含めることによって実行されてもよい。
データのフレーム化されたブロックは、OFDM変調器180に提供される。OFDM変調器180は信号変換を実行して、時間領域で並列に受信されるシンボルのブロックを、周波数領域における変調されたデータを含む、サブキャリアと呼ばれるキャリアの等価な群に変換する。ある好ましい実施形態では、変換は、逆高速フーリエ変換アルゴリズムを使って実行される。出力信号は、変調されたチャネルについての定義された周波数範囲にわたる、分離され、離間された2048または8096個のサブキャリアを含んでいてもよい。使用されるキャリアの数は、選択される変調フォーマットおよびはいってくる信号について使用されるフレームまたはブロックのサイズに依存してもよい。一部のサブキャリアはトレーニング信号またはTPS信号の提供の専用とされてもよいので、サブキャリアのすべてがデータを担持しなくてもよいことを注意しておくことが重要である。OFDM変調器180において実行される変換は、OFDMシンボルを含む変調された信号を生成する。
変調されたデータを表すOFDMシンボルは、保護区間(guard interval)挿入器190に与えられる。保護区間挿入器190は各OFDMシンボルの一部を複製し、それを同じOFDMシンボルにアペンドする。OFDMシンボルのコピーされた部分は典型的には巡回プレフィックス(cyclic prefix)と称される。巡回プレフィックスは、OFDMシンボルの先頭にアペンドされる該OFDMシンボルの終わりの部分のコピーである。巡回プレフィックスは、伝送チャネルからマルチパス歪みの効果を消去または低減することによって、伝送される信号の受信を改善する。マルチパス歪みが起こるのは、信号反射を作り出す建物や障害物の存在のため、あるいは信号伝送のための複数の信号周波数源の存在のためである。巡回プレフィックスとしてコピーされうるOFDMシンボルの部分はさまざまでありうる。ある好ましい実施形態では、保護区間をなす部分は、もとのOFDMシンボルの長さの1/4、1/8、1/16および1/32のうちの一つとして選択されてもよい。
変調されたデジタル信号は、上方変換器〔アップコンバーター〕195に与えられる。上方変換器195はデジタル信号をアナログ信号に変換し、アナログ信号を信号伝送に好適な電波周波数(RF: radio frequency)信号に変換する。上方変換器195は典型的にはデジタル‐アナログ変換器、フィルタ、ミキサおよび発振器を含む。発振器は、地上波で空中を通じてまたは衛星リンクを通じて送信される、あるいは同軸ケーブルのようなハードウェア・インターフェースを使って送信されるRF信号を生成するために使われる。上方変換された信号は、伝送チャネルを通じて受信機に伝送される。本開示の諸側面を使った受信機の動作はのちに詳述する。
動作モード切り換えのような、上記の各ブロックについて必要な制御機能は、各ブロックに含まれるコントローラまたはプロセッサによって管理されてもよい。あるいはまた、モード切り換えおよび他の制御動作を提供するために、中央コントローラまたはマイクロプロセッサのようなプロセッサ(図示せず)が含まれ、各ブロックに接続されていてもよい。同様に、いかなる信号またはデータ記憶も、前記の諸ブロックにバッファ・メモリを含めることで分散的に管理されてもよいし、あるいは中央コントローラによって制御され、図1の諸ブロックにインターフェースされるメモリ回路(図示せず)で中央集中的に管理されてもよい。
ここで図2に目を転じると、本開示の諸側面を使ったLDPCエンコーダおよびシンボル・マッピング器200のある実施形態のブロック図が示されている。LDPCエンコーダおよびシンボル・マッピング器200は、図1に記載したLDPCエンコーダ140、外側インターリーバ150およびシンボル・マッピング器160の代わりに使用されうる。外側エンコードおよびインターリーブ・ブロックからのはいってくるデータ・ストリームは、デマルチプレクサ210に与えられる。デマルチプレクサ210は三つの出力を供給し、LDPCエンコーダ220、LDPCエンコーダ222およびLDPCエンコーダ224にそれぞれ一つの出力が接続される。LDPCエンコーダ220、LDPCエンコーダ222およびLDPCエンコーダ224のそれぞれの出力は、LDPCインターリーバ230、LDPCインターリーバ232およびLDPCインターリーバ234に接続される。LDPCインターリーバ230、LDPCインターリーバ232およびLDPCインターリーバ234のそれぞれの出力はシンボル・マッピング器240に接続される。シンボル・マッピング器240の出力は、LDPCエンコーダおよびシンボル・マッピング器200の出力を表し、図1に示されるフレーム化ブロック170のようなさらなる処理に与えられる。
はいってくるデータ・ストリームはデマルチプレクサ210に与えられる。デマルチプレクサ210ははいってくるストリームを該ストリームの並列な諸部分に分割し、一つまたは複数のサブストリームを生成する。分割または多重分離は、ビットごとにされてもよいし、あるいはまた、諸グループに形成された一連のビットに基づいてなされてもよい。ある好ましい実施形態では、デマルチプレクサ210ははいってくるストリームを三つのサブストリームに分離する。さらに、デマルチプレクサ210は、たとえば、LDPCエンコーダ220〜224の一つまたは複数のエンコード・レートに基づいて、前記諸サブストリームを不均等に分離する。ある好ましい実施形態では、デマルチプレクサ210は、はいってくるストリームを、第一の並列サブストリームを表す第一の部分に2ビットを入れ、第二の並列サブストリームを表す第二の部分に次の3ビットを入れ、第三の並列サブストリームを表す第三の部分に次の4ビットを入れることに基づいて、配分してもよい。その後は、次の2ビットは第一の並列サブストリームに入れられる、などとなる。
並列ストリームのそれぞれは、LDPCエンコーダ220、LDPCエンコーダ222またはLDPCエンコーダ224のいずれかに与えられる。各エンコーダ220〜224は好ましくは、各LDPCシンボルが並列ストリーム中の2ビットを表す4元LDPCエンコーダのような、LPDCシンボルに対して作用する非二元エンコーダであってもよい。各エンコーダ220〜224は、LDPCシンボルの生成のためのLDPCシンボル・マッピング器にビットを含めもよい。各LDPCエンコーダ220〜224は、入力におけるシンボルn個の集合毎について出力においてk個のシンボルの集合を生成することに基づく上記のLDPCエンコード・プロセスを使ってLDPCをエンコードする。エンコーダ220〜224のそれぞれは、異なる符号化率(k/n)を使って動作してもよい。ある好ましい実施形態では、LDPCエンコーダ220についての符号化率は、LDPCエンコーダ222についての符号化率より大きく、LDPCエンコーダ222についての符号化率は今度はLDPCエンコーダ224についての符号化率より大きい。さらに、LDPCエンコーダ220〜224は典型的には、nについての大きな値から帰結するデータの大きなブロックに基づいて動作する。たとえば、64−QAM配位図および変調では、全体的な符号化率1/2を達成するためには、エンコーダ220についての符号化率は1/4、エンコーダ222についての符号化率は1/2、エンコーダ224についての符号化率は3/4となる。同様に、全体的な符号化率4/5を達成するためには、エンコーダ220についての符号化率は2/3、エンコーダ222についての符号化率は4/5、エンコーダ224についての符号化率は8/9となる。
非二元LDPCエンコードされたデータ・ストリームのそれぞれは、インターリーバ230〜234に与えられる。インターリーバ230〜234は別個に、図1における内側インターリーバ150について述べたのと同様の仕方で、データ・ストリームをインターリーブする。しかしながら、LDPCエンコーダおよびシンボル・マッピング器200内の他のブロックとの相互作用のため、インターリーバ220〜224は、伝統的なインターリーバとはいくつかの重要な相違を含んでいる。伝統的なインターリーバは典型的には、ビットストリーム中のデータのビット全部を受け取り、個々のビットに基づいて単一のインターリーブを実行する。伝統的なインターリーバはまた、しばしば、変調配位図の深さまたは大きさの関数であるブロック・サイズ上で動作する。インターリーバ230〜234中の諸要素の次数(order)または次元(dimension)は、LDPCエンコーダ220〜224の次数または次元と等価である。ある好ましい実施形態では、インターリーバ230〜234内の各要素は一つのLDPCシンボルである。さらに、インターリーバ230〜234は、各LDPCエンコーダ220〜224の出口で生成されるk個のシンボルの集合に等しいブロック・サイズによるブロック・インターリーブを使ってデータ・ストリームをインターリーブする。結果として、インターリーバ230〜234は、グループ・インターリーバと称されてもよい。インターリーバ230〜234のそれぞれは、大きなブロックのインターリーブ・プロセスを容易にするために、データ・ストリームの一部を記憶するメモリをも含んでいてもよい。
インターリーブされたエンコードされたデータ・ストリームのそれぞれは、シンボル・マッピング器240に別個の入力として与えられる。シンボル・マッピング器240は、インターリーブされたエンコードされた各データ・ストリーム中の受信されたLDPCシンボルからのビットを、その特定のインターリーブされたエンコードされたデータ・ストリームについて使用されるLDPC符号化率と、その変調フォーマットについてのシンボル配位図マップに関連する固有の情報とに基づいて割り当てる。結果として、エンコードされたビットストリームからのある種のビットは、シンボル・マッピング器240におけるシンボル配位図マップにおけるある種のビット位置に割り当てられる。それらのビット位置は、シンボル配位図マップの固有の属性と、各ビットストリームについてのLDPC符号化率に基づいて選択される。
LDPCエンコーダおよびシンボル・マッピング器200は好ましくは、非二元エンコード・プロセスを使って動作する。非二元LDPC符号は、ガロア体(GF(4))において定義されてもよい。しかしながら、LDPCエンコーダおよびシンボル・マッピング器200は二元LDPCエンコード・プロセスまたは異なる体上で定義される非二元LDPCエンコード・プロセスを使ってもよい。非二元LDPC符号が、特に符号についてのブロック長が10,000より小さい場合、シャノン容量限界に非常に近いパフォーマンスを達成できることを注意しておくことが重要である。典型的には、高次ガロア体GF(q)において設計された非二元LDPC符号は、同じまたはより短いブロック・サイズについて使われる場合の二元LDPC符号よりもよいパフォーマンスを達成できる。非二元LDPC符号の使用により許容される、より短い符号長およびブロック・サイズは、伝送の柔軟性を改善する助けとなりうる。
上記のような、OFDM変調と関連してのLDPC符号化、特に非二元LDPC符号化の使用は、信号パフォーマンスおよび符号化効率における改善をもたらす。LDPC符号化は、シャノン限界に近づく符号化パフォーマンスを提供する。図2に記載されるような並列非二元LDPC符号化の使用ならびにビットストリームの諸部分のLDPC符号化に合わせて調整されたシンボル・マッピング・プロセスをさらに含めることは、シンボル配位図マップにおけるある種のビットの受信の確からしさの本来的な欠点を克服する。シンボル・マッピングは、第一部分サブストリーム(first portion substream)からのビットの集合をシンボル配位図マップの第一の領域にマッピングし、第二部分サブストリーム(second portion substream)からのビットの集合をシンボル配位図マップの第二の領域にマッピングして一組のシンボルを生成し、典型的な高次多シンボル配位図マップの諸部分に現れるビット信頼性の本来的な不均等を克服する。結果として、図2に記載されるLDPC符号化器およびシンボル・マッピング器のような構造は、高次変調フォーマットを使う信号について、改善された全体的な符号化および改善された符号化効率の恩恵をもたらす。
ここで図3に目を転じると、本開示の諸側面を使う、シンボル配位図マップ300のある実施形態を示す図が示されている。特に、シンボル配位図マップ300は、64−QAM変調を使って変調される信号についての配位図マップを表す。シンボル配位図マップ300は、横の同相軸310および縦の直交位相軸320の両方に沿って配向されるシンボル点の格子を示している。横の行および縦の列は、同相軸310に沿ったビットi0、i1およびi2の集合および直交位相軸320に沿ったビットq0、q1およびq2の集合に関連付けられた異なる値に対応する。64−QAM配位図は、6ビットy0、y1、y2、y3、y4およびy5の集合を、シンボル配位図マップ300中の点にマッピングすることによって形成される。ビットy0、y1およびy2はマッピング・ビット位置i0、i1およびi2に割り当てられる。ビットy3、y4およびy5はマッピング・ビット位置q0、q1およびq2に割り当てられる。最終的なシンボル値は、もとのビットのそれぞれの値(0または1)に基づいて決定される。
図3に示すような64−QAMシンボル配位図では、i0およびq0は最も信頼性の低いビット位置であり、ビット位置i1およびq1はビット位置i0およびq0に比べ、受信機におけるデータ復元のより高い信頼性をもつ。さらに、i2およびq2はビット位置i1およびq1に比べ、より高い信頼性をもつ。ビット位置についての信頼性は、主として、配位図におけるビットの割り当ておよびシンボル間のユークリッド距離によって決定される。シンボル配位図マップ300は、同相軸310に関連付けられたビットi0、i1およびi2についての非グレイ符号化ならびに直交位相軸320に関連付けられたビットq0、q1およびq2についての非グレイ符号化を用いる、ビットからシンボルへのパターンを利用する。図3に示される各軸上または各軸のまわりでの非グレイ符号マッピングの使用は、一次元マッピング解除プロセスだけを使ったマッピング解除を許容する。換言すれば、マッピング解除プロセスは、同相軸または直交位相軸のいずれかについてのそれぞれの線形距離情報だけを使ってビット位置i0、q0、i1、q1、i2、q2についての値を計算または決定する必要があるだけである。パフォーマンスにおける改善を提供するため、より低い信頼性をもつビット位置が、より高い符号化率をもつLDPCエンコードされたビットストリームからビットを提供されてもよい。たとえば、図3の配位図マップに基づいて、ビットi0およびビットq0は、典型的には最高の符号化率で動作するエンコーダ220から割り当てられてもよく、ビットi1およびビットq1は、典型的には次に高い符号化率で動作するエンコーダ222から割り当てられてもよく、ビットi2およびビットq2は、典型的には最低の符号化率で動作するエンコーダ224から割り当てられてもよい。
ここで図4に目を転じると、本開示の諸側面を使う、シンボル配位図マップ400のある実施形態を示す図が示されている。特に、シンボル配位図マップ400は、16−QAM変調を使って変調される信号についての配位図マップを表す。シンボル配位図マップ400は、横の同相軸410および縦の直交位相軸420の両方に沿って配向されるシンボル点の格子を示している。横の行および縦の列は、同相軸410に沿ったビットi0およびi1の集合および直交位相軸420に沿ったビットq0およびq1の集合に関連付けられた異なる値に対応する。16−QAM配位図は、4ビットy0、y1、y2およびy3の集合を、シンボル配位図マップ400中の点にマッピングすることによって形成される。ビットy0およびy1はマッピング・ビット位置i0およびi1に割り当てられる。ビットy3およびy4はマッピング・ビット位置q0およびq1に割り当てられる。
図4に示すような16−QAMシンボル配位図では、i0およびq0は最も信頼性の低いビット位置であり、ビット位置i1およびq1はビット位置i0およびq0に比べ、より高い信頼性をもつ。図4に示される16−QAMシンボル配位図マップ400も、図3で述べたのと同様の非グレイ符号マッピングを使う。16−QAM変調フォーマットがたった二つのLDPCエンコーダで実装されうることを注意しておくことが重要である。結果として、LDPCエンコーダ224およびLDPCエンコーダ234は必要ではなく、16−QAM動作の間不使用のままであってもよい。たとえば、図4における配位図マップに基づいて、ビットi0およびビットq0は、典型的には最高の符号化率で動作するエンコーダ220から割り当てられてもよく、ビットi1およびビットq1は、典型的には最低の符号化率で動作するエンコーダ224から割り当てられてもよい。
ここで図5に目を転じると、本開示の諸側面を使う、シンボル配位図マップ500のある実施形態を示す図が示されている。特に、シンボル配位図マップ500は、256−QAM変調を使って変調される信号についての配位図マップを表す。シンボル配位図マップ500は、横の同相軸510および縦の直交位相軸520の両方に沿って配向されるシンボル点の格子を示している。横の行および縦の列は、同相軸510に沿ったビットi0、i1、i2およびi3の集合および直交位相軸520に沿ったビットq0、q1、q2およびq3の集合に関連付けられた異なる値に対応する。256−QAM配位図は、8ビットy0、y1、y2、y3、y4、y5、y6およびy7の集合を、シンボル配位図マップ500中の点にマッピングすることによって形成される。ビットy0、y1、y2およびy3はマッピング・ビット位置i0、i1、i2およびi3に割り当てられる。ビットy4、y5、y6およびy7はマッピング・ビット位置q0、q1、q2およびq3に割り当てられる。
図5に示すような256−QAMシンボル配位図では、i0およびq0は最も信頼性の低いビット位置であり、ビット位置i1およびq1はビット位置i0およびq0に比べ、より高い信頼性をもつ。ビット位置i2およびq2ならびにi3およびq3はビット位置i1およびq1に比べ、より高い信頼性をもつ。図5に示される256−QAMシンボル配位図マップ500も、図3で述べたのと同様の非グレイ符号マッピングを使う。256−QAM変調フォーマットがインターリーバ234からの二つの相続くLDPCシンボルを使って実装されうることを注意しておくことが重要である。結果として、LDPCエンコーダ224はLDPCエンコーダ220およびLDPCエンコーダ222から出力されるシンボル毎について、二つのシンボルを出力する。たとえば、図5の配位図マップに基づいて、ビットi0およびビットq0は、典型的には最高の符号化率で動作するエンコーダ220から割り当てられてもよく、ビットi1およびビットq1は、典型的には次に高い符号化率で動作するエンコーダ222から割り当てられてもよく、ビットi2、i3およびビットq2、q3は、典型的には最低の符号化率で動作するエンコーダ224から割り当てられてもよい。
図2において上記したように、LDPCエンコードおよびシンボル・マッピングの一つの重要な特徴は、シンボル・マッピングにおいて使う適正なビットを提供することに関わる。ある実施形態では、デマルチプレクサ210は、はいってくるストリームを均等に配分することによって、三つの並列な出力ストリームを生成する。各LDPCエンコーダ220〜224は、同じ長さの入力データ・セット長nに基づいてブロック長kの異なる長さのストリームを出力する。インターリーバ230〜234におけるインターリーブに続いて、一連のビットはシンボル・マッピング器240に与えられる。シンボル・マッピング器240は、図3、図4および図5において記述されるビット位置についての信頼性に基づいて、異なるビットストリームからのビットをシンボル配位図マップ中の諸位置にマッピングする。ある代替的な実施形態では、デマルチプレクサ210は、各LDPCエンコーダ220〜224についての個々の符号化率に基づいて配分される三つの並列な出力ストリームを生成する。残りの処理は、本稿で述べたのと同様であってもよい。符号化率に基づいて出力ストリームを配分することは、潜在的には、不均等な符号化率のためにもとのメッセージの諸部分の伝送に付随する遅延に起因する受信機におけるレイテンシを低減する。
図6に目を転じると、本開示に基づく受信機600のある実施形態のブロック図が示されている。一般に、受信機600は、OFDM送信物を受信し、該送信物からベースバンド・データを復元するよう構成される。受信される送信物はDVB−TまたはDVB−Hデジタル・テレビジョン規格に準拠していてもよいし、あるいは他の任意の好適なプロトコルまたは標準フォーマットに準拠していてもよい。さらに、受信機600は、たとえばリード・ソロモン・エンコードおよびLDPCエンコードの両方を含む、連結されたエンコード・プロセスを使って送信された信号を受信できる。受信機600は、フロントエンド610、同期器620、OFDM復調器630、等化器640、シンボル・マッピング解除器650、第一のデインターリーバ660、LDPCデコーダ670、第二のデインターリーバ680、リード・ソロモン・ブロック・デコーダ690およびデータ・デコーダ695を含む。これらはみな直列式に配列され、接続される。
受信機600は、図示しないアンテナを使って空中放送送信を受信するよう適応されてもよい。受信機600は、同軸ケーブルのような好適なインターフェースを通じて有線放送送信を受信するよう適応されていてもよい。受信機600はハードウェア、ソフトウェアまたはその任意の好適な組み合わせにおいて具現されてもよい。さらに、受信機600が他のハードウェアおよび/またはソフトウェアに統合されてもよい。たとえば、OFDM受信機600は統合されたテレビジョン信号受信機および表示装置、テレビジョン受信機セットトップボックスまたは放送信号対応パーソナル・コンピュータの一部であってもよい。さらに、OFDM受信機600のさまざまなブロックが、ブロック間のさまざまな制御設定の通信のために、図示しないさまざまな制御信号を通じて相互接続されてもよいことは容易に理解されるはずである。
好適な送信された信号がフロントエンド610において受信され、入力される。フロントエンド610は送信されたOFDM信号を受信し、所望されるOFDM信号を選択し、時間領域のサンプルまたはデータを生成するよう構成される。フロントエンド610は、同調回路、ミキサ、増幅器、発振器およびフィルタのような入力信号調整要素を含んでいてもよい。フロントエンド610はまた、アナログ‐デジタル変換器(ADC: analog−to−digital converter)をも含む。
フロントエンド610からの出力信号は同期器620に与えられる。同期器620は、フロントエンドからのサンプリングされた時間領域入力信号の相対的な信号位置を、OFDM復調器630による適正な処理のために、調整する回路を含む。同期器620はたとえば、サンプリングされた時間領域データにハミング窓、ハニング窓などの窓関数を乗算する窓掛け回路を含んでいてもよい。同期器620はまた、キャリア信号同期またはシンボル・タイミング同期を実行するための信号処理の一部または全部をも含んでいてもよい。
同期器620からの信号出力は、OFDM復調器630に与えられる。OFDM復調器630は、時間領域データのブロックに対してFFT演算を実行することによって、時間領域サンプルから周波数領域表現またはデータを生成するよう構成される。変換演算のサイズおよび複雑さならびにそれから帰結するFFTプロセッサのサイズおよび複雑さは、主として、上記の送信の際に使用されるフーリエ変換行列のサイズに依存しうる。さらに、変換プロセスの代替的な形が存在してもよく、FFTの代わりに使われてもよい。また、OFDM復調器630は、OFDM信号に含められた可能性のある保護区間があればそれを除去する。保護区間は、上記変換を実行する前に除去される。復調された出力信号は典型的には、変調されたサブキャリアの形の並列信号の集合として表現される。OFDM復調器630は復調された信号を、並列な個々の信号の集合として与えても、あるいは個々のサブキャリア信号が一緒に多重化された単一の信号として与えてもよい。
OFDM復調器630からの復調された出力信号は、等化器640に与えられる。一般に、等化器640は、OFDM信号が送信された伝送チャネルのマルチパス歪み効果を低減するよう構成される。等化器640は、復調されたOFDM信号中のサブキャリアのそれぞれまたは全部に関連付けられる振幅または位相情報を調整または変更しうる。等化器640は、該振幅または位相情報を、等化器内の復調されたOFDMに対して実行される、これに限られないがチャネル推定およびパイロット信号検出および処理を含む計算および演算からの情報に基づいて調整する。
等化器640からの等化された出力信号は、シンボル・マッピング解除器650に与えられる。シンボル・マッピング解除器650は、はいってくる等化されたOFDM信号について、ある時間間隔でシンボル値を決定する。さらに、シンボル値が決定されたのち、シンボル値はビットの集合にマッピングし戻される。マッピング解除プロセスは、16−QAM、64−QAMまたは256−QAMのような当該信号について選ばれている特定の変調フォーマットに依存し、また使用される特定の配位図マッピングにも依存する。シンボル・マッピング解除器650におけるマッピング解除は典型的には、信号送信の際に実行されるマッピング動作に対応する。ある好ましい実施形態では、シンボル・マッピング解除器650におけるマッピング解除は図3、図4または図5に示されるシンボル配位図マップに準拠する。等化器640およびシンボル・マッピング解除器650が等化器640とシンボル・マッピング解除器650の間の図示しないフィードバック接続を通じて逐次反復的に動作してもよいことを注意しておくことが重要である。逐次反復的なフィードバック処理は、検出されたシンボルおよび結果として得られるデータ・ビットの正確さを改善しうる。
シンボル・マッピング解除器650からの、データ・ビットのストリームを表す信号出力は、第一のデインターリーバ660に与えられる。第一のデインターリーバ660は、第一のデコード・プロセスに先立ってデータ・ビットのストリームをインターリーブ解除する。第一のデインターリーバは典型的には、図1の内側インターリーバ150のような送信システムにおける最後のインターリーブ段において実行されたインターリーブを元に戻す。ある好ましい実施形態では、第一のデインターリーバ660は、内側インターリーバ150によるブロック・インターリーブのために使われたインターリーブ・マップに一致するブロック・インターリーブ解除プロセスを使う。
第一のデインターリーバ660からの出力信号はLDPCデコーダ670に与えられる。LDPCデコーダ670ははいってくるストリームの諸部分を符号化ブロックにグループ化する。符号化ブロックの大きさは典型的にはLDPC符号化方式における値kに等しいか、これに関係している。LDPCデコーダ670は、送信において使われたエンコード・プロセスに依存して、二元LDPCデコード・プロセスにおいてビットを、あるいは非二元・デコード・プロセスにおいてシンボルをデコードできてもよい。LDPCエンコーダ670は、逐次反復的な多段誤り訂正および伝搬プロセスを使ってデータのブロックをデコードする。本プロセスおよび構造は、一組のパリティ検査の式に基づいてデータのブロックの諸部分を収集し、逐次反復するための回路を含む。使用されるパリティ検査の式は、送信機におけるエンコード・プロセスに基づいて生成される式である。相続く各反復工程が、パリティ検査の式を使うことに基づいて訂正機能を改善する。LDPCデコーダ670が、符号化されていない出力データ中にさらなる誤りが存在しないと判定したのち、あるいは反復数が閾値数を超えたのち、一組の最終的な出力値が与えられる。
LDPCデコーダ670からの出力信号は第二のデインターリーバ680に与えられる。第二のデインターリーバ680は、第一のデコードの後かつ第二のデコード・プロセスの前に、データ・ビットのストリームをインターリーブ解除する。第二のデインターリーバは典型的には、図1の外側インターリーバ130のような送信システムにおける最初のインターリーブ段において実行されたインターリーブを元に戻す。ある好ましい実施形態では、第二のデインターリーバ680は、外側インターリーバ130による畳み込みインターリーブのために使われたインターリーブ・マップに一致する畳み込みインターリーブ解除プロセスを使う。
第二のデインターリーバ680からの出力信号はリード・ソロモン・ブロック・デコーダ690に与えられる。リード・ソロモン・ブロック・デコーダはビットストリームをリード・ソロモン・デコード・プロセスを使ってデコードする。リード・ソロモン・ブロック・デコーダ680は、はいってくるストリームを検出し、諸パケット中に配列する。各パケットは典型的には3個の識別バイトとともに204バイトを含む。リード・ソロモン・ブロック・デコーダ680は各パケットを、それらのパケットに含まれるパリティ・バイトを使ってデコードする。パリティ・パケットは、当該パケット中の残りのバイトにおけるある数の誤りの検出および訂正を許容するシンドロームを生成する。ある好ましい実施形態では、リード・ソロモン・ブロック・デコーダ680は、16個のパリティ・バイトおよび188個のメッセージ・データ・バイトを含む204バイトを含むパケットをデコードして、誤り訂正されたビットストリームを生成する。リード・ソロモン(204,188)誤り訂正プロセスがこの188メッセージ・データ・バイトのうちの8個までのバイト誤りを訂正しうることを注意しておくことが重要である。
リード・ソロモン・ブロック・デコーダ690からの、パケットにグループ化された誤り訂正された出力信号は、データ・デコーダ690に与えられる。データ・デコーダ690はオーディオ、ビデオおよび/またはデータ・プログラム素材を含むさまざまなプログラム・ビットストリームを復元する。データ・デコーダ690は、それらのパケットを再グループ化してトランスポート・ストリームを形成し、該トランスポート・ストリームの諸部分をプログラム・ストリームに分離し、該プログラム・ストリームをデコードまたは圧縮解除して圧縮されていないオーディオおよびビデオ・プログラム・コンテンツを形成するための回路を含んでいてもよい。
データ・デコーダ695の出力は典型的には、該オーディオ、ビデオまたはデータ・コンテンツを表示または他の関係した使用に好適な信号に変換するための、図示しないさらに下流の信号処理に接続される。たとえば、該下流の信号処理は、テレビジョンでの表示のためのオーディオおよびビデオ信号を生成するために使われる回路を含んでいてもよい。
受信機600の動作において、フロントエンド610はOFDM信号を受信し、時間領域データを生成する。該時間領域データは同期器620によって処理または同期される。時間領域サンプルはOFDM復調器630に与えられる。OFDM復調器630は、時間領域から周波数領域の代表的なデータを生成する。それは次いで、等化器640において、伝送チャネルでの損傷について等化または補正される。等化されたデータはシンボル・マッピング解除器650においてマッピング解除され、ビットストリーム中のビットに変換される。ビットストリームは次いで、第一のデインターリーバ660、LDPCデコーダ670、第二のデインターリーバ680およびリード・ソロモン・ブロック・デコーダ690を含む連結されたデコード装置において誤り訂正デコードされて、完全に誤り訂正されたビットストリームを生成する。誤り訂正されたビットストリームは、オーディオ、ビデオまたはデータ・コンテンツを含む一つまたは複数のプログラム・ストリームにデコードされ、それがさらなる下流の信号処理のために与えられる。図示していないが、追加的なフィードバックおよび制御信号がさまざまなブロックの間に与えられ、接続されてもよい。さらに、動作モード切り換えのような、上記の各ブロックについて必要な制御機能は、各ブロックに含まれるコントローラまたはプロセッサによって管理されてもよい。あるいはまた、モード切り換えおよび他の制御動作を提供するために、中央コントローラまたはマイクロプロセッサのようなプロセッサ(図示せず)が含まれ、各ブロックに接続されていてもよい。同様に、いかなる信号またはデータ記憶も、前記の諸ブロックにバッファ・メモリを含めることで分散的に管理されてもよいし、あるいは中央コントローラによって制御され、諸ブロックにインターフェースされるメモリ回路(図示せず)で中央集中的に管理されてもよい。
ここで図7に目を転じると、本開示の諸側面を使ったシンボル・マッピング解除器およびLDPCデコーダ700のある実施形態を示すブロック図が示されている。シンボル・マッピング解除器およびLDPCデコーダ700は、図6に記載したシンボル・マッピング解除器650、第一のデインターリーバ660およびLDPCデコーダ670の代わりに使用されうる。OFDM復調器および等化器からのはいってくる信号はマッピング解除器710に与えられる。マッピング解除器710は三つの出力を供給し、LDPCデインターリーバ720、LDPCデインターリーバ722およびLDPCデインターリーバ724にそれぞれ一つの出力が接続される。LDPCデインターリーバ720、LDPCデインターリーバ722およびLDPCデインターリーバ724のそれぞれの出力は、LDPCデコーダ730、LDPCデコーダ732およびLDPCデコーダ734に接続される。LDPCデコーダ730、LDPCデコーダ732およびLDPCデコーダ734の出力はマルチプレクサ740に接続される。シンボル・マッピング解除器およびLDPCデコーダ700の出力を表すマルチプレクサ740の出力は、図1に示される第二のデインターリーバ770になど、さらなる処理のために与えられる。
はいってくる信号はマッピング解除器710に与えられる。マッピング解除器710ははいってくる信号を、送信されたシンボル配位図に基づいてデコードする。マッピング解除器710は、シンボルを、三組のビットストリームにマッピング解除する。マッピング解除はビット位置に関連付けられた信頼性に基づいてなされてもよい。ある好ましい実施形態では、マッピング解除は、信号の送信において実行されたグループ・マッピングに基づいて、かつ図3、図4および図5に示されるシンボル配位図マップの一つに基づいて実行される。マッピング解除器710の出力は三つの並列ビットストリームを含み、各ストリームは適切なLDPC符号化率をもつ。
並列ビットストリームのそれぞれは、LDPCデインターリーバ720、LDPCデインターリーバ722またはLDPCデインターリーバ724のいずれかに与えられる。各デインターリーバ720〜724はビットストリーム中の諸ビットを諸LDPCシンボル中にグループ化する。ある好ましい実施形態では、各LDPCシンボルはビットストリームからの2ビットを含む。各デインターリーバ720〜724はまた、図2のインターリーバ230〜234のために使われたグループ・インターリーブ・パターンのような、送信において使用されたインターリーブ・パターンに基づいてLDPCシンボルをインターリーブ解除する。LDPCインターリーバ720〜724のそれぞれはまた、大きなブロックのインターリーブ解除プロセスを容易にするために、データ・ストリームの諸部分を記憶するためのメモリを含んでいてもよい。
インターリーブ解除された並列ビットストリームのそれぞれは、LDPCデコーダ730、LDPCデコーダ732またはLDPCデコーダ734のいずれかに与えられる。各デコーダ730〜734は好ましくは、LPDCシンボルに対して作用する非二元デコーダである。非二元デコーダの場合、各LPDCは並列ストリーム中の少なくとも2ビットを表す。たとえば、各LDPCデコーダ730〜734は4元LDPCデコーダであってもよい。各LDPCデコーダ730〜734は典型的には、はいってくるデータのシンボルk個の大きなブロックに基づいて動作する。各LDPCデコーダ730〜734は、入力におけるk個のシンボルの集合毎について出力においてデコードされたデータのn個のシンボルの集合を生成することに基づく、図6において上記したLDPCデコード・プロセスを使ってLDPCシンボルをデコードする。デコーダ730〜734のそれぞれは、異なる符号化率(n,k)を使って動作してもよい。ある好ましい実施形態では、LDPCデコーダ730についての符号化率は、LDPCデコーダ732の符号化率より大きいまたは高く、LDPCデコーダ732の符号化率は今度はLDPCデコーダ734の符号化率より大きいまたは高い。各LDPCデコーダ730〜734はまた、出力のLDPCデコードされたデータ・ストリームの生成のための、LDPCシンボルからビットへのマッピング解除器を含む。
デコードされたデータ・ストリームのそれぞれは、別個の入力としてマルチプレクサ740に与えられる。マルチプレクサ740は、デコードされたデータ・ストリームのそれぞれからのビットを組み合わせて、単一の出力LDPCデコード・データ・ストリームを生成する。マルチプレクサ740はそれらのビットを、図2におけるデマルチプレクサ210によって使われた多重分離プロセスのような、送信において適用された多重分離プロセスに基づいて組み合わせる。
シンボル・マッピング解除とLDPCデコードが逐次反復的に実行されてもよいことを注意しておくことが重要である。逐次反復的な構成では、シンボル・マッピング解除器およびLDPCデコーダの出力は、軟出力値を含んでいてもよい。軟出力値は、対数尤度比値のような、当該ビットについての値の信頼性を表す値である。マッピング解除器710からの軟出力値は、デインターリーバ720〜724を通じてLDPCデコーダ730〜734のそれぞれに与えられる。LDPCデコーダ730〜734におけるデコードに続いて、軟出力値は、図示しない一組のインターリーバを通じて、マッピング解除器710にフィードバックされる。これらのインターリーバは本質的には、マッピング解除器710のために適正なフォーマットで値を呈示するために、軟出力値を再びインターリーブする。逐次反復プロセスは、信頼性値が信頼性閾値に達するまたはそれを超えるまで、あるいは逐次反復のために許される時間の長さを超えるまで続く。逐次反復プロセスに続いて、軟出力値の最後の集合が当該ビットについての硬値に変換され、マルチプレクサ740に供給される。
ここで図8に目を転じると、本開示のある種の側面に基づくLPDCエンコードおよびシンボル・マッピングについてのプロセス800のある実施形態を示すフローチャートが示されている。例および説明の目的のため、プロセス800のステップについて、主として図2のLDPCエンコーダおよびシンボル・マッピング器200を参照しつつ述べる。プロセス800のステップは、図1に示した送信機100のような送信機回路に関連する全体的なプロセスの一部として実行されてもよい。さらに、プロセス800のステップは、DVB−TまたはDVB−H送信機装置のような放送送信システムの全体的な動作および制御の一部として含まれていてもよい。プロセス800のステップは単に例示的であり、本開示をいかなる仕方でも限定することは意図していない。
ステップ810では、第一のエンコードおよびインターリーブ・プロセスを使って処理されたトランスポート・ストリームのような、はいってくるストリームが受信される。はいってくるストリームは、デマルチプレクサ210のようなデマルチプレクサに入力として与えられてもよい。ステップ820では、受信されたはいってくるストリームは、二つ以上のサブストリームに多重分離または分離される。各サブストリームははいってくるストリームの逐次的な部分を含む。サブストリームの配分は、サブストリームの同じまたは異なる相対的なサイズまたは長さに相当して、均等または不均等な諸部分であってもよい。
次に、ステップ830において、各サブストリームは、LDPCエンコード・プロセスを使って個々にエンコードされる。LDPCエンコード・プロセスは、二元エンコード・プロセスまたは非二元エンコード・プロセスでありうる。ある好ましい実施形態では、サブストリーム中のビットはLDPCシンボルにグループ化され、LDPCエンコード・プロセスを使ってエンコードされる。さらに、各サブストリームは、異なる符号化率を使ってエンコードされる。ここで、相続く各サブストリームについての符号化率の連続は、単調減少するものである。
次に、ステップ840において、各サブストリームはグループ・インターリーブされる。ある好ましい実施形態では、各サブストリームは、ブロック・インターリーブ・プロセスを使ってグループ・インターリーブされる。ブロックの長さまたはサイズは、ステップ830におけるLDPCエンコード・プロセスについて使われたnの値に等しくてもよい。さらに、要素の次数(element order)はステップ830で生成されたLDPCシンボルのサイズまたは次数に等しくてもよい。
次に、ステップ850において、ステップ840におけるインターリーブからのビットまたはシンボルが、シンボル配位図マップ中にグループ・マッピングされる。ステップ850ではまた、エンコード・ステップ830が非二元エンコードを含んでいた場合、シンボルはグループ・マッピングの準備において、ビットの集合に分解し戻される。ある好ましい実施形態では、シンボル・マッピング器240のようなシンボル・マッピング器が、各サブストリームからのビットの集合を、図3、図4または図5において記述した配位図マップのようなシンボル配位図マップの諸部分にマッピングする。ステップ850におけるグループ・マッピングは、同相軸に関連するビットi0、i1およびi2についてのグレイ符号化および直交位相軸に関連するビットq0、q1およびq2についてのグレイ符号化を用いる、ビットからシンボルへのパターンを利用してもよい。さらに、パフォーマンスにおける改善を提供するため、より低い信頼性をもつ配位図マップ中のビット位置は、ステップ830でより高い符号化率をもって符号化されたLDPCエンコードされたビットストリームからのビットを与えられてもよい。
ステップ860では、変調配位図マップに基づいてマッピングされたシンボルからなる変調された信号がさらなる処理のために与えられる。ある好ましい実施形態では、図1に記載したように、変調された信号はフレーム化のために、さらにOFDM変調のために与えられる。
ここで図9に目を転じるに、本開示のある側面に基づくシンボル・マッピング解除およびLPDCデコードのためのプロセス900を示すフローチャートが示されている。例および説明の目的のため、プロセス900のステップについて、主として図7のシンボル・マッピング解除器およびLDPCデコーダ700を参照しつつ述べる。プロセス900のステップは、図6に示した受信機600のような受信機回路に関連する全体的なプロセスの一部として実行されてもよい。さらに、プロセス900のステップは、DVB−TまたはDVB−Hのような放送送信を受信するための受信機の全体的な動作および制御の一部として含まれていてもよい。プロセス900のステップは単に例示的であり、本開示をいかなる仕方でも限定することは意図していない。
ステップ910では、データのエンコードされたシンボルのビットストリームからなるはいってくる信号が受信される。はいってくる信号は、シンボル・マッピング解除器710のようなマッピング解除器への入力として与えられてもよい。ステップ920において、受信された信号におけるシンボルが検出され、それらのシンボルはマッピング解除されていくつかのビットストリーム中の一連のビットにされる。ステップ920におけるマッピング解除は、信号送信の際に使われた、確立されたシンボルからビットへのグループ・マッピングに基づいて実行される。ある好ましい実施形態では、マッピング解除は、図3、図4または図5に示したシンボル配位図マップに基づく。各ビットストリームは、LDPCエンコード・プロセスについての指定された符号化率を使ってエンコードされたビットを含む。各符号化率が異なっていてもよいことを注意しておくことが重要である。
次に、ステップ930において、並列ビットストリームのそれぞれが個々にインターリーブ解除される。インターリーブ解除は、図8のステップ830におけるインターリーブのような信号送信の際に使われたグループ・インターリーブ・パターンに基づいて実行される。ステップ930におけるインターリーブ解除はまた、LDPCシンボルを生成するためのビットからシンボルへのグルーピングをも含んでいてもよい。
次に、ステップ940において、LDPCビットまたはシンボルのインターリーブ解除されたストリームのそれぞれが、LDPCデコード・プロセスを使ってデコードされる。LDPCデコード・プロセスは、二元エンコード・プロセスまたは非二元エンコード・プロセスであってもよい。ある好ましい実施形態では、各サブストリームは、LDPCデコード・プロセスを使ってデコードされる。さらに、各サブストリームは、信号送信の際に確立された異なる符号化率を使ってデコードされる。ここで、相続く各サブストリームについての符号化率の連続は単調減少する。LDPCデコード・ステップ940はまた、LDPCシンボルのようなシンボルを、ビットにマッピングして、デコードされたビットを含む一組のビットストリームを生成することを含んでいてもよい。
次に、ステップ950において、デコードされたビットのストリームが組み合わされて、LDPCデコードされたビットの単一のストリームを形成する。ストリームの組み合わせは、各ストリームからの各連続するビットを組み合わせるといった、均等な多重化プロセスを使って実行されてもよい。組み合わせはまた、重み付けされた多重化プロセスを使って実行されてもよい。重み付けされた多重化プロセスは、データの各サブストリームについて、デコード・ステップ940からの符号化率に基づいていてもよい。
ステップ960では、LDPCデコードされた信号はさらなる処理のために提供される。ある好ましい実施形態では、LDPCデコードされた信号は、図6で述べたようなさらなるインターリーブ解除、リード・ソロモン・デコードおよびデータ・デコードのために提供される。
上記の諸実施形態は、OFDM変調との関連で、さらにリード・ソロモン・符号化のようなブロック符号化プロセスとの関連で、LDPC符号化を使う符号化変調信号伝送方式を記述している。特に、諸実施形態は、ビットストリームの別個の諸部分のために4元LDPC符号化のような並列非二元LDPC符号化と、ビットストリームの前記諸部分のLDPC符号化に合わせて調整されたシンボル・マッピング・プロセスを使うことを記述する。シンボル・マッピングは、第一部分サブストリーム(first portion substream)からのビットの集合をシンボル配位図マップの第一の領域にマッピングし、第二部分サブストリーム(second portion substream)からのビットの集合をシンボル配位図マップの第二の領域にマッピングしてシンボルの集合を生成し、典型的な高次多シンボル配位図マップの諸部分に現れるビット信頼性の本来的な不均等を克服する。記載されるシンボル・マッピング・プロセスは、これに限られないが、16−QAM、64−QAMおよび256−QAM変調配位図を含む。これらの実施形態の一つまたは複数の側面の実装は、高次変調フォーマットを使う信号について、改善された全体的な符号化パフォーマンスおよび改善された符号化効率の恩恵をもたらす。
上記の諸実施形態は、信号を受信するための装置および方法を記述している。装置は、マッピング解除およびデコード回路を含む。装置は、変調シンボルを含む信号を受信し、前記変調シンボルを第一の組のビットを含む第一のサブストリームおよび第二の組のビットを含む第二のサブストリームにマッピング解除するシンボル・マッピング解除器と、前記第一のサブストリームを第一のデコード・レートで低密度パリティ検査符号化プロセスを使ってデコードする、前記マッピング解除器に結合されたデコーダと、前記第二のサブストリームを第二の符号化率で低密度パリティ検査符号化プロセスを使ってデコードする、前記マッピング解除器に結合されたもう一つのデコーダと、前記第一のデコードされたサブストリームおよび前記第二のデコードされたサブストリームを組み合わせて単一のデータ・ストリームにする、前記両デコーダに結合された組み合わせ器とを含む。本装置はまた、ブロック・インターリーブ・プロセスを使って前記第一のサブストリームをインターリーブ解除する、前記シンボル・マッピング解除器およびデコーダに結合されたデインターリーバを、ブロック・インターリーブ・プロセスを使って前記第二のサブストリームをインターリーブ解除する、前記マッピング解除器およびもう一つのデコーダに結合されたもう一つのデインターリーバとともに、含んでいてもよい。これらのデインターリーバは、前記第一のサブストリーム中のビットをグループ化してコード・シンボルの第一の集合にし、前記第二のサブストリーム中のビットをグループ化してコード・シンボルの第二の集合にしてもよい。デコーダが、コード・シンボルの前記第一の集合を、第一の非二元低密度パリティ検査デコード・プロセスを使ってデコードしてもよく、同じまたは別のデコーダが、コード・シンボルの前記第二の集合を、第二の非二元低密度パリティ検査コード・プロセスを使ってデコードしてもよい。データ・ビットまたはシンボルの前記第一の集合のために使用される前記第一のデコーダのデコード・レートは、データ・ビットまたはシンボルの前記第二の集合のために使用される前記第二のデコーダのデコード・レートより大きくてもよい。シンボル・マッピング解除器は、ビットの前記第一の集合を、データ復元のより高い信頼性をもつ、シンボル配位図マップの領域からマッピング解除してもよく、ビットの前記第二の集合を、データ復元のより低い信頼性をもつ、シンボル配位図マップの領域からマッピング解除する。シンボル・マッピング解除器は、前記第一のサブストリームの符号化率および前記第二のサブストリームの符号化率に基づいて、変調シンボルを前記第一のサブストリーム中のビットおよび前記第二のサブストリーム中のビットに交互に(alternately)マッピング解除してもよい。シンボル・マッピング解除器はまた、変調シンボルを、16−QAM、32−QAM、64−QAM、256−QAM配位図マップのうちの少なくとも一つを使ってビットにマッピング解除してもよい。本装置は、OFDM信号受信システムにおいて、またはOFDM信号受信システムの一部として使われてもよい。
マッピング解除およびデコード・プロセスを使って信号を受信する方法も記載される。本方法は、変調シンボルを含む信号を受信し、続いて該変調シンボルを、第一のサブストリームを生成するためのシンボル配位図マップの第一の領域からの第一の組のビットおよび第二のサブストリームを生成するためのシンボル配位図マップの第二の領域からの第二の組のビットにマッピング解除し、続いて低密度パリティ検査デコード・プロセスを使って前記第一のサブストリームおよび前記第二のサブストリームをデコードし、続いて前記第一のデコードされたサブストリームおよび前記第二のデコードされたサブストリームを単一のデータ・ストリームに組み合わせることを含む。前記プロセスはさらに、前記第一のサブストリームおよび前記第二のサブストリーム中のビットをコード・シンボルの諸集合にグループ化することを含んでいてもよい。前記デコードは代替的に、非二元の低密度パリティ検査符号化プロセスを使ってもよい。前記プロセスはまた、前記第一のサブストリームを、前記第二のサブストリームについてのデコード・レートより大きいデコード・レートでデコードすることを含んでいてもよい。前記マッピング解除は、前記第一のエンコードされたサブストリームからのビットの集合および前記第二のエンコードされたサブストリームからのビットの集合を、前記第一のサブストリームのエンコード・レートおよび前記第二のサブストリームのエンコード・レートに基づいてマッピング解除することを含んでいてもよい。前記第一の領域からマッピングされるビットはデータ復元の、より高い信頼性を有していてもよく、前記第二の領域からマッピングされるビットはデータ復元の、より低い信頼性を有していてもよい。前記マッピング解除はまた、16−QAM、32−QAM、64−QAM、256−QAM配位図マップの少なくとも一つを使って変調シンボルをビットにマッピング解除することをも含んでいてもよい。前記プロセスはまた、前記第一のサブストリームおよび前記第二のサブストリームをブロック・インターリーブ解除することをも含んでいてもよい。
最後に、装置が記載されるが、該装置は、変調シンボルを含む信号を受信し、続いて該変調シンボルを、第一のサブストリームを生成するためのシンボル配位図マップの第一の領域からの第一の組のビットおよび第二のサブストリームを生成するためのシンボル配位図マップの第二の領域からの第二の組のビットにマッピング解除し、続いて低密度パリティ検査デコード・プロセスを使って前記第一のサブストリームおよび前記第二のサブストリームをデコードし、続いて前記第一のデコードされたサブストリームおよび前記第二のデコードされたサブストリームを単一のデータ・ストリームに組み合わせる機能を実装する。前記プロセスはさらに、前記第一のサブストリームおよび前記第二のサブストリーム中のビットをコード・シンボルの諸集合にグループ化することを含んでいてもよい。前記デコードは代替的に、非二元の低密度パリティ検査符号化プロセスを使ってもよい。前記プロセスはまた、前記第一のサブストリームを、前記第二のサブストリームについてのデコード・レートより大きいデコード・レートでデコードすることを含んでいてもよい。前記マッピング解除は、前記第一のエンコードされたサブストリームからのビットの集合および前記第二のエンコードされたサブストリームからのビットの集合を、前記第一のサブストリームのエンコード・レートおよび前記第二のサブストリームのエンコード・レートに基づいてマッピング解除することを含んでいてもよい。前記第一の領域からマッピングされるビットはデータ復元の、より高い信頼性を有していてもよく、前記第二の領域からマッピングされるビットはデータ復元の、より低い信頼性を有していてもよい。前記マッピング解除はまた、16−QAM、32−QAM、64−QAM、256−QAM配位図マップの少なくとも一つを使って変調シンボルをビットにマッピング解除することをも含んでいてもよい。前記プロセスはまた、前記第一のサブストリームおよび前記第二のサブストリームをブロック・インターリーブ解除することをも含んでいてもよい。本装置は、OFDM信号送受信システムにおいて使用されてもよく、本稿に記載されるいかなる手段を使って実装されてもよい。本装置は、一つまたは複数の集積回路において実装されてもよい。上記の機能的な動作の一部または全部が、ソフトウェアまたはファームウェアを走らせるマイクロプロセッサ、マイクロコントローラまたはコンピュータ型デバイスを使って実現されてもよい。
上記の実施形態はさまざまな修正および代替形がありうるが、例として個別的な実施形態を図面において示し、本稿で詳細に説明してきた。しかしながら、開示される特定の形に本開示が限定されることは意図されていないことは理解しておくべきである。むしろ、開示は、付属の請求項によって定義される本開示の範囲内にはいるあらゆる修正、等価物および代替物をカバーするものである。

Claims (15)

  1. 信号を受信する方法であって:
    変調シンボルを含む信号を受信する段階と;
    前記変調シンボルを、第一のサブストリームを生成するためのシンボル配位図マップの第一の領域からの第一の組のビットおよび第二のサブストリームを生成するためのシンボル配位図マップの第二の領域からの第二の組のビットにマッピング解除する段階と;
    低密度パリティ検査デコード・プロセスを使って前記第一のサブストリームおよび前記第二のサブストリームをデコードする段階と;
    前記第一のデコードされたサブストリームおよび前記第二のデコードされたサブストリームを単一のデータ・ストリームに組み合わせる段階とを含む、
    方法。
  2. 前記第一のサブストリームおよび前記第二のサブストリーム中のビットをコード・シンボルの諸集合にグループ化する段階をさらに含む、請求項1記載の方法。
  3. 前記デコードする段階が、非二元低密度パリティ検査符号化プロセスを使ってデコードすることを含む、請求項2記載の方法。
  4. 前記デコードする段階が、前記第一のサブストリームを、前記第二のサブストリームについてのデコード・レートより大きいデコード・レートでデコードすることを含む、請求項1記載の方法。
  5. 前記第一のエンコードされたサブストリームからのビットの前記集合および前記第二のエンコードされたサブストリームからのビットの前記集合をマッピング解除する前記段階が、前記第一のサブストリームのエンコード・レートおよび前記第二のサブストリームのエンコード・レートに基づく、請求項1記載の方法。
  6. 前記第一の領域からマッピングされるビットはデータ復元の、より高い信頼性を有し、前記第二の領域からマッピングされるビットはデータ復元の、より低い信頼性を有する、請求項1記載の方法。
  7. 前記第一のサブストリームおよび前記第二のサブストリームをブロック・インターリーブ解除する段階をさらに含む、請求項1記載の方法。
  8. 前記マッピング解除する段階が、16−QAM、32−QAM、64−QAM、256−QAM配位図マップのうちの少なくとも一つを使って前記変調シンボルをビットにマッピング解除することを含む、請求項1記載の方法。
  9. 請求項1ないし8のうちいずれか一項記載の方法を実装する信号をエンコードするための装置。
  10. 信号を受信する装置であって:
    変調シンボルを含む信号を受信し、前記変調シンボルを第一の組のビットを含む第一のサブストリームおよび第二の組のビットを含む第二のサブストリームにマッピング解除するシンボル・マッピング解除器と;
    前記第一のサブストリームを第一のデコード・レートで低密度パリティ検査符号化プロセスを使ってデコードする、前記マッピング解除器に結合された第一のデコーダと;
    前記第二のサブストリームを第二の符号化率で低密度パリティ検査符号化プロセスを使ってデコードする、前記マッピング解除器に結合された第二のデコーダと;
    前記第一のデコードされたサブストリームおよび前記第二のデコードされたサブストリームを組み合わせて単一のデータ・ストリームにする、前記第一のデコーダおよび前記第二のデコーダに結合された組み合わせ器とを有する、
    装置。
  11. ブロック・インターリーブ・プロセスを使って前記第一のサブストリームをインターリーブ解除する、前記シンボル・マッピング解除器および前記第一のデコーダに結合された第一のデインターリーバと、
    ブロック・インターリーブ・プロセスを使って前記第二のサブストリームをインターリーブ解除する、前記マッピング解除器および前記第二のデコーダに結合された第二のデインターリーバとをさらに有する、
    請求項10記載の装置。
  12. 前記第一のデインターリーバは、前記第一のサブストリーム中のビットをグループ化してコード・シンボルの第一の集合にし、前記第二のデインターリーバは、前記第二のサブストリーム中のビットをグループ化してコード・シンボルの第二の集合にする、請求項11記載の装置。
  13. 前記第一のデコーダが、コード・シンボルの前記第一の集合を、第一の非二元低密度パリティ検査デコード・プロセスを使ってデコードし、前記第二のデコーダが、コード・シンボルの前記第二の集合を、第二の非二元低密度パリティ検査コード・プロセスを使ってデコードする、請求項10ないし12のうちいずれか一項記載の装置。
  14. 前記シンボル・マッピング解除器は、データ復元のより高い信頼性をもつシンボル配位図マップの領域からビットの前記第一の集合をマッピング解除し、データ復元のより低い信頼性をもつシンボル配位図マップの領域からビットの前記第二の集合をマッピング解除する、請求項10記載の装置。
  15. シンボル・マッピング解除器は、前記第一のサブストリームの符号化率および前記第二のサブストリームの符号化率に基づいて、前記変調シンボルを前記第一のサブストリーム中のビットおよび前記第二のサブストリーム中のビットにマッピング解除する、請求項10記載の装置。
JP2012523596A 2009-08-07 2010-07-20 低密度パリティ検査符号および配位図マッピングを使ったデータ受信 Pending JP2013502094A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09305739.6 2009-08-07
EP09305739A EP2282470A1 (en) 2009-08-07 2009-08-07 Data reception using low density parity check coding and constellation mapping
PCT/US2010/002038 WO2011016834A1 (en) 2009-08-07 2010-07-20 Data reception using low density parity check coding and constellation mapping

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015059196A Division JP2015122812A (ja) 2009-08-07 2015-03-23 低密度パリティ検査符号および配位図マッピングを使ったデータ受信

Publications (1)

Publication Number Publication Date
JP2013502094A true JP2013502094A (ja) 2013-01-17

Family

ID=41581915

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012523596A Pending JP2013502094A (ja) 2009-08-07 2010-07-20 低密度パリティ検査符号および配位図マッピングを使ったデータ受信
JP2015059196A Pending JP2015122812A (ja) 2009-08-07 2015-03-23 低密度パリティ検査符号および配位図マッピングを使ったデータ受信

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015059196A Pending JP2015122812A (ja) 2009-08-07 2015-03-23 低密度パリティ検査符号および配位図マッピングを使ったデータ受信

Country Status (6)

Country Link
US (1) US8660203B2 (ja)
EP (2) EP2282470A1 (ja)
JP (2) JP2013502094A (ja)
KR (1) KR20120058537A (ja)
CN (1) CN102484631A (ja)
WO (1) WO2011016834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122812A (ja) * 2009-08-07 2015-07-02 トムソン ライセンシングThomson Licensing 低密度パリティ検査符号および配位図マッピングを使ったデータ受信

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144816B1 (ko) * 2009-11-13 2012-05-14 한국전자통신연구원 통신 시스템에서 데이터 수신 장치 및 방법
US8769365B2 (en) 2010-10-08 2014-07-01 Blackberry Limited Message rearrangement for improved wireless code performance
US20120216093A1 (en) * 2011-02-22 2012-08-23 Nec Laboratories America, Inc. Soft-decision non-binary ldpc coding for ultra-long-haul optical transoceanic transmissions
US10178651B2 (en) * 2012-05-11 2019-01-08 Blackberry Limited Method and system for uplink HARQ and CSI multiplexing for carrier aggregation
US9319250B2 (en) 2013-03-15 2016-04-19 Jonathan Kanter Turbo decoding techniques
US9608851B2 (en) 2013-03-15 2017-03-28 Jonathan Kanter Turbo decoding techniques
KR102080607B1 (ko) * 2013-07-08 2020-02-25 삼성전자주식회사 방송 및 통신 시스템에서 신호 송수신 장치 및 방법
US9479285B2 (en) * 2013-10-14 2016-10-25 Nec Corporation Non-binary LDPC coded mode-multiplexed four-dimensional signaling based on orthogonal frequency division multiplexing
US20150124893A1 (en) * 2013-11-04 2015-05-07 Uvic Industry Partnerships, Inc. Modulation-assisted preprocessing for non-binary ldpc decoding
US9602136B2 (en) 2014-03-06 2017-03-21 Electronics And Telecommunications Research Institute Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 4/15 and 256-symbol mapping, and bit interleaving method using same
KR102287624B1 (ko) 2014-03-20 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 3/15인 ldpc 부호어 및 1024-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
US10419023B2 (en) 2014-03-20 2019-09-17 Electronics And Telecommunications Research Institute Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 3/15 and 1024-symbol mapping, and bit interleaving method using same
US10432228B2 (en) 2014-03-27 2019-10-01 Electronics And Telecommunications Research Institute Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 5/15 and 4096-symbol mapping, and bit interleaving method using same
US9602141B2 (en) 2014-04-21 2017-03-21 Sandisk Technologies Llc High-speed multi-block-row layered decoder for low density parity check (LDPC) codes
US9748973B2 (en) * 2014-04-22 2017-08-29 Sandisk Technologies Llc Interleaved layered decoder for low-density parity check codes
US9503125B2 (en) 2014-05-08 2016-11-22 Sandisk Technologies Llc Modified trellis-based min-max decoder for non-binary low-density parity-check error-correcting codes
US9602245B2 (en) * 2014-05-21 2017-03-21 Samsung Electronics Co., Ltd. Transmitting apparatus and interleaving method thereof
KR102159242B1 (ko) * 2014-05-21 2020-09-24 삼성전자주식회사 송신 장치 및 그의 신호 처리 방법
US9600367B2 (en) 2014-05-22 2017-03-21 Electronics And Telecommunications Research Institute Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 4/15 and 16-symbol mapping, and bit interleaving method using same
KR102260767B1 (ko) 2014-05-22 2021-06-07 한국전자통신연구원 길이가 16200이며, 부호율이 3/15인 ldpc 부호어 및 64-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102260775B1 (ko) 2014-05-22 2021-06-07 한국전자통신연구원 길이가 16200이며, 부호율이 10/15인 ldpc 부호어 및 256-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
US10361720B2 (en) 2014-05-22 2019-07-23 Electronics And Telecommunications Research Institute Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 3/15 and 64-symbol mapping, and bit interleaving method using same
US10360102B2 (en) 2014-05-22 2019-07-23 Electronics And Telecommunications Research Institute Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 10/15 and 256-symbol mapping, and bit interleaving method using same
US10326471B2 (en) 2014-05-22 2019-06-18 Electronics And Telecommunications Research Institute Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 3/15 and quadrature phase shift keying, and bit interleaving method using same
GB2530311B (en) * 2014-09-19 2017-01-11 Imagination Tech Ltd Data compression
KR102240741B1 (ko) 2015-01-27 2021-04-16 한국전자통신연구원 길이가 16200이며, 부호율이 2/15인 ldpc 부호어 및 64-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102240744B1 (ko) 2015-01-27 2021-04-16 한국전자통신연구원 길이가 16200이며, 부호율이 2/15인 ldpc 부호어 및 16-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102240740B1 (ko) 2015-01-27 2021-04-16 한국전자통신연구원 길이가 16200이며, 부호율이 2/15인 ldpc 부호어 및 256-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287620B1 (ko) 2015-02-16 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 2/15인 ldpc 부호어 및 1024-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287621B1 (ko) 2015-02-16 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 3/15인 ldpc 부호어 및 256-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287629B1 (ko) 2015-02-16 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 3/15인 ldpc 부호어 및 4096-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287616B1 (ko) 2015-02-16 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 2/15인 ldpc 부호어 및 256-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287625B1 (ko) 2015-02-16 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 2/15인 ldpc 부호어 및 4096-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287623B1 (ko) 2015-02-16 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 4/15인 ldpc 부호어 및 1024-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287627B1 (ko) 2015-02-16 2021-08-10 한국전자통신연구원 길이가 64800이며, 부호율이 4/15인 ldpc 부호어 및 4096-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287635B1 (ko) 2015-02-17 2021-08-10 한국전자통신연구원 길이가 16200이며, 부호율이 3/15인 ldpc 부호어 및 256-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287639B1 (ko) 2015-02-17 2021-08-10 한국전자통신연구원 길이가 16200이며, 부호율이 4/15인 ldpc 부호어 및 256-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287630B1 (ko) 2015-02-17 2021-08-10 한국전자통신연구원 길이가 16200이며, 부호율이 3/15인 ldpc 부호어 및 16-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102287637B1 (ko) 2015-02-17 2021-08-10 한국전자통신연구원 길이가 16200이며, 부호율이 4/15인 ldpc 부호어 및 64-심볼 맵핑을 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
CN111865499B (zh) * 2015-03-02 2023-07-21 三星电子株式会社 接收设备和接收方法
EP3866426A1 (en) 2016-11-17 2021-08-18 Telefonaktiebolaget LM Ericsson (publ) Numerology-dependent downlink control channel mapping
US10312953B2 (en) 2016-12-26 2019-06-04 Industrial Technology Research Institute Orthogonal frequency division multiplexing receiver with low-resolution analog to digital converter and electronic device thereof
CN107094026B (zh) * 2017-04-10 2020-11-03 东南大学 Nb-ldpc编码的图合并检测译码方法
US10326473B2 (en) 2017-04-13 2019-06-18 Sk Hynix Inc Symbol-based coding for NAND flash devices
US10355821B2 (en) 2017-06-14 2019-07-16 Nokia Solutions And Networks Oy Probabilistic signal shaping using a self-referencing sequence
US10116484B1 (en) * 2017-07-21 2018-10-30 Qualcomm Incorporated Techniques and apparatuses for odd-exponent quadrature amplitude modulation
US10547489B2 (en) * 2018-03-13 2020-01-28 University Of South Florida OFDM reception under high adjacent channel interference while preserving frame structure
WO2021035651A1 (en) * 2019-08-29 2021-03-04 Qualcomm Incorporated Unequal protection (uep) scheme using reed-solomon code
JP2022026454A (ja) * 2020-07-31 2022-02-10 富士通株式会社 通信装置および通信システム
CN112436843B (zh) * 2020-11-27 2024-03-15 西安空间无线电技术研究所 一种Turbo码信道外交织器的设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070217541A1 (en) * 2006-03-15 2007-09-20 Zhixin Liu Compress-forward Coding with N-PSK Modulation for the Half-duplex Gaussian Relay Channel
JP2008526163A (ja) * 2004-12-29 2008-07-17 インテル・コーポレーション マルチレベル低密度パリティ検査符号化変調
JP2008278189A (ja) * 2007-04-27 2008-11-13 Sony Corp 復号装置および方法、並びにプログラム
JP2008544686A (ja) * 2005-06-25 2008-12-04 サムスン エレクトロニクス カンパニー リミテッド 低密度パリティ検査符号化の方法及び装置
JP2009017160A (ja) * 2007-07-04 2009-01-22 Mitsubishi Electric Corp 誤り訂正符号化装置および方法ならびにデジタル伝送システム
JP2009055207A (ja) * 2007-08-24 2009-03-12 Yokohama National Univ マルチレベル符号化変調を用いた再送方法、送信機および受信機

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545726B2 (ja) 2001-02-27 2004-07-21 松下電器産業株式会社 受信側装置
US7577207B2 (en) 2002-07-03 2009-08-18 Dtvg Licensing, Inc. Bit labeling for amplitude phase shift constellation used with low density parity check (LDPC) codes
CN100380856C (zh) * 2002-12-03 2008-04-09 皇家飞利浦电子股份有限公司 用于比特交织cofdm-mimo系统的简化解码器
JP2003309497A (ja) * 2003-03-24 2003-10-31 Matsushita Electric Ind Co Ltd 受信装置及び送信装置並びにこれらを用いた基地局装置及び移動局装置
US7796696B2 (en) * 2004-02-19 2010-09-14 Broadcom Corporation Asymmetrical multiple stream wireless communication using STBC
KR20050118056A (ko) 2004-05-12 2005-12-15 삼성전자주식회사 다양한 부호율을 갖는 Block LDPC 부호를 이용한이동 통신 시스템에서의 채널부호화 복호화 방법 및 장치
KR20070062534A (ko) * 2004-10-01 2007-06-15 톰슨 라이센싱 저밀도 패리티 체크(ldpc) 디코더
DE602006004427D1 (de) 2005-01-11 2009-02-05 Qualcomm Inc Modulation mit mehreren Auflösungen mit variablem Verhältnis der euklidischen Distanz und Blindempfänger
KR100946884B1 (ko) * 2005-07-15 2010-03-09 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 채널인터리빙/디인터리빙 장치 및 그 제어 방법
US7564917B2 (en) * 2005-11-01 2009-07-21 Intel Corporation Multicarrier receiver and method for generating common phase error estimates for use in systems that employ two or more transmit antennas with independent local oscillators
WO2007100317A1 (en) 2006-02-28 2007-09-07 Mitsubishi Electric Research Laboratories Mapping for mimo communication apparatus
JP4878958B2 (ja) * 2006-08-22 2012-02-15 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
US8412114B2 (en) 2006-09-13 2013-04-02 France Telecom Adaptive method of transmitting and receiving a signal in a multi-antenna system, corresponding transmission and reception devices, computer program products and signal
KR100878768B1 (ko) * 2006-09-15 2009-01-14 삼성전자주식회사 Mimo ofdm 송수신 방법 및 장치
KR100810270B1 (ko) 2006-11-07 2008-03-07 삼성전자주식회사 다중 입출력 통신 시스템
FR2909499B1 (fr) * 2006-12-01 2009-01-16 Commissariat Energie Atomique Procede et dispositif de decodage pour codes ldpc, et appareil de communication comprenant un tel dispositif
US7992070B2 (en) * 2006-12-27 2011-08-02 Nec Laboratories America, Inc. Bit-interleaved LDPC-coded modulation for high-speed optical transmission
US20080232489A1 (en) * 2007-03-23 2008-09-25 Jiannan Tsai Spatial interleaver for MIMO wireless communication systems
US8171383B2 (en) * 2007-04-13 2012-05-01 Broadcom Corporation Method and system for data-rate control by randomized bit-puncturing in communication systems
US7991070B2 (en) * 2007-08-20 2011-08-02 Nec Laboratories America, Inc. Wavelength transmission system and method using 3-dimensional LDPC-coded modulation
ES2562031T3 (es) * 2007-10-30 2016-03-02 Sony Corporation Aparato y método de procesamiento de datos
KR101435681B1 (ko) * 2007-11-08 2014-09-02 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서데이터 송수신 장치 및 방법
TWI497920B (zh) 2007-11-26 2015-08-21 Sony Corp Data processing device and data processing method
TWI459724B (zh) 2007-11-26 2014-11-01 Sony Corp Data processing device and data processing method
US8185796B2 (en) 2008-08-20 2012-05-22 Nec Laboratories America, Inc. Mitigation of fiber nonlinearities in multilevel coded-modulation schemes
US8392814B2 (en) * 2008-10-07 2013-03-05 Qualcomm Incorporated Method and apparatus for high speed structured multi rate low density parity check codes
TW201044833A (en) * 2009-06-01 2010-12-16 Ind Tech Res Inst Hierarchical modulation system and transmitter and method thereof
EP2282470A1 (en) * 2009-08-07 2011-02-09 Thomson Licensing Data reception using low density parity check coding and constellation mapping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526163A (ja) * 2004-12-29 2008-07-17 インテル・コーポレーション マルチレベル低密度パリティ検査符号化変調
JP2008544686A (ja) * 2005-06-25 2008-12-04 サムスン エレクトロニクス カンパニー リミテッド 低密度パリティ検査符号化の方法及び装置
US20070217541A1 (en) * 2006-03-15 2007-09-20 Zhixin Liu Compress-forward Coding with N-PSK Modulation for the Half-duplex Gaussian Relay Channel
JP2008278189A (ja) * 2007-04-27 2008-11-13 Sony Corp 復号装置および方法、並びにプログラム
JP2009017160A (ja) * 2007-07-04 2009-01-22 Mitsubishi Electric Corp 誤り訂正符号化装置および方法ならびにデジタル伝送システム
JP2009055207A (ja) * 2007-08-24 2009-03-12 Yokohama National Univ マルチレベル符号化変調を用いた再送方法、送信機および受信機

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6014005652; 'Digital Video Broadcasting(DVB) User guidelines for the second generation system for Broadcasting, I' ETSI TR 102 376 V1.1.1, 200502, pp.27-28 *
JPN6014005653; David Declercq: 'Decoding Algorithms for Nonbinary LDPC Codes Over GF (q)' Communications, IEEE Transactions on (Volume:55,Issue:4), 200704, pp.633-643 *
JPN6014005655; Neele von Deetzen and Werner Henkel: 'Unequal error protection multilevel codes and hierarchical modulation for multimedia transmission' Information Theory, 2008. ISIT 2008. IEEE International Symposium on , 20080711, pp.2237-2241 *
JPN6014005657; Suzuki, I et.al: 'Reduced Cluster Search ML Decoding for QO-STBC Systems' Advances in Satellite and Space Communications, 2009. SPACOMM 2009. First International Conference o , 20090725, pp.48-53 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122812A (ja) * 2009-08-07 2015-07-02 トムソン ライセンシングThomson Licensing 低密度パリティ検査符号および配位図マッピングを使ったデータ受信

Also Published As

Publication number Publication date
WO2011016834A1 (en) 2011-02-10
KR20120058537A (ko) 2012-06-07
EP2462729A1 (en) 2012-06-13
EP2462729B1 (en) 2019-07-03
US20120134446A1 (en) 2012-05-31
EP2282470A1 (en) 2011-02-09
JP2015122812A (ja) 2015-07-02
US8660203B2 (en) 2014-02-25
CN102484631A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
EP2462730B1 (en) Data transmission using low density parity check coding and constellation mapping
EP2462729B1 (en) Data reception using low density parity check coding and constellation mapping
CN110719113B (zh) 传输设备及其交织方法
CN110730004B (zh) 传输设备及其交织方法
JP6339214B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
US10511332B2 (en) Transmitting method including bit group interleaving
CA2949341C (en) Transmitting apparatus and interleaving method thereof
US10367532B2 (en) Transmitting apparatus and interleaving method thereof
CN110719114B (zh) 传输设备及其交织方法
JP6437548B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
Michael et al. Modulation and coding for ATSC 3.0
KR20040035297A (ko) 복합적 오류정정 부호화 기능을 갖는 디지털방송 시스템의전송장치 및 방법
JP7112200B2 (ja) 送信装置、受信装置、及びチップ
JP6296847B2 (ja) 送信装置、受信装置、チップ及びデジタル放送システム
Fan et al. MER Analysis for DTMB and DVB-T Systems under Different PN Sequence and Modulation Parameters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202