JP2013257267A - 力検出モジュール、力検出装置及びロボット - Google Patents

力検出モジュール、力検出装置及びロボット Download PDF

Info

Publication number
JP2013257267A
JP2013257267A JP2012134562A JP2012134562A JP2013257267A JP 2013257267 A JP2013257267 A JP 2013257267A JP 2012134562 A JP2012134562 A JP 2012134562A JP 2012134562 A JP2012134562 A JP 2012134562A JP 2013257267 A JP2013257267 A JP 2013257267A
Authority
JP
Japan
Prior art keywords
force detection
sensor element
detection module
package
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012134562A
Other languages
English (en)
Inventor
Hiroki Kawai
宏紀 河合
Hideaki Oka
秀明 岡
Toshiyuki Kamiya
俊幸 神谷
Takanobu Matsumoto
隆伸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012134562A priority Critical patent/JP2013257267A/ja
Publication of JP2013257267A publication Critical patent/JP2013257267A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】センサー素子が位置精度よくパッケージ内に設置された力検出モジュールを、生産性良く製造できる構造の力検出モジュールを提供する。
【解決手段】力検出モジュールは、圧電体を有するセンサー素子12と、センサー素子12を配置するキャビティ部14を有するパッケージ13と、パッケージ13に接合されパッケージの凹部を封止するリッドと、を備え、キャビティ部14を構成する隣り合う3つの面が交差する辺のうち、少なくとも1つに凹部16を有し、センサー素子12はセンサー素子12を構成する少なくとも2つの面がキャビティ部14の2つの面と接して配置される。
【選択図】図2

Description

本発明は、力検出モジュール、力検出装置及びロボットに関する。
従来、圧電材料を用いた力センサーが用いられていた。そして、力センサーの例が特許文献1に開示されている。特許文献1によると力センサーでは信号電極が圧電材料である結晶円板により挟持されていた。さらに金属カバー円板によって挟持された測定素子が金属環内に溶接され複数配置されていた。
センサーデバイスは、同一のカット面を有する2つの水晶板を互いに対向させた状態で電極板を挟み込んだセンサー素子を備えている。センサー素子は金属製のパッケージに収容されている。
このセンサーデバイスは、与圧プレートに挟み込まれて与圧が与えられる。水晶板は与圧に伴う圧電効果により電極板に電荷を出力(誘起)する。そして、与圧プレートに印加される外力に応じて水晶板に印加される圧力が変化する。よって、この圧力の変化による出力電荷の変化量を、同軸コネクターを通じてモニターすることにより、力検出モジュールに印加された外力を検出することができる。
特開平4−231827号公報
パッケージ内にセンサー素子を固定するとき基板にセンサー素子を位置合わせした後に溶接、半田付け、ロー付け、接着する等の方法が用いられる。このとき、センサー素子を位置合わせした時から固着するまでの間に測定素子が移動する可能性がある。従って、位置精度良く固定するのは難しい。
センサー素子の位置が狙いの場所に対してずれるときには、主軸方向へ力を印加した際に他軸成分が出力として検出してしまう。これにより、センサー特性に影響を及ぼす虞があった。そこで、センサー素子が位置精度よく基板に設置されたセンサーモジュールが望まれていた。
本発明は、上述の課題を解決するためになされたものであり、以下の適用例として実現することが可能である。
[適用例1]本適用例にかかわる力検出モジュールは、圧電体を有するセンサー素子と、前記センサー素子が配置され平面視が四角形のキャビティ部を有するパッケージと、を備え、前記キャビティ部は側面と底面とのうち2つの面が交差する辺に凹部を有し、前記センサー素子は2つの面が前記キャビティ部の2つの面と接して配置されることを特徴とする。
本適用例によれば、力検出モジュールはパッケージ内にセンサー素子が配置されている。そして、センサー素子は圧電体を有するので、力検出モジュールは印加された力を電気信号に変換して出力することができる。キャビティ部は2つの面が交差する辺に凹部を有している。そして、センサー素子の2つの面がキャビティ部の2つの面と接して配置されている。従って、センサー素子の2つの面が交差する辺はキャビティ部の凹部に位置するので、キャビティ部と干渉しない構造にすることができる。その結果、この力検出モジュールはセンサー素子が位置精度よくパッケージに設置された力検出モジュールとすることができる。
[適用例2]上記適用例に記載の力検出モジュールでは、前記パッケージの平面視において前記凹部は前記キャビティ部の2つの辺が交差する場所に位置し、前記パッケージの平面視において前記センサー素子の2つの辺が前記キャビティ部の2つの辺と接して配置されることが好ましい。
本適用例によれば、パッケージの平面視においてセンサー素子の2つの辺がキャビティ部の2つの辺と接して配置されている。そして、凹部はキャビティ部の2つの辺が交差する場所に位置している。従って、力検出モジュールは、パッケージの平面視においてセンサー素子がキャビティ部と干渉しない構造にすることができる。
[適用例3]上記適用例に記載の力検出モジュールでは、前記パッケージの断面視において前記凹部は前記キャビティ部の2つの辺が交差する場所に位置し、前記パッケージの断面視において前記センサー素子の2つの辺が前記キャビティ部の2つの辺と接して配置されることが好ましい。
本適用例によれば、パッケージの断面視においてセンサー素子の2つの辺がキャビティ部の2つの辺と接して配置されている。そして、凹部はキャビティ部の2つの辺が交差する場所に位置している。従って、力検出モジュールは、パッケージの断面視においてセンサー素子がキャビティ部と干渉しない構造にすることができる。
[適用例4]上記適用例に記載の力検出モジュールでは、前記凹部は、前記キャビティ部の3つの面が交差する場所に位置し、前記センサー素子の3つの面が前記キャビティ部の3つの面と接して配置されることが好ましい。
本適用例によれば、センサー素子の3つの面がキャビティ部の3つの面と接して配置される。これにより、センサー素子とキャビティ部とは3方向で相対位置が決定される。そして、キャビティ部の3つの面が交差する場所に凹部が位置している。従って、力検出モジュールは、センサー素子の3つの面が交差する場所がキャビティ部と干渉しない構造にすることができる。
[適用例5]上記適用例に記載の力検出モジュールでは、前記パッケージの材質がセラミックスであることが好ましい。
本適用例によれば、パッケージの材質がセラミックスとなっている。セラミックスは絶縁材料である為、力検出モジュールは雑音信号を排除することができる。さらに、セラミックスは機械的強度が強い。従って、パッケージが力を精度良くセンサー素子に伝達する為、力検出モジュールは精度良く力を検出することができる。
[適用例6]上記適用例に記載の力検出モジュールでは、前記センサー素子は前記圧電体が3つ積層され、各前記圧電体は前記力検出モジュールに加えられた力のうち互いに直交する向きの分力を検出することが好ましい。
本適用例によれば、センサー素子は圧電体が3つ積層されている。そして、3つの圧電体は直交する向きの3方向の分力を検出する。従って、直交する向きの分力を合成して力検出モジュールに加わる力の向きと大きさを精度良く検出することができる。
[適用例7]本適用例にかかわる力検出モジュールは、圧電体を有するセンサー素子と、前記センサー素子が配置され平面視が四角形のキャビティ部を有するパッケージと、を備え、前記キャビティ部の側面と底面とのうち3つの面が交差する場所に凹部を有し、前記センサー素子の3つの面が前記キャビティ部の3つの面と接して配置されることを特徴とする。
本適用例によれば、力検出モジュールはパッケージ内にセンサー素子が配置されている。そして、センサー素子は圧電体を有するので、力検出モジュールは印加された力を電気信号に変換して出力することができる。キャビティ部は3つの面が交差する辺に凹部を有している。そして、センサー素子の3つの面がキャビティ部の3つの面と接して配置されている。これにより、センサー素子とキャビティ部とは3方向で相対位置が決定される。そして、キャビティ部の3つの面が交差する場所に凹部が位置している。従って、センサー素子の3つの面が交差する場所がキャビティ部と干渉しない構造にすることができる。その結果、センサー素子が位置精度よくパッケージに設置された力検出モジュールとすることができる。
[適用例8]本適用例にかかわる力検出装置は、応力を検出する複数の力検出モジュールと、前記複数の力検出モジュールの出力を用いて前記応力を演算する演算部と、を備え、前記力検出モジュールは、圧電体を有するセンサー素子と、前記センサー素子が配置されたキャビティ部を有するパッケージと、を備え、前記キャビティ部の2つの面が交差する辺に凹部を有し、前記センサー素子の2つの面が前記キャビティ部の2つの面と接して配置されることを特徴とする。
本適用例によれば、力検出装置は複数の力検出モジュールと応力を演算する演算部とを備えている。力検出装置は各力検出モジュールが検出する応力を加算して力検出装置に加わる力の総和を算出することができる。また、力検出装置は、力検出モジュールの位置と検出する応力を用いて力検出装置に加わるトルクを検出することができる。
力検出モジュールのキャビティ部は2つの面が交差する辺に凹部を有している。そして、センサー素子の2つの面がキャビティ部の2つの面と接して配置されている。従って、センサー素子の2つの面が交差する辺はキャビティ部の凹部に位置するので、キャビティ部と干渉しない構造にすることができる。そして、センサー素子が位置精度よくパッケージに設置されている為、複数の力検出モジュールの位置を精度良く配置することができる。その結果、力検出装置はトルクを精度良く検出することができる。
[適用例9]本適用例にかかわるロボットは、可動部と、前記可動部に加わる力を検出する力検出モジュールと、を備え、前記力検出モジュールは、圧電体を有するセンサー素子と、前記センサー素子が配置されたキャビティ部を有するパッケージと、を備え、前記キャビティ部の2つの面が交差する辺に凹部を有し、前記センサー素子の2つの面が前記キャビティ部の2つの面と接して配置されることを特徴とする。
本適用例によれば、ロボットは、可動部と、可動部に加わる力を検出する力検出モジュールとを備えている。これにより、ロボットは可動部に加わる負荷を認識することができる。力検出モジュールのキャビティ部は2つの面が交差する辺に凹部を有している。そして、センサー素子の2つの面がキャビティ部の2つの面と接して配置されている。従って、センサー素子の2つの面が交差する辺はキャビティ部の凹部に位置するので、キャビティ部と干渉しない構造にすることができる。そして、センサー素子が位置精度よくパッケージに設置されている為、力検出モジュールの応力を検出した位置を精度良く認識することができる。その結果、ロボットは可動部に加わる応力と応力が加わる位置を精度良く認識することができる。
第1実施形態にかかわる力検出モジュールの構成を示す模式側断面図。 (a)は力検出モジュールの構造を示す模式平面図、(b)は力検出モジュールの構造を示す模式側断面図、(c)は力検出モジュールの要部拡大斜視図。 第2実施形態にかかわり、(a)は、力検出モジュールの構成を示す模式平面図、(b)は力検出モジュールの構成を示す模式断面図。 第3実施形態にかかわり、(a)は、力検出モジュールの構成を示す模式平面図、(b)は力検出モジュールの構成を示す模式断面図。 第4実施形態にかかわり、(a)は、力検出モジュールの構成を示す模式平面図、(b)及び(c)は力検出モジュールの構成を示す模式断面図。 第5実施形態にかかわり、力検出モジュールの構造を示す模式側断面図。 (a)は力検出装置の構成を示す概略斜視図、(b)は力検出装置の構成を示す模式平面図。 第6実施形態にかかわり、力検出モジュールを搭載したロボットの構造を示す概略斜視図。 第7実施形態にかかわり、力検出モジュールを搭載したロボットの構成を示す概略斜視図。
以下、力検出モジュール、力検出装置及びロボットの実施形態を添付の図面を参照しながら詳細に説明する。図1は力検出モジュールの構成を示す模式側断面図である。図2(a)は力検出モジュールの構造を示す模式平面図であり、図2(b)は力検出モジュールの構造を示す模式側断面図である。図2(c)は力検出モジュールの要部拡大斜視図であり、図2(a)のA部を拡大した図である。尚、各図面における各部材は、各図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて図示している。
(第1実施形態)
図1に示すように、力検出モジュール1は、同一のカット面を有する2つの圧電体としてのセンサー基板12aを互いに対向させた状態で検出電極12bを挟み込んだセンサー素子12を備えている。さらに、センサー基板12aは図中上側と下側とから一対の接地電極12cにより挟み込まれている。力検出モジュール1は、センサー素子12を収容するパッケージ13を備え、パッケージ13の図中上側には開口部6が形成されている。開口部6の外周の上面8にはリッド3が設置され、リッド3はセンサー基板12aに当接している。
パッケージ13の側面には同軸コネクター4が取り付けられている。同軸コネクター4は、外周部4aと中心導体4bを有し、両者の間には絶縁性樹脂4cが充填されている。絶縁性樹脂4cにより外周部4aと中心導体4bとは電気的に絶縁している。そして外周部4aは、接地電極12cと電気的に接続し、中心導体4bは検出電極12bと電気的に接続している。
この力検出モジュール1は、与圧プレート(不図示)に挟み込まれて与圧が与えられ、センサー基板12aは与圧に伴う圧電効果により検出電極12bに電荷を出力(誘起)する。そして、与圧プレートに印加される外力に応じてセンサー基板12aに印加される圧力が変化する。よって、この圧力の変化による出力電荷の変化量を、同軸コネクター4を通じてモニターすることにより、力検出モジュール1に印加された外力を検出することができる。
ここで、力検出モジュール1においては、センサー基板12aから誘起された電荷が水分等で外部に漏洩しないように、パッケージ13内部を乾燥空気で満たした状態で、リッド3によりセンサー素子12を封止している。
図2(a)及び図2(b)に示すように、力検出ユニット11は、パッケージ13とセンサー素子12を備えており、力検出モジュール1の一部を構成するものである。力検出モジュール1は力成分を検出可能なセンサー素子12と、センサー素子12を配置するキャビティ部14を有するパッケージ13と、外気を遮断するためパッケージ13と溶接により固定されるリッド(不図示)で構成され、センサー素子12はキャビティ部14の中に配置されていることを主な基本構成としている。
センサー素子12は圧電体を有しており、圧電体としてのセンサー基板12aと、検出電極12bと、接地電極12cと、を備えている。検出電極12bと接地電極12cはパッケージ13の同軸コネクター4と電気的に導通しているパッド15と接続されている。センサー素子12は直方体の形状をしておりキャビティ部14は平面視が四角形となっている。センサー素子12の接地電極12cがキャビティ部14と接触する面を面としての底面12dとする。そして、センサー素子12で底面12dと直交する面を面としての側面12eとする。このとき、センサー素子12はパッケージ13と底面12d及び側面12eとで接触する。
センサー素子12に図2(b)中矢印方向の圧縮する力Fが付加されると、圧縮によってセンサー素子12の表面には歪が生じる。この歪によってセンサー基板12aに電荷が発生する。検出電極12bに励起された電荷を検出し、図示しない回路装置によって力Fが演算されることにより計測することができる。
センサー基板12aは圧電性を有しており、材料としては三方晶系の単結晶であればよく、水晶に限定されない。三方晶系の単結晶とは、長さの等しい三本の対称軸が互いに120°の角度で交わり、その交点に一本の鉛直な軸が交わる結晶軸を持つものをいう。三方晶系の単結晶としては水晶の他には、ランガサイト(La3Ga5SiO14)、ニオブ酸リチウム(LiNbO3)単結晶、タンタル酸リチウム(LiTaO3)単結晶、リン酸ガリウム(GaPO4)単結晶、ホウ酸リチウム(Li247)単結晶等が挙げられる。本実施形態では、わずかなひずみであっても多くの電荷を発生させることができ、さらに容易に単結晶が得られ、加工性、品質安定性に優れる水晶を用いている。
図2(c)に示すように、キャビティ部14で隣り合う面としての第一の側面14aと面としての第二の側面14bと面としての底面14cとが交差する交差辺13eに凹部16が形成されている。また、第一の側面14aと第二の側面14bとが交差する交差辺13eに凹部16が形成されている。さらに、第一の側面14aと底面14cが交差する交差辺13eに凹部16が形成されている。さらに、第二の側面14bと底面14cが交差する交差辺13eに凹部16が形成されている。つまり、キャビティ部14で隣り合う2つの面が交差する交差辺13eに14の凹部16が形成されている。そして、キャビティ部14の隣り合う少なくとも2つの面と接するようにセンサー素子12が配置され固定される。この2つの面は例えば、第一の側面14aと底面14cの2つの面であり、第二の側面14bと底面14cとの2つの面である。さらに、センサー素子12が第一の側面14a、第二の側面14b、底面14cの3つの面と接するようにしても良い。
パッケージ13の材料としては、絶縁性に優れ力検出を行なう用途を考えてヤング率が大きい材料が好ましい。例えば、パッケージ13の材料にセラミックスを用いることができる。このとき、セラミック原料粉末を有機バインダー、有機溶剤とともに粉砕混合を行い、キャスティング法を用いてグリーンシートを作成する。次に、パッケージ13のデザインに合わせて、形状の型抜き等によりグリーンシートに穴あけを行う。続いて、配線パターンに対応した導体パターン印刷をグリーンシートに行う。次に、グリーンシートを数層積層して焼成する。続いて焼成されたグリーンシートにめっき等の後工程を経てパッケージ13が製造される。
形状の型抜きを行なう際、端面が直角に近い形状で設計を行なってしまうと、型に負担がかかってしまい、型の寿命が短くなり製造コストが増加してしまうため、多くは端面形状にR形状を形成して作製される。このため、センサー素子12をキャビティ部14と接するように配置しようとすると、R形状があるため隙間が空いてしまう可能性がある。図2(c)のように交差辺13eに凹部16を形成することにより、センサー素子12をキャビティ部14の端面に接するように配置することができる。これにより、安定してセンサー素子の位置を決めることができ、性能の安定した力検出ユニット11を得ることが出来る。
(第2実施形態)
次に、力検出モジュールの一実施形態について図3を用いて説明する。図3(a)は、力検出モジュールの構成を示す模式平面図である。図3(b)は力検出モジュールの構成を示す模式断面図であり、図3(a)のB−B‘線に沿った断面となっている。本実施形態が第1実施形態と異なる点は、パッケージ13の平面視でキャビティ部14の角に凹部が設置されている点にある。尚、第1実施形態と同じ点については説明を省略する。
すなわち、図3に示すように力検出モジュール22のパッケージ23は平面視でキャビティ部24の隣り合う2つの辺24aが交差する場所に凹部としての第1凹部17が設けられている。センサー素子12の平面視で1つの角が第1凹部17と重なり、センサー素子12の2つの辺12fとキャビティ部24の2つの辺24aが接するように配置されている。他の構成は第1実施形態と同一であり、説明を省略する。
このような構成によってセンサー素子12の少なくとも2つの側面はキャビティ部24の少なくとも2つの側面と接するように配置することができる。このため、より精度良くセンサー素子12をキャビティ部24に配置することができる。その結果、性能の安定した力検出モジュール22を得ることが出来る。
(第3実施形態)
次に、力検出モジュールの一実施形態について図4を用いて説明する。図4(a)は、力検出モジュールの構成を示す模式平面図である。図4(b)は力検出モジュールの構成を示す模式断面図であり、図4(a)のC−C‘線に沿った断面となっている。本実施形態が第1実施形態と異なる点は、パッケージ13の断面視でキャビティ部14の角に凹部が設置されている点にある。尚、第1実施形態と同じ点については説明を省略する。
すなわち、図4に示すように力検出モジュール27はパッケージ28を備え、パッケージ28はキャビティ部29を備えている。パッケージ28の断面視でキャビティ部29の隣り合う2つの辺29aが交差する場所に凹部としての第2凹部18が設けられている。センサー素子12の断面視で底面12dと1つの側面12eとが交差する角に第2凹部18が位置している。そして、センサー素子12の2つの辺12gとキャビティ部29の2つの辺29aが接するように配置されている。他の構成は第1実施形態と同一であり、説明を省略する。
このように構成することによってセンサー素子12の側面と底面はキャビティ部の少なくとも1つの側面と底面に確実に接するように配置することができる。従って、より精度良くセンサー素子12を配置することができる。その結果、性能の安定した力検出モジュール27を得ることが出来る。尚、本実施形態では、1つの側面と底面とが交差する場所に第2凹部18を設置した。これに限定されず、2〜4つの側面と底面とが交差する場所に第2凹部18を設置しても良い。キャビティ部29内でセンサー素子12を配置する場所を変えるときにも精度良く設置することができる。
(第4実施形態)
次に、力検出モジュールの一実施形態について図5を用いて説明する。図5(a)は、力検出モジュールの構成を示す模式平面図であり、図5(b)及び図5(c)は力検出モジュールの構成を示す模式断面図である。図5(b)は図5(a)のD−D‘線に沿った断面となっており、図5(c)は図5(a)のE−E‘線に沿った断面となっている。本実施形態が第1実施形態と異なる点は、パッケージ13の平面視でキャビティ部14の角に凹部が設置され、さらに、断面視でキャビティ部14の角に凹部が設置されている点にある。尚、第1実施形態と同じ点については説明を省略する。
すなわち、図5に示すように力検出モジュール32のパッケージ33はキャビティ部34を備えている。パッケージ33の平面視でキャビティ部34の隣り合う2つの側面が交差する場所に第1凹部17が設置されている。さらに、パッケージ33のキャビティ部34の断面視でキャビティ部34の隣り合う2つの面34aが交差する場所に第2凹部18が設置されている。この2つの面は側面と底面である。従って、1つの底面と2つの側面が交差する場所には第1凹部17と第2凹部18とが設けられている。つまり、第1凹部17と第2凹部18は、キャビティ部34の3つの面34aが交差する場所に位置している。そして、センサー素子12の底面12d及び2つの側面12eがキャビティ部34の3つの面34aと接して配置されている。他の構成は第1実施形態と同一のため説明を省略する。
このような構成によってセンサー素子12の2つの側面と1つの底面とがキャビティ部の2つの側面と1つの底面とに確実に接するように配置することができる。従って、精度良くセンサー素子12を配置することができる。その結果、性能の安定した力検出モジュール32を得ることが出来る。
(第5実施形態)
次に、力検出装置の一実施形態について図6及び図7を用いて説明する。本実施形態が第1実施形態と異なる点は、力検出モジュールを複数用いてモーメントを検出する力検出装置が構成されている点にある。尚、第1実施形態と同じ点については説明を省略する。
図6は、力検出モジュールの構造を示す模式側断面図である。図6に示すように、力検出モジュール42には力検出モジュール42の上面44の法線方向(γ軸)に平行な方向の力が加えられる。さらに、力検出モジュール42には力検出モジュール42の上面44の面方向の力、すなわち、γ軸にそれぞれ直交し、かつ互いに直交する2つの方向(α軸、β軸)の力が上面44に加えられる。そして、力検出モジュール42はα軸、β軸、γ軸にそれぞれ平行な力を検出することができる。
力検出モジュール42はパッケージ68、センサー素子としての第2センサー素子52、センサー素子としての第3センサー素子58、センサー素子としての第1センサー素子46、リッド3がこの順に重ねて形成されている。つまり、力検出モジュール42はセンサー素子が3つ積層され、各センサー素子は力検出モジュール42に加えられた力のうち互いに直交する向きの分力を検出する。そして、第1実施形態と同様にパッケージ68とリッド3とで空洞を形成し、この空洞内に第2センサー素子52、第3センサー素子58及び第1センサー素子46が設置されている。尚、パッケージ68は第1実施形態のパッケージ13に対応する部位であり、凹部16が設置されている。他にも、第2実施形態、第3実施形態、第4実施形態と同様の凹部の形態を採用しても良い。
第1センサー素子46において、第1水晶板48A及び第1水晶板48Bは、Yカット水晶板により形成されている。そして、第1水晶板48A及び第1水晶板48Bが圧電効果を発生させる結晶方位を結晶X方向とする。この結晶X方向は第1水晶板48A及び第1水晶板48Bの法線(図中γ軸に平行な方向)に鉛直な方向となっている。そして、第1水晶板48Aと第1水晶板48Bは、結晶X方向が互いに逆方向となるように配置されている。さらに、第1水晶板48A,48Bは、結晶X方向が空間直交座標のα軸と平行となるように配置されている。
同様に、第2センサー素子52において、第2水晶板54A及び第2水晶板54Bは、Yカット水晶板により形成されている。そして、第2水晶板54A及び第2水晶板54Bが圧電効果を発生させる結晶方位を結晶X方向とする。この結晶X方向は第2水晶板54A及び第2水晶板54Bの法線(γ軸に平行な方向)に垂直な方向となっている。そして、第2水晶板54Aと第2水晶板54Bは、結晶X方向が互いに逆方向となるように配置されている。さらに、第2水晶板54A,第2水晶板54Bは、結晶X方向が空間直交座標のβ軸と平行となるように配置されている。
第3センサー素子58において、第3水晶板60A及び第3水晶板60Bは、Xカット水晶板により形成されている。そして、第3水晶板60A及び第3水晶板60Bが圧電効果を発生させる結晶方位を結晶X方向とする。この結晶X方向が第3水晶板60A及び第3水晶板60Bの法線(γ軸に平行な方向)と平行な方向となっている。そして、第3水晶板60A及び第3水晶板60Bは、結晶X方向が互いに逆方向となるように配置されている。さらに、第3水晶板60A及び第3水晶板60Bは、結晶X方向が空間直交座標のγ軸と平行となるように配置されている。以下、結晶X方向を検出軸と称す。従って、力検出モジュール42のセンサー素子は圧電体が複数積層され、圧電体は直交する向きの力を検出する。
第2センサー素子52と第3センサー素子58との間には接地電極66が設置されている。そして、第3センサー素子58と第1センサー素子46との間にも接地電極64が設置されている。接地電極64及び接地電極66はリッド3及びパッケージ68と電気的に接続されている。つまり、パッケージ68、接地電極66、接地電極64、リッド3は接地電極として機能する。
本実施形態の力検出モジュール42は、空間直交座標のγ軸に平行な方向を力検出モジュール42の高さ方向としている。そして、パッケージ68及びリッド3によりγ軸の方向から挟み込まれ与圧が与えられ、押圧部72を介して力検出モジュール42にγ軸に平行な方向から与圧が印加される。これにより、第3水晶板60A,60Bは結晶X方向から与圧(圧縮力)を受けることになるので圧電効果により電荷が誘起し、第3検出電極62に電荷(Fz信号)が出力される。
上記構成において、パッケージ68及びリッド3の相対位置が互いにα軸に平行な方向にずれる外力が印加されると、力検出モジュール42にはα軸に平行な方向の外力が印加される。すると、第1水晶板48A,48Bは、X方向から外力(せん断力)を受けることになるので圧電効果により電荷を誘起し、第1検出電極50に電荷(Fx信号)が出力される。
またパッケージ68及びリッド3の相対位置が互いにβ軸に平行な方向にずれる外力が印加されると、力検出モジュール42には、β軸に平行な方向の外力が印加される。すると第2水晶板54A,54BはX方向から外力(せん断力)を受けることになるので圧電効果により電荷を誘起し、第2検出電極56に電荷(Fy信号)が出力される。
さらに、パッケージ68及びリッド3の相対位置が互いにγ軸に平行な方向にずれる外力が印加されると、力検出モジュール42には、γ軸に平行な方向の外力が印加される。すると、第3水晶板60A,60BはX方向から外力(圧縮力または引張力)を受けることになるので圧電効果により誘起される電荷量が変化し、第3検出電極62に出力される電荷(Fz信号)の大きさが変化する。
力検出モジュール42は、第1検出電極50から出力される電荷(Fx信号)、第2検出電極56から出力される電荷(Fy信号)及び第3検出電極62から出力される電荷(Fz信号)をそれぞれモニターすることができる。これにより、互いに直交するα軸、β軸、γ軸と平行な方向の外力(Fx、Fy、Fz)を検知することができる。尚、力検出モジュール42は、第1センサー素子46、第2センサー素子52、第3センサー素子58の積層構造となっているが、少なくともいずれか1つ以上を用いる構成としてもよい。
図7(a)は、力検出装置の構成を示す概略斜視図であり、図7(b)は力検出装置の構成を示す模式平面図である。図7に示すように、力検出装置90は、4つの力検出モジュール42を第1プレート70及び第2プレート80により挟み込んだ構成である。第1プレート70及び第2プレート80はいずれも平面視で円板状に形成され、第2プレート80の中心を通り直交する線上には4つの力検出ユニット11が配置されている。第1プレート70は、力検出ユニット11の力検出モジュール42の上面と対向する箇所に押圧部72が4つ形成されている。第2プレート80は、力検出モジュール42を配置する箇所に演算部としての電子回路基板43が4つ形成されている。
このような構成の力検出装置90は、4つの力検出モジュール42が総て同じ方向に向いた状態で第1プレート70及び第2プレート80に挟み込まれ、与圧が印加される。例えば、力検出モジュール42において、第1センサー素子46の検出軸をFxに平行な方向に向け、第2センサー素子52の検出軸をFyに平行な方向に向け、第3センサー素子58の検出軸をFzに平行な方向に向けた状態となっている。尚、各力検出モジュール42のセンサー素子の高さを予め測定しておき、この測定値に基づいて押圧部72の突出量を研磨等によって調整することにより、各力検出ユニット11の製造ばらつきが生じた場合でも、第1プレート70及び第2プレート80の間の平行度を保ちながら均等に与圧を印加することができる。
第2プレート80には4つの力検出モジュール42が設置されている。そして、第1プレート70及び第2プレート80の相対位置が互いにFx方向にずれる力を受けた場合、各力検出モジュール42はそれぞれFx1、Fx2、Fx3、Fx4の力を検出する。また、第1プレート70及び第2プレート80の相対位置が互いにFy方向にずれる力を受けた場合、各力検出モジュール42はそれぞれFy1、Fy2、Fy3、Fy4の力を検出する。さらに、第1プレート70及び第2プレート80の相対位置が互いにFz方向にずれる力を受けた場合、各力検出モジュール42はそれぞれFz1、Fz2、Fz3、Fz4の力を検出する。
力検出装置90において、互いに直交する力Fx、Fy、Fz、Fxに平行な方向を回転軸とする回転力Mx、Fyに平行な方向を回転軸とする回転力My、Fzに平行な方向を回転軸とする回転力Mzは、以下のように求めることができる。
Figure 2013257267
ここで、a、bは定数とする。よって、本実施形態の力検出装置90は、三次元のあらゆる方向からの力(6軸方向の力)を検知することができる。そして、パッケージ68には凹部16が設置されている為、少ない変位量であっても高精度な力の検出を安定的に行うことが可能な力検出装置90となっている。
(第6実施形態)
次に、力検出装置が設置されたロボットの一実施形態についてについて図8を用いて説明する。尚、第1実施形態と同じ点については説明を省略する。
図8は、力検出モジュールを搭載したロボットの構造を示す概略斜視図である。図8に示すように、ロボット100は、本体部102、アーム部104、可動部としてのロボットハンド部116等から構成されている。本体部102は、例えば床、壁、天井、移動可能な台車の上等に固定される。アーム部104は、本体部102に対して可動となるように設けられており、本体部102にはアーム部104を回転させるための動力を発生するアクチュエーター(不図示)や、アクチュエーターを制御する制御部等(不図示)が内蔵されている。
アーム部104は、第1フレーム106、第2フレーム108、第3フレーム110、第4フレーム112、第5フレーム114から構成されている。第1フレーム106は、回転屈曲軸を介して、本体部102に回転可能または屈曲可能となるように接続されている。第2フレーム108は、回転屈曲軸を介して、第1フレーム106及び第3フレーム110に接続されている。第3フレーム110は、回転屈曲軸を介して、第2フレーム108及び第4フレーム112に接続されている。第4フレーム112は、回転屈曲軸を介して、第3フレーム110及び第5フレーム114に接続されている。第5フレーム114は、回転屈曲軸を介して、第4フレーム112に接続されている。制御部の制御によって、各フレームが各回転屈曲軸を中心に複合的に回転または屈曲することにより、アーム部104が駆動される。
第5フレーム114の先端には、ロボットハンド部116が取り付けられており、対象物を把握することができるロボットハンド120が、回転動作させるモーター(不図示)を内蔵するロボットハンド接続部118を介して第5フレーム114に接続されている。
ロボットハンド接続部118には、モーターに加えて力検出モジュール91が設置されている。力検出モジュール91は力検出モジュール1,22,27,32,42や力検出装置90等と同様の構造のモジュールである。ロボットハンド部116が制御部の制御に従って所定の動作位置まで移動する。このとき、障害物への接触、対象物との接触、等を力検出モジュール91が力として検出する。そして、ロボット100の制御部がフィードバック制御を行って回避動作を実行することができる。
このようなロボット100を用いることにより、従来からの位置制御では対処できなかった、障害物回避動作、対象物損傷回避動作等を容易に行い、安全で細やかな作業が可能なロボット100を得ることができる。さらに、少ない変位量であっても高精度な力の検出を安定的に行うことが可能なロボット100となる。
ロボット100に設置された力検出装置90はパッケージ68に凹部16が設置されている。従って、力検出装置90は少ない変位量であっても高精度な力の検出を安定的に行うことができる。その結果、ロボット100は、少ない変位量であっても高精度な力の検出を安定的に行える力検出モジュール91を備えたロボットとなっている。
(第7実施形態)
次に、力検出装置が設置されたロボットの一実施形態についてについて図9を用いて説明する。尚、第1実施形態と同じ点については説明を省略する。
図9はロボットの構成を示す概略斜視図である。すなわち、本実施形態では、図9に示すように、ロボット132は車体部133を備えている。車体部133は車体本体133aを備え、車体本体133aの地面側には4つの車輪133bが設置されている。そして、車体本体133aには車輪133bを駆動する回転機構が内蔵されている。さらに、車体本体133aにはロボット132の姿勢及び動作を制御する制御部134が内蔵されている。
車体本体133a上には本体回転部135、本体部136がこの順に重ねて設置されている。本体回転部135には本体部136を回転させる回転機構が設置されている。そして、本体部136は鉛直方向を回転中心として回動する。本体部136上には一対の撮像装置137が設置され、撮像装置137はロボット132の周囲を撮影する。そして、撮影した物と撮像装置137との距離を検出することができる。
本体部136の側面のうち対向する2つの面には左腕部138及び右腕部139が設置されている。つまり、ロボット132は双腕ロボットとなっている。左腕部138及び右腕部139はそれぞれ可動部としての上腕部140、下腕部141、可動部としてのハンド部142を備えている。上腕部140、下腕部141、ハンド部142は回動または屈曲可能に接続されている。そして、本体部136には本体部136に対して上腕部140を回動させる肩関節部143が設置されている。上腕部140には上腕部140に対して下腕部141を回動させる駆動部としての肘関節部144が設置されている。下腕部141には下腕部141に対してハンド部142を回動させる手首関節部145が設置されている。
ハンド部142はハンド本体142aとハンド本体142aの先端に位置する一対の板状の可動部としての把持部142bを備えている。ハンド本体142aには把持部142bを移動しての把持部142b間隔を変更させる直動機構が内蔵されている。ハンド部142は把持部142bを開閉して被把持物を把持することができる。
下腕部141には力検出モジュール146が設置されている。力検出モジュール146は力検出モジュール1,22,27,32,42や力検出装置90等と同様の構造のモジュールである。左腕部138及び右腕部139が制御部134の制御に従って所定の動作位置まで移動する。このとき、障害物への接触、対象物との接触、等を力検出モジュール146が外力として検出する。そして、ロボット132の制御部134がフィードバック制御を行って回避動作を実行することができる。
このようなロボット132を用いることにより、従来からの位置制御では対処できなかった、障害物回避動作、対象物損傷回避動作等を容易に行い、安全で細やかな作業が可能なロボット132を得ることができる。さらに、少ない変位量であっても高精度な力の検出を安定的に行うことが可能なロボット132となる。
ロボット132に設置された力検出モジュール146はパッケージ68に凹部16が設置されている。従って、力検出装置90は少ない変位量であっても高精度な力の検出を安定的に行うことができる。その結果、ロボット132は、少ない変位量であっても高精度な力の検出を安定的に行える力検出モジュール146を備えたロボットとなっている。
1,22,27,32,42…力検出モジュール、11…力検出ユニット、12…センサー素子、12a…圧電体としてのセンサー基板、12d,14c…面としての底面、12e…面としての側面、13…パッケージ、14,24,29…キャビティ部、14a…面としての第一の側面、14b…面としての第二の側面、16…凹部、17…凹部としての第1凹部、18…凹部としての第2凹部、34a…面、43…演算部としての電子回路基板、46…センサー素子としての第1センサー素子、52…センサー素子としての第2センサー素子、58…センサー素子としての第3センサー素子、90…力検出装置、116…可動部としてのロボットハンド部。

Claims (9)

  1. 圧電体を有するセンサー素子と、
    前記センサー素子が配置され平面視が四角形のキャビティ部を有するパッケージと、を備え、
    前記キャビティ部は側面と底面とのうち2つの面が交差する辺に凹部を有し、前記センサー素子は2つの面が前記キャビティ部の2つの面と接して配置されることを特徴とする力検出モジュール。
  2. 請求項1に記載の力検出モジュールであって、
    前記パッケージの平面視において前記凹部は前記キャビティ部の2つの辺が交差する場所に位置し、
    前記パッケージの平面視において前記センサー素子の2つの辺が前記キャビティ部の2つの辺と接して配置されることを特徴とする力検出モジュール。
  3. 請求項1に記載の力検出モジュールであって、
    前記パッケージの断面視において前記凹部は前記キャビティ部の2つの辺が交差するする場所に位置し、
    前記パッケージの断面視において前記センサー素子の2つの辺が前記キャビティ部の2つの辺と接して配置されることを特徴とする力検出モジュール。
  4. 請求項1〜3のいずれか一項に記載の力検出モジュールであって、
    前記凹部は、前記キャビティ部の3つの面が交差する場所に位置し、
    前記センサー素子の3つの面が前記キャビティ部の3つの面と接して配置されることを特徴とする力検出モジュール。
  5. 請求項1〜4のいずれか一項に記載の力検出モジュールであって、
    前記パッケージの材質がセラミックスであることを特徴とする力検出モジュール。
  6. 請求項1〜5のいずれか一項に記載の力検出モジュールであって、
    前記センサー素子は前記圧電体が3つ積層され、
    各前記圧電体は前記力検出モジュールに加えられた力のうち互いに直交する向きの分力を検出することを特徴とする力検出モジュール。
  7. 圧電体を有するセンサー素子と、
    前記センサー素子が配置され平面視が四角形のキャビティ部を有するパッケージと、を備え、
    前記キャビティ部の側面と底面とのうち3つの面が交差する場所に凹部を有し、前記センサー素子の3つの面が前記キャビティ部の3つの面と接して配置されることを特徴とする力検出モジュール。
  8. 応力を検出する複数の力検出モジュールと、
    前記複数の力検出モジュールの出力を用いて前記応力を演算する演算部と、を備え、
    前記力検出モジュールは、圧電体を有するセンサー素子と、
    前記センサー素子が配置されたキャビティ部を有するパッケージと、を備え、
    前記キャビティ部の2つの面が交差する辺に凹部を有し、前記センサー素子の2つの面が前記キャビティ部の2つの面と接して配置されることを特徴とする力検出装置。
  9. 可動部と、
    前記可動部に加わる力を検出する力検出モジュールと、を備え、
    前記力検出モジュールは、圧電体を有するセンサー素子と、
    前記センサー素子が配置されたキャビティ部を有するパッケージと、を備え、
    前記キャビティ部の2つの面が交差する辺に凹部を有し、前記センサー素子の2つの面が前記キャビティ部の2つの面と接して配置されることを特徴とするロボット。
JP2012134562A 2012-06-14 2012-06-14 力検出モジュール、力検出装置及びロボット Withdrawn JP2013257267A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134562A JP2013257267A (ja) 2012-06-14 2012-06-14 力検出モジュール、力検出装置及びロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134562A JP2013257267A (ja) 2012-06-14 2012-06-14 力検出モジュール、力検出装置及びロボット

Publications (1)

Publication Number Publication Date
JP2013257267A true JP2013257267A (ja) 2013-12-26

Family

ID=49953814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134562A Withdrawn JP2013257267A (ja) 2012-06-14 2012-06-14 力検出モジュール、力検出装置及びロボット

Country Status (1)

Country Link
JP (1) JP2013257267A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705069B2 (en) 2013-10-31 2017-07-11 Seiko Epson Corporation Sensor device, force detecting device, robot, electronic component conveying apparatus, electronic component inspecting apparatus, and component machining apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160672A (ja) * 1984-01-31 1985-08-22 Fuji Electric Corp Res & Dev Ltd 圧覚センサアレイ
JPH1137860A (ja) * 1997-07-15 1999-02-12 Nippon Soken Inc 荷重検出装置
JPH11160176A (ja) * 1997-11-28 1999-06-18 Yamatake Corp 圧力検出装置
JP2008544262A (ja) * 2005-06-20 2008-12-04 エス.ヴェー.アー.ツェー. シュミット−ウォルター オートメーション コンサルト ゲーエムベーハー 圧力センサ
US20120038973A1 (en) * 2010-08-11 2012-02-16 Mobius Photonics, Inc. Stable mounting of non-linear optical crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160672A (ja) * 1984-01-31 1985-08-22 Fuji Electric Corp Res & Dev Ltd 圧覚センサアレイ
JPH1137860A (ja) * 1997-07-15 1999-02-12 Nippon Soken Inc 荷重検出装置
JPH11160176A (ja) * 1997-11-28 1999-06-18 Yamatake Corp 圧力検出装置
JP2008544262A (ja) * 2005-06-20 2008-12-04 エス.ヴェー.アー.ツェー. シュミット−ウォルター オートメーション コンサルト ゲーエムベーハー 圧力センサ
US20120038973A1 (en) * 2010-08-11 2012-02-16 Mobius Photonics, Inc. Stable mounting of non-linear optical crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705069B2 (en) 2013-10-31 2017-07-11 Seiko Epson Corporation Sensor device, force detecting device, robot, electronic component conveying apparatus, electronic component inspecting apparatus, and component machining apparatus

Similar Documents

Publication Publication Date Title
JP5895615B2 (ja) センサーモジュール、力検出装置及びロボット
US9975250B2 (en) Force detecting device, robot, electronic component conveying apparatus
JP5811785B2 (ja) センサー素子、力検出装置およびロボット
JP6163900B2 (ja) 力検出装置およびロボット
US9677953B2 (en) Sensor device, sensor module, force detection device, and robot
JP5887911B2 (ja) センサーモジュール、力検出装置、ロボット
JP5880935B2 (ja) センサーデバイス、センサーモジュール、ロボット、センサーデバイスの製造方法
JP6354894B2 (ja) 力検出装置、およびロボット
JP2015087289A (ja) センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2013217876A (ja) センサーモジュール、応力検出装置及びロボット
JP2013257267A (ja) 力検出モジュール、力検出装置及びロボット
JP6217320B2 (ja) センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP6176059B2 (ja) センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP6432647B2 (ja) センサー素子、力検出装置およびロボット
JP5880936B2 (ja) センサーデバイス、センサーモジュール、力検出装置及びロボット
JP6217321B2 (ja) センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2014190794A (ja) 力検出装置、ロボット、電子部品搬送装置、および電子部品検査装置
JP6274296B2 (ja) 力検出装置およびロボット
JP2013200237A (ja) センサーモジュール、応力検出装置及びロボット

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160404