JP2013249497A - Steel for forgings excellent in hydrogen-crack resistance - Google Patents

Steel for forgings excellent in hydrogen-crack resistance Download PDF

Info

Publication number
JP2013249497A
JP2013249497A JP2012123746A JP2012123746A JP2013249497A JP 2013249497 A JP2013249497 A JP 2013249497A JP 2012123746 A JP2012123746 A JP 2012123746A JP 2012123746 A JP2012123746 A JP 2012123746A JP 2013249497 A JP2013249497 A JP 2013249497A
Authority
JP
Japan
Prior art keywords
less
inclusions
steel
forged steel
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012123746A
Other languages
Japanese (ja)
Other versions
JP5856540B2 (en
Inventor
Wataru Urushibara
亘 漆原
Junichiro Kinugasa
潤一郎 衣笠
Noriyuki Fujitsuna
宣之 藤綱
Hiroyuki Takaoka
宏行 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012123746A priority Critical patent/JP5856540B2/en
Publication of JP2013249497A publication Critical patent/JP2013249497A/en
Application granted granted Critical
Publication of JP5856540B2 publication Critical patent/JP5856540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique with which a hydrogen-crack resistance of a steel for forgings, which is composed of a carbon steel, can be improved by controlling structural formation without depending on a means such as the addition of expensive alloy elements.SOLUTION: A steel for forgings satisfies the prescribed component composition, and when the steel cross-sectional surface at the position of D/4 depth (D; the diameter corresponding to the circle in the cross-sectional surface of the steel for forgings) is observed in the measuring range of 5 cm×5 cm, the steel for forgings is composed of a sound part formed with a bainitic structure and the remainder (hereinafter, described as "macrosegregation part"). The ratio of the sound part to the steel cross-sectional surface is ≥90 area%, and the ratio of the bainitic structure to the sound part is ≥90 area%, and the ratio of the bainitic structure to the macrosegregation part is ≥90 area%. A sulphide-series inclusion having 1 μm or more of major axis of the macrosegregation part has ≤200 μm of an average circle equivalent diameter, ≤50 of an average aspect ratio and ≤300 pieces/cmof a numeral density. An oxide-series inclusion having 1 μm or more of the major axis of the macrosegregation part has ≤100 μm of an average circle equivalent diameter, ≤20 of an average aspect ratio and ≤300 pieces/cmof a numeral density.

Description

本発明は、原子力発電施設で使用される圧力容器や蒸気発生器等の機器類を構成する部材として用いられる鍛鋼材に関するものである。   The present invention relates to a forged steel material used as a member constituting equipment such as a pressure vessel and a steam generator used in a nuclear power generation facility.

鍛鋼材は、優れた強度、靭性を有するため、原子力発電施設で使用される圧力容器や蒸気発生器等の機器類の組み立て用部材として好適に用いられてきた。一方、エネルギー需要の増加の度合いは、近年は従来に増して顕著で、上記機器類は大型化する傾向がある。そのため上記機器類の組み立て用部材として用いる鍛鋼材も大型化する傾向があり、強度および靭性により一層優れること、また、併せて耐水素割れ性にも優れることが求められつつある。   Forged steel materials have excellent strength and toughness, and thus have been suitably used as assembly members for devices such as pressure vessels and steam generators used in nuclear power generation facilities. On the other hand, the degree of increase in energy demand is more remarkable in recent years than in the past, and the above devices tend to be larger. For this reason, forged steel materials used as assembly members for the above-mentioned devices tend to increase in size, and are further required to be more excellent in strength and toughness, and also excellent in hydrogen cracking resistance.

耐水素割れ性については、(a)鋼の精錬技術や、(b)鋼の成分組成の両方の面から対策が検討されている。   Regarding hydrogen cracking resistance, measures are being studied from both aspects of (a) steel refining technology and (b) steel component composition.

(a)精錬技術の面からは、溶鋼の精錬時における水素量の上限値を規定し、その上限値を超えた際に脱水素処理することが実操業にて実施されている。しかしながら、この脱水素処理は、処理時間および処理費用の点で、水素量の低減化に限界がある。脱水素処理は、一般的には1〜数ppmレベルの水素量で管理しているが、水素割れはより微量の水素で発生するため、この程度の管理では水素割れを完全に防止できない。   (A) From the aspect of refining technology, an upper limit value of the amount of hydrogen at the time of refining molten steel is specified, and dehydrogenation treatment is carried out in actual operation when the upper limit value is exceeded. However, this dehydrogenation treatment is limited in reducing the amount of hydrogen in terms of treatment time and treatment cost. The dehydrogenation treatment is generally managed with a hydrogen amount of 1 to several ppm level. However, since hydrogen cracking occurs with a smaller amount of hydrogen, hydrogen cracking cannot be completely prevented with this level of control.

(b)鋼の成分組成の面からは、鋼中のS含有量を増加させることにより、MnS系介在物を鋼中に積極的に導入し、このMnS系介在物を拡散性水素のトラップサイトとして活用することで、耐水素割れ性を向上させる方法が、特許文献1に提案されている。   (B) From the viewpoint of the steel component composition, by increasing the S content in the steel, MnS inclusions are actively introduced into the steel, and the MnS inclusions are trapped in diffusible hydrogen. Patent Document 1 proposes a method for improving the hydrogen cracking resistance by utilizing the above.

特開2003−268438号公報JP 2003-268438 A

上記特許文献1に開示された方法によって、耐水素割れ性はある程度改善できた。しかし、S含有量を増加させると、粗大な硫化物系介在物が形成され、この粗大な硫化物系介在物は、水素トラップサイトとならず逆に水素割れ起点になることが懸念される。   By the method disclosed in Patent Document 1, the hydrogen cracking resistance could be improved to some extent. However, when the S content is increased, coarse sulfide inclusions are formed, and there is a concern that the coarse sulfide inclusions do not become a hydrogen trap site but instead become a hydrogen cracking origin.

本発明は、上記のような事情に着目してなされたものであって、その目的は、高価な合金元素を添加するという手段によらず、組織形態の制御によって炭素鋼からなる鍛鋼材の耐水素割れ性を向上できる技術を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is not to add an expensive alloy element, but to control the resistance of a forged steel material made of carbon steel by controlling the form of the structure. The object is to provide a technology capable of improving the hydrogen cracking property.

上記課題を解決することのできた本発明に係る耐水素割れ性に優れた鍛鋼材とは、C:0.15〜0.24%(質量%の意味。成分組成について以下同じ。)、Si:0.15〜0.3%、Mn:1〜1.6%、P:0.015%以下(0%を含まない)、S:0.0002〜0.010%、Ni:0.7〜1.1%、Cr:0.05〜0.3%、Mo:0.4〜0.6%、Al:0.015〜0.03%、O:0.003%以下(0%を含まない)、N:0.005〜0.015%を含有し、残部:鉄および不可避不純物からなるものである。そして、上記鍛鋼材は、深さD/4(D:鍛鋼材断面の円相当直径)の位置における鋼断面を5cm×5cmの測定範囲にて観察したときに、ベイナイト組織で構成される健全部と残部(以下、「マクロ偏析部」と記載する)で構成され、前記鋼断面に対する前記健全部の割合が90面積%以上で、前記健全部に対するベイナイト組織の割合が90面積%以上で、前記マクロ偏析部に対するベイナイト組織の割合が90面積%以上であり、前記マクロ偏析部における長径が1μm以上の硫化物系介在物は、平均円相当直径が200μm以下、平均アスペクト比が50以下、数密度が300個/cm2以下で、前記マクロ偏析部における長径が1μm以上の酸化物系介在物は、平均円相当直径が100μm以下、平均アスペクト比が20以下、数密度が300個/cm2以下である点に要旨を有する。 The forged steel material excellent in hydrogen cracking resistance according to the present invention that has solved the above problems is C: 0.15 to 0.24% (meaning mass%; the same applies to the component composition hereinafter), Si: 0.15 to 0.3%, Mn: 1 to 1.6%, P: 0.015% or less (excluding 0%), S: 0.0002 to 0.010%, Ni: 0.7 to 1.1%, Cr: 0.05-0.3%, Mo: 0.4-0.6%, Al: 0.015-0.03%, O: 0.003% or less (including 0%) N), 0.005 to 0.015%, and the balance: iron and inevitable impurities. And the said forged steel material is a healthy part comprised by a bainite structure, when the steel cross section in the position of depth D / 4 (D: circle equivalent diameter of a forged steel material cross section) is observed in the measurement range of 5 cm x 5 cm. And the balance (hereinafter referred to as “macro-segregation part”), the ratio of the healthy part to the steel cross section is 90% by area or more, and the ratio of the bainite structure to the healthy part is 90% by area or more, The ratio of the bainite structure to the macro segregation part is 90 area% or more, and the sulfide inclusions having a major axis of 1 μm or more in the macro segregation part have an average equivalent circle diameter of 200 μm or less, an average aspect ratio of 50 or less, and a number density. There 300 / cm 2 or less, oxide inclusions major diameter of more than 1μm in the macro segregation is the average equivalent circular diameter of 100μm or less, an average aspect ratio of 20 or less, the number dense There has a gist in that it is 300 / cm 2 or less.

前記マクロ偏析部において、前記長径が1μm以上の酸化物系介在物の数密度は、前記長径が1μm以上の硫化物系介在物の数密度以上であることが好ましい。   In the macro-segregation part, the number density of the oxide inclusions having a major axis of 1 μm or more is preferably equal to or higher than the number density of sulfide inclusions having a major axis of 1 μm or more.

上記鍛鋼材は、更に他の元素として、
(a)Cu:0.1%以下(0%を含まない)、
(b)V:0.05%以下(0%を含まない)、
(c)Ca:0.01%以下(0%を含まない)、
(d)Ti、Zr、およびHfよりなる群から選択されるいずれか1種以上の元素:合計で0.01%以下(0%を含まない)、
等を含有してもよい。
The forged steel material, as another element,
(A) Cu: 0.1% or less (excluding 0%),
(B) V: 0.05% or less (excluding 0%),
(C) Ca: 0.01% or less (excluding 0%),
(D) Any one or more elements selected from the group consisting of Ti, Zr, and Hf: 0.01% or less in total (excluding 0%),
Etc. may be contained.

上記鍛鋼材は、例えば、原子力発電機器用として用いることができる。   The forged steel material can be used, for example, for nuclear power generation equipment.

本発明によれば、鍛鋼材のマクロ偏析部における硫化物系介在物および酸化物系介在物の形態と数密度を夫々適切に制御することにより、割れの起点を減少させることができるため、耐水素割れ性に優れた鍛鋼材を提供できる。   According to the present invention, by appropriately controlling the shape and number density of sulfide inclusions and oxide inclusions in the macrosegregation portion of the forged steel material, the starting point of cracks can be reduced. Forged steel with excellent hydrogen cracking ability can be provided.

図1は、鍛鋼材の断面に現れるマクロ偏析部を撮影した図面代用写真である。FIG. 1 is a drawing-substituting photograph in which a macrosegregation portion appearing in a cross section of a forged steel material is photographed. 図2は、鍛鋼材の断面における(a)マクロ偏析部と、(b)健全部を撮影した図面代用写真である。FIG. 2 is a drawing-substituting photograph in which (a) a macro-segregation part and (b) a healthy part are photographed in a cross-section of the forged steel material. 図3は、低歪み速度試験を行っている状態を示す概略説明図である。FIG. 3 is a schematic explanatory diagram showing a state in which a low strain rate test is performed.

本発明者らは、鍛鋼材(特に、大型の鍛鋼材)では、連鋳材とは異なり合金元素のマクロ偏析部が不可避的に存在すること、および一般的にマクロ偏析部では健全部よりも割れ起点となりうる粗大な介在物が多数存在することに着目し、マクロ偏析部における介在物と水素割れの関係について検討を進めた。その結果、マクロ偏析部に水素が濃化することによって粗大な介在物を起点として水素割れが生じやすいことが判明した。   In the forged steel materials (particularly large forged steel materials), the present inventors have found that the macrosegregated portion of the alloy element is unavoidably different from the continuous cast material, and that the macrosegregated portion is generally more than the healthy portion. Focusing on the fact that there are many coarse inclusions that can become crack initiation points, we investigated the relationship between inclusions and hydrogen cracking in the macrosegregation zone. As a result, it was found that hydrogen cracking tends to occur starting from coarse inclusions due to the concentration of hydrogen in the macro-segregation part.

この現象は以下のように生じると推定される。即ち、マクロ偏析部は、健全部よりも合金元素が濃化しているため、健全部よりも粗大な介在物(例えば、MnS等)が形成されやすく、また健全部よりも一般的に水素割れの観点では不利な方向に働く高硬度組織となりやすい。また、冷却時のベイナイトに変態によって、健全部はほぼベイナイト組織となるが、マクロ偏析部では、変態速度の違いによって水素固溶度の高いオーステナイトのままになっている。ここでベイナイトとオーステナイトとでは、水素固溶度および水素拡散速度に差異があるため、オーステナイトに水素が濃化しやすくなる。そして水素が濃化したオーステナイトがベイナイトまたはマルテンサイトに変態する際に、粗大な介在物の周りや変態に伴う歪み部に水素が濃化し、その結果、水素割れが生じると推定される。従って鍛鋼材の耐水素割れ性を改善するにはこれらマクロ偏析部の生成を抑制することが有効と考えられる。   This phenomenon is estimated to occur as follows. That is, in the macro-segregation part, the alloy elements are concentrated more than the healthy part, so coarse inclusions (for example, MnS) are formed more easily than the healthy part. From the viewpoint, it tends to be a high hardness structure that works in a disadvantageous direction. Further, due to the transformation to bainite at the time of cooling, the healthy part becomes almost a bainite structure, but in the macrosegregation part, the austenite having high hydrogen solid solubility remains due to the difference in transformation rate. Here, between bainite and austenite, there is a difference in hydrogen solubility and hydrogen diffusion rate, so that hydrogen is easily concentrated in austenite. When austenite enriched with hydrogen is transformed into bainite or martensite, it is presumed that hydrogen is enriched around coarse inclusions and in strained portions accompanying transformation, resulting in hydrogen cracking. Therefore, in order to improve the hydrogen cracking resistance of the forged steel material, it is considered effective to suppress the formation of these macrosegregated portions.

しかし大型鍛鋼材(特に、数十トン以上の鋼塊)では、全ての部分で冷却速度を均一にすることは事実上不可能であるため、鋼塊中のマクロ偏析部を無くすことはできず、マクロ偏析部を低減することにも限界がある。   However, with large forged steel materials (especially steel ingots of several tens of tons or more), it is virtually impossible to make the cooling rate uniform in all parts, so it is impossible to eliminate macro segregation in the steel ingot. In addition, there is a limit to reducing the macro segregation part.

そこで本発明者らは、マクロ偏析部における介在物に着目した。具体的には、水素割れの起点となる粗大な硫化物系介在物(例えば、MnS等)が生成するのを抑制して硫化物系介在物を微細化すると共に、低アスペクト比化し、更に長径が1μm以上の硫化物系介在物の数密度を小さくすることで水素割れの起点を減少させている。   Therefore, the present inventors paid attention to inclusions in the macrosegregation part. Specifically, it suppresses the generation of coarse sulfide inclusions (for example, MnS, etc.) that are the starting point of hydrogen cracking, refines sulfide inclusions, lowers the aspect ratio, and further increases the long diameter. However, the origin of hydrogen cracking is reduced by reducing the number density of sulfide inclusions of 1 μm or more.

本発明では、上記硫化物系介在物の形態および数密度を適切に制御するのに加えて、更に酸化物系介在物の形態および数密度を制御することが重要である。酸化物系介在物は、一般的に球状に近い形態を有しているため、鋼中に分散して存在していても水素割れの起点にはなり難い。しかしながら、粗大化したり、凝集することにより、粗大な硫化物系介在物と同様の挙動を示す。具体的には、S含有量が多くなると、酸化物系介在物(例えば、Al23、MgO、MgOとAl23の複合酸化物など)を生成核として、その周囲に硫化物系介在物(例えば、MnSなど)が析出し、酸化物と硫化物の複合介在物を形成する。そして硫化物系介在物の部分が更に成長することにより、結果として、酸化物系介在物が粗大化し、伸展して高アスペクト比化する。そのため鋼中のS量のみならず、O量やAl量についても適切に制御することによって、酸化物系介在物の生成を抑制し、酸化物系介在物を微細化すると共に、低アスペクト比化し、更に長径が1μm以上の酸化物系介在物の数密度を小さくすることで鍛鋼材の耐水素割れ性を改善できることが判明した。 In the present invention, in addition to appropriately controlling the form and number density of the sulfide inclusions, it is important to further control the form and number density of the oxide inclusions. Since oxide inclusions generally have a nearly spherical shape, they are unlikely to be the starting point of hydrogen cracking even if they are dispersed in steel. However, when coarsened or aggregated, the same behavior as coarse sulfide inclusions is exhibited. Specifically, when the S content increases, oxide inclusions (for example, Al 2 O 3 , MgO, composite oxides of MgO and Al 2 O 3 , etc.) serve as nuclei, and sulfides around them are formed. Inclusions (for example, MnS, etc.) are precipitated to form composite inclusions of oxide and sulfide. As a result of further growth of the sulfide inclusions, the oxide inclusions are coarsened and expanded to increase the aspect ratio. Therefore, not only the amount of S in the steel but also the amount of O and Al are appropriately controlled to suppress the formation of oxide inclusions, refine the oxide inclusions, and reduce the aspect ratio. Furthermore, it has been found that the hydrogen cracking resistance of the forged steel can be improved by reducing the number density of oxide inclusions having a major axis of 1 μm or more.

参考のため図1に、鍛鋼材の断面に現れるマクロ偏析部を撮影した図面代用写真を示す。図1の(a)は、顕微鏡を使わずに観察できる筋状のマクロ偏析部を示す図面代用写真であり、図1の(b)は、図1の(a)における点線部を拡大して示した図面代用写真である。筋状のマクロ偏析部以外に白っぽく写っている部分は、健全部である。また、図2に、鍛鋼材の断面における(a)マクロ偏析部と、(b)健全部を撮影した図面代用写真を示す。   For reference, FIG. 1 shows a drawing-substituting photograph in which a macrosegregation portion appearing in a cross section of the forged steel material is photographed. FIG. 1A is a drawing-substituting photograph showing a streak-like macro-segregation portion that can be observed without using a microscope, and FIG. 1B is an enlarged view of the dotted line portion in FIG. It is the drawing substitute photograph shown. The part that appears whitish other than the streak-like macro-segregation part is a healthy part. Moreover, in FIG. 2, the drawing substitute photograph which image | photographed (a) macrosegregation part and (b) healthy part in the cross section of a forged steel material is shown.

本発明に係る耐水素割れ性に優れた鍛鋼材は、所定の成分組成を有し、深さD/4(D:鍛鋼材断面の円相当直径)の位置における鋼断面を5cm×5cmの測定範囲にて観察したときに、ベイナイト組織で構成される健全部と残部(マクロ偏析部)で構成され、前記鋼断面に対する前記健全部の割合が90面積%以上で、前記健全部に対するベイナイト組織の割合が90面積%以上で、前記マクロ偏析部に対するベイナイト組織の割合が90面積%以上であり、前記マクロ偏析部における長径が1μm以上の硫化物系介在物は、平均円相当直径を200μm以下、平均アスペクト比を50以下、数密度を300個/cm2以下とし、前記マクロ偏析部における長径が1μm以上の酸化物系介在物は、平均円相当直径を100μm以下、平均アスペクト比を20以下、数密度を300個/cm2以下とするものである。以下、本発明に係る鍛鋼材の基本構成について説明する。 The forged steel material excellent in hydrogen cracking resistance according to the present invention has a predetermined component composition, and measures a steel cross section at a depth D / 4 (D: circle equivalent diameter of a forged steel material cross section) of 5 cm × 5 cm. When observed in a range, it is composed of a healthy part composed of a bainite structure and a remaining part (macro-segregation part), and the ratio of the healthy part to the steel cross section is 90% by area or more. The ratio is 90 area% or more, the ratio of the bainite structure to the macrosegregation part is 90 area% or more, and the sulfide inclusions having a major axis of 1 μm or more in the macrosegregation part have an average equivalent circle diameter of 200 μm or less, the average aspect ratio of 50 or less, the number density was 300 / cm 2 or less, oxide inclusions major diameter of more than 1μm in the macro segregation is a mean circle equivalent diameter of 100μm or less, the average Ass The transfected ratio 20 or less, in which the number density of 300 / cm 2 or less. Hereinafter, the basic configuration of the forged steel material according to the present invention will be described.

まず、本発明の鍛鋼材の成分組成について説明する。   First, the component composition of the forged steel material of the present invention will be described.

1.鍛鋼材の成分組成
[C:0.15〜0.24%]
Cは、鍛鋼材の強度向上に寄与する元素である。鍛鋼材に充分な強度を確保するには、Cを0.15%以上含有させる必要があり、好ましくは0.17%以上である。しかしC量が多過ぎると鍛鋼材の靭性を劣化させるので、0.24%以下とする必要がある。C量は、好ましくは0.22%以下、より好ましくは0.20%以下である。
1. Component composition of forged steel [C: 0.15 to 0.24%]
C is an element that contributes to improving the strength of the forged steel material. In order to ensure sufficient strength in the forged steel material, it is necessary to contain 0.15% or more of C, and preferably 0.17% or more. However, if the amount of C is too large, the toughness of the forged steel is deteriorated, so it is necessary to make it 0.24% or less. The amount of C is preferably 0.22% or less, more preferably 0.20% or less.

[Si:0.15〜0.3%]
Siは、脱酸元素であるとともに、鍛鋼材の強度向上元素として作用する元素である。従って本発明では、0.15%以上含有させる必要があり、好ましくは0.18%以上である。しかしSi量が多過ぎると鍛鋼材の逆V偏析が著しくなり、マクロ偏析部に粗大な介在物が形成されるので、耐水素割れ性を改善できない。従ってSi量は、0.3%以下とする必要があり、好ましくは0.27%以下、より好ましくは0.25%以下とする。
[Si: 0.15-0.3%]
Si is an element that acts as a deoxidizing element and as an element for improving the strength of forged steel. Therefore, in this invention, it is necessary to contain 0.15% or more, Preferably it is 0.18% or more. However, if the amount of Si is too large, the reverse V segregation of the forged steel material becomes remarkable and coarse inclusions are formed in the macro segregation part, so that the hydrogen cracking resistance cannot be improved. Therefore, the amount of Si needs to be 0.3% or less, preferably 0.27% or less, more preferably 0.25% or less.

[Mn:1〜1.6%]
Mnは、鍛鋼材の焼入れ性を高めると共に、強度向上に寄与する元素である。充分な強度と焼入れ性を確保するには、Mnは1%以上含有させる必要があり、好ましくは1.2%以上である。しかし、Mn量が過剰になると逆V偏析を助長し、マクロ偏析部に粗大な硫化物系介在物を形成するので、耐水素割れ性を改善できない。従ってMn量は1.6%以下とする必要があり、好ましくは1.5%以下である。
[Mn: 1 to 1.6%]
Mn is an element that enhances the hardenability of the forged steel material and contributes to improving the strength. In order to ensure sufficient strength and hardenability, Mn must be contained in an amount of 1% or more, preferably 1.2% or more. However, when the amount of Mn becomes excessive, reverse V segregation is promoted and coarse sulfide-based inclusions are formed in the macrosegregation part, so that the hydrogen cracking resistance cannot be improved. Therefore, the amount of Mn needs to be 1.6% or less, preferably 1.5% or less.

[P:0.015%以下(0%を含まない)]
Pは、不可避的に混入してくる不純物元素であり、靭性に悪影響を及ぼす元素であるので、その含有量はできるだけ少ないことが好ましい。このような観点から、Pの含有量は0.015%以下に抑制する必要があり、好ましくは0.01%以下とする。しかし工業的に鋼中のPを0%にすることは困難である。
[P: 0.015% or less (excluding 0%)]
P is an impurity element that is inevitably mixed in, and is an element that adversely affects toughness. Therefore, its content is preferably as small as possible. From such a viewpoint, the P content needs to be suppressed to 0.015% or less, and preferably 0.01% or less. However, it is difficult to make P in steel 0% industrially.

[S:0.0002〜0.010%]
Sは、鋼中のMn、Mg、Ca等と結合して硫化物系介在物を形成する元素であり、マクロ偏析部中の硫化物介在物は、多数の応力場を形成して余剰水素を捕捉し、耐水素割れ性を改善する効果がある。このような硫化物系介在物を確保するために、S量は0.0002%以上含有させる必要があり、好ましくは0.0004%以上、より好ましくは0.001%以上とする。しかし、Sは、逆V偏析を助長して硫化物系介在物を形成し、特に、細長い形状をした硫化物系介在物は長径が大きな粗大介在物となり易く、水素割れの起点となる。従って粗大な硫化物系介在物を減少させるために、S量は0.010%以下とする必要があり、好ましくは0.009%以下、より好ましくは0.0060%以下とする。
[S: 0.0002 to 0.010%]
S is an element that forms sulfide-based inclusions by combining with Mn, Mg, Ca, etc. in steel, and the sulfide inclusions in the macro-segregation part form a large number of stress fields to generate surplus hydrogen. Captures and has the effect of improving hydrogen cracking resistance. In order to ensure such sulfide inclusions, the amount of S must be 0.0002% or more, preferably 0.0004% or more, and more preferably 0.001% or more. However, S promotes reverse V segregation to form sulfide-based inclusions, and in particular, sulfide-based inclusions having an elongated shape tend to be coarse inclusions having a large major axis, and become a starting point for hydrogen cracking. Therefore, in order to reduce coarse sulfide inclusions, the S amount needs to be 0.010% or less, preferably 0.009% or less, more preferably 0.0060% or less.

[Ni:0.7〜1.1%]
Niは、鍛鋼材の靭性向上元素として有用な元素であり、0.7%以上含有させる必要がある。Ni量は、好ましくは0.80%以上である。しかし、Ni量が過剰になると強度の過大な上昇を招き、靭性に悪影響を及ぼす。従ってNi量は、1.1%以下とする必要があり、好ましくは1.05%以下、より好ましくは1.00%以下である。
[Ni: 0.7 to 1.1%]
Ni is an element useful as an element for improving the toughness of the forged steel, and needs to be contained by 0.7% or more. The amount of Ni is preferably 0.80% or more. However, an excessive amount of Ni causes an excessive increase in strength and adversely affects toughness. Therefore, the amount of Ni needs to be 1.1% or less, preferably 1.05% or less, more preferably 1.00% or less.

[Cr:0.05〜0.3%]
Crは、鍛鋼材の焼入れ性を高めると共に、靭性を向上させる元素であり、それらの作用は0.05%以上含有させることによって発揮される。Cr量は、好ましくは0.1%以上である。しかし、Cr量が過剰になると逆V偏析を助長し、マクロ偏析部に粗大な炭化物が形成されるので、耐水素割れ性を改善できない。従ってCr量は0.3%以下とする必要があり、好ましくは0.27%以下、より好ましくは0.25%以下である。
[Cr: 0.05 to 0.3%]
Cr is an element that enhances the hardenability of the forged steel material and improves the toughness, and exerts its action by containing 0.05% or more. The amount of Cr is preferably 0.1% or more. However, when the amount of Cr is excessive, reverse V segregation is promoted and coarse carbides are formed in the macrosegregation part, so that the hydrogen cracking resistance cannot be improved. Therefore, the Cr amount needs to be 0.3% or less, preferably 0.27% or less, more preferably 0.25% or less.

[Mo:0.4〜0.6%]
Moは、鍛鋼材の焼入れ性、強度および靭性の向上に作用する元素であり、それらの作用を発揮させるには、0.4%以上含有させる必要がある。Mo量は、好ましくは0.45%以上、より好ましくは0.50%以上である。しかしMoは平衡分配係数が小さいので、Mo量が過剰になるとミクロ偏析(正常偏析)を生じ易くなる。また、Mo量が過剰になるとコストアップにつながる。そこでMo量は0.6%以下とする必要があり、好ましくは0.55%以下である。
[Mo: 0.4 to 0.6%]
Mo is an element that acts to improve the hardenability, strength, and toughness of the forged steel material. In order to exert these effects, it is necessary to contain 0.4% or more. The Mo amount is preferably 0.45% or more, more preferably 0.50% or more. However, since Mo has a small equilibrium distribution coefficient, when the amount of Mo becomes excessive, microsegregation (normal segregation) is likely to occur. Moreover, when the amount of Mo becomes excessive, it leads to a cost increase. Therefore, the Mo amount needs to be 0.6% or less, preferably 0.55% or less.

[Al:0.015〜0.03%]
Alは、製鋼工程において脱酸元素として作用し、酸素量低減に必要な元素である。また、Alは、鍛鋼材の耐割れ性を向上させる作用も有している。従ってAlは、0.015%以上含有させる必要があり、好ましくは0.018%以上である。しかしAl量が過剰になると、Al23の形成量が増加したり、生成したAl23が凝集しやすくなり、耐水素割れ性に悪影響を及ぼす。従ってAl量は、0.03%以下とする必要があり、好ましくは0.028%以下、より好ましくは0.026%以下とする。
[Al: 0.015 to 0.03%]
Al acts as a deoxidizing element in the steel making process and is an element necessary for reducing the amount of oxygen. Moreover, Al also has the effect | action which improves the crack resistance of a forged steel material. Accordingly, Al needs to be contained in an amount of 0.015% or more, preferably 0.018% or more. However, when the amount of Al becomes excessive, the amount of Al 2 O 3 formed increases or the produced Al 2 O 3 tends to aggregate, which adversely affects hydrogen cracking resistance. Therefore, the Al amount needs to be 0.03% or less, preferably 0.028% or less, more preferably 0.026% or less.

[O:0.003%以下(0%を含まない)]
O(酸素)は、SiO2、Al23、MgO、CaO等の酸化物系介在物を形成する元素である。Oは極力低減することによって粗大な介在物の形成を抑制し、微細な介在物を析出させることができる。そのためO量は0.003%以下とする必要があり、好ましくは0.0020%以下、より好ましくは0.0015%以下とする。但し、工業生産上、Oを0%とすることは困難である。
[O: 0.003% or less (not including 0%)]
O (oxygen) is an element that forms oxide inclusions such as SiO 2 , Al 2 O 3 , MgO, and CaO. By reducing O as much as possible, formation of coarse inclusions can be suppressed and fine inclusions can be precipitated. Therefore, the O amount needs to be 0.003% or less, preferably 0.0020% or less, more preferably 0.0015% or less. However, it is difficult to reduce O to 0% in industrial production.

[N:0.005〜0.015%]
Nは、Alまたは必要により添加されるTi、Vと共に窒化物を形成し、靭性や水素割れ性を向上させる作用を有する元素である。その作用を発揮させるためには、0.005%以上含有させる必要があり、好ましくは0.008%以上である。しかし、その含有量が過剰になると、固溶Nとして歪時効をもたらし、靭性に悪影響を及ぼす。従ってN量は0.015%以下とする必要があり、好ましくは0.013%以下である。
[N: 0.005 to 0.015%]
N is an element that forms a nitride together with Al or Ti and V added as necessary, and has an effect of improving toughness and hydrogen cracking property. In order to exert the effect, it is necessary to contain 0.005% or more, preferably 0.008% or more. However, if its content is excessive, it causes strain aging as a solid solution N and adversely affects toughness. Therefore, the N amount needs to be 0.015% or less, preferably 0.013% or less.

本発明に係る鍛鋼材の成分組成は上記の通りであり、残部成分は実質的に鉄であるが、不可避不純物の混入はもちろん許容される。   The component composition of the forged steel material according to the present invention is as described above, and the remaining component is substantially iron, but it is of course acceptable to mix inevitable impurities.

上記鍛鋼材に含まれるMn量、S量、Al量、およびO(酸素)量は、下記式(1)を満足していることが好ましい。下記式(1)中、[ ]は、各元素の含有量(質量%)を示している。
([Mn]×[S])/([Al]×[O])≦600 ・・・(1)
It is preferable that the amount of Mn, the amount of S, the amount of Al, and the amount of O (oxygen) contained in the forged steel material satisfy the following formula (1). In the following formula (1), [] indicates the content (% by mass) of each element.
([Mn] × [S]) / ([Al] × [O]) ≦ 600 (1)

MnとSの積は、硫化物系介在物の生成のし易さを意味しており、AlとOの積は、酸化物系介在物の生成のし易さを意味している。本発明では、([Mn]×[S])/([Al]×[O])の値を600以下に好ましく制御することによって、硫化物系介在物と酸化物系介在物の生成量のバランスを適切に制御でき、硫化物系介在物と酸化物系介在物の大きさも適切に調整できる。上記鍛鋼材に含まれるMn量、S量、Al量、およびO(酸素)量は、下記式(1a)を満足していることがより好ましく、下記式(1b)を満足していることが更に好ましい。
([Mn]×[S])/([Al]×[O])≦500 ・・・(1a)
([Mn]×[S])/([Al]×[O])≦400 ・・・(1b)
The product of Mn and S means easy generation of sulfide inclusions, and the product of Al and O means easy generation of oxide inclusions. In the present invention, the value of ([Mn] × [S]) / ([Al] × [O]) is preferably controlled to 600 or less, thereby reducing the amount of sulfide inclusions and oxide inclusions produced. The balance can be controlled appropriately, and the sizes of sulfide inclusions and oxide inclusions can also be adjusted appropriately. It is more preferable that the amount of Mn, S, Al, and O (oxygen) contained in the forged steel material satisfy the following formula (1a), and satisfy the following formula (1b). Further preferred.
([Mn] × [S]) / ([Al] × [O]) ≦ 500 (1a)
([Mn] × [S]) / ([Al] × [O]) ≦ 400 (1b)

本発明の鍛鋼材には、上述した本発明の効果に悪影響を与えない範囲で、以下に示す更に他の元素(選択元素)を積極的に含有させても良い。   The forged steel material of the present invention may further contain other elements (selective elements) shown below as long as the above-described effects of the present invention are not adversely affected.

[Cu:0.1%以下(0%を含まない)]
Cuは、鍛鋼材の靭性向上および組織の微細化作用を有する元素であり、この様な作用を有効に発揮させるには、Cuは、0.01%以上含有させることが好ましい。Cuは、より好ましくは0.05%以上である。しかしCu量が過剰になると、強度の過大な上昇、マルテンサイト等の硬質組織の増加をもたらし、靭性の劣化原因となる。従ってCu量は、0.1%以下に抑えることが好ましく、より好ましくは0.05%以下とする。
[Cu: 0.1% or less (excluding 0%)]
Cu is an element having an effect of improving the toughness of a forged steel material and a refinement of the structure. In order to effectively exhibit such an effect, it is preferable to contain 0.01% or more of Cu. Cu is more preferably 0.05% or more. However, when the amount of Cu is excessive, it causes an excessive increase in strength and an increase in hard structures such as martensite, which causes deterioration of toughness. Therefore, the amount of Cu is preferably suppressed to 0.1% or less, and more preferably 0.05% or less.

[V:0.05%以下(0%を含まない)]
Vは、鍛鋼材の析出強化および組織の微細化作用を有し、鍛鋼材の高強度化に有用な元素である。この様な作用を有効に発揮させるには、Vは0.01%以上含有させることが好ましく、より好ましくは0.02%以上含有させることが推奨される。しかしVを過剰に含有すると、酸化物系介在物の粗大化を招き、靭性に悪影響を及ぼす。従ってV量は0.05%以下とすることが好ましく、より好ましくは0.03%以下である。
[V: 0.05% or less (excluding 0%)]
V has an effect of precipitation strengthening of a forged steel material and refinement of a structure, and is an element useful for increasing the strength of a forged steel material. In order to effectively exhibit such an action, V is preferably contained in an amount of 0.01% or more, and more preferably 0.02% or more. However, when V is contained excessively, the oxide inclusions are coarsened and the toughness is adversely affected. Therefore, the V amount is preferably 0.05% or less, more preferably 0.03% or less.

[Ca:0.01%以下(0%を含まない)]
Caは、鍛鋼材における硫化物系介在物の延伸を抑制し、耐水素割れ性を改善するのに寄与する元素である。この作用を有効に発揮させるには、Caは0.0001%以上含有させることが好ましく、より好ましくは0.001%以上である。しかしCa量が過剰になってもこの作用は飽和するため、Ca量は0.01%以下とすることが好ましく、より好ましくは0.008%以下である。
[Ca: 0.01% or less (excluding 0%)]
Ca is an element that contributes to suppressing the extension of sulfide inclusions in the forged steel material and improving the resistance to hydrogen cracking. In order to effectively exhibit this action, Ca is preferably contained in an amount of 0.0001% or more, and more preferably 0.001% or more. However, since this action is saturated even if the Ca amount is excessive, the Ca amount is preferably 0.01% or less, more preferably 0.008% or less.

[Ti、Zr、およびHfよりなる群から選択されるいずれか1種以上の元素:合計0.01%以下(0%を含まない)]
Ti、Zr、およびHfは、鍛鋼材の靭性向上および組織微細化の作用を有し、鍛鋼材の高強度化に有用な元素である。これらの作用を有効に発揮させるために、いずれか1種または2種以上の元素を鋼に含有させても良い。これらの作用を有効に発揮させるには、合計(1種の場合は単独の含有量)で、0.001%以上含有させることが好ましく、より好ましくは0.003%以上である。しかしTi、Zr、およびHf量が過剰になると粗大な炭化物が析出し、機械的特性および耐水素割れ性が劣化することがある。従って上記元素は、合計(1種の場合は単独の含有量)で、0.01%以下とすることが好ましく、より好ましくは0.008%以下とする。
[One or more elements selected from the group consisting of Ti, Zr, and Hf: 0.01% or less in total (excluding 0%)]
Ti, Zr, and Hf have the effect of improving the toughness of the forged steel material and refining the structure, and are useful elements for increasing the strength of the forged steel material. In order to effectively exhibit these actions, any one or two or more elements may be contained in the steel. In order to effectively exhibit these actions, the total (in the case of one kind, a single content) is preferably 0.001% or more, more preferably 0.003% or more. However, when the amounts of Ti, Zr, and Hf are excessive, coarse carbides are precipitated, and mechanical properties and hydrogen cracking resistance may be deteriorated. Therefore, the total of the above elements (in the case of one kind, a single content) is preferably 0.01% or less, more preferably 0.008% or less.

積極添加が許容される他の元素の例としては、(1)焼入れ性改善効果を有するB(ホウ素)、(2)固溶強化元素または析出強化元素であるW、Nb、Ta、Ce、およびTeなどが挙げられる。これらの添加元素は、単独で、または2種以上を組み合わせて含有させることができる。これらの添加元素は、例えば合計で0.1%程度以下とすることが望ましい。   Examples of other elements that allow positive addition include (1) B (boron) having an effect of improving hardenability, (2) W, Nb, Ta, Ce, which are solid solution strengthening elements or precipitation strengthening elements, and Te etc. are mentioned. These additive elements can be contained alone or in combination of two or more. These additive elements are desirably about 0.1% or less in total.

2.鍛鋼材の組織分率
(1)基本組織
深さD/4の位置における鋼断面を5cm×5cmの測定範囲にて観察したときに、鋼組織は、強度、靭性、耐水素割れ性の観点から、ベイナイト組織で構成されている必要がある。例えば、フェライト組織では、強度が不充分であり、また未変態オーステナイト組織やマルテンサイト組織が多く存在すると、靭性が低下するだけでなく、それらの組織は水素を濃化しやすいため、ベイナイト組織よりも低い水素濃度で水素割れを生じる。そして上記鋼組織のうち、Si、Mn、Ni、Cr、Mo等の合金成分が偏析していない箇所を本明細書では健全部とよび、Si、Mn、Ni、Cr、Mo等の合金成分が偏析している箇所を本明細書ではマクロ偏析部と呼ぶ。
2. Structure ratio of forged steel (1) Basic structure When the steel cross section at the position of depth D / 4 is observed in a measurement range of 5 cm x 5 cm, the steel structure is from the viewpoint of strength, toughness, and resistance to hydrogen cracking. It must be composed of a bainite structure. For example, in a ferrite structure, the strength is insufficient, and if there are many untransformed austenite structures and martensite structures, not only does the toughness decrease, but those structures tend to concentrate hydrogen, so Hydrogen cracking occurs at low hydrogen concentrations. In the steel structure, a portion where the alloy components such as Si, Mn, Ni, Cr, and Mo are not segregated is referred to as a healthy part in the present specification, and the alloy components such as Si, Mn, Ni, Cr, and Mo are present. The segregated portion is referred to as a macro segregation portion in this specification.

本発明に係る鍛鋼材は、強度、靭性、耐水素割れ性の観点から、上記鋼断面に対する上記健全部の割合が90面積%以上である必要があり、好ましくは95面積%以上、さらに好ましくは97面積%以上、特に好ましくは99面積%以上である。   In the forged steel according to the present invention, from the viewpoint of strength, toughness, and hydrogen cracking resistance, the ratio of the healthy part to the steel cross section needs to be 90 area% or more, preferably 95 area% or more, more preferably It is 97 area% or more, and particularly preferably 99 area% or more.

上記健全部に対するベイナイト組織の割合は、90面積%以上であることが好ましく、より好ましくは95面積%以上、さらに好ましくは97面積%以上、特に好ましくは99面積%以上である。なお、上記健全部には、ベイナイト組織以外に、フェライト、マルテンサイト、残留γなどが混在していてもよい。   The ratio of the bainite structure to the healthy part is preferably 90 area% or more, more preferably 95 area% or more, still more preferably 97 area% or more, and particularly preferably 99 area% or more. In addition to the bainite structure, ferrite, martensite, residual γ, and the like may be mixed in the healthy portion.

上記鋼断面に対する上記健全部以外の残部(マクロ偏析部)の割合は、10面積%以下である必要があり、好ましくは5面積%以下、さらに好ましくは3面積%以下、特に好ましくは1面積%以下である。   The ratio of the remaining part (macro-segregation part) other than the healthy part to the steel cross section needs to be 10 area% or less, preferably 5 area% or less, more preferably 3 area% or less, and particularly preferably 1 area%. It is as follows.

上記マクロ偏析部に対するベイナイト組織の割合は、90面積%以上であることが好ましく、より好ましくは95面積%以上、さらに好ましくは97面積%以上、特に好ましくは99面積%以上である。なお、上記マクロ偏析部には、ベイナイト組織以外に、フェライト、マルテンサイト、残留γなどが混在していてもよい。   The ratio of the bainite structure to the macrosegregation portion is preferably 90 area% or more, more preferably 95 area% or more, still more preferably 97 area% or more, and particularly preferably 99 area% or more. In addition to the bainite structure, ferrite, martensite, residual γ, and the like may be mixed in the macro segregation part.

本発明では、深さD/4の位置は、鍛鋼材の側表面からの距離をいうものとする。上記「D」は、鍛鋼材断面(鍛鋼材の長手方向に垂直な断面)の円相当直径(断面積と同じ面積を有する円の直径)を意味する。従って、鍛鋼材が円柱状のものであれば、Dは該円柱状の鍛鋼材の直径である。   In the present invention, the position of the depth D / 4 refers to the distance from the side surface of the forged steel material. The “D” means a circle-equivalent diameter (diameter of a circle having the same area as the cross-sectional area) of a cross-section of the forged steel (cross-section perpendicular to the longitudinal direction of the forged steel). Therefore, if the forged steel material is cylindrical, D is the diameter of the cylindrical forged steel material.

(2)健全部とマクロ偏析部との判別
健全部とマクロ偏析部とを判別する方法について説明する。まず、鋼塊から供試材を切り出し、判別したい切断断面に対して研磨とエッチング処理を行い、マクロ偏析部の分布状態を明確にして写真撮影を行う。マクロ偏析部とは、Si、Mn、Ni、Cr、Mo等の合金成分が偏析している箇所を指し、Si、Mn、Ni、Cr、Mo等の合金成分が偏析していない健全部よりも暗めに写る。このことを利用して、健全部とマクロ偏析部との判別を行う。
(2) Discrimination between healthy part and macro-segregation part A method for discriminating between a healthy part and a macro-segregation part will be described. First, a test material is cut out from a steel ingot, and the cut cross section to be discriminated is polished and etched, and the macro segregation portion is clearly distributed and photographed. A macro-segregation part refers to a part where an alloy component such as Si, Mn, Ni, Cr, Mo is segregated, and is more than a healthy part where an alloy component such as Si, Mn, Ni, Cr, Mo is not segregated. It looks dark. Using this fact, the healthy part and the macro-segregated part are discriminated.

次に、上記切断断面の写真をグレースケールのデータとして電子機器に取り込み、健全部とマクロ偏析部との区別をして鋼断面(金属組織全体)に対する健全部の割合(面積%)を求める。本発明では、上記健全部の割合を上述したように90面積%以上とする。一方、マクロ偏析部の割合(面積%)は、100面積%から健全部の割合(面積%)を差し引いた値とする。鋼組織の構成および面積率は、後述する実施例で示す手順で測定すればよい。   Next, the photograph of the cut section is taken into an electronic device as gray scale data, and the ratio (area%) of the healthy portion to the steel cross section (entire metal structure) is determined by distinguishing between the healthy portion and the macro-segregated portion. In the present invention, the proportion of the healthy part is 90 area% or more as described above. On the other hand, the ratio (area%) of the macro segregation part is a value obtained by subtracting the ratio (area%) of the healthy part from 100 area%. What is necessary is just to measure the structure and area ratio of a steel structure in the procedure shown in the Example mentioned later.

3.マクロ偏析部における介在物
上記マクロ偏析部における介在物(硫化物系介在物および酸化物系介在物)は、水素割れの起点や伝播経路となり、鍛鋼材の耐水素割れ性に悪影響を及ぼす。そこで本発明の鍛鋼材では、マクロ偏析部における硫化物系介在物および酸化物系介在物の形態(円相当直径およびアスペクト比)、並びに硫化物系介在物および酸化物系介在物の数密度を適切に制御している。
3. Inclusions in Macro Segregation Part Inclusions (sulfide inclusions and oxide inclusions) in the macro segregation part serve as starting points and propagation paths for hydrogen cracking and adversely affect the hydrogen cracking resistance of the forged steel. Therefore, in the forged steel of the present invention, the form of sulfide inclusions and oxide inclusions (equivalent circle diameter and aspect ratio) in the macro-segregation part, and the number density of sulfide inclusions and oxide inclusions are appropriately set. I have control.

なお、上記健全部には、硫化物系介在物および酸化物系介在物は少ないため、健全部における硫化物系介在物および酸化物系介在物の形態と数密度は考慮する必要はない。   In addition, since there are few sulfide inclusions and oxide inclusions in the healthy part, it is not necessary to consider the form and number density of the sulfide inclusions and oxide inclusions in the healthy part.

(硫化物系介在物)
上記マクロ偏析部における長径が1μm以上の硫化物系介在物について、平均円相当直径が200μmを超えると、硫化物系介在物と鋼組織の界面で水素割れが発生しやすくなる。従って上記マクロ偏析部における長径が1μm以上の硫化物系介在物は、平均円相当直径を200μm以下とし、好ましくは160μm以下、より好ましくは100μm以下、更に好ましくは50μm以下とする。
(Sulfide inclusions)
With respect to sulfide inclusions having a major axis of 1 μm or more in the macrosegregation portion, if the average equivalent circle diameter exceeds 200 μm, hydrogen cracking tends to occur at the interface between the sulfide inclusions and the steel structure. Accordingly, the sulfide inclusions having a major axis of 1 μm or more in the macrosegregation part have an average equivalent circle diameter of 200 μm or less, preferably 160 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less.

上記マクロ偏析部における長径が1μm以上の硫化物系介在物について、平均アスペクト比が50を超えると、鋼塊を冷却するときに硫化物系介在物と鋼組織との線膨張係数の差により、硫化物系介在物と鋼組織の界面が大きく剥離し、その空隙に水素が凝集して水素割れを発生する原因となる。従って上記マクロ偏析部における長径が1μm以上の硫化物系介在物は、平均アスペクト比を50以下とし、好ましくは40以下、より好ましくは30以下とする。上記硫化物系介在物の平均アスペクト比の下限は、通常、3程度である。   For sulfide inclusions having a major axis of 1 μm or more in the macrosegregation part, when the average aspect ratio exceeds 50, due to the difference in linear expansion coefficient between the sulfide inclusions and the steel structure when cooling the steel ingot, The interface between the sulfide inclusions and the steel structure is largely separated, causing hydrogen to aggregate in the voids and causing hydrogen cracking. Therefore, the sulfide inclusions having a major axis of 1 μm or more in the macro segregation part have an average aspect ratio of 50 or less, preferably 40 or less, more preferably 30 or less. The lower limit of the average aspect ratio of the sulfide inclusions is usually about 3.

上記マクロ偏析部における長径が1μm以上の硫化物系介在物について、数密度が300個/cm2を超えると、靭性等の機械的特性に悪影響を及ぼす。従って上記マクロ偏析部における長径が1μm以上の硫化物系介在物の数密度は、300個/cm2以下とする必要があり、好ましくは200個/cm2以下、より好ましくは100個/cm2以下とする。上記硫化物系介在物の数密度の下限は特に限定されないが、マクロ偏析部に硫化物系介在物が形成されると、多数の応力場が分散して形成されるため、固溶限を超えた余剰水素を捕捉しやすくなり、歪み部への水素濃化を抑制でき、耐水素割れ性を改善できる。従って上記硫化物系介在物の数密度は、5個/cm2以上であることが好ましく、より好ましくは10個/cm2以上、更に好ましくは20個/cm2以上とする。 When the number density exceeds 300 / cm 2 for the sulfide inclusions having a major axis of 1 μm or more in the macrosegregation part, mechanical properties such as toughness are adversely affected. Therefore, the number density of sulfide inclusions having a major axis of 1 μm or more in the macrosegregation portion needs to be 300 pieces / cm 2 or less, preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less. To do. The lower limit of the number density of the sulfide inclusions is not particularly limited, but when sulfide inclusions are formed in the macrosegregation part, a large number of stress fields are dispersed, so the surplus exceeding the solid solubility limit is formed. Hydrogen can be easily captured, hydrogen concentration in the strained part can be suppressed, and hydrogen cracking resistance can be improved. Therefore, the number density of the sulfide inclusions is preferably 5 pieces / cm 2 or more, more preferably 10 pieces / cm 2 or more, and further preferably 20 pieces / cm 2 or more.

(酸化物系介在物)
酸化物系介在物は、上述した硫化物系介在物とは異なり、通常、微細で、低アスペクト比(円形に近い形状)であるため、耐水素割れ性には悪影響を及ぼさないと考えられている。しかし上記マクロ偏析部における長径が1μm以上の酸化物系介在物について、平均円相当直径が100μmを超えると、酸化物系介在物同士が凝集し、上記硫化物系介在物と同様、酸化物系介在物と鋼組織の界面で水素割れが発生しやすくなる。従って上記マクロ偏析部における長径が1μm以上の酸化物系介在物は、平均円相当直径を100μm以下、好ましくは50μm以下、より好ましくは15μm以下とする。
(Oxide inclusions)
Unlike the sulfide inclusions described above, oxide inclusions are usually fine and have a low aspect ratio (a shape close to a circle) and are therefore considered not to adversely affect hydrogen cracking resistance. Yes. However, for oxide inclusions having a major axis of 1 μm or more in the macrosegregation portion, when the average equivalent circle diameter exceeds 100 μm, the oxide inclusions are aggregated, and like the sulfide inclusions, the oxide inclusions Hydrogen cracking is likely to occur at the interface between the inclusion and the steel structure. Therefore, the oxide inclusions having a major axis of 1 μm or more in the macrosegregation part have an average equivalent circle diameter of 100 μm or less, preferably 50 μm or less, more preferably 15 μm or less.

上記マクロ偏析部における長径が1μm以上の酸化物系介在物について、平均アスペクト比が20を超えると、上記硫化物系介在物と同様、鋼塊を冷却するときに酸化物系介在物と鋼組織との線膨張係数の差により、酸化物系介在物と鋼組織の界面が大きく剥離し、その空隙に水素が凝集して水素割れを発生する原因となる。従って上記酸化物系介在物の平均アスペクト比は20以下とし、好ましくは15以下、より好ましくは10以下とする。上記酸化物系介在物の平均アスペクト比の下限は、通常、1である。   With respect to oxide inclusions having a major axis of 1 μm or more in the macrosegregation portion, when the average aspect ratio exceeds 20, the oxide inclusions and the steel structure are cooled when the steel ingot is cooled, similar to the sulfide inclusions. The interface between the oxide inclusions and the steel structure is largely separated due to the difference in the linear expansion coefficient between the two and hydrogen, causing hydrogen to aggregate in the voids and causing hydrogen cracking. Therefore, the average aspect ratio of the oxide inclusions is 20 or less, preferably 15 or less, more preferably 10 or less. The lower limit of the average aspect ratio of the oxide inclusions is usually 1.

上記マクロ偏析部における長径が1μm以上の酸化物系介在物について、数密度が300個/cm2を超えると、靭性等の機械的特性に悪影響を及ぼす。従って上記マクロ偏析部における長径が1μm以上の酸化物系介在物の数密度は、300個/cm2以下とする必要があり、好ましくは200個/cm2以下、より好ましくは100個/cm2以下とする。上記酸化物系介在物の数密度の下限は特に限定されないが、マクロ偏析部に酸化物系介在物が形成されると多数の応力場が分散して形成されるため、固溶限を超えた余剰水素を捕捉しやすくなり、歪み部への水素濃化を抑制でき、耐水素割れ性を改善できる。従って上記酸化物系介在物の数密度は、5個/cm2以上であることが好ましく、より好ましくは20個/cm2以上、更に好ましくは40個/cm2以上とする。 When the number density of the oxide inclusions having a major axis of 1 μm or more in the macrosegregation portion exceeds 300 / cm 2 , mechanical properties such as toughness are adversely affected. Therefore, the number density of oxide inclusions having a major axis of 1 μm or more in the macrosegregation portion needs to be 300 pieces / cm 2 or less, preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less. To do. The lower limit of the number density of the oxide inclusions is not particularly limited, but when the oxide inclusions are formed in the macrosegregation part, a large number of stress fields are dispersed, so surplus hydrogen exceeding the solid solubility limit is formed. Can be easily captured, hydrogen concentration in the strained portion can be suppressed, and resistance to hydrogen cracking can be improved. Therefore, the number density of the oxide inclusions is preferably 5 pieces / cm 2 or more, more preferably 20 pieces / cm 2 or more, and further preferably 40 pieces / cm 2 or more.

上記マクロ偏析部における、上記硫化物系介在物および酸化物系介在物の形態(円相当直径およびアスペクト比)、並びに硫化物系介在物および酸化物系介在物の数密度は、次の手順で測定できる。即ち、鍛鋼材の深さD/4の位置に存在するマクロ偏析部から試験片を採取し、試験片の表面について、SEM−EPMA(例えば、日本電子株式会社製「JXA−8900RL」、「XM−Z0043T」、「XM−87562」)による画像解析を行い、観察される介在物の成分組成をEDXで分析する。成分組成の分析は、長径が1μm以上の介在物を対象として行い、EDXによる分析は、介在物の重心位置を1点につき10秒程度で自動分析すればよい。長径が1μm未満の硫化物系介在物および酸化物系介在物も耐水素割れ性を向上させる作用を有しているが、測定効率を向上させるために、本発明では、長径が1μm未満の介在物は測定対象から除外する。   The form of the sulfide inclusions and oxide inclusions (equivalent circle diameter and aspect ratio) and the number density of sulfide inclusions and oxide inclusions in the macrosegregation portion can be measured by the following procedure. . That is, a test piece was collected from a macrosegregation part existing at a depth D / 4 position of the forged steel material, and the surface of the test piece was subjected to SEM-EPMA (for example, “JXA-8900RL”, “XM” manufactured by JEOL Ltd.). -Z0043T "," XM-87562 ")), and the component composition of the observed inclusions is analyzed by EDX. The analysis of the component composition is performed for inclusions having a major axis of 1 μm or more, and the analysis by EDX may be performed by automatically analyzing the center of gravity of the inclusions for about 10 seconds per point. Sulfide inclusions and oxide inclusions whose major axis is less than 1 μm also have the effect of improving the hydrogen cracking resistance. However, in order to improve the measurement efficiency, the present invention uses an inclusion whose major axis is less than 1 μm. Objects are excluded from measurement.

成分組成を分析した介在物のうち、硫黄(S)含有率が30質量%以上で、且つ酸素(O)含有率が1質量%未満のものを本明細書では硫化物系介在物と定義する。また、成分組成を分析した介在物のうち、酸素(O)含有率が1質量%以上のものを本明細書では酸化物系介在物と定義する。成分組成を分析して同定された硫化物系介在物および酸化物系介在物について、円相当直径とアスペクト比(長径/短径)を測定し、平均値を求めればよい。   Among the inclusions analyzed for the component composition, those having a sulfur (S) content of 30% by mass or more and an oxygen (O) content of less than 1% by mass are defined as sulfide inclusions in this specification. . Further, among the inclusions analyzed for the component composition, those having an oxygen (O) content of 1% by mass or more are defined as oxide inclusions in this specification. For the sulfide inclusions and oxide inclusions identified by analyzing the component composition, the equivalent circle diameter and the aspect ratio (major axis / minor axis) may be measured to determine the average value.

また、硫化物系介在物および酸化物系介在物の数密度は、成分組成を分析して同定された硫化物系介在物および酸化物系介在物のうち、長径が1μm以上の硫化物系介在物および酸化物系介在物の数を測定し、単位観察視野面積あたりの数密度(個/cm2)を算出する。上述したように、長径が1μm未満の硫化物系介在物および酸化物系介在物も、耐水素割れ性を向上させる作用を有しているが、微細過ぎる介在物を測定すると測定効率が低下する。従って本発明では、長径が1μm未満の介在物については測定対象から外している。 In addition, the number density of sulfide inclusions and oxide inclusions is the sulfide inclusions having a major axis of 1 μm or more among the sulfide inclusions and oxide inclusions identified by analyzing the component composition and The number of oxide inclusions is measured, and the number density (units / cm 2 ) per unit observation visual field area is calculated. As described above, sulfide inclusions and oxide inclusions having a major axis of less than 1 μm also have an effect of improving hydrogen cracking resistance, but measurement efficiency decreases when measuring too fine inclusions. . Therefore, in the present invention, inclusions whose major axis is less than 1 μm are excluded from the measurement target.

観察視野数は、例えば、5箇所以上とすることが好ましい。   For example, the number of observation fields is preferably 5 or more.

(硫化物系介在物および酸化物系介在物の数密度)
本発明の鍛鋼材は、上記マクロ偏析部において、酸化物系介在物の数密度が、硫化物系介在物の数密度以上になっていることが好ましい。即ち、酸化物系介在物の数密度が、硫化物系介在物の数密度と同じであるか、酸化物系介在物の数密度が、硫化物系介在物の数密度を超えていることで、割れの起点が減少し、水素トラップ能を向上させることができるため、耐水素割れ性を改善できる。従って、上記酸化物系介在物の数密度/硫化物系介在物の数密度の値は、1.0以上であることが好ましく、より好ましくは1.1以上である。上記酸化物系介在物の数密度/硫化物系介在物の数密度の値の上限は特に限定されない。
(Number density of sulfide inclusions and oxide inclusions)
In the forged steel material of the present invention, the number density of oxide inclusions is preferably equal to or higher than the number density of sulfide inclusions in the macrosegregation portion. That is, the number density of oxide inclusions is the same as the number density of sulfide inclusions, or the number density of oxide inclusions exceeds the number density of sulfide inclusions, the starting point of cracking is reduced, Since hydrogen trap ability can be improved, hydrogen cracking resistance can be improved. Therefore, the value of the number density of oxide inclusions / number density of sulfide inclusions is preferably 1.0 or more, more preferably 1.1 or more. The upper limit of the value of the number density of the oxide inclusions / number density of the sulfide inclusions is not particularly limited.

4.製造方法
(1)組織の制御
本発明の鍛鋼材は、例えば以下のように鋼組織および介在物を制御して製造できる。
4). Manufacturing Method (1) Control of Structure The forged steel material of the present invention can be manufactured by controlling the steel structure and inclusions as follows, for example.

鍛鋼材の金属組織をベイナイト組織とするには、上記成分組成を満足する鋼を、通常の条件(例えば、1000〜1300℃で加熱、加工歪量は任意)で熱間鍛造した後、マクロ偏析部の組織がベイナイト変態するように冷却速度を制御し、ベイナイト変態温度近傍にて保持すればよい。上記成分組成を満足する鋼は、熱間鍛造後、空冷することにより、ベイナイト組織とすることができるが、マクロ偏析部は、ベイナイト変態が未完了でベイナイト面積率が低いベイナイト、マルテンサイト、および残留オーステナイトの混合組織となりやすいため、ベイナイト変態温度近傍(例えば、250〜350℃)で保持することによってマクロ偏析部もベイナイト組織とすることができる。冷却速度、保持温度、保持時間は、マクロ偏析部相当の成分系となる鋼材を予め準備し、連続冷却変態挙動などを調査して設定しておけばよい。   In order to change the metal structure of the forged steel material to a bainite structure, macro segregation is performed after hot forging a steel satisfying the above-described composition under normal conditions (for example, heating at 1000 to 1300 ° C., any amount of processing strain). What is necessary is just to control a cooling rate so that the structure | tissue of a part may carry out a bainite transformation, and to hold | maintain in the bainite transformation temperature vicinity. Steel that satisfies the above component composition can be made into a bainite structure by air cooling after hot forging, but the macrosegregation part is bainite, martensite, and bainite transformation is incomplete and the bainite area ratio is low. Since it tends to be a mixed structure of residual austenite, the macrosegregation part can also be formed into a bainite structure by maintaining it in the vicinity of the bainite transformation temperature (for example, 250 to 350 ° C.). The cooling rate, holding temperature, and holding time may be set by preparing in advance a steel material that is a component system corresponding to the macro-segregation part and investigating the continuous cooling transformation behavior.

上記鍛鋼材のマクロ偏析部における硫化物系介在物および酸化物系介在物の形態と数密度を所定の範囲に制御するには、上記熱間鍛造に供する供試材を製造する際に、溶鋼中のS量およびO量を低減しておけばよい。即ち、鋼中のSは、Mn、Mg、Ca等と結合して硫化物系介在物を形成する。硫化物系介在物のうち、伸展して粗大化した(高アスペクト比化した)MnSが水素割れに対して特に悪影響を及ぼす。そこで硫化物系介在物の粗大化を抑制するには、溶鋼中のS量を低減すればよく、S量を低減することによって硫化物系介在物自体の個数が少なくなり、更に成長も抑制されるため、微細化する(低アスペクト比化する)。   In order to control the form and number density of sulfide inclusions and oxide inclusions in the macrosegregation portion of the forged steel material within a predetermined range, when manufacturing the test material to be subjected to the hot forging, molten steel What is necessary is just to reduce the amount of S and O in the inside. That is, S in steel combines with Mn, Mg, Ca, etc. to form sulfide inclusions. Among sulfide inclusions, MnS that has been expanded and coarsened (high aspect ratio) has a particularly adverse effect on hydrogen cracking. Therefore, in order to suppress the coarsening of sulfide inclusions, it is only necessary to reduce the amount of S in the molten steel. By reducing the amount of S, the number of sulfide inclusions themselves is reduced, and further growth is suppressed. Therefore, it is miniaturized (low aspect ratio).

溶鋼中のS量を低減する方法は特に限定されず、公知の方法を採用でき、例えば、溶製時のスラグ組成を制御する方法が挙げられる。上記スラグ組成は、スラグ中のCaO量とSiO2量に基づいて算出される塩基度(CaO/SiO2)を高めに設定すればよく、塩基度は、例えば、5〜10の範囲に設定することが推奨される。 The method for reducing the amount of S in the molten steel is not particularly limited, and a known method can be adopted. The slag composition may be set higher basicity calculated based on the amount of CaO and SiO 2 content in the slag (CaO / SiO 2), basicity, for example, set in the range of 5 to 10 It is recommended.

また、上記溶鋼とスラグとの反応を一層促進させるには、真空脱ガス処理を実施することが好ましい。真空脱ガス処理を行うことによって、溶鋼中にスラグを積極的に巻込ませることができるため、溶鋼とスラグとの反応を促進でき、溶鋼中のS量を低減できる。   In order to further promote the reaction between the molten steel and the slag, it is preferable to perform a vacuum degassing treatment. By performing the vacuum degassing treatment, slag can be actively wound in the molten steel, so that the reaction between the molten steel and slag can be promoted, and the amount of S in the molten steel can be reduced.

また、マクロ偏析部における硫化物系介在物(例えば、MnSなど)を小さく、低アスペクト比化するために、Caを添加してもよい。Caは、硫化物系介在物を球状化する作用を有している元素である。   Further, Ca may be added in order to reduce sulfide inclusions (for example, MnS) in the macro-segregation part and reduce the aspect ratio. Ca is an element having an action of spheroidizing sulfide inclusions.

また、マクロ偏析部における硫化物系介在物を微細化するには、上記熱間鍛造における最終パスをAc3点+30℃以上の温度で行うか、或いは熱間鍛造後の供試材をAc3点+30℃以上の温度に加熱して保持することが好ましい。Ac3点+30℃以上の温度に加熱することによって、マクロ偏析部に濃化した元素を拡散、均一化できる。 In order to refine the sulfide inclusions in the macro segregation part, the final pass in the hot forging is performed at a temperature of Ac 3 point + 30 ° C. or higher, or the test material after hot forging is Ac 3. It is preferable to heat and hold at a temperature of point + 30 ° C. or higher. By heating to a temperature of Ac 3 point + 30 ° C. or higher, the element concentrated in the macro-segregation part can be diffused and made uniform.

上記Ac3点は、下記式(a)を用いて求めることができる[例えば、「レスリー鉄鋼材料学」丸善、(1985)参照]。下記式中、[ ]は、各元素の含有量(質量%)を示す。なお、各項に示した元素を含有しない場合は、その項がないものとして計算する。
Ac3点(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni] ・・・(a)
The Ac 3 point can be obtained using the following formula (a) [see, for example, “Leslie Steel Material Science” Maruzen, (1985)]. In the following formula, [] indicates the content (% by mass) of each element. In addition, when it does not contain the element shown in each term, it is calculated that there is no term.
Ac 3 points (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] + 700 × [P] + 400 × [Al] + 400 × [Ti] + 104 × [V] −11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15.2 × [Ni] (a)

また、酸化物系介在物の生成量を低減するには、溶鋼中のO量を低減すればよい。即ち、鋼中のOは、Al、Mg等と結合して酸化物系介在物を形成する。酸化物系介在物は、通常、上記硫化物系介在物のように粗大化し難いため、耐水素割れ性に悪影響は及ぼし難いが、酸化物系介在物の生成量が多くなり、互いに凝集すると、上記硫化物系介在物のように水素割れに悪影響を及ぼすようになる。そこで溶鋼中のO量を低減することによって、酸化物系介在物の生成量を低減することが推奨される。   Moreover, what is necessary is just to reduce the amount of O in molten steel, in order to reduce the production amount of an oxide inclusion. That is, O in steel combines with Al, Mg and the like to form oxide inclusions. Oxide inclusions are usually difficult to coarsen like the above sulfide inclusions, so it is difficult to adversely affect hydrogen cracking resistance, but when the amount of oxide inclusions increases and aggregates, Like the sulfide inclusions, the hydrogen cracking is adversely affected. Therefore, it is recommended that the amount of oxide inclusions be reduced by reducing the amount of O in the molten steel.

酸化物系介在物の生成量を低減することによって、酸化物系介在物と硫化物系介在物が複合した介在物の生成量を低減できるため、耐水素割れ性を一層向上できる。硫化物は、酸化物系介在物を生成核としてその周りに形成しやすく、酸化物系介在物と硫化物系介在物が複合した介在物も、水素割れに悪影響を及ぼすからである。   By reducing the production amount of oxide inclusions, the production amount of inclusions in which oxide inclusions and sulfide inclusions are combined can be reduced, so that hydrogen cracking resistance can be further improved. This is because sulfides are easily formed around oxide inclusions as product nuclei, and inclusions in which oxide inclusions and sulfide inclusions are combined adversely affect hydrogen cracking.

上記溶鋼中のO量を低減する方法は特に限定されず、公知の方法を採用でき、例えば、溶製時に真空脱ガスを充分に行なえばよい。   A method for reducing the amount of O in the molten steel is not particularly limited, and a known method can be employed. For example, vacuum degassing may be sufficiently performed during melting.

最終的には、900〜1000℃に加熱し、平均冷却速度を10℃/分以上として焼入れを行い、更に550〜700℃に加熱し、1〜20時間保持した後、室温まで自然冷却(平均冷却速度は、例えば、5℃/分以下)して焼戻しを行えばよい。   Finally, after heating to 900 to 1000 ° C., quenching at an average cooling rate of 10 ° C./min or more, further heating to 550 to 700 ° C. and holding for 1 to 20 hours, natural cooling to room temperature (average) Tempering may be performed at a cooling rate of, for example, 5 ° C./min or less.

本発明の鍛鋼材は、特に、原子力発電機器用として有用に利用される。   The forged steel material of the present invention is particularly useful for nuclear power generation equipment.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合しうる範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

電極アーク加熱機能を備える溶鋼処理設備によって、下記表1に示す成分組成の鋼(残部は鉄および不可避不純物)をそれぞれ溶製し、40トンクラス(全高3m、直径1.5m)の鋳型を用いて鋳造した。なお、溶湯段階での水素量は、ハイドリス測定で3ppmであった。溶製時のスラグ組成は、スラグ中の塩基度(CaO/SiO2)が5〜10となるように調整した。また、溶製時には、真空脱ガス処理も行なった。下記表1には、鋼の成分組成および上記式(1)に基づいて、([Mn]×[S])/([Al]×[O])の値を算出した結果を示す。 Steel with the component composition shown in Table 1 below (with the balance being iron and unavoidable impurities) is melted by a molten steel processing facility equipped with an electrode arc heating function, and a 40 ton class (total height 3 m, diameter 1.5 m) mold is used. And cast. The amount of hydrogen at the molten metal stage was 3 ppm as measured by the Hydris. The slag composition at the time of melting was adjusted so that the basicity (CaO / SiO 2 ) in the slag was 5-10. Moreover, the vacuum degassing process was also performed at the time of melting. Table 1 below shows the results of calculating the value of ([Mn] × [S]) / ([Al] × [O]) based on the steel component composition and the above formula (1).

凝固した鋼塊を1000℃付近で脱型した後、約1200℃まで加熱し、最終パスをAc3点+30℃以上の温度として加工率15%の熱間鍛造を施し、断面直径150mmの鍛造品に仕上げた。得られた鍛造品を室温までファン冷却するか(平均冷却速度は約5℃/分)、徐冷(平均冷却速度は約1℃/分)した後、200℃、300℃、または400℃に加熱し、この温度にて24時間保持した後、室温までゆっくりと自然冷却(平均冷却速度は約0.5℃/分)して鍛鋼材を製造した。 The solidified steel ingot is demolded at around 1000 ° C and then heated to about 1200 ° C. The final pass is hot forged at a processing rate of 15% with a temperature of Ac 3 point + 30 ° C or higher, and a forged product with a cross-section diameter of 150 mm. Finished. The obtained forged product is cooled with a fan to room temperature (average cooling rate is about 5 ° C./min) or gradually cooled (average cooling rate is about 1 ° C./min), and then to 200 ° C., 300 ° C. or 400 ° C. After heating and holding at this temperature for 24 hours, it was naturally cooled slowly to room temperature (average cooling rate was about 0.5 ° C./min) to produce a forged steel material.

室温まで冷却して得られた鍛鋼材について、深さD/4の位置における鋼断面の金属組織を観察した。金属組織の観察は、深さD/4の位置から試料を採取し、残留オーステナイトの変態を防ぐために電解研磨を行った後、EBSP(Electron Back Scatter diffraction Pattern;結晶方位解析)検出器を備えたFE−SEM(Field Emission type Scanning Electron Microscope;電解放出型走査電子顕微鏡)で、金属組織の種類およびその面積率を測定した。なお、EBSPは、試料表面に電子線を入射させ、この時に発生する反射電子から得られた菊池パターンを解析することにより、電子線入射位置の結晶方位を決定するものである。電子線を試料表面に二次元で走査させ、所定のピッチ毎に結晶方位を測定すれば、試料表面の方位分布を測定できる。   About the forged steel obtained by cooling to room temperature, the metal structure of the steel cross section in the position of depth D / 4 was observed. For observation of the metal structure, an EBSP (Electron Back Scatter Diffraction Pattern) detector was provided after taking a sample from a position of depth D / 4, performing electropolishing to prevent transformation of retained austenite. The type of metal structure and its area ratio were measured with an FE-SEM (Field Emission type Scanning Electron Microscope). The EBSP determines the crystal orientation of the electron beam incident position by making an electron beam incident on the sample surface and analyzing the Kikuchi pattern obtained from the reflected electrons generated at this time. The orientation distribution on the sample surface can be measured by scanning the sample surface in two dimensions with the electron beam and measuring the crystal orientation at every predetermined pitch.

上記FE−SEMの鏡筒内にセットした試料について、鋼断面の5cm×5cmの領域において、前述の金属組織観察で比較的明度が高く(白色)写っている箇所のうち、あらかじめ健全部の可能性が高い500μm×500μmの測定範囲にて1μm間隔で電子線を照射し、スクリーン上に投影されるEBSP画像を高感度カメラで撮影し、コンピューターに画像として取込んでコンピューターで画像解析を行い、既知の結晶系を用いたシミュレーションによるパターンと比較することによって、各色相(各組織)をカラーマップした。このようにしてマッピングされた各組織(領域)の面積率を求めた。なお、上記解析に係るハードウェアおよびソフトとして、TexSEM LaboratoriesInc.のOIM(Orientation Imaging MicroscopyTM)システムを用いた。その結果、いずれの鍛鋼材も、鋼断面に対する健全部の割合が90面積%以上であった。 Regarding the sample set in the above-mentioned FE-SEM column, in a 5 cm × 5 cm region of the steel cross section, among the portions where the brightness is relatively high (white) in the metal structure observation described above, a healthy part is possible in advance. The electron beam is irradiated at 1 μm intervals in the high measurement range of 500 μm × 500 μm, the EBSP image projected on the screen is taken with a high-sensitivity camera, captured as a computer image, and image analysis is performed with the computer. Each hue (each texture) was color-mapped by comparing with a pattern obtained by simulation using a known crystal system. The area ratio of each tissue (region) mapped in this way was determined. As the hardware and software related to the above analysis, TexSEM Laboratories Inc. OIM (Orientation Imaging Microscopy ) system. As a result, the ratio of the healthy part with respect to the steel cross section was 90 area% or more in any forged steel material.

また、健全部に対するベイナイト組織の割合(面積率)およびマクロ偏析部に対するベイナイト組織の割合(面積率)を下記表2に示す。   Table 2 below shows the ratio (area ratio) of the bainite structure to the healthy part and the ratio (area ratio) of the bainite structure to the macrosegregation part.

また、上記深さD/4の位置から採取した試料に対し、塩酸水溶液でエッチング処理を行ってマクロ偏析部の分布を観察した。   Further, the sample collected from the position of the depth D / 4 was etched with a hydrochloric acid aqueous solution to observe the distribution of the macrosegregation part.

また、マクロ偏析部を上述した手順で自動EPMAにて観察し、マクロ偏析部に観察される長径が1μm以上の硫化物系介在物または長径が1μm以上の酸化物系介在物について、円相当直径およびアスペクト比を測定し、夫々、平均値を求めた。また、観察視野面積に対する長径が1μm以上の硫化物系介在物の数密度および長径が1μm以上の酸化物系介在物の数密度も算出した。   The macro-segregation part is observed by automatic EPMA according to the procedure described above, and the equivalent circle diameter is determined for sulfide inclusions having a major axis of 1 μm or more observed in the macro-segregation part or oxide inclusions having a major axis of 1 μm or more. And the aspect ratio was measured, and the average value was obtained for each. Further, the number density of sulfide inclusions having a major axis of 1 μm or more with respect to the observation visual field area and the number density of oxide inclusions having a major axis of 1 μm or more were also calculated.

また、マクロ偏析部における硫化物系介在物の数密度に対して、酸化物系介在物の数密度比(酸化物系介在物の数密度/硫化物系介在物の数密度)を算出し、下記表2に併せて示す。   Further, the number density ratio of oxide inclusions (number density of oxide inclusions / number density of sulfide inclusions) is calculated with respect to the number density of sulfide inclusions in the macrosegregation part, and is also shown in Table 2 below.

次に、深さD/4の位置から採取した試料について以下に示す手順で耐水素割れ性を評価した。   Next, the hydrogen cracking resistance was evaluated by the following procedure for the sample collected from the position of depth D / 4.

耐水素割れ性の評価は、水素割れ感受性の比較試験法に基づいて行った。水素割れ感受性の比較試験には、図3に示す装置を用いた。図3中、1は試験片、2は容器、3は試験用水溶液、4は対極(白金電極)、5は電流制御装置、6はクロスヘッド、7は固定台、8はパーソナルコンピューター、9は応力−歪制御装置、を夫々示している。   The evaluation of hydrogen cracking resistance was performed based on a comparative test method for hydrogen cracking sensitivity. The apparatus shown in FIG. 3 was used for the comparative test of hydrogen cracking sensitivity. In FIG. 3, 1 is a test piece, 2 is a container, 3 is a test aqueous solution, 4 is a counter electrode (platinum electrode), 5 is a current control device, 6 is a crosshead, 7 is a fixed base, 8 is a personal computer, 9 is 1 shows a stress-strain control device.

水素割れ感受性の比較試験は、図3に示すように、長さ150mm、両端のつかみ具部分を直径8mmにして長さ15mmにわたってねじを設け、標線間距離を10mmのダンベル状に加工し、中央部分を直径4mmとし、この部分にマクロ偏析部が位置するように作製した試験片1を用いて行った。この試験片1を試験装置に装着し、0.1mol/LのH2SO4+0.01mol/LのKSCNである試験用水溶液3に囲まれるように、前記水溶液中に完全に浸漬させ、電流密度を0.1mA/mm2にて4時間陰極電解して試験片中の水素分布を均一化した。そして、そのままの電流密度を印加、即ち、陰極電解しながらSSRT(低歪み速度試験:一定、もしくは一定範囲の振幅ではなく応力増加型の試験)により、試験片に長軸方向の引張り負荷を与えてその応力(S1)を測定した。このときの試験装置のクロスヘッド6の引張り速度は2×10-3mm/分とした。 As shown in FIG. 3, the hydrogen cracking susceptibility comparison test has a length of 150 mm, the gripping part at both ends is 8 mm in diameter, a screw is provided over a length of 15 mm, and the distance between marked lines is processed into a dumbbell shape with a distance of 10 mm. The test was performed using a test piece 1 having a central portion having a diameter of 4 mm and a macro-segregation portion located in this portion. The test piece 1 is mounted on a test apparatus and completely immersed in the aqueous solution so as to be surrounded by the aqueous test solution 3 which is 0.1 mol / L H 2 SO 4 +0.01 mol / L KSCN. Cathodic electrolysis was performed at a density of 0.1 mA / mm 2 for 4 hours to make the hydrogen distribution in the test piece uniform. Then, applying the current density as it is, that is, applying a tensile load in the long axis direction to the specimen by SSRT (low strain rate test: stress increase type test instead of constant or constant amplitude) while cathodic electrolysis. The stress (S 1 ) was measured. At this time, the tensile speed of the crosshead 6 of the test apparatus was 2 × 10 −3 mm / min.

一方、上記水溶液への浸漬を省略した状態、即ち、大気中で、上記と同じ引張り条件にてSSRT試験を実施し、試験片の破断応力(S0)を測定した。 On the other hand, the SSRT test was carried out in the state where the immersion in the aqueous solution was omitted, that is, in the atmosphere, under the same tensile conditions as described above, and the breaking stress (S 0 ) of the test piece was measured.

そして、以上の各測定値から水素割れ感受性指数(S1/S0)を求め、各鋼材の耐水素割れ性を評価した。結果を表2に示す。本発明では、水素割れ感受性指数(S1/S0)が0.70以上のものを耐水素割れ性に優れると評価した。 Then, a hydrogen cracking sensitivity index (S 1 / S 0) from the above measured values were evaluated hydrogen cracking resistance of the steel. The results are shown in Table 2. In the present invention, a hydrogen cracking susceptibility index (S 1 / S 0 ) of 0.70 or more was evaluated as excellent in hydrogen cracking resistance.

下記表1、表2から次のように考察できる。No.2、3、5、6、8、10〜12、20は、いずれも本発明で規定する要件を満足している例であり、ベイナイト組織で構成されている健全部と、硫化物系介在物および酸化物系介在物の形態と数密度が所定の範囲を満足しているマクロ偏析部で構成されているため、水素割れ感受性指数(S1/S0)が0.70以上となり、耐水素割れ性に優れることが分かる。 The following Table 1 and Table 2 can be considered as follows. No. 2, 3, 5, 6, 8, 10-12, and 20 are examples satisfying the requirements defined in the present invention, and a healthy part composed of a bainite structure and sulfide inclusions And the oxide inclusions and the macrosegregation part in which the number density satisfies the predetermined range, the hydrogen cracking susceptibility index (S 1 / S 0 ) is 0.70 or more, and hydrogen resistance It turns out that it is excellent in cracking property.

一方、No.1、4、7、9、13〜19は、本発明で規定する要件を満足していない例であり、水素割れ感受性指数(S1/S0)が0.70未満となり、耐水素割れ性を改善できていないことが分かる。 On the other hand, no. 1, 4, 7, 9, 13 to 19 are examples that do not satisfy the requirements defined in the present invention, and the hydrogen cracking sensitivity index (S 1 / S 0 ) is less than 0.70, and hydrogen cracking resistance It turns out that it has not improved.

即ち、No.1〜4は、いずれも同じ鋼種Aを用いた例であり、No.2と3は、耐水素割れ性を改善できたが、No.1と4は、ベイナイト組織への変態が不充分であったため、マクロ偏析部におけるベイナイト組織の割合が90面積%未満となり、耐水素割れ性を改善できなかった。また、No.3とNo.4は、鋼種Aを用い、保持温度を400℃とする点は同じであるが、No.3は、熱間鍛造後の冷却速度を小さくしているため、ベイナイト変態領域で保持された状態となり、ベイナイト組織への変態が充分に進行し、耐水素割れ性を改善できたのに対し、No.4は、熱間鍛造後の冷却速度が大きく、ベイナイト組織への変態が不充分であったため、耐水素割れ性を改善できなかった。   That is, no. 1-4 are examples in which the same steel type A is used. Nos. 2 and 3 improved the hydrogen cracking resistance. Since 1 and 4 were insufficiently transformed into a bainite structure, the ratio of the bainite structure in the macro-segregation portion was less than 90 area%, and the hydrogen cracking resistance could not be improved. No. 3 and no. No. 4 is the same in that steel type A is used and the holding temperature is 400 ° C. No. 3, because the cooling rate after hot forging was reduced, it was held in the bainite transformation region, the transformation to the bainite structure proceeded sufficiently, and the hydrogen cracking resistance was improved, No. No. 4 has a high cooling rate after hot forging and insufficient transformation to a bainite structure, and therefore could not improve hydrogen cracking resistance.

No.7〜9は、いずれも同じ鋼種Dを用いた例であり、No.8は、耐水素割れ性を改善できたが、No.7と9は、ベイナイト組織への変態が不充分であったため、マクロ偏析部におけるベイナイト組織の割合が90面積%未満となり、耐水素割れ性を改善できなかった。   No. Nos. 7 to 9 are examples using the same steel type D. No. 8 was able to improve the resistance to hydrogen cracking. 7 and 9 were insufficiently transformed into a bainite structure, so that the ratio of the bainite structure in the macro-segregation portion was less than 90% by area, and the hydrogen cracking resistance could not be improved.

No.13は、Sを過剰に含有する例であり、マクロ偏析部に粗大な硫化物系介在物が多数析出すると共に、平均アスペクト比も大きくなった。また、硫化物系介在物の数密度も高くなった。また、酸化物系介在物の平均アスペクト比も大きくなった。従って、耐水素割れ性を改善できなかった。   No. 13 is an example containing excessive S, and a large number of coarse sulfide inclusions were precipitated in the macro-segregation part, and the average aspect ratio was also increased. In addition, the number density of sulfide inclusions also increased. Moreover, the average aspect ratio of the oxide inclusions also increased. Therefore, the hydrogen cracking resistance could not be improved.

No.14は、Mnを過剰に含有する例であり、マクロ偏析部に粗大な硫化物系介在物が多数析出すると共に、平均アスペクト比も大きくなった。また、硫化物系介在物の数密度も高くなった。また、酸化物系介在物の平均アスペクト比も大きくなった。従って、耐水素割れ性を改善できなかった。   No. No. 14 is an example containing excessive Mn, and a large number of coarse sulfide inclusions were precipitated in the macro-segregation part, and the average aspect ratio was also increased. In addition, the number density of sulfide inclusions also increased. Moreover, the average aspect ratio of the oxide inclusions also increased. Therefore, the hydrogen cracking resistance could not be improved.

No.15は、Oを過剰に含有する例であり、酸化物系介在物(例えば、Al23)が多数析出した。そのため、析出した酸化物系介在物が凝集し、粗大な硫化物系介在物と類似の作用を及ぼしたため、耐水素割れ性を改善できなかった。 No. 15 is an example containing O excessively, and a large number of oxide inclusions (for example, Al 2 O 3 ) were precipitated. For this reason, the precipitated oxide inclusions aggregated and exerted an action similar to that of coarse sulfide inclusions, so that the hydrogen cracking resistance could not be improved.

No.16は、Alを過剰に含有する例であり、マクロ偏析部に粗大な酸化物系介在物が多数析出した。そのため、耐水素割れ性を改善できなかった。   No. No. 16 is an example containing excessive Al, and a large number of coarse oxide inclusions precipitated in the macro-segregation part. Therefore, the hydrogen cracking resistance could not be improved.

No.17〜19は、いずれも同じ鋼種Lを用いた例であり、Sを過剰に含有し、Al含有量が少な過ぎる例である。これらの例は、硫化物系介在物の平均円相当直径、平均アスペクト比、数密度のいずれかが本発明で規定する範囲をはずれたため、耐水素割れ性を改善できなかった。   No. Nos. 17 to 19 are examples using the same steel type L, which is an example that contains S excessively and has too little Al content. In these examples, hydrogen cracking resistance could not be improved because any of the average equivalent circle diameter, average aspect ratio, and number density of the sulfide inclusions was out of the range defined in the present invention.

1 試験片
2 容器
3 試験用水溶液
4 対極(白金電極)
5 電流制御装置
6 クロスヘッド
7 固定台
8 パーソナルコンピューター
9 応力−歪制御装置
1 Test piece 2 Container 3 Test aqueous solution 4 Counter electrode (platinum electrode)
5 Current control device 6 Crosshead 7 Fixed base 8 Personal computer 9 Stress-strain control device

Claims (7)

C :0.15〜0.24%(質量%の意味。成分組成について以下同じ。)、
Si:0.15〜0.3%、
Mn:1〜1.6%、
P :0.015%以下(0%を含まない)、
S :0.0002〜0.010%、
Ni:0.7〜1.1%、
Cr:0.05〜0.3%、
Mo:0.4〜0.6%、
Al:0.015〜0.03%、
O :0.003%以下(0%を含まない)、
N :0.005〜0.015%を含有し、
残部:鉄および不可避不純物からなる鍛鋼材であり、
深さD/4(D:鍛鋼材断面の円相当直径)の位置における鋼断面を5cm×5cmの測定範囲にて観察したときに、ベイナイト組織で構成される健全部と残部(以下、「マクロ偏析部」と記載する)で構成され、
前記鋼断面に対する前記健全部の割合が90面積%以上で、
前記健全部に対するベイナイト組織の割合が90面積%以上で、
前記マクロ偏析部に対するベイナイト組織の割合が90面積%以上であり、
前記マクロ偏析部における長径が1μm以上の硫化物系介在物は、平均円相当直径が200μm以下、平均アスペクト比が50以下、数密度が300個/cm2以下で、
前記マクロ偏析部における長径が1μm以上の酸化物系介在物は、平均円相当直径が100μm以下、平均アスペクト比が20以下、数密度が300個/cm2以下であることを特徴とする耐水素割れ性に優れた鍛鋼材。
C: 0.15-0.24% (meaning mass%; the same applies to the component composition hereinafter),
Si: 0.15-0.3%,
Mn: 1 to 1.6%
P: 0.015% or less (excluding 0%),
S: 0.0002 to 0.010%,
Ni: 0.7-1.1%
Cr: 0.05 to 0.3%,
Mo: 0.4 to 0.6%,
Al: 0.015-0.03%,
O: 0.003% or less (excluding 0%),
N: 0.005 to 0.015% is contained,
The rest: a forged steel material consisting of iron and inevitable impurities,
When the steel cross section at a position of depth D / 4 (D: equivalent circle diameter of the cross section of the forged steel material) was observed in a measurement range of 5 cm × 5 cm, a healthy part and a remaining part (hereinafter, “macro” Segregation part ”),
The ratio of the healthy part to the steel cross section is 90 area% or more,
The ratio of the bainite structure to the healthy part is 90 area% or more,
The ratio of the bainite structure to the macro-segregation part is 90 area% or more,
The sulfide inclusions having a major axis of 1 μm or more in the macrosegregation part have an average equivalent circle diameter of 200 μm or less, an average aspect ratio of 50 or less, and a number density of 300 pieces / cm 2 or less.
The oxide inclusions having a major axis of 1 μm or more in the macrosegregation part have an average equivalent circle diameter of 100 μm or less, an average aspect ratio of 20 or less, and a number density of 300 / cm 2 or less. Forged steel with excellent crackability.
前記マクロ偏析部において、前記長径が1μm以上の酸化物系介在物の数密度が、前記長径が1μm以上の硫化物系介在物の数密度以上である請求項1に記載の鍛鋼材。   2. The forged steel material according to claim 1, wherein, in the macrosegregation portion, the number density of oxide inclusions having a major axis of 1 μm or more is greater than or equal to the number density of sulfide inclusions having a major axis of 1 μm or more. 更に他の元素として、
Cu:0.1%以下(0%を含まない)
を含有する請求項1または2に記載の鍛鋼材。
As other elements,
Cu: 0.1% or less (excluding 0%)
The forged steel material according to claim 1 or 2, comprising:
更に他の元素として、
V:0.05%以下(0%を含まない)
を含有する請求項1〜3のいずれかに記載の鍛鋼材。
As other elements,
V: 0.05% or less (excluding 0%)
The forged steel material in any one of Claims 1-3 containing.
更に他の元素として、
Ca:0.01%以下(0%を含まない)
を含有する請求項1〜4のいずれかに記載の鍛鋼材。
As other elements,
Ca: 0.01% or less (excluding 0%)
The forged steel material in any one of Claims 1-4 containing.
更に他の元素として、
Ti、Zr、およびHfよりなる群から選択されるいずれか1種以上の元素:合計で0.01%以下(0%を含まない)
を含有する請求項1〜5のいずれかに記載の鍛鋼材。
As other elements,
One or more elements selected from the group consisting of Ti, Zr, and Hf: 0.01% or less in total (excluding 0%)
The forged steel material according to claim 1, comprising:
原子力発電機器用である請求項1〜6のいずれかに記載の鍛鋼材。   It is for nuclear power generation equipment, The forged steel material in any one of Claims 1-6.
JP2012123746A 2012-05-30 2012-05-30 Forged steel with excellent resistance to hydrogen cracking Expired - Fee Related JP5856540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123746A JP5856540B2 (en) 2012-05-30 2012-05-30 Forged steel with excellent resistance to hydrogen cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123746A JP5856540B2 (en) 2012-05-30 2012-05-30 Forged steel with excellent resistance to hydrogen cracking

Publications (2)

Publication Number Publication Date
JP2013249497A true JP2013249497A (en) 2013-12-12
JP5856540B2 JP5856540B2 (en) 2016-02-09

Family

ID=49848487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123746A Expired - Fee Related JP5856540B2 (en) 2012-05-30 2012-05-30 Forged steel with excellent resistance to hydrogen cracking

Country Status (1)

Country Link
JP (1) JP5856540B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506508A (en) * 2014-09-26 2016-04-20 鞍钢股份有限公司 Steel used for third-generation nuclear power safety injection tank base plate and manufacturing method of steel
JP2018012855A (en) * 2016-07-20 2018-01-25 新日鐵住金株式会社 Low alloy steel material, low alloy steel tube and container and method for producing the container
CN114959414A (en) * 2021-02-23 2022-08-30 天津重型装备工程研究有限公司 Large forging for pressure container and smelting method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162758A (en) * 1984-02-01 1985-08-24 Kawasaki Steel Corp High-toughness steel for welded structure having very large thickness
JPS6353243A (en) * 1986-08-22 1988-03-07 Mitsubishi Heavy Ind Ltd High-strength forged steel for nuclear pressure vessel
JPS6369944A (en) * 1986-09-09 1988-03-30 Mitsubishi Heavy Ind Ltd Forged steel
JPH0277561A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel plate excellent in electron beam welding characteristic
JP2011149099A (en) * 2009-12-24 2011-08-04 Kobe Steel Ltd Steel forging and assembling type crankshaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162758A (en) * 1984-02-01 1985-08-24 Kawasaki Steel Corp High-toughness steel for welded structure having very large thickness
JPS6353243A (en) * 1986-08-22 1988-03-07 Mitsubishi Heavy Ind Ltd High-strength forged steel for nuclear pressure vessel
JPS6369944A (en) * 1986-09-09 1988-03-30 Mitsubishi Heavy Ind Ltd Forged steel
JPH0277561A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel plate excellent in electron beam welding characteristic
JP2011149099A (en) * 2009-12-24 2011-08-04 Kobe Steel Ltd Steel forging and assembling type crankshaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506508A (en) * 2014-09-26 2016-04-20 鞍钢股份有限公司 Steel used for third-generation nuclear power safety injection tank base plate and manufacturing method of steel
JP2018012855A (en) * 2016-07-20 2018-01-25 新日鐵住金株式会社 Low alloy steel material, low alloy steel tube and container and method for producing the container
CN114959414A (en) * 2021-02-23 2022-08-30 天津重型装备工程研究有限公司 Large forging for pressure container and smelting method thereof

Also Published As

Publication number Publication date
JP5856540B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP6926772B2 (en) Steel plate
JP6828638B2 (en) Steel plate and steel plate manufacturing method
JP5599751B2 (en) High carbon steel wire rod with excellent drawing workability and fatigue properties after drawing
JP5854831B2 (en) Abrasion resistant steel material having excellent fatigue characteristics and method for producing the same
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
KR101886030B1 (en) Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
JP4515427B2 (en) Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method
JP6409598B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
KR101883588B1 (en) Steel h-beam and method for manufacturing same
JP2007092164A (en) Steel wire rod having excellent drawability and fatigue properties, and manufacturing method of the same
JP6926773B2 (en) Steel plate and steel plate manufacturing method
JP5741379B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP2009197267A (en) Steel member having excellent toughness in weld heat affected zone, and method for producing the same
WO2015186701A1 (en) Steel wire material
CA2951799A1 (en) Wire rod for steel wire, and steel wire
JP5452253B2 (en) Forged steel and crankshaft
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP5870019B2 (en) Forged steel products with excellent resistance to hydrogen cracking
JP5856540B2 (en) Forged steel with excellent resistance to hydrogen cracking
KR20200062303A (en) Low-temperature nickel-containing steel
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP5443331B2 (en) Forged steel and assembled crankshaft
JP6720842B2 (en) Steel sheet pile
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP6897450B2 (en) High-strength thick steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151211

R150 Certificate of patent or registration of utility model

Ref document number: 5856540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees