JP2011149099A - Steel forging and assembling type crankshaft - Google Patents

Steel forging and assembling type crankshaft Download PDF

Info

Publication number
JP2011149099A
JP2011149099A JP2010288481A JP2010288481A JP2011149099A JP 2011149099 A JP2011149099 A JP 2011149099A JP 2010288481 A JP2010288481 A JP 2010288481A JP 2010288481 A JP2010288481 A JP 2010288481A JP 2011149099 A JP2011149099 A JP 2011149099A
Authority
JP
Japan
Prior art keywords
pearlite
less
forged steel
ferrite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010288481A
Other languages
Japanese (ja)
Other versions
JP5443331B2 (en
Inventor
Wataru Urushibara
亘 漆原
Junichiro Kinugasa
潤一郎 衣笠
Noriyuki Fujitsuna
宣之 藤綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010288481A priority Critical patent/JP5443331B2/en
Publication of JP2011149099A publication Critical patent/JP2011149099A/en
Application granted granted Critical
Publication of JP5443331B2 publication Critical patent/JP5443331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the hydrogen crack resistance of a steel forging made of carbon steel by structural designing without depending on a means of adding alloy elements. <P>SOLUTION: The steel forging has a composition comprising 0.15 to 0.5% C, ≤0.6% (not including 0%) Si, 0.5 to 1.5% Mn, 0.1 to 2.5% Ni, 0.1 to 2.5% Cr, 0.01 to 0.7% Mo, 0.0002 to 0.01% S and ≤0.002% (not including 0%) O, and the balance iron with inevitable impurities, and in which the steel cross-section in the position of the depth D/4(D: the circle equivalent diameter of the cross-section of the steel forging) is composed of a sound part composed of a ferrite structure or a ferrite-pearlite mixed structure, and the balance (hereinafter, referred to as a macro-segregated part), the ratio of the sound part to the steel cross-section is ≥90 area%, and (the average grain size of the pearlite)/(the average grain size of the ferrite) in the macro-segregated part is ≥3.0. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、機械、船舶、発電機等の産業分野で広く利用されている鍛鋼品、特にクランクジャーナル及びクランクスロー、並びにこれらから得られる組立型クランク軸に関するものである。   The present invention relates to forged steel products widely used in industrial fields such as machinery, ships, and generators, and more particularly to crank journals and crank throws, and assembled crankshafts obtained therefrom.

船舶や発電機等に使用されているディーゼル機関の駆動源の伝達部材であるクランク軸には、一体型クランク軸と組立型クランク軸がある。その中でも大型のディーゼル機関には組立型クランク軸が用いられ、そのクランクジャーナル及びクランクスローには、主に鍛鋼品が用いられる。低コストで、且つ同製品に必要な500MPa以上の引張強度と鍛造性を得るために、従来では、低Cで、Mn、Cr等を微量添加した炭素鋼を用い、焼入れまたは焼ならし処理を行い、焼戻し処理を行って、フェライト−パーライト混合組織を主体とする鍛鋼品が用いられている。本来、引張強度が800MPaにも満たない炭素鋼では水素割れは生じにくいとされているが、熱処理等の温度低下時に常温付近の温度にて水素割れが発生することがある。一般に、水素割れは、高強度化および高疲労度化に伴って発生しやすくなるとされている。そのため高疲労強度の低合金鋼では、鋼の精錬技術、熱履歴、成分組成の各面から様々な技術が提案されている。精錬技術の面からは、溶鋼の精錬時における水素量の上限値を規制し、それを超えるときには脱水素処理することが実操業にて実施されている。   There are two types of crankshafts, which are transmission members for driving sources of diesel engines used in ships, generators, and the like. Among them, assembly type crankshafts are used for large diesel engines, and forged steel products are mainly used for crank journals and crank throws. In order to obtain the tensile strength and forgeability of 500 MPa or more necessary for the product at a low cost, conventionally, carbon steel with a low amount of Mn, Cr, etc. added at low C is used for quenching or normalizing treatment. Forged steel products mainly composed of a ferrite-pearlite mixed structure are used after tempering. Originally, it is said that hydrogen cracking is unlikely to occur in carbon steel having a tensile strength of less than 800 MPa, but hydrogen cracking may occur at a temperature near room temperature when the temperature is lowered during heat treatment or the like. In general, hydrogen cracking is likely to occur with increasing strength and fatigue. For this reason, various technologies have been proposed for low alloy steels with high fatigue strength in terms of steel refining technology, thermal history, and component composition. In terms of refining technology, the upper limit of the amount of hydrogen at the time of refining molten steel is regulated, and dehydrogenation treatment is carried out in actual operation when it exceeds the upper limit.

例えば、特許文献1のように、二次精錬にて介在物を低減させ、RH真空脱ガス時、取鍋と脱ガス槽間にて溶鋼を還流して介在物を除去する方法が提案されている。熱履歴の面からは、例えば高温に長時間保持することによって、水素を拡散・逃散させ、水素含有量を低減することが実作業的に実施される。しかしながら本技術では特に大型鍛鋼品の場合、高温での長時間保持による含有量の低下速度が遅く、時間およびコストがかかることに比べて、水素割れの防止効果は少ない。また大型鍛鋼品において水素割れの生じる合金元素のマクロ偏析部における水素の濃化を制御することはできない。   For example, as in Patent Document 1, a method is proposed in which inclusions are reduced by secondary refining, and at the time of RH vacuum degassing, the inclusions are removed by refluxing molten steel between a ladle and a degassing tank. Yes. From the viewpoint of thermal history, for example, by holding at a high temperature for a long time, hydrogen is diffused and escaped, and the hydrogen content is actually reduced. However, in the present technology, particularly in the case of large forged steel products, the effect of preventing hydrogen cracking is small as compared with the fact that the rate of content decrease due to long-time holding at high temperatures is slow, and time and cost are required. In addition, hydrogen concentration cannot be controlled in the macro-segregation part of alloy elements in which hydrogen cracking occurs in large forged steel products.

成分組成の面からは、特許文献2のように、鋼中のS含有量を増加させることにより、MnS系介在物を鋼中に導入し、水素の濃化を防ぐことにより、耐水素割れ性を向上させる方法が提案されている。しかしながら本技術では粗大なMnS系介在物は水素トラップサイトとならず逆に水素割れ起点になることが懸念される。また炭素鋼ではS含有量の増加は耐水素割れ性の向上にはあまり繋がらない。   From the aspect of component composition, as disclosed in Patent Document 2, by increasing the S content in the steel, MnS inclusions are introduced into the steel to prevent hydrogen concentration, thereby preventing hydrogen cracking. A method for improving the above has been proposed. However, in this technique, there is a concern that coarse MnS-based inclusions do not become hydrogen trap sites but instead become hydrogen cracking origins. In carbon steel, an increase in the S content does not lead to an improvement in hydrogen cracking resistance.

また特許文献3では、鋼中のTi、Zr、Hf、Nb含有量を増加させ、20μm以上の介在物の個数、円形度、1〜10μmの介在物の個数を規定することが提案されている。その結果、Ti、Zr、Hf、Nb化合物を鋼中に導入し、水素の濃化を防ぐことにより、耐水素割れ性が向上する。なお鋼線の分野における水素脆化の抑制法として、腐食等の外的要因による水素の侵入の抑制、又は焼戻しによる析出炭窒化物を利用した水素拡散の抑制が知られている。しかしこれらは、冷却中又は常温放置中のように、腐食が生ずる場合よりも短時間に発生する水素割れとは水素の挙動において相異する。   Patent Document 3 proposes to increase the content of Ti, Zr, Hf, and Nb in the steel to regulate the number of inclusions of 20 μm or more, the degree of circularity, and the number of inclusions of 1 to 10 μm. . As a result, Ti, Zr, Hf, and Nb compounds are introduced into the steel to prevent hydrogen concentration, thereby improving hydrogen cracking resistance. In addition, as a method of suppressing hydrogen embrittlement in the field of steel wires, suppression of hydrogen intrusion due to external factors such as corrosion or suppression of hydrogen diffusion using precipitated carbonitride by tempering is known. However, these differ in hydrogen behavior from hydrogen cracking that occurs in a shorter time than when corrosion occurs, such as during cooling or standing at room temperature.

特開2003−183722号公報JP 2003-183722 A 特開2003−268438号公報JP 2003-268438 A 特開2006−336092号公報JP 2006-336092 A

上記のような脱水素処理は、処理時間およびコストの点で、水素量の低減化に限界がある。一般的には1〜数ppmレベルの水素量で製造管理しているが、水素割れは微量の水素で発生するため、この程度の管理では水素割れを完全に防止できない。特に大型製品の場合、高温での長時間保持による水素含有量の低下速度は遅く、時間およびコストがかかることに比べて、水素割れの防止効果は少ない。またS濃度の増加による手段は、炭素鋼では、耐水素割れ性の向上にあまりつながらない。またTi,Zr,Hf,Nb濃度を増加させる手段では、確かに耐水素割れ性が向上するが、これらの濃度増加は製品のコストアップを招く割には、コストアップに見合った耐水素割れ性の効果がでない。   The dehydrogenation treatment as described above is limited in reducing the amount of hydrogen in terms of treatment time and cost. In general, production is controlled with a hydrogen amount of 1 to several ppm level. However, since hydrogen cracking occurs with a small amount of hydrogen, hydrogen cracking cannot be completely prevented with this level of control. In particular, in the case of large products, the rate of decrease in hydrogen content due to long-time holding at high temperatures is slow, and the effect of preventing hydrogen cracking is small compared to the time and cost. Further, the means by increasing the S concentration does not lead to much improvement in hydrogen cracking resistance in carbon steel. In addition, the means for increasing the Ti, Zr, Hf, and Nb concentrations certainly improve the hydrogen cracking resistance, but the increase in these concentrations increases the cost of the product, but the hydrogen cracking resistance commensurate with the cost increase. Is not effective.

本発明は上記のような事情に着目してなされたものであって、合金成分添加という手段によらずに、組織形態の制御によって炭素鋼からなる鍛鋼品の耐水素割れ性を向上させることを目的とする。   The present invention has been made paying attention to the above-mentioned circumstances, and it is intended to improve the hydrogen cracking resistance of a forged steel product made of carbon steel by controlling the form of the structure without using the means of adding alloy components. Objective.

上記目的を達成し得た本発明の鍛鋼品とは、
C :0.15〜0.5%(質量%の意味。成分組成について以下同じ。)、
Si:0.6%以下(0%を含まない)、
Mn:0.5〜1.5%、
Ni:0.1〜2.5%、
Cr:0.1〜2.5%、
Mo:0.01〜0.7%、
S :0.0002〜0.01%、
O :0.002%以下(0%を含まない)、
を含有し、残部が鉄及び不可避的不純物からなり、
深さD/4(D:鍛鋼品断面の円相当径)の位置における鋼断面は、フェライト組織またはフェライト−パーライト混合組織で構成される健全部と残部(以下、「マクロ偏析部」と記載する)で構成され、前記鋼断面に対する前記健全部の割合が90面積%以上であり、前記マクロ偏析部における(パーライトの平均粒径)/(フェライトの平均粒径)が3.0以上である鍛鋼品である。
The forged steel product of the present invention that has achieved the above object is:
C: 0.15 to 0.5% (meaning mass%; the same applies to the component composition),
Si: 0.6% or less (excluding 0%),
Mn: 0.5 to 1.5%
Ni: 0.1 to 2.5%,
Cr: 0.1 to 2.5%,
Mo: 0.01 to 0.7%,
S: 0.0002 to 0.01%
O: 0.002% or less (excluding 0%),
And the balance consists of iron and inevitable impurities,
The steel cross section at the position of depth D / 4 (D: equivalent circle diameter of the cross section of the forged steel product) is described as a healthy part and a remaining part (hereinafter referred to as “macro-segregation part”) composed of a ferrite structure or a ferrite-pearlite mixed structure. ), And the ratio of the healthy part to the steel cross section is 90 area% or more, and (pearlite average particle diameter) / (ferrite average particle diameter) in the macrosegregation part is 3.0 or more. It is a product.

前記マクロ偏析部における(パーライトの平均粒径)/(フェライトの平均粒径)が3.5以上であり、さらに、パーライト中のセメンタイト間隔が0.30μm以上であることが好ましい。   It is preferable that (average particle diameter of pearlite) / (average particle diameter of ferrite) in the macrosegregation part is 3.5 or more, and further, the cementite interval in the pearlite is 0.30 μm or more.

本発明の鍛鋼品は、さらにCu:0.5%以下(0%を含まない)を含有していてもよい。   The forged steel product of the present invention may further contain Cu: 0.5% or less (excluding 0%).

本発明の鍛鋼品は、さらにV:0.3%以下(0%を含まない)を含有していてもよい。   The forged steel product of the present invention may further contain V: 0.3% or less (excluding 0%).

本発明の鍛鋼品は、さらにCa:0.1%以下(0%を含まない)を含有していてもよい。   The forged steel product of the present invention may further contain Ca: 0.1% or less (excluding 0%).

本発明の鍛鋼品は、さらにTi、Zr、Hfよりなる群から選択されるいずれか1種以上:合計0.1%以下(0%を含まない)を含有していてもよい。   The forged steel product of the present invention may further contain at least one selected from the group consisting of Ti, Zr, and Hf: a total of 0.1% or less (excluding 0%).

上記鍛鋼品において、深さD/4(D:鍛鋼品断面の円相当径)の位置における前記マクロ偏析部で観察される介在物は、いずれも長径が20μm以下であり、かつ、長径1〜10μmの介在物の密度が5〜500個/cmであることが推奨される。 In the forged steel product, the inclusions observed at the macrosegregated portion at the position of depth D / 4 (D: equivalent circle diameter of the cross section of the forged steel product) all have a major axis of 20 μm or less and a major axis of 1 to It is recommended that the density of inclusions of 10 μm is 5 to 500 / cm 2 .

本発明の鍛鋼品は、例えばクランクジャーナルまたはクランクスローとして用いられる。また、本発明は、前記クランクジャーナルまたは前記クランクスローを有する組立型クランク軸を提供するものである。   The forged steel product of the present invention is used, for example, as a crank journal or a crank throw. The present invention also provides an assembled crankshaft having the crank journal or the crank throw.

本発明の鍛鋼品は、マクロ偏析部における(パーライトの平均粒径)/(フェライトの平均粒径)を3.0以上とすること、すなわち、水素割れの原因であるフェライト粒を相対的に小さくすることにより、複数のフェライト粒とパーライト粒の間を伝播する水素割れの原因を抑制できるため、耐水素割れ性が向上した鍛鋼品を提供することができる。   In the forged steel product of the present invention, (average particle size of pearlite) / (average particle size of ferrite) in the macro-segregation part is 3.0 or more, that is, the ferrite particles causing hydrogen cracking are relatively small. By doing so, the cause of hydrogen cracking propagating between a plurality of ferrite grains and pearlite grains can be suppressed, so that a forged steel product having improved hydrogen cracking resistance can be provided.

鍛鋼品の断面に現れるマクロ偏析部の写真である。It is a photograph of the macrosegregation part which appears in the section of a forged steel product. 横軸にパーライト粒径比、縦軸に鍛鋼品に割れが発生するまでにかかった時間(相対値)をとった模式的なグラフである。4 is a schematic graph in which the horizontal axis represents the pearlite particle size ratio, and the vertical axis represents the time (relative value) taken until cracking occurred in the forged steel product. (a)は、鍛鋼品の健全部のSEM画像であり、(b)は、鍛鋼品のマクロ偏析部のSEM画像である。(A) is the SEM image of the healthy part of a forged steel product, (b) is the SEM image of the macrosegregation part of a forged steel product. (a)は、従来の鍛鋼品のマクロ偏析部のSEM画像、(b)はその一部模式図である。(A) is the SEM image of the macrosegregation part of the conventional forged steel goods, (b) is the one part schematic diagram. (a)は、本発明の鍛鋼品のマクロ偏析部のSEM画像、(b)はその一部模式図である。(A) is the SEM image of the macrosegregation part of the forged steel product of this invention, (b) is the one part schematic diagram. 本発明の鍛鋼品を製造するための熱処理例である。It is an example of the heat processing for manufacturing the forged steel product of this invention.

本発明者らは、水素割れの原因を解明することを目標として、鋼組織が鍛鋼品(特に大型鍛鋼品:20t以上の重さの鍛鋼品を意味する)の水素割れに及ぼす影響を、水素割れ発生の起点や冷却中の水素挙動との相関から検討を進めた。その結果、鍛鋼品(特に大型鍛鋼品)では連鋳材と異なり、合金元素のマクロ偏析部が存在し、マクロ偏析部に水素が濃化することによって偏析部を起点として水素割れが生じやすいことを見出した。この現象は以下のように生じると推定される。   With the goal of elucidating the cause of hydrogen cracking, the inventors have investigated the effect of the steel structure on hydrogen cracking of forged steel products (especially large forged products: meaning forged steel products weighing 20 tons or more). The investigation proceeded from the correlation between the crack initiation point and the hydrogen behavior during cooling. As a result, forged steel products (especially large forged steel products) have a macro-segregation part of alloying elements unlike continuous cast materials, and hydrogen cracking tends to occur from the segregation part due to the concentration of hydrogen in the macro-segregation part. I found. This phenomenon is estimated to occur as follows.

すなわち、冷却時のフェライト変態後に、鋼組織はフェライト−オーステナイトの混合状態となる。フェライトとオーステナイトとでは水素固溶度及び水素拡散速度に差異があるため、オーステナイト部に水素が濃化する。そしてオーステナイトがフェライト、パーライトまたはベイナイトに変態する際に、変態に伴う歪み部に水素が濃化して、その結果、水素割れが生じると推定される。   That is, after the ferrite transformation during cooling, the steel structure becomes a mixed state of ferrite and austenite. Since ferrite and austenite are different in hydrogen solid solubility and hydrogen diffusion rate, hydrogen is concentrated in the austenite part. When austenite is transformed into ferrite, pearlite, or bainite, hydrogen is concentrated in the strained portion accompanying the transformation, and as a result, it is estimated that hydrogen cracking occurs.

参考のため、図1に鍛鋼品の断面に現れるマクロ偏析部の写真を示す。図1の左側部は、顕微鏡を使わずに観察できる筋状のマクロ偏析部を示すものであり、図1の右側部は、一つのマクロ偏析部に着目した顕微鏡写真である。筋状のマクロ偏析部以外に白っぽく写っている部分は、健全部である。   For reference, FIG. 1 shows a photograph of a macrosegregation portion appearing in a cross section of a forged steel product. The left part of FIG. 1 shows a streak-like macro segregation part that can be observed without using a microscope, and the right part of FIG. 1 is a micrograph focusing on one macro segregation part. The part that appears whitish other than the streak-like macro-segregation part is a healthy part.

このマクロ偏析部の組織形態は一般的な炭素鋼ではパーライト組織を主体とし、パーライト組織間の粒界三重点に存在する初析フェライトを起点として割れが発生し、発生した割れはパーライト粒、またはフェライト粒とパーライト粒の粒界を伝播する。   The structure of the macro-segregation part is mainly composed of pearlite structure in general carbon steel, and cracks are generated starting from proeutectoid ferrite existing at the grain boundary triple point between pearlite structures. Propagates the grain boundary between ferrite grains and pearlite grains.

したがって、耐水素割れ性を改善するためには、これらマクロ偏析部の生成を防ぐことが有効な手段の一つと考えられるが、特に大型鍛鋼品の場合は、鋼材の全ての部分で冷却速度を均一にすることが困難であるため、マクロ偏析部の抑制にも限界がある。   Therefore, in order to improve hydrogen cracking resistance, it is considered that one of the effective means is to prevent the formation of these macro-segregation parts, but especially in the case of large forged steel products, the cooling rate is reduced in all parts of the steel material. Since it is difficult to make it uniform, there is a limit to the suppression of the macro segregation part.

一般的な鍛鋼品(特に大型の鍛鋼品)の場合には冷却速度が遅い(1〜2℃/分程度)ため、パーライトを主体とした組織となる場合が多い。そこで本発明者は、マクロ偏析部(特にパーライト組織を主とした偏析部)の組織形態を制御することにより、マクロ偏析部における水素の濃化を抑制し、割れの発生および進展(伝播)を抑制することによって、優れた耐水素割れ性を有する鍛鋼品が得られること見出した。   In general forged steel products (particularly large forged steel products), the cooling rate is slow (about 1 to 2 ° C./min), and thus the structure is mainly composed of pearlite. Therefore, the present inventor controls the formation of macro segregation part (particularly segregation part mainly composed of pearlite structure) to suppress the hydrogen concentration in the macro segregation part, and to generate and propagate (propagation) cracks. It has been found that a forged steel product having excellent hydrogen cracking resistance can be obtained by suppressing it.

本発明に係わる耐水素割れ性に優れた鍛鋼品とは、所定の化学成分を有し、深さD/4(D:鍛鋼品の断面の円相当径)の位置における鋼断面において観察される組織が、フェライト組織またはフェライト−パーライト混合組織が90面積%以上であり、残部のマクロ偏析部(パーライトが主要組織)において、パーライト平均粒径/フェライト平均粒径の比が3.0以上とすることにより、マクロ偏析部における歪み部への水素濃化を防ぎ、良好な水素割れ性を確保できるようにした。   A forged steel product excellent in hydrogen cracking resistance according to the present invention has a predetermined chemical component and is observed in a steel cross section at a position of depth D / 4 (D: equivalent circle diameter of cross section of forged steel product). The structure is 90 area% or more of ferrite structure or ferrite-pearlite mixed structure, and the ratio of pearlite average particle diameter / ferrite average particle diameter is 3.0 or more in the remaining macrosegregation part (perlite is the main structure). As a result, hydrogen concentration at the strained portion in the macro segregation portion is prevented, and good hydrogen cracking property can be secured.

さらに、割れがより伝播しにくい組織として、パーライト中のセメンタイト間隔が0.30μm以上であることが好ましい。   Furthermore, it is preferable that the cementite interval in pearlite is 0.30 μm or more as a structure in which cracks are more difficult to propagate.

以下、本発明の基本的構成について順を追って説明する。まずは、本発明の鍛鋼品として適切な化学成分の含有量について説明する。   Hereinafter, the basic configuration of the present invention will be described in order. First, the content of chemical components suitable for the forged steel product of the present invention will be described.

1.鍛鋼品の化学成分
C:0.15〜0.5%
Cは鍛鋼品の強度向上に寄与する元素である。鍛鋼品に充分な強度を確保するには、Cを0.15%以上、好ましくは0.20%以上、より好ましくは0.30%以上含有させることが望ましい。しかしC量が多過ぎると鍛鋼品の靭性を劣化させるので、0.5%以下、好ましくは0.45%以下、より好ましくは0.42%以下に抑える。
1. Chemical composition of forged steel C: 0.15 to 0.5%
C is an element that contributes to improving the strength of forged steel products. In order to ensure sufficient strength for the forged steel product, it is desirable to contain C in an amount of 0.15% or more, preferably 0.20% or more, more preferably 0.30% or more. However, if the amount of C is too large, the toughness of the forged steel product is deteriorated. Therefore, it is suppressed to 0.5% or less, preferably 0.45% or less, more preferably 0.42% or less.

Si:0.6%以下(0%を含まない)
Siは脱酸元素であるとともに、鍛鋼品の強度向上元素として作用するため、含有することが許容される。しかしSi量が多過ぎると鍛鋼品の逆V偏析が著しくなり、粗大な介在物が生成されるので、0.6%以下、好ましくは0.45%以下、さらに好ましくは0.35%以下(0%を含まない)とする。
Si: 0.6% or less (excluding 0%)
Since Si is a deoxidizing element and acts as an element for improving the strength of forged steel products, it is allowed to be contained. However, if the amount of Si is too large, the reverse V segregation of the forged steel product becomes remarkable and coarse inclusions are generated. Therefore, it is 0.6% or less, preferably 0.45% or less, more preferably 0.35% or less ( 0% not included).

Mn:0.5〜1.5%
Mnは鍛鋼品の焼入れ性を高めると共に、強度向上に寄与する元素であり、充分な強度と焼入れ性を確保するには0.5%以上、好ましくは0.7%以上、より好ましくは0.9%以上含有させる。なお、Mnはベイナイト形成を促進する元素であること、およびMn量が多すぎると逆V偏析を助長するので1.5%以下、好ましくは1.45%以下、より好ましくは1.4%以下とする。
Mn: 0.5 to 1.5%
Mn is an element that enhances the hardenability of the forged steel product and contributes to improving the strength. In order to ensure sufficient strength and hardenability, 0.5% or more, preferably 0.7% or more, more preferably 0.8%. Add 9% or more. Note that Mn is an element that promotes bainite formation, and if the amount of Mn is too large, it promotes reverse V segregation, so 1.5% or less, preferably 1.45% or less, more preferably 1.4% or less. And

Ni:0.1〜2.5%
Niは鍛鋼品の靭性向上元素として有用な元素であり、0.1%以上、好ましくは0.15%以上含有させる。一方Ni量が過剰になるとコストアップとなるので、2.5%以下、好ましくは2.0%以下、より好ましくは1.5%以下とする。
Ni: 0.1 to 2.5%
Ni is an element useful as an element for improving the toughness of forged steel products, and is contained in an amount of 0.1% or more, preferably 0.15% or more. On the other hand, if the amount of Ni becomes excessive, the cost increases, so it is 2.5% or less, preferably 2.0% or less, more preferably 1.5% or less.

Cr:0.1〜2.5%
Crは鍛鋼品の焼入れ性を高めると共に靭性を向上させる元素であり、それらの作用は0.1%以上、好ましくは0.2%以上含有させることによって有効に発揮される。なおCrはベイナイト形成を促進する元素であり、またCr量が多過ぎると逆V偏析を助長して粗大介在物が形成するので、2.5%以下、好ましくは2.3%以下とすることが望ましい。
Cr: 0.1 to 2.5%
Cr is an element that enhances the hardenability of the forged steel product and improves the toughness. Their action is effectively exhibited by containing 0.1% or more, preferably 0.2% or more. Note that Cr is an element that promotes the formation of bainite, and if the amount of Cr is too large, reverse V segregation is promoted and coarse inclusions are formed, so 2.5% or less, preferably 2.3% or less. Is desirable.

Mo:0.01〜0.7%
Moは鍛鋼品の焼入れ性、強度および靭性の向上に有効に作用する元素であり、それらの作用を有効に発揮させるには0.01%以上、好ましくは0.05%以上含有させることが望ましい。しかしMoは平衡分配係数が小さいので、Mo量が過剰になるとミクロ偏析(正常偏析)を生じ易くなる。またMo量が過剰になるとコストアップにつながる。そこでMo量は0.7%以下、好ましくは0.5%以下とする。
Mo: 0.01 to 0.7%
Mo is an element that effectively acts to improve the hardenability, strength, and toughness of the forged steel product, and in order to exert these effects effectively, it is desirable to contain 0.01% or more, preferably 0.05% or more. . However, since Mo has a small equilibrium distribution coefficient, when the amount of Mo becomes excessive, microsegregation (normal segregation) is likely to occur. Moreover, when the amount of Mo becomes excessive, it leads to a cost increase. Therefore, the Mo amount is 0.7% or less, preferably 0.5% or less.

S:0.0002〜0.01%
Sは鋼中のMn、Mg、Ca等と結合し、逆V偏析を助長してS系介在物を形成する。細長い形状をしたS系介在物は長径が大きな粗大介在物となり易く、水素割れの起点となり得る。従って粗大なS系介在物を減少させるために、S含有量は0.01%以下、好ましくは0.0015%以下とする。一方マクロ偏析部組織中の微細なS系介在物は、多数の応力場を形成し、余剰水素を捕捉しやすく、マクロ偏析部組織の耐水素割れ性を改善する効果がある。このような微細S系介在物を確保するために、S含有量を、0.0002%以上、好ましくは0.0004%以上、より好ましくは0.0006%以上とする。
S: 0.0002 to 0.01%
S combines with Mn, Mg, Ca, etc. in the steel and promotes reverse V segregation to form S-based inclusions. S-type inclusions having an elongated shape are likely to be coarse inclusions having a large major axis and can be the starting point of hydrogen cracking. Therefore, in order to reduce coarse S-based inclusions, the S content is set to 0.01% or less, preferably 0.0015% or less. On the other hand, the fine S-based inclusions in the macro-segregation part structure form a large number of stress fields, easily capture surplus hydrogen, and have an effect of improving the hydrogen cracking resistance of the macro-segregation part structure. In order to ensure such fine S-based inclusions, the S content is set to 0.0002% or more, preferably 0.0004% or more, more preferably 0.0006% or more.

O:0.002%以下(0%を含まない)
O(酸素)はSiO、Al、MgO、CaO等の酸化物系介在物を形成する元素である。Oは極力低減することによって粗大介在物を抑制し、微細な介在物を析出させることができる。そのためO量を0.002%以下、好ましくは0.001%以下とする。但し工業生産上、O(酸素)を0%とすることは困難である。
O: 0.002% or less (excluding 0%)
O (oxygen) is an element that forms oxide inclusions such as SiO 2 , Al 2 O 3 , MgO, and CaO. By reducing O as much as possible, coarse inclusions can be suppressed and fine inclusions can be precipitated. Therefore, the amount of O is made 0.002% or less, preferably 0.001% or less. However, it is difficult to make O (oxygen) 0% in industrial production.

本発明で使用される鍛鋼品(鋼)の基本成分は上記の通りであり、残部成分は実質的に鉄であるが、不可避的不純物の混入はもちろん許容される。さらに本発明の鍛鋼品には、前記本発明の効果に悪影響を与えない範囲で、更に他の元素を積極的に含有させても良い。   The basic components of the forged steel product (steel) used in the present invention are as described above, and the remaining component is substantially iron, but it is of course acceptable to mix inevitable impurities. Further, the forged steel product of the present invention may further contain other elements in a range that does not adversely affect the effects of the present invention.

Cu:0.5%以下(0%を含まない)
Cuは鍛鋼品の靭性向上及び組織微細化の作用を有し、これらの作用を発揮させるために鋼に含有させても良い。この様な作用を有効に発揮させるには、例えば0.01%以上、Cuを含有させることが推奨される。しかしCu量が過剰になるとコストアップとなるので0.5%以下、好ましくは0.4%以下とする(0%を含まない)。
Cu: 0.5% or less (excluding 0%)
Cu has the effect of improving the toughness of the forged steel product and the refinement of the structure, and may be contained in the steel in order to exert these effects. In order to effectively exhibit such an action, for example, it is recommended to contain Cu by 0.01% or more. However, if the amount of Cu becomes excessive, the cost increases, so it is 0.5% or less, preferably 0.4% or less (excluding 0%).

V:0.3%以下(0%を含まない)
Vは鍛鋼品の析出強化及び組織微細化の作用を有し、高強度化に有用な元素である。この様な作用を有効に発揮させるには、Vを0.01%以上、好ましくは0.02%以上含有させることが推奨される。但しVを過剰に含有させても上記作用は飽和し経済的に無駄であるので、その量を0.3%以下、好ましくは0.15%以下とすることが望ましい(0%を含まない)。
V: 0.3% or less (excluding 0%)
V has the effect of strengthening precipitation and refining the structure of forged steel products, and is an element useful for increasing the strength. In order to effectively exhibit such an action, it is recommended to contain V by 0.01% or more, preferably 0.02% or more. However, even if V is contained excessively, the above action is saturated and economically wasteful, so the amount is desirably 0.3% or less, preferably 0.15% or less (excluding 0%). .

Ca:0.1%以下(0%を含まない)
Caは鍛鋼品における硫化物の延伸性を抑制できる作用を有し、この有効に作用を発揮させるために例えば、0.0001%以上、鋼に含有させても良い。しかしCa量が過剰になってもこの作用は飽和するため、0.1%以下とする(0%を含まない)。
Ca: 0.1% or less (excluding 0%)
Ca has an action capable of suppressing the stretchability of sulfide in a forged steel product, and in order to exert this action effectively, for example, 0.0001% or more may be contained in the steel. However, even if the amount of Ca is excessive, this action is saturated, so the content is made 0.1% or less (excluding 0%).

Ti,Zr,Hf:合計0.1%以下(0%を含まない)
Ti,Zr,Hfは、鍛鋼品の靭性向上及び組織微細化の作用を有し、これらの作用を有効に発揮させるためにいずれか1種以上を鋼に含有させても良い。これらの作用を発揮させるため、例えば、0.001%以上、鋼に含有させても良い。しかしTi,Zr,Hf量が過剰になると粗大な炭化物が析出するため、合計で0.1%以下、好ましくは0.01%以下とする(0%を含まない)。
Ti, Zr, Hf: 0.1% or less in total (excluding 0%)
Ti, Zr, and Hf have the effect | action of the toughness improvement and structure refinement | miniaturization of a forged steel product, In order to exhibit these effect | actions effectively, you may contain any 1 or more types in steel. In order to exert these effects, for example, 0.001% or more may be contained in the steel. However, when the Ti, Zr, and Hf contents become excessive, coarse carbides are precipitated, so the total amount is 0.1% or less, preferably 0.01% or less (excluding 0%).

積極添加が許容される他の元素の例としては、製鋼工程における脱酸および鋼の耐割れ性にも有効であるAl(例えば、0.001%以上、0.01%以下)、焼入れ性改善効果を有するB、固溶強化元素または析出強化元素であるW、Nb、Ta、Ce、Zr及びTeなどが挙げられ、これらを単独で又は2種以上を組み合わせて含有させることができる。これらの添加元素は、例えば合計で1%程度以下とすることが望ましい。なお、後述するように、微細介在物を導入するために、不可避的不純物であるNも制御することが望ましい。   Examples of other elements that are allowed to be positively added are Al (for example, 0.001% or more and 0.01% or less), which is effective for deoxidation and cracking resistance of steel in the steelmaking process, and hardenability improvement. Examples include B having an effect, W, Nb, Ta, Ce, Zr, and Te, which are solid solution strengthening elements or precipitation strengthening elements, and these can be contained alone or in combination of two or more. These additive elements are preferably about 1% or less in total. As will be described later, it is desirable to control N which is an inevitable impurity in order to introduce fine inclusions.

2.鍛鋼品の組織分率
(1)基本的組織
深さD/4の位置における鋼断面で観察される鋼組織は、鍛鋼品に必要な引張強度と必要な鍛造性を得るため、フェライト組織またはフェライトおよびパーライト混合組織が90面積%以上(好ましくは95面積%以上、さらに好ましくは97面積%以上)である。フェライト組織またはフェライトおよびパーライト混合組織に該当する部分では、水素割れが発生することは少ないため、以下この部分を「健全部」と記載する。残部は、「偏析部」と記載し、詳しく後述するが、パーライト組織主体の組織である。その他の組織として、残留オーステナイト組織などが存在しても良い。本発明では、深さD/4は、鍛鋼品の側表面からの距離をいうものとする。上記「D」は、鍛鋼品断面(鍛鋼品の長手方向に垂直な断面)の円相当径(断面積と同じ面積を有する円の直径)を意味する。したがって、鍛鋼品が円柱状のものであれば、Dは該円の直径である。
2. Forged steel structure fraction (1) Basic structure The steel structure observed in the steel cross section at a depth of D / 4 has a ferrite structure or ferrite in order to obtain the necessary tensile strength and required forgeability of the forged steel product. And the pearlite mixed structure is 90 area% or more (preferably 95 area% or more, more preferably 97 area% or more). In the portion corresponding to the ferrite structure or the ferrite and pearlite mixed structure, hydrogen cracking is rarely generated. Therefore, this portion is hereinafter referred to as “sound part”. The remaining portion is described as a “segregation portion” and is a structure mainly composed of a pearlite structure, which will be described in detail later. As another structure, a retained austenite structure or the like may exist. In the present invention, the depth D / 4 refers to the distance from the side surface of the forged steel product. The “D” means a circle equivalent diameter (a diameter of a circle having the same area as the cross-sectional area) of a cross section of the forged steel product (a cross section perpendicular to the longitudinal direction of the forged steel product). Therefore, if the forged steel product is cylindrical, D is the diameter of the circle.

(2)健全部とマクロ偏析部との判別
健全部とマクロ偏析部とを判別する方法について説明する。まず、鋼断面の5cm×5cmの領域を写真撮影し、グレースケールのデータとして電子機器に取り込む。マクロ偏析部はパーライト組織を主体(パーライト組織が概ね70面積%超)であるため、健全部(パーライト組織が概ね50〜70面積%)よりも暗めに写る(上述の図1参照)。このことを利用して、{(健全部の平均明度)+(マクロ偏析部の平均明度)}/2を閾値とし、画像処理により、この閾値よりも明度の高い(白い)部分を健全部と定め、逆に閾値よりも明度の低い(黒い)部分は、マクロ偏析部と定める。このような手法により、健全部とマクロ偏析部との区別をして鋼断面に対する健全部の割合(面積%)を求める。
(2) Discrimination between healthy part and macro-segregation part A method for discriminating between a healthy part and a macro-segregation part will be described. First, a 5 cm × 5 cm region of the steel cross section is photographed and imported to electronic equipment as grayscale data. Since the macro-segregation part is mainly composed of a pearlite structure (the pearlite structure is approximately over 70% by area), the macro segregation part appears darker than the healthy part (the pearlite structure is approximately 50 to 70% by area) (see FIG. 1 described above). Using this, {(average lightness of healthy part) + (average lightness of macro-segregation part)} / 2 is set as a threshold value, and (white) part having a lightness higher than this threshold value is determined as a healthy part by image processing. On the contrary, the part (black) whose brightness is lower than the threshold value is defined as a macro-segregation part. By such a method, the healthy part and the macro-segregated part are distinguished from each other, and the ratio (area%) of the healthy part to the steel cross section is obtained.

以上の手法を用いて別の観察領域(5cm×5cm)において上記の画像処理を行い、これら2視野の平均値を最終的な健全部の割合(面積%)とする。本発明では、鍛鋼品に必要な引張強度と必要な鍛造性を得るため、健全部(フェライト組織またはフェライトおよびパーライト混合組織)の割合を上述のように90面積%以上とする。100面積%から健全部の割合(面積%)を差し引いた値をマクロ偏析部の割合(面積%)とする。   Using the above method, the above-described image processing is performed in another observation region (5 cm × 5 cm), and the average value of these two fields of view is used as the final healthy part ratio (area%). In the present invention, in order to obtain the necessary tensile strength and necessary forgeability for forged steel products, the proportion of the healthy part (ferrite structure or ferrite and pearlite mixed structure) is set to 90 area% or more as described above. A value obtained by subtracting the percentage of healthy part (area%) from 100 area% is defined as the percentage of macro segregated part (area%).

健全部およびマクロ偏析部の平均明度:
健全部の平均明度は、次のようにして定める。まず、5cm×5cmの領域で比較的明度が高く(白く)写っている領域が健全部であることを確認するため、後述のFE−SEMを用いて組織観察を行う。組織が健全部(フェライト組織またはフェライトおよびパーライト混合組織)であること確認した後、健全部の任意の10点の明度を平均した値を平均明度とする。マクロ偏析部についても同様に、マクロ偏析部の任意の10点の明度を平均した値をマクロ偏析部の平均明度とする。
Average brightness of healthy and macrosegregated areas:
The average brightness of the healthy part is determined as follows. First, in order to confirm that a region having a relatively high brightness (white) in a 5 cm × 5 cm region is a healthy part, tissue observation is performed using an FE-SEM described later. After confirming that the structure is a healthy part (ferrite structure or ferrite and pearlite mixed structure), a value obtained by averaging the lightness of any 10 points of the healthy part is defined as the average brightness. Similarly, for the macro segregation part, the average brightness of the macro segregation part is a value obtained by averaging the lightness values of any 10 points of the macro segregation part.

3.マクロ偏析部の組織構造および組織の粒径
鍛鋼品の水素割れは主にマクロ偏析部で発生する。割れはマクロ偏析部の界面を経由せず、マクロ偏析部内を経由することが多い。水素割れの発生・伝播は偏析部の組織に依存していると推定されるため、水素割れを抑制するためには、マクロ偏析部の組織構造を制御することが重要である。水素割れの発生・伝播を詳細に観察すると、マクロ偏析部の組織形態がパーライト組織を主体とし、該パーライト組織の粒界三重点(三つのパーライト粒の境界となる部分)にフェライト(所謂初析フェライト)が生成する組織形態を有する場合、初析フェライトとパーライト粒の界面に変態で水素割れが発生し、それぞれの結晶粒界に沿って水素割れが伝播していると推察される。このような推察から、パーライトを主体とした組織における水素割れの伝播を抑制するには、マクロ偏析部における(パーライトの平均粒径)/(フェライトの平均粒径)の比の値(以下、「パーライト粒径比」と記載する)を制御する必要がある。なお、平均粒径の意味は後述する。
3. Structure and grain size of macro segregation zone Hydrogen cracking of forged steel products mainly occurs at the macro segregation zone. In many cases, the crack does not pass through the interface of the macro-segregation part but passes through the macro-segregation part. Since the occurrence and propagation of hydrogen cracking is presumed to depend on the structure of the segregation part, it is important to control the structure of the macrosegregation part in order to suppress hydrogen cracking. When the occurrence and propagation of hydrogen cracking is observed in detail, the structure of the macrosegregation part is mainly composed of pearlite structure, and ferrite (so-called pro-eutectoid) is formed at the grain boundary triple point of the pearlite structure (the boundary between the three pearlite grains). It is inferred that hydrogen cracks occur due to transformation at the interface between pro-eutectoid ferrite and pearlite grains, and hydrogen cracks propagate along the respective crystal grain boundaries. From such inference, in order to suppress the propagation of hydrogen cracking in the structure mainly composed of pearlite, the value of the ratio of (average particle size of pearlite) / (average particle size of ferrite) in the macro segregation part (hereinafter referred to as “ Need to be controlled). The meaning of the average particle diameter will be described later.

パーライト組織の粒界三重点に粗大な初析フェライトが生成した場合、パーライト組織とフェライト組織の組織間の硬度差が生じる粒界三重点は歪みが濃化しやすくなる。それに加えてフェライト組織とパーライト組織では水素拡散係数が異なるため、粒界三重点に水素が濃化しやすくなる。これらが重なり合うことで粒界三重点において水素割れが発生しやすく、発生した割れはフェライト組織とパーライト組織の組織間の硬度差の生じるこれら組織の粒界に沿って進展することが推察される。   When coarse pro-eutectoid ferrite is generated at the grain boundary triple point of the pearlite structure, the strain at the grain boundary triple point at which the hardness difference between the pearlite structure and the ferrite structure is generated tends to be concentrated. In addition, since the hydrogen diffusion coefficient differs between the ferrite structure and the pearlite structure, hydrogen tends to concentrate at the grain boundary triple points. By overlapping these, hydrogen cracks are likely to occur at the grain boundary triple points, and it is assumed that the generated cracks propagate along the grain boundaries of these structures where there is a difference in hardness between the ferrite structure and the pearlite structure.

本発明者らは、従来のようにマクロ偏析部におけるパーライト粒径比が約2以上3.0未満の場合、パーライト組織中に粗大な初析フェライトが生成した組織形態となり、パーライト粒の粒界三重点に存在する初析フェライトサイズが大きくなること、また初析フェライトどうしが連結することにより発生した割れはパーライト粒の粒界を伝播しやすくなることから水素の濃化や割れ発生が促進される傾向を見出した。そのためマクロ偏析部におけるパーライト粒径比を3.0以上に制御し、粗大な初析フェライトの生成を抑制する。   When the pearlite particle size ratio in the macro-segregation part is about 2 or more and less than 3.0 as in the past, the present inventors have a structure form in which coarse pro-eutectoid ferrite is generated in the pearlite structure, and the grain boundaries of the pearlite grains Because the size of proeutectoid ferrite existing at the triple point increases, and cracks that occur when the proeutectoid ferrites are connected to each other easily propagate through the grain boundaries of pearlite grains, hydrogen concentration and cracking are promoted. I found a tendency. Therefore, the pearlite particle size ratio in the macro segregation part is controlled to 3.0 or more to suppress the formation of coarse pro-eutectoid ferrite.

パーライト粒径比は、好ましくは3.2以上、より好ましくは3.5以上とする。パーライト粒径比の上限は特に定めないが、20程度で実質ほとんどパーライト主体の組織形態となり、粒界三重点に析出した初析フェライトの影響が無くなるため、20を上限とする。10を上限としてもよい。   The pearlite particle size ratio is preferably 3.2 or more, more preferably 3.5 or more. The upper limit of the pearlite particle size ratio is not particularly defined. However, when it is about 20, the structure form is substantially pearlite mainly, and the influence of proeutectoid ferrite precipitated at the grain boundary triple points is eliminated. 10 may be the upper limit.

なお、マクロ偏析部に粗大なパーライト組織が存在すると割れ伝播しやすくなるため、また粗大なパーライト粒が存在する場合、組織の直線性がより高くなり、割れが伝播しやすくなると考えられるため、粗大なパーライト粒の生成を抑制することが望ましい。そのため、パーライト組織の最大粒径を、100μm以下に制御することが望ましい。好ましくは70μm以下、より好ましくは50μm以下とすることが望ましい。さらに、パーライト組織粒径にバラツキが高い場合、特に割れが伝播しやすくなると考えられるため、(パーライトの最大粒径)と(パーライトの平均粒径)の比が3.0以下であることが望ましい。   It should be noted that if a coarse pearlite structure is present in the macro-segregation part, crack propagation is likely to occur, and if coarse pearlite grains are present, the linearity of the structure is considered to be higher and cracks are likely to propagate. It is desirable to suppress the formation of pearlite grains. Therefore, it is desirable to control the maximum particle size of the pearlite structure to 100 μm or less. The thickness is preferably 70 μm or less, more preferably 50 μm or less. Furthermore, since it is considered that cracks are likely to propagate particularly when the pearlite structure particle size is high, the ratio of (maximum pearlite particle size) to (average particle size of pearlite) is preferably 3.0 or less. .

前述したように、発生した割れはフェライト組織とパーライト組織の界面あるいはパーライト粒界を伝播する。セメンタイト間隔が狭いパーライトの場合、一般に硬度も高いことから、粒界三重点での歪みも大きい。さらには、セメンタイト間隔が狭いパーライトでは水素拡散係数が低下することから、パーライト中にも水素が濃化しやすく、フェライト組織とパーライト組織の界面あるいはパーライト粒界での割れ伝播が助長される傾向にある。割れ伝播を抑制するためには、パーライト中のセメンタイト間隔が0.30μm以上であることが好ましい。より好ましくは0.4μm以上であることが望ましい。   As described above, the generated crack propagates at the interface between the ferrite structure and the pearlite structure or the pearlite grain boundary. In the case of pearlite with a narrow cementite interval, since the hardness is generally high, the strain at the grain boundary triple point is also large. Furthermore, since the hydrogen diffusion coefficient of pearlite with a narrow cementite interval decreases, hydrogen tends to concentrate in the pearlite and tends to promote crack propagation at the interface between the ferrite structure and the pearlite structure or at the pearlite grain boundary. . In order to suppress crack propagation, the cementite spacing in the pearlite is preferably 0.30 μm or more. More preferably, it is 0.4 μm or more.

図2は、横軸にパーライト粒径比、縦軸に鍛鋼品に割れが発生するまでにかかった時間(相対値)をとった模式的なグラフである。図2のように、パーライト粒径比がおよそ1の部分は、従来または本発明の鍛鋼品の健全部を表す部分であり、パーライト粒径比が2.5付近の部分は、従来の鍛鋼品のマクロ偏析部を示し、3.0以上の部分は、本発明の鍛鋼品のマクロ偏析部を示している。   FIG. 2 is a schematic graph in which the horizontal axis represents the pearlite particle size ratio and the vertical axis represents the time (relative value) taken until cracking occurred in the forged steel product. As shown in FIG. 2, the portion having a pearlite particle size ratio of about 1 is a portion representing a healthy portion of a conventional or forged steel product of the present invention, and the portion having a pearlite particle size ratio of about 2.5 is a conventional forged steel product. The part of 3.0 or more shows the macro-segregation part of the forged steel product of the present invention.

図2から、従来の鍛鋼品のマクロ偏析部は、耐水素割れ性が劣るが、パーライトの平均粒径に対してフェライトの平均粒径を相対的に小さくすることにより(パーライト粒径比を大きくすることにより)、マクロ偏析部であっても健全部と同等の耐水素割れ性が発揮されることがわかる。   From FIG. 2, the macrosegregation part of the conventional forged steel product is inferior in hydrogen cracking resistance, but by making the average particle size of ferrite relatively small with respect to the average particle size of pearlite (the pearlite particle size ratio is increased). Thus, it can be seen that even the macro-segregation part exhibits the same hydrogen cracking resistance as the healthy part.

なお、参考に、図3(a)は、鍛鋼品の健全部のSEM画像であり、(b)は、鍛鋼品のマクロ偏析部のSEM画像である。図4(a)は、従来の鍛鋼品のマクロ偏析部のSEM画像、(b)はその一部模式図、図5(a)は、本発明の鍛鋼品のマクロ偏析部のSEM画像、(b)はその一部模式図である。   For reference, FIG. 3A is an SEM image of a healthy portion of a forged steel product, and FIG. 3B is an SEM image of a macro-segregated portion of the forged steel product. 4A is an SEM image of a macro segregation part of a conventional forged steel product, FIG. 4B is a schematic diagram of a part thereof, FIG. 5A is an SEM image of a macro segregation part of the forged steel product of the present invention, b) is a partial schematic view thereof.

4.介在物
マクロ偏析部の組織中の粗大介在物は、水素割れの起点や伝播経路となって、耐水素割れ性に悪影響を及ぼす。長径が20μmを超える粗大介在物が存在すると、上記した結晶粒径の大小による影響よりも、その介在物と鋼組織との界面で水素割れの影響が大きくなる。そこで、マクロ鋼断面の2mm×2mmの視野内で観察される最長介在物の長径を好ましくは20μm以下、より好ましくは15μm以下に制御することが推奨される。
4). Inclusions Coarse inclusions in the structure of the macro-segregation part serve as starting points and propagation paths for hydrogen cracking and adversely affect hydrogen cracking resistance. When coarse inclusions having a major axis exceeding 20 μm are present, the influence of hydrogen cracking at the interface between the inclusions and the steel structure becomes larger than the influence due to the size of the crystal grain size described above. Accordingly, it is recommended that the longest inclusion observed in the 2 mm × 2 mm field of view of the macro steel cross section be controlled to preferably 20 μm or less, more preferably 15 μm or less.

逆に長径が1〜10μmである微細介在物がマクロ偏析部組織中に存在すると、多数の応力場が形成され、固溶限を超えた余剰水素を捕捉しやすく、歪み部への水素濃化を抑制できるため、耐水素割れ性が改善される。そこでマクロ偏析部の組織中の長径1〜10μmの介在物の密度を、5個/cm以上、好ましくは10個/cm以上、より好ましくは20個/cm以上とする。一方、微細な介在物の密度が過剰になると、鍛鋼品の靭性等の機械的特性に悪影響を及ぼすため、500個/cm以下、好ましくは200個/cm以下、より好ましくは100個/cm以下とする。なお長径が1μm未満の微細介在物も耐水素割れ性を向上させる作用を有するが、測定効率を向上させるために、長径が1μm未満の微細介在物は考慮対象から除外した。 Conversely, when fine inclusions with a major axis of 1 to 10 μm are present in the macrosegregation structure, a large number of stress fields are formed, and it is easy to capture surplus hydrogen exceeding the solid solubility limit, and hydrogen concentration in the strained part Therefore, hydrogen cracking resistance is improved. Therefore, the density of inclusions having a major axis of 1 to 10 μm in the structure of the macrosegregation part is 5 pieces / cm 2 or more, preferably 10 pieces / cm 2 or more, more preferably 20 pieces / cm 2 or more. On the other hand, when the density of the fine inclusions is excessive, it adversely affects mechanical properties such as toughness of the forged steel product, and therefore is 500 pieces / cm 2 or less, preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less. Fine inclusions with a major axis of less than 1 μm also have the effect of improving hydrogen cracking resistance. However, in order to improve measurement efficiency, fine inclusions with a major axis of less than 1 μm were excluded from consideration.

上記介在物の種類は限定されず、例えばS系介在物;Ti系介在物;Al、S、Ca、Mg及びMn等の酸化物系介在物;などが挙げられる。本発明における最長介在物の長径および長径1〜10μmの介在物の密度は、表面から深さD/4(D:鍛鋼品の円相当径)の位置で観察される値である。またこれらの値は、下記実施例で示す方法によって測定できる。   The kind of the inclusion is not limited, and examples thereof include S-based inclusions; Ti-based inclusions; oxide-based inclusions such as Al, S, Ca, Mg, and Mn; In the present invention, the longest inclusion and the density of inclusions having a longest diameter of 1 to 10 μm are values observed at a position of depth D / 4 (D: equivalent circle diameter of forged steel) from the surface. These values can be measured by the methods shown in the following examples.

5.製造方法
(1)組織の制御
本発明の鍛鋼品は、例えば以下のように鋼組織および介在物を制御して製造することができる。鋼組織の制御方法として、(A)フェライト−パーライト混合組織を90面積%以上とするため、および、(B)パーライト粒径比を3.0以上とするため、Ac点以上の温度から焼入れまたは焼ならし等の熱処理工程と、製品形状への成形工程(例えば熱間鍛造または冷間鍛造)とを含む基本工程を1回または2〜5回繰り返すことによってオーステナイト粒径を小さくでき、その結果パーライト組織の結晶粒径を微細化できるとともに、パーライト組織粒径のバラツキを低減でき、さらには、パーライト中のセメンタイト間隔を大きくできる効果もある。また、上記の基本工程の回数を増やすにつれてパーライト粒径比が大きくなる。なお、フェライト−パーライト混合組織を得ることだけであれば、Ac〜Ac点(オーステナイト−フェライト二相温度域)への加熱で足りるが本発明の要件を満たさない。
5. Manufacturing Method (1) Structure Control The forged steel product of the present invention can be manufactured by controlling the steel structure and inclusions as follows, for example. As a method of controlling the steel structure, (A) in order to make the ferrite-pearlite mixed structure 90 area% or more, and (B) to make the pearlite particle size ratio 3.0 or more, quenching from a temperature of Ac 3 points or more. Alternatively, the austenite grain size can be reduced by repeating a basic process including a heat treatment process such as normalization and a molding process into a product shape (for example, hot forging or cold forging) once or 2 to 5 times. As a result, the crystal grain size of the pearlite structure can be reduced, the variation of the pearlite structure grain size can be reduced, and the cementite interval in the pearlite can be increased. Further, the pearlite particle size ratio increases as the number of basic steps is increased. If only a ferrite-pearlite mixed structure is obtained, heating to Ac 1 to Ac 3 points (austenite-ferrite two-phase temperature range) is sufficient, but the requirements of the present invention are not satisfied.

オーステナイト粒の微細化のためには、前記の成形工程を高加工率で行うことが望ましい。また上記成形工程は、焼入れまたは焼ならし等の熱処理中に行ってもパーライト組織の結晶粒径を微細化できる。図6は、本発明の鍛鋼品を製造するための熱処理例であり、上記基本工程を2回行った場合の例を示すものである。   In order to refine the austenite grains, it is desirable to perform the molding process at a high processing rate. Further, the crystal grain size of the pearlite structure can be refined even if the molding step is performed during heat treatment such as quenching or normalization. FIG. 6 is an example of heat treatment for producing the forged steel product of the present invention, and shows an example in which the above basic process is performed twice.

上記熱処理工程の冷却工程では、(A)フェライト組織またはフェライト−パーライト混合組織からオーステナイト組織に水素を拡散させる(すなわちフェライト組織またはフェライト−パーライト混合組織の水素量を低減させる)ため、および、(B)マクロ偏析部の割合を10面積%未満とするため、Ac点以上から連続冷却変態曲線のFs点(フェライト変態開始温度)からPs点(パーライト変態開始温度)の間を通るように自然冷却(5℃/分以下)する。自然冷却のように冷却が遅いことで、パーライト中のセメンタイト間隔を大きくできるが、その効果はMn、Cr、Mo、Vの合金成分が少ない方が高い。セメンタイト間隔を0.30μm以上とするためには、Mn≦1.4%、Cr≦2.3%、Mo≦0.5%、V≦0.15%であることが必要である。 In the cooling step of the heat treatment step, (A) hydrogen is diffused from the ferrite structure or ferrite-pearlite mixed structure to the austenite structure (that is, the amount of hydrogen in the ferrite structure or ferrite-pearlite mixed structure is reduced), and (B ) In order to make the ratio of the macrosegregation part less than 10% by area, natural cooling is performed so that it passes from Ac 3 point or more to Fs point (ferrite transformation start temperature) to Ps point (pearlite transformation start temperature) of the continuous cooling transformation curve. (5 ° C./min or less). Slow cooling like natural cooling can increase the cementite spacing in the pearlite, but the effect is higher when there are fewer alloy components of Mn, Cr, Mo, V. In order to make the cementite interval 0.30 μm or more, it is necessary that Mn ≦ 1.4%, Cr ≦ 2.3%, Mo ≦ 0.5%, and V ≦ 0.15%.

以上のような熱処理後、最終的には鍛鋼品の均質化を例えば600℃〜900℃で1時間〜20時間行い、その後、焼戻処理を行う。   After the heat treatment as described above, the forged steel product is finally homogenized at, for example, 600 ° C. to 900 ° C. for 1 hour to 20 hours, and then tempered.

以上のような熱処理は、表面から深さD/4付近で温度制御を行えば良いが、大型鋼塊ではこの位置での温度実測は困難である。そのため例えば表面温度を基準に温度制御して鍛鋼品を製造し、その組織観察の結果をフィードバックして、温度制御を適宜実施すればよい。   In the heat treatment as described above, the temperature may be controlled in the vicinity of a depth D / 4 from the surface, but it is difficult to measure the temperature at this position in a large steel ingot. Therefore, for example, a forged steel product may be manufactured by controlling the temperature based on the surface temperature, and the temperature control may be appropriately performed by feeding back the result of the structure observation.

(2)介在物の制御
本発明において、介在物を制御する方法は問わないが、本発明の成分範囲とすること、特にSi、Cr、S、O量を制御することが重要である。また水素割れを防止するために、微細な介在物を形成する元素を積極的に添加し、凝固時に晶析出する介在物を増加させると良いが、その添加量は、粗大介在物が形成されない程度の量に抑制することが望ましい。
(2) Control of Inclusions In the present invention, there is no limitation on the method of controlling inclusions, but it is important to control the amounts of Si, Cr, S, and O in the component range of the present invention. In order to prevent hydrogen cracking, it is desirable to actively add elements that form fine inclusions and increase the inclusions that crystallize during solidification, but the amount added is such that coarse inclusions are not formed. It is desirable to suppress to the amount.

さらには以下のような方法で、S系介在物、Ti系介在物の制御を行うと良い。例えばS系介在物を球状化させる効果のあるCaを添加することによって、長径の小さいCaS介在物の存在比率を増大させて、S系介在物の平均サイズを小さくし、微細介在物の数を増大させることができる。またTiを添加して析出物を形成する場合、Tiの多くは鋼中のNと結合し、窒化物となる。従って鋼中のN量に応じてTi添加量を制御すれば、Ti系介在物のサイズを制御できる。なおこれら介在物は、パーライト組織を主とした偏析部だけでなく、フェライト組織およびパーライト組織(すなわち鍛鋼品全体)に存在させても良い。しかし鍛鋼品の機械的特性を考慮した場合、フェライトまたはパーライト組織中の介在物は少ない方が良い。   Furthermore, it is good to control S type inclusions and Ti type inclusions by the following method. For example, by adding Ca that has the effect of spheroidizing S-based inclusions, the abundance ratio of CaS inclusions with a small major axis is increased, the average size of S-based inclusions is decreased, and the number of fine inclusions is increased. be able to. In addition, when Ti is added to form a precipitate, most of Ti is combined with N in the steel to become a nitride. Therefore, the size of Ti inclusions can be controlled by controlling the amount of Ti added according to the amount of N in the steel. These inclusions may be present not only in the segregated portion mainly composed of the pearlite structure, but also in the ferrite structure and the pearlite structure (that is, the entire forged steel product). However, when considering the mechanical properties of the forged steel product, it is better to have less inclusions in the ferrite or pearlite structure.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合しうる範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

(予備試験片による評価)
まず、真空誘導熔解にて表1に記載のA〜Nの化学成分を有するインゴットを150kg溶製した。次いで凝固した鋼塊を脱型した後、約1200℃まで加熱して熱間鍛造を施し断面直径100mm程度の鍛造材に仕上げた。熱間鍛造は鋼塊本体をプレス機により伸ばした後、専用工具を用いて丸断面に成形することにより行った。
(Evaluation with preliminary specimen)
First, 150 kg of an ingot having chemical components A to N shown in Table 1 was melted by vacuum induction melting. Next, the solidified steel ingot was demolded, and then heated to about 1200 ° C. to perform hot forging to finish a forged material having a cross-sectional diameter of about 100 mm. Hot forging was performed by extending the steel ingot body with a press and then forming it into a round cross section using a dedicated tool.

次いでこの鋼塊を50℃/時で870℃(記載鋼全てのAc点以上の温度である)まで加熱して2時間保持し、その後室温まで空冷(1〜2℃/分)する基本工程を1回、または2回繰り返すことによって結晶粒径を制御した。 Then, this steel ingot is heated to 870 ° C. at 50 ° C./hour (the temperature of all the listed steels is not less than 3 points of Ac) and held for 2 hours, and then cooled to room temperature (1-2 ° C./min) Was repeated once or twice to control the crystal grain size.

次いで50℃/時の昇温速度にて640℃まで加熱して、該温度で10時間保持してから放冷することによって予備試験片(A〜N)を得た。   Subsequently, it heated to 640 degreeC with the temperature increase rate of 50 degreeC / hour, and it hold | maintained at this temperature for 10 hours, Then, the preliminary test piece (A-N) was obtained.

さらにAの鋼種については上記と同様に熱間鍛造後丸断面に成形し、その後は、鋼塊を50℃/時で720℃(A鋼のAc点以上の温度でかつAc点未満の温度)まで加熱して2時間保持し、その後、室温まで空冷(1〜2℃/分)する工程を1回施した。次いで50℃/時の昇温速度にて640℃まで加熱して、該温度で10時間保持してから放冷(1℃/分以下)することによって予備試験片Aaを得た。各予備試験片の製造条件を表2に記載する。 Further, the steel type A was formed into a round cross section after hot forging in the same manner as described above, and thereafter the steel ingot was formed at a temperature of 720 ° C. at 50 ° C./hour (at a temperature not lower than Ac 1 point of steel A and less than Ac 3 points). The temperature was kept for 2 hours and then air-cooled to room temperature (1-2 ° C./min) once. Subsequently, it heated to 640 degreeC with the temperature increase rate of 50 degreeC / hour, and it hold | maintained at this temperature for 10 hours, Then, the preliminary test piece Aa was obtained by standing to cool (1 degrees C / min or less). The production conditions for each preliminary test piece are listed in Table 2.

予備試験片の組織構造は、側表面から深さD/4の位置から試料を採取し、残留オーステナイトの変態を防ぐために電解研磨を行った後、EBSP(Electron Back Scatter diffraction Pattern)検出器を備えたFE−SEM(Field Emission type Scanning Electron Microscope)で、組織の種類および面積率を測定した。なおEBSPは、試料表面に電子線を入射させ、この時に発生する反射電子から得られた菊池パターンを解析することにより、電子線入射位置の結晶方位を決定するものであり、電子線を試料表面に二次元で走査させ、所定のピッチ毎に結晶方位を測定すれば、試料表面の方位分布を測定できる。上記SEM装置の鏡筒内にセットした試料について、150μm×150μmの測定範囲にて0.1μm間隔で電子線を照射し、スクリーン上に投影されるEBSP画像を高感度カメラで撮影し、コンピューターに画像として取込んでコンピューターで画像解析を行い、既知の結晶系を用いたシミュレーションによるパターンと比較することによって、各色相(各組織)をカラーマップした。このようにしてマッピングされた各組織(領域)の面積率を求めた。また、各組織の視野内にある全ての結晶粒から、結晶粒分布を得て、平均粒径、最大粒径を算出した。尚、平均粒径とは、観察視野における粒径(円相当径)の算術平均(相加平均)値を意味し、最大粒径とは、観察視野における粒径の最大値を意味する。また、上記解析に係るハードウェアおよびソフトとして、TexSEM LaboratoriesInc.のOIM(Orientation Imaging MicroscopyTM)システムを用いることができる。 The preliminary test piece has an EBSP (Electron Back Scattering Pattern) detector after taking a sample from a position at a depth D / 4 from the side surface and performing electropolishing to prevent transformation of retained austenite. The tissue type and area ratio were measured with a FE-SEM (Field Emission Type Scanning Electron Microscope). EBSP determines the crystal orientation of the electron beam incident position by making an electron beam incident on the sample surface and analyzing the Kikuchi pattern obtained from the reflected electrons generated at this time. If the crystal orientation is measured at a predetermined pitch, the orientation distribution on the sample surface can be measured. The sample set in the lens barrel of the SEM apparatus is irradiated with an electron beam at intervals of 0.1 μm in a measurement range of 150 μm × 150 μm, and an EBSP image projected on the screen is taken with a high-sensitivity camera, and is sent to a computer Each hue (each structure) was color-mapped by taking it as an image, analyzing the image with a computer, and comparing it with a pattern obtained by simulation using a known crystal system. The area ratio of each tissue (region) mapped in this way was determined. Moreover, the crystal grain distribution was obtained from all the crystal grains in the field of view of each structure, and the average grain size and the maximum grain size were calculated. The average particle diameter means an arithmetic average (arithmetic mean) value of the particle diameter (equivalent circle diameter) in the observation visual field, and the maximum particle diameter means the maximum particle diameter in the observation visual field. In addition, as hardware and software related to the above analysis, TexSEM Laboratories Inc. OIM (Orientation Imaging Microscopy ) system can be used.

また上記SEM装置を用いて、2mm×2mmの測定範囲を約100倍の倍率で鋼断面の観察を行い、介在物の最大長径、および長径1〜10μmの介在物の数を測定し、その密度を算出した。   In addition, using the SEM device, the steel cross section is observed at a magnification of about 100 times in a measurement range of 2 mm × 2 mm, the maximum major axis of inclusions and the number of inclusions having a major axis of 1 to 10 μm are measured, and the density is calculated. did.

各予備試験品の耐水素割れ性を、以下のようにして、水素割れ破断が発生するまでの時間(以下「水素割れ時間」と略称する。)で評価した。なお大型品では、元々存在する水素により割れが発生するが、予備試験品のような小型品では水素が抜けきってしまうので、この耐水素割れ性は、水素チャージして評価した。各予備試験品を、長さ150mm、標線間距離を10mmのダンベル状に加工し、中央部分を直径4mmに、両端のつかみ具部分を直径8mmにして長さ15mmにわたってねじを設け、耐水素割れ性評価用の試験片を作製した。この試験片が2mol/LのHSO+0.01mol/LのKSCN水溶液に囲まれるように、前記水溶液中に完全に浸漬させた。各試験片を前記水溶液に浸漬し、電流密度1.0A/dmにて陰極電解し、水素を添加しつつ、降伏点以下となる350MPaの引張荷重を長軸方向に負荷し、破断するまでの時間(水素割れ時間)を測定した。各予備試験品についてこの試験を3回行い、水素割れ時間の平均値を求めた。結果を表2に示す。なお試験は100時間まで行い、それでも破断しなかったものは、表2で「>100」と記載した。水素割れ時間が50時間以下であるものは耐水素割れ性に劣ると評価し、この時間が50時間を超えるものを耐水素割れ性に優れると評価し、85時間を超えるものを耐水素割れ性に特に優れると評価した。 The hydrogen cracking resistance of each preliminary test product was evaluated by the time until hydrogen cracking breakage (hereinafter abbreviated as “hydrogen cracking time”) as follows. In the large product, cracking occurs due to the hydrogen present in the original, but in the small product such as the preliminary test product, the hydrogen escapes, so this hydrogen cracking resistance was evaluated by charging with hydrogen. Each preliminary test product is processed into a dumbbell shape with a length of 150 mm and a distance between marked lines of 10 mm, a central part is 4 mm in diameter, a gripping part at both ends is 8 mm in diameter, and a screw is provided over a length of 15 mm. A test piece for evaluation of crackability was prepared. The test piece was completely immersed in the aqueous solution so as to be surrounded by 2 mol / L H 2 SO 4 +0.01 mol / L KSCN aqueous solution. Each test piece is immersed in the aqueous solution, catholyzed at a current density of 1.0 A / dm 2, and a tensile load of 350 MPa, which is below the yield point, is applied in the major axis direction while adding hydrogen, until breakage occurs. The time (hydrogen cracking time) was measured. This test was performed three times for each preliminary test product, and the average value of the hydrogen cracking time was determined. The results are shown in Table 2. The test was conducted for up to 100 hours, and those that did not break still were described as “> 100” in Table 2. Those whose hydrogen cracking time is 50 hours or less are evaluated as being poor in hydrogen cracking resistance, those whose time exceeds 50 hours are evaluated as being excellent in hydrogen cracking resistance, and those exceeding 85 hours are hydrogen cracking resistance It was evaluated as being particularly excellent.

本発明の要件である(1)化学成分、(2)健全部面積率(90面積%以上)、(3)パーライト粒径比(3.0以上)、のいずれも満たさない予備試験片No.3,16〜19は、水素割れ時間が50時間以下であり、耐水素割れ性に劣っている。これに対して予備試験片No.1,2,4〜15,20,21の水素割れ時間は50時間を大きく超えている。これらの結果から、本発明のパーライト粒径比、および所定の組織形態の要件を満たせば、耐水素割れ性が向上することが分かる。   Preliminary test piece No. 1 that does not satisfy any of the requirements of the present invention (1) chemical component, (2) healthy part area ratio (90 area% or more), and (3) pearlite particle size ratio (3.0 or more). Nos. 3, 16 to 19 have a hydrogen cracking time of 50 hours or less and are inferior in hydrogen cracking resistance. On the other hand, preliminary test piece No. The hydrogen cracking time of 1,2,4-15,20,21 greatly exceeds 50 hours. From these results, it is understood that the hydrogen cracking resistance is improved if the pearlite particle size ratio of the present invention and the requirements of the predetermined structure form are satisfied.

(本試験による評価)
上記の様に予備試験鋼での結果を参考として、大型鋼塊から本試験品を製造し、評価を行った。電極アーク加熱機能を備える溶鋼処理設備によって、上記表1の鋼種B、鋼種E、鋼種F又はKに示す化学成分の鋼をそれぞれ溶製し、40トンクラス(全高3m、直径1.5m)の鋳型に鋳造した。なお溶湯段階での水素量は、ハイドリス測定で3ppmであった。凝固した鋼塊を1000℃付近で脱型した後、約1200℃まで加熱し、同温度で熱間鍛造を施し、断面直径150mmの鍛造品に仕上げた。熱間鍛造は、鋼塊本体をプレス機により伸ばした後、専用工具を用いて丸断面に成形した。
(Evaluation by this test)
With reference to the results of the preliminary test steel as described above, the test product was manufactured from a large steel ingot and evaluated. Steel with chemical composition shown in Table 1 above, steel type B, steel type E, steel type F or K, respectively, is melted by a molten steel processing facility equipped with an electrode arc heating function, and a 40 ton class (total height 3 m, diameter 1.5 m) Cast into a mold. The amount of hydrogen in the molten metal stage was 3 ppm as measured by Hydris. The solidified steel ingot was demolded at around 1000 ° C., then heated to about 1200 ° C., hot forged at the same temperature, and finished into a forged product having a cross-sectional diameter of 150 mm. In hot forging, the steel ingot body was stretched with a press machine and then formed into a round cross section using a dedicated tool.

それぞれの鍛造品を、約900℃の表面温度から、室温までゆっくりと自然冷却(約0.5℃/分)した後、再度約600℃程度まで加熱した後、室温までゆっくりと自然冷却(約0.5℃/分)した。   Each forged product is slowly cooled naturally from the surface temperature of about 900 ° C. to room temperature (about 0.5 ° C./min), then heated again to about 600 ° C., and then slowly cooled to room temperature (about 0.5 ° C./min).

以上のようにして本試験品を製造した。なお表面から深さD/4の位置における組織形態は鋼種B、鋼種Eおよび鋼種Fについてはフェライト−パーライト混合組織となっており、その面積率が90%以上であり、マクロ偏析部でのパーライト粒径比が3.0以上であった。それに対して鋼種Kについてもフェライト−パーライト混合組織となっていたが、その面積率は90%未満であり、マクロ偏析部でのパーライト粒径比は3.0未満であった。   The test product was manufactured as described above. The microstructure at the position of depth D / 4 from the surface is a ferrite-pearlite mixed structure for steel types B, E and F, and the area ratio is 90% or more, and the pearlite in the macrosegregation part. The particle size ratio was 3.0 or more. On the other hand, the steel type K also had a ferrite-pearlite mixed structure, but its area ratio was less than 90%, and the pearlite particle size ratio at the macrosegregation part was less than 3.0.

本試験品の耐水素割れ性評価は前述のSEM装置にて、150μm×150μmの測定範囲および1000倍の倍率でフェライト−パーライト組織の微細割れの有無をそれぞれ調べた。その結果を表3に示す。なお、長さ1μm以上の割れが存在する場合に割れが発生したと判定した。   The evaluation of hydrogen cracking resistance of this test product was examined by using the above-mentioned SEM apparatus for the presence of fine cracks in the ferrite-pearlite structure at a measurement range of 150 μm × 150 μm and a magnification of 1000 times. The results are shown in Table 3. In addition, it was determined that a crack occurred when a crack having a length of 1 μm or more was present.

表3から分かるように、本発明の要件(化学成分、健全部面積率、パーライト粒径比)のいずれも満たさない鋼種Kには微細割れが発生したが、本発明の要件を全て満たす鋼種B,E,Fでは、微細割れが発生せず、耐水素割れ性が向上していることが分かった。   As can be seen from Table 3, the steel type K which does not satisfy any of the requirements of the present invention (chemical composition, healthy part area ratio, pearlite particle size ratio) caused fine cracks, but the steel type B satisfies all the requirements of the present invention. , E, and F, it was found that fine cracks did not occur and hydrogen cracking resistance was improved.

(セメンタイト間隔の測定)
次に、上記の試料のうち、パーライト粒径比が好適な範囲(3.5以上)である、試験No.1,2,4,5,7,9−13,20,21について、約1000倍の倍率で鋼断面の観察を行い、パーライト中のセメンタイト間隔を測定した。その結果、下記表4に示すようにパーライト中のセメンタイト間隔が0.30μm以上である試験No.1,2,4,5,7,9−13については、表2に示すように水素割れ時間が85時間を超えていたのに対し、パーライト中のセメンタイト間隔が0.30μm未満であるNo.20,21については、表2に示すように水素割れ時間が85時間を下回っていた。以上の結果から、パーライト粒径比を3.5以上にするとともに、パーライト中のセメンタイト間隔を0.30μm以上にすれば、耐水素割れ性が一層向上することが分かる。なお、セメンタイト間隔の測定については、鋼断面の上記観察視野の中で10個のパーライト粒を任意に選択し、各パーライト粒におけるセメンタイト間隔の平均値を取った。1個のパーライト粒におけるセメンタイト間隔は、セメンタイト層と垂直な方向におけるパーライト粒の長さをセメンタイト層の数で割り算して求めた。
(Measurement of cementite spacing)
Next, among the above samples, the test No. 1 in which the pearlite particle size ratio is in a suitable range (3.5 or more). About 1,2,4,5,7,9-13,20,21, the steel cross-section was observed by the magnification of about 1000 times, and the cementite space | interval in pearlite was measured. As a result, as shown in Table 4 below, the test No. 1 in which the cementite interval in the pearlite is 0.30 μm or more is obtained. For Nos. 1, 2, 4, 5, 7, and 9-13, the hydrogen cracking time exceeded 85 hours as shown in Table 2, while the cementite spacing in pearlite was less than 0.30 μm. As for Tables 20 and 21, as shown in Table 2, the hydrogen cracking time was less than 85 hours. From the above results, it can be seen that hydrogen cracking resistance is further improved when the pearlite particle size ratio is 3.5 or more and the cementite interval in the pearlite is 0.30 μm or more. In addition, about the measurement of a cementite space | interval, ten pearlite grains were arbitrarily selected in the said observation visual field of a steel cross section, and the average value of the cementite space | interval in each pearlite grain was taken. The cementite spacing in one pearlite grain was determined by dividing the length of the pearlite grain in the direction perpendicular to the cementite layer by the number of cementite layers.

Claims (9)

C :0.15〜0.5%(質量%の意味。成分組成について以下同じ。)、
Si:0.6%以下(0%を含まない)、
Mn:0.5〜1.5%、
Ni:0.1〜2.5%、
Cr:0.1〜2.5%、
Mo:0.01〜0.7%、
S :0.0002〜0.01%、
O :0.002%以下(0%を含まない)、
を含有し、残部が鉄及び不可避的不純物からなり、
深さD/4(D:鍛鋼品断面の円相当径)の位置における鋼断面は、フェライト組織またはフェライト−パーライト混合組織で構成される健全部と残部(以下、「マクロ偏析部」と記載する)で構成され、前記鋼断面に対する前記健全部の割合が90面積%以上であり、前記マクロ偏析部における(パーライトの平均粒径)/(フェライトの平均粒径)が3.0以上であることを特徴とする鍛鋼品。
C: 0.15 to 0.5% (meaning mass%; the same applies to the component composition),
Si: 0.6% or less (excluding 0%),
Mn: 0.5 to 1.5%
Ni: 0.1 to 2.5%,
Cr: 0.1 to 2.5%,
Mo: 0.01 to 0.7%,
S: 0.0002 to 0.01%
O: 0.002% or less (excluding 0%),
And the balance consists of iron and inevitable impurities,
The steel cross section at the position of depth D / 4 (D: equivalent circle diameter of the cross section of the forged steel product) is described as a healthy part and a remaining part (hereinafter referred to as “macro-segregation part”) composed of a ferrite structure or a ferrite-pearlite mixed structure. ), The ratio of the healthy part to the steel cross section is 90 area% or more, and (average particle diameter of pearlite) / (average particle diameter of ferrite) in the macrosegregation part is 3.0 or more. Forged steel products characterized by
前記マクロ偏析部における(パーライトの平均粒径)/(フェライトの平均粒径)が3.5以上であり、パーライト中のセメンタイト間隔が0.30μm以上である請求項1に記載の鍛鋼品。   2. The forged steel product according to claim 1, wherein (average particle diameter of pearlite) / (average particle diameter of ferrite) in the macrosegregation portion is 3.5 or more, and a cementite interval in the pearlite is 0.30 μm or more. さらに、Cu:0.5%以下(0%を含まない)を含有する請求項1または2に記載の鍛鋼品。   The forged steel product according to claim 1 or 2, further comprising Cu: 0.5% or less (not including 0%). さらに、V:0.3%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の鍛鋼品。   The forged steel product according to any one of claims 1 to 3, further comprising V: 0.3% or less (not including 0%). さらに、Ca:0.1%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の鍛鋼品。   Further, the forged steel product according to any one of claims 1 to 4, further comprising Ca: 0.1% or less (not including 0%). さらに、Ti,Zr,Hfよりなる群から選択されるいずれか1種以上を合計0.1%以下(0%を含まない)含有する請求項1〜5のいずれかに記載の鍛鋼品。   Furthermore, the forged steel products in any one of Claims 1-5 which contain any 1 or more types selected from the group which consists of Ti, Zr, and Hf in total 0.1% or less (0% is not included). 深さD/4(D:鍛鋼品断面の円相当径)の位置における前記マクロ偏析部で観察される介在物は、いずれも長径が20μm以下であり、かつ、長径1〜10μmの介在物の密度が5〜500個/cmである請求項1〜6のいずれかに記載の鍛鋼品。 The inclusions observed in the macrosegregation part at the position of depth D / 4 (D: equivalent circle diameter of the cross section of the forged steel product) are all inclusions whose major axis is 20 μm or less and whose major axis is 1 to 10 μm. density forgings according to claim 1 which is 5 to 500 pieces / cm 2. クランクジャーナルまたはクランクスローである請求項1〜7のいずれかに記載の鍛鋼品。   The forged steel product according to claim 1, which is a crank journal or a crank throw. 請求項8に記載のクランクジャーナルまたはクランクスローを有する組立型クランク軸。   9. An assembled crankshaft comprising the crank journal or crank throw according to claim 8.
JP2010288481A 2009-12-24 2010-12-24 Forged steel and assembled crankshaft Expired - Fee Related JP5443331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288481A JP5443331B2 (en) 2009-12-24 2010-12-24 Forged steel and assembled crankshaft

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009293284 2009-12-24
JP2009293284 2009-12-24
JP2010288481A JP5443331B2 (en) 2009-12-24 2010-12-24 Forged steel and assembled crankshaft

Publications (2)

Publication Number Publication Date
JP2011149099A true JP2011149099A (en) 2011-08-04
JP5443331B2 JP5443331B2 (en) 2014-03-19

Family

ID=44536329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288481A Expired - Fee Related JP5443331B2 (en) 2009-12-24 2010-12-24 Forged steel and assembled crankshaft

Country Status (1)

Country Link
JP (1) JP5443331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249497A (en) * 2012-05-30 2013-12-12 Kobe Steel Ltd Steel for forgings excellent in hydrogen-crack resistance
JP2014001446A (en) * 2012-05-22 2014-01-09 Kobe Steel Ltd Forged steel product having excellent hydrogen crack resistance
JP2021509147A (en) * 2017-12-26 2021-03-18 ポスコPosco Ultra-high-strength hot-rolled steel sheets, steel pipes, members, and their manufacturing methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240940A (en) * 1999-12-24 2001-09-04 Nippon Steel Corp Bar wire rod for cold forging and its production method
JP2006336092A (en) * 2005-06-03 2006-12-14 Kobe Steel Ltd Steel for forging having excellent hydrogen crack resistance, and crankshaft
JP2008266768A (en) * 2007-03-29 2008-11-06 Kobe Steel Ltd Steel ingot for forging
JP2009091649A (en) * 2007-04-05 2009-04-30 Kobe Steel Ltd Forging steel, forging and crankshaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240940A (en) * 1999-12-24 2001-09-04 Nippon Steel Corp Bar wire rod for cold forging and its production method
JP2006336092A (en) * 2005-06-03 2006-12-14 Kobe Steel Ltd Steel for forging having excellent hydrogen crack resistance, and crankshaft
JP2008266768A (en) * 2007-03-29 2008-11-06 Kobe Steel Ltd Steel ingot for forging
JP2009091649A (en) * 2007-04-05 2009-04-30 Kobe Steel Ltd Forging steel, forging and crankshaft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001446A (en) * 2012-05-22 2014-01-09 Kobe Steel Ltd Forged steel product having excellent hydrogen crack resistance
JP2013249497A (en) * 2012-05-30 2013-12-12 Kobe Steel Ltd Steel for forgings excellent in hydrogen-crack resistance
JP2021509147A (en) * 2017-12-26 2021-03-18 ポスコPosco Ultra-high-strength hot-rolled steel sheets, steel pipes, members, and their manufacturing methods
JP7186229B2 (en) 2017-12-26 2022-12-08 ポスコ Ultra-high-strength hot-rolled steel sheet, steel pipe, member, and manufacturing method thereof
US11939639B2 (en) 2017-12-26 2024-03-26 Posco Co., Ltd Ultra-high-strength hot-rolled steel sheet, steel pipe, member, and manufacturing methods therefor

Also Published As

Publication number Publication date
JP5443331B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5026626B2 (en) Steel wire excellent in cold forgeability and manufacturing method thereof
JP5655984B2 (en) H-section steel and its manufacturing method
JP6115691B1 (en) Steel plate and enamel products
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JPWO2011142356A1 (en) High strength steel plate and manufacturing method thereof
JP2019035107A (en) Steel plate and method of producing steel plate
CN109563578B (en) Steel for induction hardening
JP6183545B2 (en) H-section steel and its manufacturing method
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP2009215571A (en) High strength cold rolled steel sheet having excellent stretch-flange formability
KR102386788B1 (en) Hot rolled steel sheet and its manufacturing method
JP5741379B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP2019023324A (en) Steel plate and method for manufacturing steel plate
WO2015186701A1 (en) Steel wire material
JP2007063589A (en) Steel bar or wire rod
JP5452253B2 (en) Forged steel and crankshaft
KR20170073730A (en) Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
JP6725007B2 (en) wire
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP5870019B2 (en) Forged steel products with excellent resistance to hydrogen cracking
JP5443331B2 (en) Forged steel and assembled crankshaft
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP2005133155A (en) High strength and high toughness non-heat-treated bar steel, and its production method
JP5856540B2 (en) Forged steel with excellent resistance to hydrogen cracking
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Ref document number: 5443331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees