JP2013245193A - Method for producing chlorinated fluorene compound - Google Patents

Method for producing chlorinated fluorene compound Download PDF

Info

Publication number
JP2013245193A
JP2013245193A JP2012119828A JP2012119828A JP2013245193A JP 2013245193 A JP2013245193 A JP 2013245193A JP 2012119828 A JP2012119828 A JP 2012119828A JP 2012119828 A JP2012119828 A JP 2012119828A JP 2013245193 A JP2013245193 A JP 2013245193A
Authority
JP
Japan
Prior art keywords
fluorene compound
chlorinated
reaction
producing
fluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012119828A
Other languages
Japanese (ja)
Inventor
Masashi Takimoto
将志 瀧本
Yoshiro Onogawa
善郎 小野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Nikkei Chemical Industry Co Ltd
Original Assignee
Ihara Nikkei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Nikkei Chemical Industry Co Ltd filed Critical Ihara Nikkei Chemical Industry Co Ltd
Priority to JP2012119828A priority Critical patent/JP2013245193A/en
Publication of JP2013245193A publication Critical patent/JP2013245193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new production method for synthesizing a chlorinated fluorene compound without requiring expensive raw materials, etc., and to provide a production method capable of obtaining the chlorinated fluorene compound at high selection rate as necessary.SOLUTION: In a production method of a chlorinated fluorene compound, a fluorene compound expressed by a formula (1) is brought into contact with chlorine gas and a compound expressed by formula (2) is obtained by a chlorination reaction. (In the formulas, Rand Reach independently represents a halogen atom, a nitro group, or a trifluoromethyl group; m and n each independently denotes an integer of 0 to 4).

Description

本発明は、塩素化フルオレン化合物の製造方法に関するものである。   The present invention relates to a method for producing a chlorinated fluorene compound.

9,9−ジクロロフルオレンおよびこれに特定の置換基を有する誘導体(以下、「塩素化フルオレン化合物」という)は、各種化学品中間体や樹脂原料として用いられる。特に耐熱性エポキシ樹脂原料、ポリカーボネート樹脂、ポリエステル樹脂の原料として有用である。   9,9-dichlorofluorene and derivatives having a specific substituent (hereinafter referred to as “chlorinated fluorene compound”) are used as various chemical intermediates and resin raw materials. It is particularly useful as a raw material for heat-resistant epoxy resin raw materials, polycarbonate resins, and polyester resins.

従来、9,9−ジクロロフルオレンの製造方法としては、フルオレノンを加熱条件下に五塩化リンと反応させ製造する方法が知られている(非特許文献1)。また、フルオレンを塩基及び相間移動触媒の存在下、四塩化炭素と反応させ製造する方法が知られている(特許文献1)。   Conventionally, a method for producing 9,9-dichlorofluorene by reacting fluorenone with phosphorus pentachloride under heating conditions is known (Non-patent Document 1). In addition, a method for producing fluorene by reacting with carbon tetrachloride in the presence of a base and a phase transfer catalyst is known (Patent Document 1).

米国特許第5,578,737号US Pat. No. 5,578,737

J.Am.Chem.Soc.,70,1954(1948)J. et al. Am. Chem. Soc. , 70, 1954 (1948)

しかしながら、非特許文献1に記載の方法では、原料に高価なフルオレノンを用いる事に加え、塩素化材の五塩化リンは、大気中の水分と容易に反応するなど取り扱いが難しく、排水処理の問題から処理費用が嵩み経済的でない。一方、特許文献1の方法において塩素源兼溶媒として用いられる四塩化炭素はオゾン破壊係数が高く、これ自体、環境保護の観点から工業的な使用が制限もしくは禁止されている。   However, in the method described in Non-Patent Document 1, in addition to using expensive fluorenone as a raw material, chlorinated phosphorus pentachloride is difficult to handle because it easily reacts with moisture in the atmosphere, which is a problem of wastewater treatment. Therefore, the processing cost is high and it is not economical. On the other hand, carbon tetrachloride used as a chlorine source and solvent in the method of Patent Document 1 has a high ozone depletion coefficient, and as such, industrial use is restricted or prohibited from the viewpoint of environmental protection.

すなわち本発明は、これらの従来技術に包含される課題の解決に鑑み、高価な原料等によらずに、塩素化フルオレン化合物を合成する新規な製造方法の提供を目的とする。また、必要に応じ、高選択率で塩素化フルオレン化合物を得ることができる製造方法の提供を目的とする。   That is, the present invention aims to provide a novel production method for synthesizing a chlorinated fluorene compound without relying on expensive raw materials or the like in view of solving the problems included in these conventional techniques. Moreover, it aims at provision of the manufacturing method which can obtain a chlorinated fluorene compound with high selectivity as needed.

上記の課題は以下の手段により解決された。
〔1〕下記式(1)で表されるフルオレン化合物と塩素ガスとを接触させ、その塩素化反応により下記式(2)で表される化合物を得ることを特徴とする塩素化フルオレン化合物の製造方法。

Figure 2013245193
(式中、RおよびRは、それぞれ独立して、ハロゲン原子、ニトロ基、またはトリフルオロメチル基を表す。m、nはそれぞれ独立して0〜4の整数を表す。)
〔2〕前記フルオレン化合物を溶媒に溶解した溶液中に塩素ガスを導入して前記反応を行う〔1〕に記載の塩素化フルオレン化合物の製造方法。
〔3〕前記塩素化反応を、加熱または光照射により進行させる〔1〕または〔2〕に記載の塩素化フルオレン化合物の製造方法。
〔4〕前記光照射を紫外線または可視光線の照射により行う〔3〕に記載の塩素化フルオレン化合物の製造方法。
〔5〕前記塩素化反応を、100℃〜250℃で行う〔1〕〜〔4〕のいずれか1項に記載の塩素化フルオレン化合物の製造方法。
〔6〕ラジカル開始剤の存在下もしくは熱ラジカル発生条件下で前記反応を行う〔1〕〜〔5〕のいずれか1項に記載の塩素化フルオレン化合物の製造方法。
〔7〕前記溶媒が、塩素に対して不活性な含フッ素芳香族炭化水素である〔2〕〜〔6〕のいずれか1項に記載の塩素化フルオレン化合物の製造方法。
〔8〕前記含フッ素芳香族炭化水素がパラクロロベンゾトリフルオリド、オルトクロロベンゾトリフルオリド、3,4−ジクロロベンゾトリフルオリド、および3,4,5−トリクロロベンゾトリフルオリドからなる群から選ばれる〔7〕に記載の塩素化フルオレン化合物の製造方法。
〔9〕前記フルオレン化合物を含む溶液の沸点温度において塩素化反応をさせる〔2〕〜〔8〕のいずれか1項に記載の塩素化フルオレン化合物の製造方法。
〔10〕前記溶媒の沸点が100℃〜250℃である〔2〕〜〔9〕のいずれか1項に記載の塩素化フルオレン化合物の製造方法。
〔11〕前記塩素ガスの供給量を、0.05〜0.4mol/mol・hとする〔1〕〜〔10〕のいずれか1項に記載の塩素化フルオレン化合物の製造方法。
〔12〕前記溶媒の量がフルオレンの量に対して0.5〜50倍(質量基準)である〔2〕〜〔11〕のいずれか1項に記載の塩素化フルオレン化合物の製造方法。 The above problem has been solved by the following means.
[1] Production of a chlorinated fluorene compound characterized by contacting a fluorene compound represented by the following formula (1) with chlorine gas and obtaining a compound represented by the following formula (2) by the chlorination reaction Method.
Figure 2013245193
(In the formula, R 1 and R 2 each independently represent a halogen atom, a nitro group, or a trifluoromethyl group. M and n each independently represents an integer of 0 to 4)
[2] The method for producing a chlorinated fluorene compound according to [1], wherein the reaction is performed by introducing chlorine gas into a solution obtained by dissolving the fluorene compound in a solvent.
[3] The method for producing a chlorinated fluorene compound according to [1] or [2], wherein the chlorination reaction proceeds by heating or light irradiation.
[4] The method for producing a chlorinated fluorene compound according to [3], wherein the light irradiation is performed by irradiation with ultraviolet rays or visible light.
[5] The method for producing a chlorinated fluorene compound according to any one of [1] to [4], wherein the chlorination reaction is performed at 100 ° C to 250 ° C.
[6] The method for producing a chlorinated fluorene compound according to any one of [1] to [5], wherein the reaction is performed in the presence of a radical initiator or under thermal radical generation conditions.
[7] The method for producing a chlorinated fluorene compound according to any one of [2] to [6], wherein the solvent is a fluorine-containing aromatic hydrocarbon inert to chlorine.
[8] The fluorine-containing aromatic hydrocarbon is selected from the group consisting of parachlorobenzotrifluoride, orthochlorobenzotrifluoride, 3,4-dichlorobenzotrifluoride, and 3,4,5-trichlorobenzotrifluoride [ [7] A process for producing a chlorinated fluorene compound according to [7].
[9] The method for producing a chlorinated fluorene compound according to any one of [2] to [8], wherein the chlorination reaction is performed at a boiling point temperature of the solution containing the fluorene compound.
[10] The method for producing a chlorinated fluorene compound according to any one of [2] to [9], wherein the solvent has a boiling point of 100 ° C to 250 ° C.
[11] The method for producing a chlorinated fluorene compound according to any one of [1] to [10], wherein the supply amount of the chlorine gas is 0.05 to 0.4 mol / mol · h.
[12] The method for producing a chlorinated fluorene compound according to any one of [2] to [11], wherein the amount of the solvent is 0.5 to 50 times (mass basis) with respect to the amount of fluorene.

本発明の製造方法によれば、高価な原料等によらずに、9,9−ジクロロフルオレン等の塩素化フルオレン化合物を合成する新規な製造方法を提供することができる。また、必要に応じ、高選択率で塩素化フルオレン化合物を得ることができる。   According to the production method of the present invention, a novel production method for synthesizing a chlorinated fluorene compound such as 9,9-dichlorofluorene can be provided without depending on an expensive raw material. Moreover, a chlorinated fluorene compound can be obtained with high selectivity as needed.

本発明者らは、化学製品の原料として有用な9,9−ジクロロフルオレン等の塩素化フルオレン化合物を合成する方法につき鋭意研究を行った。その結果、フルオレン(9H−フルオレン)およびその9位以外に特定の置換基を有する誘導体(本明細書では、これを「フルオレン化合物」と称する)と塩素(Cl)ガスとを接触させ両者を反応させるというシンプルな工程条件により、意外にもその反応が進行し十分な収量の目的生成物が得られることを確認した。この反応は特殊な原料や操作によらずに行うことができるため、とりわけ工業的な規模での生産において大きな貢献を果たすものである。また、反応溶媒の適用や加熱、光照射などの手法と組み合わせることで、きわめて高い目的生成物の選択率をも達成することができることが分かった。以下、上記産業上の貢献を実現する本発明の製造方法についてその好ましい実施態様に基づき詳細に説明する。 The inventors of the present invention have intensively studied a method for synthesizing chlorinated fluorene compounds such as 9,9-dichlorofluorene which are useful as raw materials for chemical products. As a result, fluorene (9H-fluorene) and a derivative having a specific substituent other than the 9-position (referred to herein as “fluorene compound”) and chlorine (Cl 2 ) gas are brought into contact with each other. It was confirmed that the reaction proceeded unexpectedly and a sufficient yield of the desired product was obtained by the simple process conditions of the reaction. Since this reaction can be carried out without special raw materials and operations, it makes a great contribution especially in production on an industrial scale. It has also been found that a very high selectivity of the target product can be achieved by combining with methods such as application of a reaction solvent, heating, and light irradiation. Hereinafter, the manufacturing method of the present invention that realizes the above industrial contribution will be described in detail based on preferred embodiments thereof.

本実施態様の製造方法においては、式(1)で表されるフルオレン化合物の9位の塩素化を、これと塩素ガスとの接触により行うことができる。この反応により下記式(2)の塩素化フルオレン化合物を得ることができる。   In the production method of this embodiment, chlorination at the 9-position of the fluorene compound represented by the formula (1) can be performed by contacting this with chlorine gas. By this reaction, a chlorinated fluorene compound of the following formula (2) can be obtained.

Figure 2013245193
Figure 2013245193

式中、RおよびRは、それぞれ独立して、ハロゲン原子、ニトロ基、またはトリフルオロメチル基を表す。なかでも好ましくは、ハロゲン原子(好ましくは塩素原子またはフッ素原子)、トリフルオロメチル基である。 In the formula, R 1 and R 2 each independently represent a halogen atom, a nitro group, or a trifluoromethyl group. Of these, a halogen atom (preferably a chlorine atom or a fluorine atom) and a trifluoromethyl group are preferable.

m、nはそれぞれ独立して0〜4の整数を表す。なかでも好ましくは、m、nが0〜2である。   m and n each independently represents an integer of 0 to 4. Of these, m and n are preferably 0 to 2.

フルオレン化合物は9位以外のベンゼン環への塩素化率が低温で増加する傾向がある。したがって、9位にのみ塩素が置換した目的生成物を高選択率で得るためには、より高い温度で反応を行うことが好ましい。また、反応中は溶媒を還流させることがより好ましい。これにより、副生する塩化水素を反応系外へ除去して9位以外への環塩素化の比率を減少させることができる。また、窒素などの不活性ガスを導入して反応系から塩化水素を追い出しながら反応を行ってもよい。反応温度は、100℃〜250℃の範囲が好ましく、130℃〜230℃がより好ましく、170℃〜210℃が特に好ましい。この範囲で反応させることで、反応速度を良好に保つことができ、副反応を押さえることができるため好ましい。例えば、原料フルオレン化合物の全仕込み量に対して3,4−ジクロロベンゾトリフリオリドを質量で3.5倍用いた時の反応は、約178℃(還流)で行うことができる。本反応は大気圧下で行うことができるが、必要に応じて減圧下又は加圧下で行ってもよい。   Fluorene compounds tend to increase the chlorination rate to benzene rings other than the 9-position at low temperatures. Therefore, in order to obtain the target product substituted with chlorine only at the 9-position with high selectivity, it is preferable to carry out the reaction at a higher temperature. Further, it is more preferable to reflux the solvent during the reaction. Thereby, hydrogen chloride produced as a by-product can be removed out of the reaction system, and the ratio of ring chlorination to other than 9-position can be reduced. Alternatively, the reaction may be performed while introducing an inert gas such as nitrogen to drive out hydrogen chloride from the reaction system. The reaction temperature is preferably in the range of 100 ° C to 250 ° C, more preferably 130 ° C to 230 ° C, and particularly preferably 170 ° C to 210 ° C. By making it react in this range, since reaction rate can be kept favorable and a side reaction can be suppressed, it is preferable. For example, the reaction when 3,4-dichlorobenzotrifluoride is used 3.5 times by mass with respect to the total charge of the raw material fluorene compound can be carried out at about 178 ° C. (reflux). This reaction can be performed under atmospheric pressure, but may be performed under reduced pressure or under pressure as necessary.

塩素ガスの吹き込み量は反応条件によって適宜選択されればいが、基質に対して、モル比で0.05〜0.40mol/mol・hであることが好ましい。この範囲で塩素ガスを吹き込むことで、反応系外へ放出される未反応の塩素を最小にし、かつ反応速度を良好に保つことができるため好ましい。   The amount of chlorine gas blown in may be appropriately selected depending on the reaction conditions, but is preferably 0.05 to 0.40 mol / mol · h in terms of molar ratio with respect to the substrate. Blowing chlorine gas in this range is preferable because unreacted chlorine released to the outside of the reaction system can be minimized and the reaction rate can be kept good.

塩素化反応は光照射下で行うことが好ましい。可視光線、近紫外線、紫外線が適している。特に照射効率の点で近紫外線、紫外線が適しており波長200〜400nm程度の紫外線ランプ、高圧水銀灯、低圧水銀灯が好適に用いられる。本反応は熱のみでも進行するが塩素との反応率が光照射下と比べ約30〜50%程度落ちることがあり反応時間が長期化するために光照射を用いるのがより好適である。   The chlorination reaction is preferably performed under light irradiation. Visible light, near ultraviolet light, and ultraviolet light are suitable. In particular, near ultraviolet rays and ultraviolet rays are suitable in terms of irradiation efficiency, and ultraviolet lamps, high pressure mercury lamps, and low pressure mercury lamps having a wavelength of about 200 to 400 nm are preferably used. Although this reaction proceeds only with heat, the reaction rate with chlorine may be reduced by about 30 to 50% compared to that under light irradiation, and it is more preferable to use light irradiation because the reaction time is prolonged.

この塩素化反応に用いられる溶媒は塩素との反応には悪影響を与えず、かつ塩素及び原料が溶解可能なものであれば特に制限されない。公知の不活性溶媒を用いることができ、塩素との反応に対して不活性な有機溶媒が好ましく、塩素との反応に対して不活性なハロゲン含有芳香族化合物からなる溶媒がより好ましい。このときのハロゲン原子は塩素もしくはフッ素であることが好ましい。芳香族炭化水素は単環でも複環でもよいが、単環(ベンゼン環)であることが好ましい。ここで塩素との反応に対して不活性とは、本発明に係るフルオレン化合物の塩素化反応を阻害しない程度において塩素ガスと溶媒との反応が進行しないことを意味する。   The solvent used for this chlorination reaction is not particularly limited as long as it does not adversely affect the reaction with chlorine and chlorine and raw materials can be dissolved. A known inert solvent can be used, an organic solvent inert to the reaction with chlorine is preferred, and a solvent comprising a halogen-containing aromatic compound inert to the reaction with chlorine is more preferred. At this time, the halogen atom is preferably chlorine or fluorine. The aromatic hydrocarbon may be monocyclic or polycyclic, but is preferably a single ring (benzene ring). Here, inert to the reaction with chlorine means that the reaction between the chlorine gas and the solvent does not proceed to the extent that the chlorination reaction of the fluorene compound according to the present invention is not inhibited.

塩素との反応に対して不活性な含フッ素芳香族炭化水素としては、さらに、トリフルオロメチル基を含む芳香族炭化水素(塩素化体を含む)が好ましく、トリフルオロメチル基を含むベンゼン化合物(塩素化体を含む)がより好ましい。具体的には、トリフルオロメチルベンゼン,1,3−ビス(トリフルオロメチル)ベンゼン,オルトクロロベンゾトリフルオリド、パラクロロベンゾトリフルオリド(PCBTF)、3,4−ジクロロベンゾトリフルオリド(DCBTF)、及び3,4,5−トリクロロベンゾトリフルオリド(TCBTF)等の含フッ素芳香族系有機溶媒等を用いることが好ましい。これらは単独又は併用して用いてもよく、モノクロロベンゼン、ジクロロベンゼン等の含塩素有機溶媒と混合して用いてもよい。原料フルオレン化合物の全仕込み量に対して使用する溶媒が少なすぎると、反応に際して反応液の粘度の上昇、塩素溶解速度の減少等の影響によって核塩素化副反応が起こり易い状況となり目的物の純度は低下する。また多すぎると、純度的には良好なものが得られても、大量の溶媒を回収して循環させる必要が生じるので工業的には不利な方向となる。上記の観点から、溶媒の使用量は、原料フルオレン化合物の全仕込み量に対して質量で0.5〜50倍が好ましく、1〜30倍がより好ましく、2〜20倍がさらに好ましく、2〜5倍が特に好ましい。   As the fluorine-containing aromatic hydrocarbon inert to the reaction with chlorine, an aromatic hydrocarbon containing a trifluoromethyl group (including a chlorinated product) is further preferred, and a benzene compound containing a trifluoromethyl group ( (Including chlorinated products) is more preferable. Specifically, trifluoromethylbenzene, 1,3-bis (trifluoromethyl) benzene, orthochlorobenzotrifluoride, parachlorobenzotrifluoride (PCBTF), 3,4-dichlorobenzotrifluoride (DCBTF), and Fluorine-containing aromatic organic solvents such as 3,4,5-trichlorobenzotrifluoride (TCBTF) are preferably used. These may be used alone or in combination, and may be used by mixing with a chlorine-containing organic solvent such as monochlorobenzene and dichlorobenzene. If too little solvent is used with respect to the total amount of raw material fluorene compound charged, the reaction may increase the viscosity of the reaction solution, decrease the chlorine dissolution rate, etc., leading to a situation where a nuclear chlorination side reaction is likely to occur, and the purity of the target product Will decline. On the other hand, if it is too much, even if a good purity is obtained, a large amount of solvent needs to be collected and circulated, which is disadvantageous industrially. From the above viewpoint, the amount of the solvent used is preferably 0.5 to 50 times, more preferably 1 to 30 times, still more preferably 2 to 20 times, by mass with respect to the total charged amount of the raw material fluorene compound. 5 times is particularly preferable.

本発明に適用することができる溶媒の沸点は特に限定されないが、前記好ましい反応温度として挙げた範囲に沸点を有する溶媒を用いることが好ましい。これにより、反応温度と反応液の沸点が一致もしくは近似し、後述のように、副生する塩化水素を系内から効果的に排出しながら目的生成物の選択率を向上させることができる。具体的に上記溶媒の沸点は100℃〜250℃であることが好ましく、130℃〜230℃であることがより好ましい。   The boiling point of the solvent that can be applied to the present invention is not particularly limited, but it is preferable to use a solvent having a boiling point in the range mentioned as the preferable reaction temperature. Thereby, the reaction temperature and the boiling point of the reaction solution coincide or approximate, and the selectivity of the target product can be improved while effectively discharging by-produced hydrogen chloride from the system, as will be described later. Specifically, the boiling point of the solvent is preferably 100 ° C to 250 ° C, and more preferably 130 ° C to 230 ° C.

本実施形態のフルオレン化合物の塩素化反応は、ラジカル反応開始剤を単独で用いても、又はこれと光照射とを併用してもかまわない。ラジカル開始剤は、その熱分解に伴って低沸点の有機物が発生し当該有機物が系内の汚染因子となることがある。そうすると、これを除去することが必要となるため、この観点からはラジカル開始剤を用いる必要のない光塩素化の方がより好ましい。本発明に用いられるラジカル反応開始剤としては、ベンゾイルパーオキサイドに代表される有機過酸化物やアゾビスイソブチロニトリルに代表されるアゾ化合物が挙げられる。ラジカル反応開始剤と溶媒との組合せは反応温度と該開始剤の半減期を考慮して適宜選択されることが好ましい。ラジカル反応開始剤の添加量は塩素の導入速度によって異なるが、少ないと塩素導入速度を抑える必要があるので反応時間が長期化し不利な方向となる。また多すぎると該開始剤の分解生成物の分離がしにくくなるので、通常原料のフルオレン化合物に対して0.1〜20質量%であることが好ましく、1〜10質量%の範囲がより好ましい。   In the chlorination reaction of the fluorene compound of this embodiment, a radical reaction initiator may be used alone, or this and light irradiation may be used in combination. The radical initiator may generate a low-boiling organic substance as it is thermally decomposed, and the organic substance may become a contamination factor in the system. Then, since it becomes necessary to remove this, from this viewpoint, photochlorination that does not require the use of a radical initiator is more preferable. Examples of the radical reaction initiator used in the present invention include organic peroxides typified by benzoyl peroxide and azo compounds typified by azobisisobutyronitrile. The combination of the radical reaction initiator and the solvent is preferably selected as appropriate in consideration of the reaction temperature and the half-life of the initiator. The amount of radical reaction initiator added varies depending on the introduction rate of chlorine, but if it is small, the reaction rate is prolonged and disadvantageous because it is necessary to suppress the introduction rate of chlorine. Moreover, since it will become difficult to isolate | separate the decomposition product of this initiator when there is too much, it is preferable that it is 0.1-20 mass% with respect to the fluorene compound of a normal raw material, and the range of 1-10 mass% is more preferable. .

反応混合物が金属と接触する場合は、金属イオンが副生成物の生成を触媒しないように、金属捕捉剤を混合物に添加することが望ましい。金属捕捉剤しては、通常この種の反応に適用されるものを適正量で用いればよい。   When the reaction mixture is in contact with a metal, it is desirable to add a metal scavenger to the mixture so that metal ions do not catalyze the formation of by-products. What is necessary is just to use what is normally applied to this kind of reaction as a metal scavenger in a proper quantity.

溶媒の分離、精製は公知の方法が特に制限なく採用される。例えば反応溶媒中で晶析した後、遠心分離などの分離機により分離し、乾燥する方法が一般的である。例えば反応終了後、窒素置換して溶解した塩素及び塩化水素を除去した後、溶媒の留去の必要がなく冷却することにより容易に晶析させることができる。また、必要に応じて反応に使用した溶媒を蒸留分離した後、他の不活性な溶媒を加えて溶液を冷却することにより、目的物を析出させ分離しても構わない。   For separation and purification of the solvent, known methods can be employed without any particular limitation. For example, a method is generally used in which crystallization is performed in a reaction solvent, followed by separation with a separator such as centrifugal separation, and drying. For example, after completion of the reaction, the chlorine and hydrogen chloride dissolved by substitution with nitrogen are removed, and then the solvent is not required to be distilled off. In addition, if necessary, the solvent used in the reaction may be separated by distillation, and another inert solvent may be added to cool the solution to precipitate and separate the target product.

本発明の塩素化反応に係る作用機序について一部推定も含めて以下に触れておくが、これにより本発明が限定して解釈されるものではない。一般的に電子豊富な芳香族化合物を塩素と反応させると、脂肪族側鎖よりベンゼン環への塩素置換反応が優先する。酸触媒存在下では、その反応が顕著となる。本発明の塩素化反応においても、副生する塩化水素が酸触媒とし働き、塩素ラジカルと塩素カチオンの競争反応になると考えられる。塩素(Cl)を基質とすることで、この塩素ラジカルが生成され、フルオレン化合物の9位に置換することで目的生成物を得ることができる。このとき、本発明の好ましい実施形態によれば、例えば反応液の沸点近くで反応させることで、塩化水素の反応液への溶解度を低下させ、イオン反応を制御しより高い目的生成物の選択率が達成されるものと考えられる。 The mechanism of action related to the chlorination reaction of the present invention will be described below, including some estimations, but the present invention is not construed as being limited thereto. Generally, when an electron-rich aromatic compound is reacted with chlorine, the chlorine substitution reaction from the aliphatic side chain to the benzene ring has priority. In the presence of an acid catalyst, the reaction becomes significant. Also in the chlorination reaction of the present invention, hydrogen chloride produced as a by-product acts as an acid catalyst, and it is considered that a competitive reaction between chlorine radicals and chlorine cations occurs. By using chlorine (Cl 2 ) as a substrate, this chlorine radical is generated, and the target product can be obtained by substituting the 9th position of the fluorene compound. At this time, according to a preferred embodiment of the present invention, for example, by reacting near the boiling point of the reaction solution, the solubility of hydrogen chloride in the reaction solution is reduced, the ion reaction is controlled, and the selectivity of the higher target product is increased. Is considered to be achieved.

以下に、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1
攪拌器、温度計及び還流冷却器を備えた300ミリリットルの4つ口フラスコに、フルオレン41.6g(0.25mol)、DCBTF(b.p.173℃〜174℃)145.4gを仕込み、加熱攪拌して178℃に昇温した。高圧水銀灯を点灯して光照射した。反応温度178℃(還流)を保つように、フルオレンの仕込みモル量当たりの塩素ガス吹込み速度を0.15mol/mol・hとして塩素ガスを供給し反応を開始した。反応開始から18時間後、ガスクロマトグラフィーにより塩素化物中のフルオレン及び9−クロロ−9H−フルオレンの消失が確認され反応は完結した。これを、ガスクロマトグラフィーを用いて分析したところ9,9−ジクロロフルオレンは95.3質量%であった。
Example 1
A 300 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 41.6 g (0.25 mol) of fluorene and 145.4 g of DCBTF (bp 173 ° C. to 174 ° C.) and heated. The temperature was raised to 178 ° C. with stirring. A high pressure mercury lamp was turned on and irradiated with light. The reaction was started by supplying chlorine gas at a chlorine gas blowing rate of 0.15 mol / mol · h per charged amount of fluorene so that the reaction temperature was maintained at 178 ° C. (reflux). After 18 hours from the start of the reaction, disappearance of fluorene and 9-chloro-9H-fluorene in the chlorinated product was confirmed by gas chromatography, and the reaction was completed. When this was analyzed using gas chromatography, 9,9-dichlorofluorene was 95.3 mass%.

実施例2
DCBTFの代わりにTCBTF(b.p.200℃〜206℃)を使用したこと以外は実施例1と同じ条件で9、9−ジクロロフルオレンを製造した。なお、反応温度は還流温度である202℃でおこなった。反応開始から15時間後、ガスクロマトグラフィーにより塩素化物中のフルオレン及び9−クロロ−9H−フルオレンの消失が確認され反応は完結した。これを、ガスクロマトグラフィーを用いて分析したところ9,9−ジクロロフルオレン97.7質量%であった。
Example 2
9,9-dichlorofluorene was produced under the same conditions as in Example 1 except that TCBTF (bp 200 ° C. to 206 ° C.) was used instead of DCBTF. The reaction temperature was 202 ° C., which is the reflux temperature. After 15 hours from the start of the reaction, disappearance of fluorene and 9-chloro-9H-fluorene in the chlorinated product was confirmed by gas chromatography, and the reaction was completed. When this was analyzed using gas chromatography, it was 97.7 mass% of 9,9-dichlorofluorene.

実施例3
DCBTFの代わりにPCBTF(b.p.140℃)を使用したこと以外は実施例1と同じ条件で9、9−ジクロロフルオレンを製造した。なお、反応温度は還流温度である146℃でおこなった。反応開始から23時間後、ガスクロマトグラフィーにより塩素化物中のフルオレン及び9-クロロ−9H−フルオレンの消失が確認され反応は完結した。これを、ガスクロマトグラフィーを用いて分析したころ9,9−ジクロロフルオレンは90.5質量%であった。
Example 3
9,9-dichlorofluorene was produced under the same conditions as in Example 1 except that PCBTF (bp 140 ° C.) was used instead of DCBTF. The reaction temperature was 146 ° C., which is the reflux temperature. After 23 hours from the start of the reaction, disappearance of fluorene and 9-chloro-9H-fluorene in the chlorinated product was confirmed by gas chromatography, and the reaction was completed. When this was analyzed using gas chromatography, 9,9-dichlorofluorene was 90.5 mass%.

実施例4
光照射を行わず遮光条件下で行なったこと以外は実施例1と同じ条件で9、9−ジクロロフルオレンを製造した。反応開始から21時間後、ガスクロマトグラフィーにより塩素化物中のフルオレン及び9−クロロ−9H−フルオレンの消失が確認され反応は完結した。これを、ガスクロマトグラフィーを用いて分析したころ9,9−ジクロロフルオレンは94.9質量%であった。
Example 4
9,9-dichlorofluorene was produced under the same conditions as in Example 1 except that light irradiation was not performed and light-shielding conditions were used. After 21 hours from the start of the reaction, disappearance of fluorene and 9-chloro-9H-fluorene in the chlorinated product was confirmed by gas chromatography, and the reaction was completed. When this was analyzed using gas chromatography, 9,9-dichlorofluorene was 94.9 mass%.

実施例5
攪拌器、温度計及び還流冷却器を備えた100ミリリットルの4つ口フラスコに、2,7−ジクロロフルオレン0.47g(2.0mmol)、DCBTF(b.p.173℃〜174℃)23.5gを仕込み、加熱攪拌して174℃に昇温した。高圧水銀灯を点灯して光照射した。反応温度174℃(還流)を保つように、塩素ガスを供給し反応を開始した。反応開始から6時間後、ガスクロマトグラフィーにより塩素化物中の2,7−ジクロロフルオレン及び2,7,9−トリクロロ−9H−フルオレンの消失が確認され反応は完結した。これを、ガスクロマトグラフィーを用いて分析したところ2,7,9,9−テトラクロロフルオレンは87質量%であった。
Example 5
In a 100 ml four-necked flask equipped with a stirrer, thermometer and reflux condenser, 0.47 g (2.0 mmol) of 2,7-dichlorofluorene and DCBTF (bp 173 ° C. to 174 ° C.) 23. 5 g was charged and heated to 174 ° C. with stirring. A high pressure mercury lamp was turned on and irradiated with light. Chlorine gas was supplied to start the reaction so that the reaction temperature was maintained at 174 ° C. (reflux). Six hours after the start of the reaction, the disappearance of 2,7-dichlorofluorene and 2,7,9-trichloro-9H-fluorene in the chlorinated product was confirmed by gas chromatography, and the reaction was completed. When this was analyzed using gas chromatography, 2,7,9,9-tetrachlorofluorene was 87 mass%.

Claims (12)

下記式(1)で表されるフルオレン化合物と塩素ガスとを接触させ、その塩素化反応により下記式(2)で表される化合物を得ることを特徴とする塩素化フルオレン化合物の製造方法。
Figure 2013245193
(式中、RおよびRは、それぞれ独立して、ハロゲン原子、ニトロ基、またはトリフルオロメチル基を表す。m、nはそれぞれ独立して0〜4の整数を表す。)
The manufacturing method of the chlorinated fluorene compound characterized by making the fluorene compound represented by following formula (1) contact chlorine gas, and obtaining the compound represented by following formula (2) by the chlorination reaction.
Figure 2013245193
(In the formula, R 1 and R 2 each independently represent a halogen atom, a nitro group, or a trifluoromethyl group. M and n each independently represents an integer of 0 to 4)
前記フルオレン化合物を溶媒に溶解した溶液中に塩素ガスを導入して前記反応を行う請求項1に記載の塩素化フルオレン化合物の製造方法。   The method for producing a chlorinated fluorene compound according to claim 1, wherein the reaction is carried out by introducing chlorine gas into a solution obtained by dissolving the fluorene compound in a solvent. 前記塩素化反応を、加熱または光照射により進行させる請求項1または2に記載の塩素化フルオレン化合物の製造方法。   The method for producing a chlorinated fluorene compound according to claim 1 or 2, wherein the chlorination reaction proceeds by heating or light irradiation. 前記光照射を紫外線または可視光線の照射により行う請求項3に記載の塩素化フルオレン化合物の製造方法。   The manufacturing method of the chlorinated fluorene compound of Claim 3 which performs the said light irradiation by irradiation of an ultraviolet-ray or visible light. 前記塩素化反応を、100℃〜250℃で行う請求項1〜4のいずれか1項に記載の塩素化フルオレン化合物の製造方法。   The manufacturing method of the chlorinated fluorene compound of any one of Claims 1-4 which perform the said chlorination reaction at 100 to 250 degreeC. ラジカル開始剤の存在下もしくは熱ラジカル発生条件下で前記反応を行う請求項1〜5のいずれか1項に記載の塩素化フルオレン化合物の製造方法。   The method for producing a chlorinated fluorene compound according to any one of claims 1 to 5, wherein the reaction is carried out in the presence of a radical initiator or under thermal radical generation conditions. 前記溶媒が、塩素に対して不活性な含フッ素芳香族炭化水素である請求項2〜6のいずれか1項に記載の塩素化フルオレン化合物の製造方法。   The method for producing a chlorinated fluorene compound according to any one of claims 2 to 6, wherein the solvent is a fluorine-containing aromatic hydrocarbon inert to chlorine. 前記含フッ素芳香族炭化水素がパラクロロベンゾトリフルオリド、オルトクロロベンゾトリフルオリド、3,4−ジクロロベンゾトリフルオリド、および3,4,5−トリクロロベンゾトリフルオリドからなる群から選ばれる請求項7に記載の塩素化フルオレン化合物の製造方法。   The fluorine-containing aromatic hydrocarbon is selected from the group consisting of parachlorobenzotrifluoride, orthochlorobenzotrifluoride, 3,4-dichlorobenzotrifluoride, and 3,4,5-trichlorobenzotrifluoride. The manufacturing method of the chlorinated fluorene compound of description. 前記フルオレン化合物を含む溶液の沸点温度において塩素化反応をさせる請求項2〜8のいずれか1項に記載の塩素化フルオレン化合物の製造方法。   The method for producing a chlorinated fluorene compound according to any one of claims 2 to 8, wherein the chlorination reaction is carried out at a boiling point temperature of a solution containing the fluorene compound. 前記溶媒の沸点が100℃〜250℃である請求項2〜9のいずれか1項に記載の塩素化フルオレン化合物の製造方法。   The boiling point of the said solvent is 100 to 250 degreeC, The manufacturing method of the chlorinated fluorene compound of any one of Claims 2-9. 前記塩素ガスの供給量を、0.05〜0.4mol/mol・hとする請求項1〜10のいずれか1項に記載の塩素化フルオレン化合物の製造方法。   The method for producing a chlorinated fluorene compound according to any one of claims 1 to 10, wherein a supply amount of the chlorine gas is 0.05 to 0.4 mol / mol · h. 前記溶媒の量がフルオレン化合物の量に対して0.5〜50倍(質量基準)である請求項2〜11のいずれか1項に記載の塩素化フルオレン化合物の製造方法。   The method for producing a chlorinated fluorene compound according to any one of claims 2 to 11, wherein the amount of the solvent is 0.5 to 50 times (mass basis) with respect to the amount of the fluorene compound.
JP2012119828A 2012-05-25 2012-05-25 Method for producing chlorinated fluorene compound Pending JP2013245193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119828A JP2013245193A (en) 2012-05-25 2012-05-25 Method for producing chlorinated fluorene compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119828A JP2013245193A (en) 2012-05-25 2012-05-25 Method for producing chlorinated fluorene compound

Publications (1)

Publication Number Publication Date
JP2013245193A true JP2013245193A (en) 2013-12-09

Family

ID=49845249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119828A Pending JP2013245193A (en) 2012-05-25 2012-05-25 Method for producing chlorinated fluorene compound

Country Status (1)

Country Link
JP (1) JP2013245193A (en)

Similar Documents

Publication Publication Date Title
JP6987930B2 (en) Method for producing 1- (3,5-dichlorophenyl) -2,2,2-trifluoro-etanone and its derivative
WO2012127969A1 (en) 1,2-benzisothiazol-3-one compound production method
JP4923184B2 (en) Method for producing chloroethylene carbonate
JP6915189B1 (en) High-purity 2-naphthylacetonitrile and its production method
JP2013245193A (en) Method for producing chlorinated fluorene compound
US5872291A (en) Process for producing benzoyl chlorides
JPH0145456B2 (en)
JP6126440B2 (en) Method for producing 4,4'-oxybisbenzoic acid chloride
US9102608B2 (en) Method for producing pentafluorosulfanyl benzoic acid
JPH09110768A (en) Production of 2-chloro-4-methylphenol
WO2017033813A1 (en) Method for producing alkenyl halide
JP4303685B2 (en) Method for producing 2-cyclopenten-1-one
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
JP2549890B2 (en) Process for producing bis (trichloromethyl) diphenyl ether
KR100479805B1 (en) Process for the preparation of 9,10-dichloroanthracene derivative
JP4896186B2 (en) Method for producing 1-bromo-3-fluorobenzene
JP4053685B2 (en) Method for producing tertiary carbon chlorinated hydrocarbon
JP2001039904A (en) Production of bromoalkylnaphthalene
JPH09255617A (en) Production of alkylbenzoyl chloride
JPH08198806A (en) Production of alkylbenzoylchloride
JP2022090710A (en) Production method of chloromethyl benzoate derivative
JP3833758B2 (en) Process for producing aromatic substituted chlorinated hydrocarbons
JP2020063197A (en) Production method of 2,6-naphthalenedicarboxylic acid diallyl ester
CN111587235A (en) Process for alpha-H halogenation of alkyl aromatic hydrocarbons with various substitutions on the aromatic ring
JP2016141621A (en) Production method of dichloroadamantane