JP4303685B2 - Method for producing 2-cyclopenten-1-one - Google Patents

Method for producing 2-cyclopenten-1-one Download PDF

Info

Publication number
JP4303685B2
JP4303685B2 JP2004564418A JP2004564418A JP4303685B2 JP 4303685 B2 JP4303685 B2 JP 4303685B2 JP 2004564418 A JP2004564418 A JP 2004564418A JP 2004564418 A JP2004564418 A JP 2004564418A JP 4303685 B2 JP4303685 B2 JP 4303685B2
Authority
JP
Japan
Prior art keywords
solvent
cyclopenten
weight
lithium
halogenocyclopentanone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004564418A
Other languages
Japanese (ja)
Other versions
JPWO2004060845A1 (en
Inventor
和美 寄高
宏紀 竹田
真隆 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manac Inc
Original Assignee
Manac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manac Inc filed Critical Manac Inc
Publication of JPWO2004060845A1 publication Critical patent/JPWO2004060845A1/en
Application granted granted Critical
Publication of JP4303685B2 publication Critical patent/JP4303685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/65Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、種々の医薬品および機能性材料の原料として有用な2−シクロペンテン−1−オンの改良された製造方法に関する。  The present invention relates to an improved process for producing 2-cyclopenten-1-one useful as a raw material for various pharmaceuticals and functional materials.

従来、2−ハロゲノシクロペンタノンから2−シクロペンテン−1−オンを製造する方法としては、2−クロロシクロペンタノンをN,N−ジエチルアニリン中で加熱し、脱ハロゲン化水素する方法が知られている(Beilstein,7,49)。しかし、この方法では、低収率でしか2−シクロペンテン−1−オンを得ることができない。また、一般的にα−ハロカルボニル化合物を、N,N−ジメチルホルムアミド中で、酸又はリチウムイオンなどと反応させ脱ハロゲン化水素する方法が、よく知られている。しかし、この方法によって、2−クロロシクロペンタノンを塩酸とN,N−ジメチルホルムアミド中で反応させても、転化率はわずか20%であったことが報告されている(Bull.Soc.Chem.Belg.,89(1980),1046)。更に、これらの脱ハロゲン化水素反応を工業的に行う場合、目的化合物である2−シクロペンテン−1−オンと使用溶媒であるN,N−ジメチルホルムアミドの沸点が近いため、目的化合物の分離・精製が困難であり、また大量のハロゲン化物塩を含んだ溶媒の回収使用が困難であるという問題があった。さらに、2−ハロゲノシクロペンタノンを、リチウム塩の存在下でN−アルキルホルムアニリド化合物を溶媒として用いて脱ハロゲン化水素する方法がある(特開2000−178220公報)。しかし、この方法は、多量の極性溶剤が必要であり、溶媒として用いているN−アルキルホルムアニリド化合物が高価で高沸点であるという問題があった。
したがって、本発明は、効率的な、溶媒との分離精製が容易であり、溶媒の再生使用が可能である、工業的に有利な2−シクロペンテン−1−オンの新規製造方法を提供することを目的とする。
Conventionally, as a method for producing 2-cyclopenten-1-one from 2-halogenocyclopentanone, a method in which 2-chlorocyclopentanone is heated in N, N-diethylaniline to dehydrohalogenate is known. (Beilstein, 7, 49). However, with this method, 2-cyclopenten-1-one can be obtained only in a low yield. In general, a method in which an α-halocarbonyl compound is reacted with an acid or lithium ion in N, N-dimethylformamide to dehydrohalogenate is well known. However, it has been reported that even when 2-chlorocyclopentanone is reacted with hydrochloric acid and N, N-dimethylformamide by this method, the conversion is only 20% (Bull. Soc. Chem. Belg., 89 (1980), 1046). Furthermore, when these dehydrohalogenation reactions are carried out industrially, the target compound 2-cyclopenten-1-one and the solvent used N, N-dimethylformamide are close in boiling point, so the target compound is separated and purified. There is a problem that it is difficult to recover and use a solvent containing a large amount of halide salt. Further, there is a method of dehydrohalogenating 2-halogenocyclopentanone using an N-alkylformanilide compound as a solvent in the presence of a lithium salt (Japanese Patent Laid-Open No. 2000-178220). However, this method has a problem that a large amount of polar solvent is required, and the N-alkylformanilide compound used as the solvent is expensive and has a high boiling point.
Therefore, the present invention provides an industrially advantageous new process for producing 2-cyclopenten-1-one that is efficient, easy to separate and purify from a solvent, and can be reused. Objective.

本発明(1)は、一般式(1):

Figure 0004303685
(式中、Xはハロゲン原子を表す)で示される2−ハロゲノシクロペンタノンを、塩基存在下、沸点180〜240℃のアミド系溶剤を含む溶媒中で脱ハロゲン化水素する工程を含む、2−シクロペンテン−1−オンの製造方法である。
また、本発明(2)は、該溶媒が、沸点145℃以下の芳香族系溶剤を更に含む、前記発明(1)の製造方法である。
更に、本発明(3)は、該溶媒中における該アミド系溶剤に対する該芳香族系溶剤の重量比が、1:0〜1:4である、前記発明(1)又は(2)の製造方法である。
また、本発明(4)は、該重量比が、1:0.3〜1:3である、前記発明(3)の製造方法である。
更に、本発明(5)は、該芳香族系溶剤が、ベンゼン又はトルエンである、前記発明(1)〜(4)のいずれか一つの製造方法である。
また、本発明(6)は、更にリチウム塩を触媒として用いる、前記発明(1)〜(5)のいずれか一つの製造方法である。The present invention (1) has the general formula (1):
Figure 0004303685
Including a step of dehydrohalogenating 2-halogenocyclopentanone represented by the formula (wherein X represents a halogen atom) in a solvent containing an amide solvent having a boiling point of 180 to 240 ° C. in the presence of a base; -A process for producing cyclopenten-1-one.
Moreover, this invention (2) is a manufacturing method of the said invention (1) in which this solvent further contains an aromatic solvent with a boiling point of 145 degrees C or less.
Furthermore, the present invention (3) is the method according to the invention (1) or (2), wherein the weight ratio of the aromatic solvent to the amide solvent in the solvent is 1: 0 to 1: 4. It is.
Moreover, this invention (4) is a manufacturing method of the said invention (3) whose said weight ratio is 1: 0.3-1: 3.
Furthermore, the present invention (5) is the production method according to any one of the inventions (1) to (4), wherein the aromatic solvent is benzene or toluene.
Moreover, this invention (6) is a manufacturing method any one of said invention (1)-(5) which uses lithium salt as a catalyst further.

本発明の製造方法で使用される2−ハロゲノシクロペンタノンは、一般式(1):

Figure 0004303685
で示される。式中、Xはハロゲン原子を表し、好ましくは塩素原子、臭素原子、ヨウ素原子の中から選ばれたハロゲン原子であり、より好ましくは塩素原子又は臭素原子であり、最も好ましくは臭素原子である。
2−ハロゲノシクロペンタノンの具体例は、2−クロロシクロペンタノン、2−ブロモシクロペンタノン、2−ヨウ化シクロペンタノンであり、好ましくは2−クロロシクロペンタノン又は2−ブロモシクロペンタノンであり、更に好ましくは2−ブロモシクロペンタノンである。一般式(1)で表される2−ハロゲノシクロペンタノンは、例えば、Organic Synthesis,53(1973),123などに記載されている公知の方法で製造することができる。
本発明の製造方法において使用される溶媒は、沸点180〜240℃のアミド系溶剤を含む溶媒である。
ここで、本願発明で使用されるアミド系溶剤は、一般式(1)で示される2−ハロゲノシクロペンタノン及びリチウム塩に対し適度な溶解性と極性を有していると考えられるので、簡便に効率よく目的物である2−シクロペンテン−1−オンを合成することができる。また、本願発明で使用されるアミド系溶剤は、生成物である2−シクロペンテン−1−オンと沸点が離れているため、2−シクロペンテン−1−オンは容易に溶媒から蒸留精製することができる。更に、本発明で使用されるアミド系溶剤は、温和な条件で蒸留が可能となるため、蒸留による分解及び着色を防ぐことができ、簡便な蒸留によりアミド系溶剤の再生使用が可能となるものである。
本願発明で使用されるアミド系溶剤の具体例は、例えば、ホルムアミド、N−メチルホルムアミド、N,N−ジイソプロピルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジイソプロピルアセトアミド、N−メチルピロリドン、N−メチルピペリドン、1,3−ジメチル−2−イミダゾリジノンなどであり、好ましくは、ホルムアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノンであり、更に好ましくはN−メチルピロリドンである。これらの2種以上を混合して用いてもよい。
また、本発明で使用される溶媒は、沸点145℃以下の芳香族系溶剤を更に含んでいてもよい。このような芳香族系溶剤も、生成物である2−シクロペンテン−1−オンと沸点が離れているため、2−シクロペンテン−1−オンを容易に溶媒から蒸留精製することができる。また、芳香族系溶剤は水に不溶であるので、反応後の芳香族系溶剤を水で洗浄することにより、溶媒中に含まれるハロゲン化物塩が溶媒から容易に除去され、溶媒の再生使用が可能となる。尚、芳香族系溶剤の存在に何ら関係なく、脱ハロゲン化水素することで、芳香族系溶剤は、本質的には脱ハロゲン化水素に無影響であることを確認している。
本願発明で使用される芳香族系溶剤の具体例は、例えば、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、混合キシレンなどであり、好ましくはベンゼン、トルエンであり、更に好ましくはトルエンである。これらの2種以上を混合して用いてもよい。
本発明で用いられる溶媒の使用量は、2−ハロゲノシクロペンタノンに対して重量比で1〜10倍量、好ましくは2〜6倍量、更に好ましくは2〜3倍量である。
また、溶媒中の各溶媒比(アミド系溶剤:芳香族系溶剤、重量比)は、1:0〜4、好ましくは1:0.3〜3、更に好ましくは1:0.7〜1.5である。
脱ハロゲン化水素剤として作用する塩基は特に限定されない。塩基を併用することにより、2−ハロゲノシクロペンタノンの脱ハロゲン化水素反応によって生じるハロゲン化水素を中和することができる。例えば、ピリジン、コリジン、ルチジン、酸化マグネシウム、炭酸塩として炭酸ナトリウム、炭酸リチウムなど、炭酸水素塩として炭酸水素リチウム、炭酸水素ナトリウムなどが挙げられ、これらを併用してもよい。これらの中では、炭酸水素ナトリウムおよび炭酸リチウムが好ましく、炭酸リチウムが特に好ましい。
本発明で使用される塩基の量は、原料である2−ハロゲノシクロペンタノン1モル量に対して、炭酸塩などの2塩基酸の場合は、通常0.4〜1.0モル量、好ましくは0.5〜0.8モル量、更に好ましくは0.5〜0.6モル量であり、炭酸水素塩等の1塩基酸の場合は、通常0.8〜2.0モル量、好ましくは1.0〜1.6モル量、更に好ましくは1.0〜1.2モル量である。
本発明に係る製造方法では、触媒を用いてもよい。ここで、触媒としてはリチウム塩が好適である。該リチウム塩は特に限定されないが、通常、無機酸のリチウム塩が用いられる。その具体例としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、炭酸リチウム、炭酸水素リチウムなどが挙げられる。好ましくは塩化リチウム、臭化リチウムであり、更に好ましくは臭化リチウムである。これらのリチウム塩は水和物として使用してもよい。また、これらを組み合わせて用いてもよい。
触媒として用いるリチウム塩の量は、原料である2−ハロゲノシクロペンタノン1重量部に対し、通常0〜0.2重量部、好ましくは0.01〜0.1重量部、更に好ましくは0.01〜0.05重量部である。
2−ハロゲノシクロペンタノンの脱ハロゲン化水素反応の反応温度は、通常50℃〜150℃、好ましくは70〜120℃、更に好ましくは90〜110℃である。反応時間は、一般に1〜5時間、好ましくは1.5〜4時間、更に好ましくは2〜3時間である。
尚、脱ハロゲン化水素反応は加熱下で行われるが、塩基として炭酸塩または炭酸水素塩を用いる場合、反応は激しい二酸化炭素の発生を伴うので、この際には塩基、触媒、溶媒を入れ、加熱した反応器内に2−ハロゲノシクロペンタノンを滴下する方法を採ることが望ましい。
脱ハロゲン化水素反応が完了した後、反応混合物を減圧濃縮することにより芳香族系溶剤を回収することができる。減圧濃縮は、脱ハロゲン化水素反応が完了した後、直ちに開始することが好ましい。濃縮時の温度は、通常、反応器内温で30〜70℃、好ましくは35〜60℃、更に好ましくは40〜50℃である。圧力は、通常6.7kPa以下、好ましくは5.3kPa以下、更に好ましくは4.0kPa以下である。
減圧濃縮が完了した後、反応混合物を減圧蒸留することによって2−シクロペンテン−1−オンが得られる。減圧蒸留は、減圧濃縮が完了した後、直ちに開始することが好ましい。蒸留時の温度は、通常、反応器内温で60〜120℃、好ましくは65〜115℃、更に好ましくは70〜110℃である。圧力は、通常9.3kPa以下、好ましくは8.0kPa以下、更に好ましくは6.7kPa以下である。
減圧蒸留の後、さらに濃縮し、アミド系溶剤を回収してもよい。濃縮時の温度は、通常、反応器内温で60℃〜90℃、好ましくは65℃〜85℃、更に好ましくは70℃〜80℃である。圧力は、通常2.7kPa以下、好ましくは2.0kPa以下、更に好ましくは1.3kPa以下である。
減圧蒸留で得られた2−シクロペンテン−1−オンは、更に精製してもよい。精製は、例えば、2−シクロペンテン−1−オンにヒドロキノンなどの重合禁止剤を適量添加し、精留塔等を用いて行えばよい。このときの精製の温度や圧力の条件は、上記の蒸留時の条件と同様である。
蒸留することによって2−シクロペンテン−1−オンを容易に分離精製することができる。脱ハロゲン化水素反応によって得られる2−シクロペンテン−1−オンは、医薬品などの製造原料、および機能性材料の製造原料として有用である。The 2-halogenocyclopentanone used in the production method of the present invention has the general formula (1):
Figure 0004303685
Indicated by In the formula, X represents a halogen atom, preferably a halogen atom selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom or a bromine atom, and most preferably a bromine atom.
Specific examples of 2-halogenocyclopentanone are 2-chlorocyclopentanone, 2-bromocyclopentanone, 2-iodinated cyclopentanone, preferably 2-chlorocyclopentanone or 2-bromocyclopentanone. 2-bromocyclopentanone is more preferable. The 2-halogenocyclopentanone represented by the general formula (1) can be produced by a known method described in, for example, Organic Synthesis, 53 (1973), 123.
The solvent used in the production method of the present invention is a solvent containing an amide solvent having a boiling point of 180 to 240 ° C.
Here, the amide solvent used in the present invention is considered to have moderate solubility and polarity with respect to the 2-halogenocyclopentanone represented by the general formula (1) and the lithium salt. It is possible to efficiently synthesize 2-cyclopenten-1-one which is the target product. In addition, since the boiling point of the amide solvent used in the present invention is different from that of the product 2-cyclopenten-1-one, 2-cyclopenten-1-one can be easily purified by distillation from the solvent. . Furthermore, since the amide solvent used in the present invention can be distilled under mild conditions, decomposition and coloration due to distillation can be prevented, and the amide solvent can be reused by simple distillation. It is.
Specific examples of the amide solvent used in the present invention include, for example, formamide, N-methylformamide, N, N-diisopropylformamide, acetamide, N-methylacetamide, N, N-diisopropylacetamide, N-methylpyrrolidone, N -Methylpiperidone, 1,3-dimethyl-2-imidazolidinone, etc., preferably formamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, more preferably N-methylpyrrolidone. is there. Two or more of these may be mixed and used.
The solvent used in the present invention may further contain an aromatic solvent having a boiling point of 145 ° C. or lower. Such an aromatic solvent also has a boiling point away from the product 2-cyclopenten-1-one, so that 2-cyclopenten-1-one can be easily purified by distillation from the solvent. In addition, since the aromatic solvent is insoluble in water, the halide salt contained in the solvent is easily removed from the solvent by washing the aromatic solvent after the reaction with water, so that the solvent can be reused. It becomes possible. It has been confirmed that the aromatic solvent essentially has no influence on the dehydrohalogenation by dehydrohalogenation regardless of the presence of the aromatic solvent.
Specific examples of the aromatic solvent used in the present invention are, for example, benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, mixed xylene, and the like, preferably benzene and toluene. Preferably it is toluene. Two or more of these may be mixed and used.
The amount of the solvent used in the present invention is 1 to 10 times, preferably 2 to 6 times, and more preferably 2 to 3 times the weight ratio of 2-halogenocyclopentanone.
The solvent ratio in the solvent (amide solvent: aromatic solvent, weight ratio) is 1: 0 to 4, preferably 1: 0.3 to 3, more preferably 1: 0.7 to 1. 5.
The base that acts as a dehydrohalogenating agent is not particularly limited. By using a base together, the hydrogen halide produced by the dehalogenation reaction of 2-halogenocyclopentanone can be neutralized. Examples thereof include pyridine, collidine, lutidine, magnesium oxide, carbonates such as sodium carbonate and lithium carbonate, and bicarbonates such as lithium bicarbonate and sodium bicarbonate, and these may be used in combination. Among these, sodium hydrogen carbonate and lithium carbonate are preferable, and lithium carbonate is particularly preferable.
The amount of the base used in the present invention is usually 0.4 to 1.0 mol, preferably 2 to 1.0 mol in the case of a dibasic acid such as carbonate with respect to 1 mol of 2-halogenocyclopentanone as a raw material. Is 0.5 to 0.8 mol, more preferably 0.5 to 0.6 mol, and in the case of a monobasic acid such as bicarbonate, usually 0.8 to 2.0 mol, preferably Is 1.0 to 1.6 mol, more preferably 1.0 to 1.2 mol.
In the production method according to the present invention, a catalyst may be used. Here, a lithium salt is suitable as the catalyst. The lithium salt is not particularly limited, but an inorganic acid lithium salt is usually used. Specific examples thereof include lithium chloride, lithium bromide, lithium iodide, lithium carbonate, lithium hydrogen carbonate and the like. Preferred are lithium chloride and lithium bromide, and more preferred is lithium bromide. These lithium salts may be used as hydrates. Moreover, you may use combining these.
The amount of the lithium salt used as the catalyst is usually 0 to 0.2 parts by weight, preferably 0.01 to 0.1 parts by weight, and more preferably 0.000 parts by weight with respect to 1 part by weight of 2-halogenocyclopentanone as a raw material. 01 to 0.05 parts by weight.
The reaction temperature for the dehalogenation reaction of 2-halogenocyclopentanone is usually from 50 ° C to 150 ° C, preferably from 70 to 120 ° C, more preferably from 90 to 110 ° C. The reaction time is generally 1 to 5 hours, preferably 1.5 to 4 hours, and more preferably 2 to 3 hours.
The dehydrohalogenation reaction is carried out under heating. However, when carbonate or bicarbonate is used as the base, the reaction involves intense carbon dioxide generation. In this case, a base, a catalyst, and a solvent are added. It is desirable to adopt a method in which 2-halogenocyclopentanone is dropped into a heated reactor.
After the dehydrohalogenation reaction is completed, the aromatic solvent can be recovered by concentrating the reaction mixture under reduced pressure. The concentration under reduced pressure is preferably started immediately after the dehydrohalogenation reaction is completed. The temperature at the time of concentration is usually 30 to 70 ° C., preferably 35 to 60 ° C., more preferably 40 to 50 ° C. in the reactor internal temperature. The pressure is usually 6.7 kPa or less, preferably 5.3 kPa or less, more preferably 4.0 kPa or less.
After the vacuum concentration is complete, the reaction mixture is distilled under reduced pressure to give 2-cyclopenten-1-one. The vacuum distillation is preferably started immediately after the vacuum concentration is completed. The temperature during distillation is usually 60 to 120 ° C., preferably 65 to 115 ° C., more preferably 70 to 110 ° C. in the reactor internal temperature. The pressure is usually 9.3 kPa or less, preferably 8.0 kPa or less, more preferably 6.7 kPa or less.
After distillation under reduced pressure, it may be further concentrated to recover the amide solvent. The temperature at the time of concentration is usually 60 ° C to 90 ° C, preferably 65 ° C to 85 ° C, more preferably 70 ° C to 80 ° C as the reactor internal temperature. The pressure is usually 2.7 kPa or less, preferably 2.0 kPa or less, more preferably 1.3 kPa or less.
The 2-cyclopenten-1-one obtained by distillation under reduced pressure may be further purified. Purification may be performed, for example, by adding an appropriate amount of a polymerization inhibitor such as hydroquinone to 2-cyclopenten-1-one and using a rectifying column or the like. The conditions of the temperature and pressure of purification at this time are the same as the conditions at the time of distillation.
By distilling, 2-cyclopenten-1-one can be easily separated and purified. 2-Cyclopenten-1-one obtained by dehydrohalogenation reaction is useful as a raw material for producing pharmaceuticals and functional materials.

以下に、実施例を挙げて、本発明をより具体的に説明するが、本発明は、実施例に限定されるものではない。なお、これらの例中の部及び%は、特に断りのない限り重量基準である。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples. In these examples, parts and% are based on weight unless otherwise specified.

2.2重量部のN−メチルピロリドンの溶媒に臭化リチウム−水和物0.01重量部と0.26重量部の炭酸リチウム、0.001重量部のヒドロキノンを加え、釜温度を100℃に加熱した。これに1重量部の2−ブロモシクロペンタノンを1時間かけて滴下した。滴下終了後1時間さらに反応させ、その後系内を6.0〜6.7kPaに減圧し、釜温度140℃以下で留出する2−シクロペンテン−1−オンを収率58%で得た。  To a solvent of 2.2 parts by weight of N-methylpyrrolidone, 0.01 parts by weight of lithium bromide-hydrate and 0.26 parts by weight of lithium carbonate and 0.001 part by weight of hydroquinone are added, and the kettle temperature is set to 100 ° C. Heated. 1 part by weight of 2-bromocyclopentanone was added dropwise thereto over 1 hour. After completion of the dropwise addition, the reaction was further continued for 1 hour, and then the pressure in the system was reduced to 6.0 to 6.7 kPa, and 2-cyclopenten-1-one distilled at a kettle temperature of 140 ° C. or lower was obtained in a yield of 58%.

1.1重量部のN−メチルピロリドンと1.1重量部のトルエンの混合溶媒に0.26重量部の炭酸リチウム、0.001重量部のヒドロキノンを加え、釜温度を100℃に加熱した。これに1重量部の2−ブロモシクロペンタノンを1時間かけて滴下した。滴下終了後1時間さらに反応させ、その後系内を6.0〜6.7kPaに減圧し、釜温度70℃以下で濃縮し、トルエン使用量の90%を回収した。濃縮後、系内を6.0〜6.7kPaに減圧し、釜温度140℃以下で留出する2−シクロペンテン−1−オンを収率51%で得た。  0.26 parts by weight of lithium carbonate and 0.001 part by weight of hydroquinone were added to a mixed solvent of 1.1 parts by weight of N-methylpyrrolidone and 1.1 parts by weight of toluene, and the kettle temperature was heated to 100 ° C. 1 part by weight of 2-bromocyclopentanone was added dropwise thereto over 1 hour. The reaction was further continued for 1 hour after completion of the dropping, and then the system was depressurized to 6.0 to 6.7 kPa and concentrated at a kettle temperature of 70 ° C. or less to recover 90% of the amount of toluene used. After concentration, the pressure in the system was reduced to 6.0 to 6.7 kPa, and 2-cyclopenten-1-one distilled at a kettle temperature of 140 ° C. or lower was obtained in a yield of 51%.

1.1重量部のN−メチルピロリドンと1.1重量部のトルエンの混合溶媒に臭化リチウム−水和物0.01重量部と0.26重量部の炭酸リチウム、0.001重量部のヒドロキノンを加え、釜温度を100℃に加熱した。これに1重量部の2−ブロモシクロペンタノンを1時間かけて滴下した。滴下終了後1時間さらに反応させ、その後系内を6.0〜6.7kPaに減圧し、釜温度70℃以下で濃縮し、トルエン使用量の90%を回収した。濃縮後、系内を6.0〜6.7kPaに減圧し、釜温度140℃以下で留出する2−シクロペンテン−1−オンを収率57%で得た。  In a mixed solvent of 1.1 parts by weight of N-methylpyrrolidone and 1.1 parts by weight of toluene, 0.01 part by weight of lithium bromide-hydrate and 0.26 parts by weight of lithium carbonate, 0.001 part by weight of Hydroquinone was added and the kettle temperature was heated to 100 ° C. 1 part by weight of 2-bromocyclopentanone was added dropwise thereto over 1 hour. The reaction was further continued for 1 hour after completion of the dropping, and then the system was depressurized to 6.0 to 6.7 kPa and concentrated at a kettle temperature of 70 ° C. or less to recover 90% of the amount of toluene used. After concentration, the pressure in the system was reduced to 6.0 to 6.7 kPa, and 2-cyclopenten-1-one distilled at a kettle temperature of 140 ° C. or lower was obtained in a yield of 57%.

発明の効果The invention's effect

本発明によれば、簡便に効率よく目的物である2−シクロペンテン−1−オンを合成し、また、容易に2−シクロペンテン−1−オンを溶媒から蒸留精製することができ、更に、溶媒は減圧濃縮することにより再生使用が可能である2−シクロペンテン−1−オンの製造方法が提供される。  According to the present invention, the target 2-cyclopenten-1-one can be easily and efficiently synthesized, and 2-cyclopenten-1-one can be easily purified by distillation from a solvent. A method for producing 2-cyclopenten-1-one that can be recycled by concentration under reduced pressure is provided.

Claims (6)

一般式(1):
Figure 0004303685
(式中、Xはハロゲン原子を表す)で示される2−ハロゲノシクロペンタノンを、塩基存在下、沸点180〜240℃のアミド系溶剤を含む溶媒中で脱ハロゲン化水素する工程を含む、2−シクロペンテン−1−オンの製造方法。
General formula (1):
Figure 0004303685
Including a step of dehydrohalogenating 2-halogenocyclopentanone represented by the formula (wherein X represents a halogen atom) in a solvent containing an amide solvent having a boiling point of 180 to 240 ° C. in the presence of a base; -Method for producing cyclopenten-1-one.
該溶媒が、更に沸点145℃以下の芳香族系溶剤を含む、請求の範囲第1項記載の製造方法。The production method according to claim 1, wherein the solvent further contains an aromatic solvent having a boiling point of 145 ° C or lower. 該溶媒中における該アミド系溶剤に対する該芳香族系溶剤の重量比は、1:0〜1:4である、請求の範囲第1項又は第2項記載の製造方法。The production method according to claim 1 or 2, wherein a weight ratio of the aromatic solvent to the amide solvent in the solvent is 1: 0 to 1: 4. 該重量比が、1:0.3〜1:3である、請求の範囲第3項記載の製造方法。The production method according to claim 3, wherein the weight ratio is 1: 0.3 to 1: 3. 該芳香族系溶剤が、ベンゼン又はトルエンである、請求の範囲第1項〜第4項のいずれか一項記載の製造方法。The manufacturing method according to any one of claims 1 to 4, wherein the aromatic solvent is benzene or toluene. 更にリチウム塩を触媒として用いる、請求の範囲第1項〜第5項のいずれか一項記載の製造方法。Furthermore, the manufacturing method as described in any one of Claims 1-5 which uses lithium salt as a catalyst.
JP2004564418A 2002-12-26 2002-12-26 Method for producing 2-cyclopenten-1-one Expired - Fee Related JP4303685B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/013616 WO2004060845A1 (en) 2002-12-26 2002-12-26 Process for producing 2-cyclopenten-1-one

Publications (2)

Publication Number Publication Date
JPWO2004060845A1 JPWO2004060845A1 (en) 2006-05-11
JP4303685B2 true JP4303685B2 (en) 2009-07-29

Family

ID=32697301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004564418A Expired - Fee Related JP4303685B2 (en) 2002-12-26 2002-12-26 Method for producing 2-cyclopenten-1-one

Country Status (3)

Country Link
JP (1) JP4303685B2 (en)
CN (1) CN1289452C (en)
WO (1) WO2004060845A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899587B2 (en) * 2006-03-30 2012-03-21 宇部興産株式会社 Method for producing ε-caprolactam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028948A (en) * 1983-07-26 1985-02-14 Nippon Shirika Kogyo Kk Preparation of 2-cyclopenten-1-one
JP4066544B2 (en) * 1998-12-14 2008-03-26 日本ゼオン株式会社 Method for producing cyclopentenone

Also Published As

Publication number Publication date
CN1714066A (en) 2005-12-28
CN1289452C (en) 2006-12-13
WO2004060845A1 (en) 2004-07-22
JPWO2004060845A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
EP2462098B1 (en) Process for the preparation of derivatives of 1-(2-halobiphenyl-4-yl)-cyclopropanecarboxylic acid
JPH02221233A (en) Bromination of methyl group bonded to aromatic nucleus
TWI687404B (en) Process for the preparation of halo-substituted benzenes
JPH07110827B2 (en) Method for producing tetrabromobisphenol A
JP4303685B2 (en) Method for producing 2-cyclopenten-1-one
KR100885148B1 (en) Process for producing 4'-bromomethyl-2-cyanobiphenyl
JP2020512310A (en) Process for producing halo-substituted benzoic acid compound and intermediate thereof
JP3918883B2 (en) Method for producing benzoyl chlorides
JP2003321406A (en) High-purity fluoroalkylbenzene derivative and method for producing the same
JP4066544B2 (en) Method for producing cyclopentenone
JP4038657B2 (en) Method for producing adamantanone
JP2008074722A (en) Method for producing 2-amino-5-iodobenzoic acid
WO2007086330A1 (en) Method for producing halogen-substituted benzenedimethanol
EP2789603B1 (en) Method for producing pentafluorosulfanyl benzoic acid
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
JP2002255954A (en) METHOD FOR PRODUCING 2-n-BUTYL-5-NITROBENZOFURAN
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
JPH0327338A (en) Production of bis(2-hydroxyhexafluoro-2-propyl)-benzene derivative
JPH11189566A (en) Production of fluoroalkylcarboxylic acid
JP2005082496A (en) 2'-(1h-tetrazol-5-yl)biphenyl-4-carbaldehyde crystal and its manufacturing method
JP2004307355A (en) METHOD FOR PURIFYING FLUORO-beta-DICARBONYL COMPOUND
JPH09227490A (en) Production of 3-(or 4-)cyanobenzaldehyde
JPS6314693B2 (en)
JPH09188659A (en) Production of aromatic nitrile compound containing halogen
JPH03284649A (en) 4-bromo-3,5,6-trifluorophthalonitrile and 4-bromo-3,5,6-trifluorophthalic acid and production of 4-bromo-3,5,6-trifluorophthalic acid and 3-bromo-2,4,5-trifluorobenzoic acid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees