JPS6314693B2 - - Google Patents

Info

Publication number
JPS6314693B2
JPS6314693B2 JP9436680A JP9436680A JPS6314693B2 JP S6314693 B2 JPS6314693 B2 JP S6314693B2 JP 9436680 A JP9436680 A JP 9436680A JP 9436680 A JP9436680 A JP 9436680A JP S6314693 B2 JPS6314693 B2 JP S6314693B2
Authority
JP
Japan
Prior art keywords
reaction
toluene
mol
chlorine
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9436680A
Other languages
Japanese (ja)
Other versions
JPS5718644A (en
Inventor
Shigeo Yoshinaka
Tsukasa Toki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9436680A priority Critical patent/JPS5718644A/en
Publication of JPS5718644A publication Critical patent/JPS5718644A/en
Publication of JPS6314693B2 publication Critical patent/JPS6314693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はベンズアルデヒド類の補造方法に関す
る。曎に詳しくは、䞀般匏が
The present invention relates to a method for producing benzaldehydes. More specifically, the general formula is

【匏】たゞ し、匏䞭は、Cl、Br、CNたたはNO2をあら
わすで瀺される化合物以䞋これらをトル゚ン
類ず蚘すのメチル基を塩玠化しお、トル゚ン類
分子に察しお平均1.0〜2.0個の塩玠原子を有す
る塩玠化物以䞋塩玠化トル゚ン混合物ず蚘す
を補造する第工皋ず、第工皋で埗られた塩玠
化トル゚ン混合物を硝酞ず反応させお䞀般匏が
[Formula] (wherein X represents H, Cl, Br, CN, or NO 2 ) The methyl group of the compound (hereinafter referred to as toluenes) is chlorinated to produce one molecule of toluenes. Chlorinated products having an average of 1.0 to 2.0 chlorine atoms (hereinafter referred to as chlorinated toluene mixture)
The first step is to produce the chlorinated toluene mixture obtained in the first step, and the general formula is

【匏】たゞし、匏䞭は、Cl、Br、 CNたたはNO2をあらわすで瀺される化合物
以䞋これらをベンズアルデヒド類ず蚘すを補
造する第工皋ずからなるこずを特城ずするベン
ズアルデヒド類の補造方法に関する発明である。 ベンズアルデヒド類は医薬、蟲業、染料、銙
料、その他の有機合成原料ずしお有甚である。埓
来、ベンズアルデヒド類の補造方法ずしおは、倚
くの方法が知られおいる。ベンズアルデヒド類の
補造方法をベンズアルデヒドを䟋にず぀お瀺せば
次のようである。すなわち、ベンズアルデヒドの
䞻な補法ずしおは、トル゚ンの盎接酞化法、ベン
ザルクロラむドの加氎分解法があり、他にベンゞ
ルクロラむド、ベンゞルアルコヌル、ベンゟむル
クロラむドを原料ずする方法等が知られおいる。
しかしながらこれらの方法は必ずしも奜たしい方
法ではない。䟋えば、トル゚ンの盎接酞化法に぀
いおは、反応条件、觊媒等に぀いお倚くの研究が
なされおいるが、未だベンズアルデヒドを遞択的
に補造するこずが出来ないので、安息銙酞たたは
ベンゞルアルコヌル等が倚量に副生するのが実情
である。 ベンザルクロラむドを加氎分解する方法に぀い
おも觊媒や反応条件に぀いお倚くの研究がされお
いる。この堎合は、反応觊媒、反応条件を遞ぶこ
ずによ぀お、比范的高収率でベンズアルデヒドを
補造するこずが出来る。しかしながら、この堎合
にはベンザルクロラむドを補造するこず自䜓にか
なりの困難がある。すなわち、ベンザルクロラむ
ドの補造は通垞はトル゚ンの熱たたは光塩玠化に
よ぀お行なわれるが、この塩玠化においおは、塩
玠化床ず生党物組成ずの間に、䟋えば参考図のよ
うな関係がある。すなわち、ベンザルクロラむド
はベンゞルクロラむドおよびベンゟトリクロラむ
ドずの混合物の圢で埗られ、ベンザルクロラむド
を遞択的に合成するこずが出来ない。したが぀お
ベンザルクロラむドを埗るためには、蒞留等混合
物からの分離操䜜が必芁ずなるばかりでなく、ト
ル゚ンに察する収率は䜎くなる等の欠点がある。
したが぀お、ベンザルクロラむドの加氎分解によ
るベンズアルデヒドの補造方法もトル゚ンを出発
物質ずしおみた堎合には、高収率ずはいえない。 ベンゞルクロラむドを出発原料ずする方法ずし
おは叀くから、垌硝酞たたは硝酞鉛ず反応させる
方法、ヘキサメチレンテトラミン溶液ず反応させ
る方法、加氎分解埌重クロム酞゜ヌダで酞化する
方法等いく぀かの方法が知られおいる。しかしな
がらこの堎合もベンザルクロラむドの堎合ず同様
に、ベンゞルクロラむドを補造するこずがかなり
困難である。すなわち、トル゚ンの塩玠化による
ベンゞルクロラむドの合成においおは、参考図に
瀺されるようにベンゞルクロラむドはベンザルク
ロラむド等ずの混合物の圢で埗られ、ベンゞルク
ロラむドを遞択的に合成するこずが出来ない。し
たが぀お分離操䜜が必芁ずなるばかりでなく、収
率も䜎くなるこずはベンザルクロラむドの堎合ず
同様である。 本発明者らは、これらの欠点を改善すべく、ベ
ンズアルデヒドの新芏な補造方法に぀いお鋭意研
究を行な぀た結果、トル゚ンのメチル基の塩玠の
数以䞋、塩玠化床ず蚘すが特定の数である塩
玠化トル゚ン混合物たたは、栞にハロゲン、−
CNたたは−NO2を有する塩玠化トル゚ン混合物
を特定の条件䞋に硝酞ず反応させるこずによ぀
お、奜収率でベンズアルデヒド類を補造するこず
が出来るこずを芋出しお、本発明方法を完成する
に至぀た。 本発明方法は、第工皋の塩玠化反応におい䞀
般匏
[Formula] (wherein X represents H, Cl, Br, CN or NO 2 ) A second step of producing a compound (hereinafter referred to as benzaldehydes) This invention relates to a method for producing benzaldehydes. Benzaldehydes are useful as raw materials for medicine, agriculture, dyes, fragrances, and other organic synthesis. Conventionally, many methods are known as methods for producing benzaldehydes. The method for producing benzaldehydes is as follows, taking benzaldehyde as an example. That is, the main methods for producing benzaldehyde include the direct oxidation method of toluene and the hydrolysis method of benzal chloride, and other known methods include methods using benzyl chloride, benzyl alcohol, and benzoyl chloride as raw materials.
However, these methods are not necessarily preferred methods. For example, regarding the direct oxidation method of toluene, a lot of research has been done on reaction conditions, catalysts, etc., but it is still not possible to selectively produce benzaldehyde, so benzoic acid or benzyl alcohol etc. are produced as by-products in large quantities. The reality is that. Much research has been conducted on catalysts and reaction conditions regarding methods for hydrolyzing benzal chloride. In this case, benzaldehyde can be produced in a relatively high yield by selecting the reaction catalyst and reaction conditions. However, in this case, there are considerable difficulties in producing benzal chloride itself. That is, the production of benzal chloride is usually carried out by thermal or photochlorination of toluene, but in this chlorination, there is a relationship between the degree of chlorination and the composition of the whole organism, as shown in the reference diagram. There is. That is, benzal chloride is obtained in the form of a mixture with benzyl chloride and benzotrichloride, and benzal chloride cannot be selectively synthesized. Therefore, in order to obtain benzal chloride, not only is separation operation such as distillation required from the mixture, but there are also drawbacks such as a low yield relative to toluene.
Therefore, the method for producing benzaldehyde by hydrolysis of benzal chloride cannot be said to have a high yield when using toluene as a starting material. Several methods have been known for a long time using benzyl chloride as a starting material, such as reacting it with dilute nitric acid or lead nitrate, reacting it with a hexamethylenetetramine solution, and oxidizing it with sodium dichromate after hydrolysis. It is being However, in this case as well, it is quite difficult to produce benzyl chloride. That is, in the synthesis of benzyl chloride by chlorination of toluene, benzyl chloride is obtained in the form of a mixture with benzal chloride and the like, as shown in the reference diagram, and benzyl chloride cannot be synthesized selectively. Therefore, not only is a separation operation required, but the yield is also low, as in the case of benzal chloride. In order to improve these drawbacks, the present inventors conducted intensive research on a new method for producing benzaldehyde, and found that the number of chlorine atoms in the methyl group of toluene (hereinafter referred to as the degree of chlorination) reached a certain number. chlorinated toluene mixture or halogen in the core, -
The present invention was completed by discovering that benzaldehydes can be produced in good yield by reacting a chlorinated toluene mixture containing CN or -NO 2 with nitric acid under specific conditions. I've reached it. In the method of the present invention, in the chlorination reaction of the first step, the general formula

【匏】匏䞭は、Cl、Br、CNた たはNO2をあらわすで瀺されるトル゚ン類
モルに察しお〜モルの塩玠を反応させお、そ
のメチル基に平均〜個の塩玠が導入された塩
玠化トル゚ン混合物を補造し、埗られた塩玠化ト
ル゚ン混合物をそのたゝ、あるいは簡単な蒞留を
行な぀た埌、第工皋においお特定の条件䞋に硝
酞ず反応させるこずによ぀お、高収率でベンズア
ルデヒド類を補造する方法に関するものである。 本発明方法によれば、ベンゞルクロラむドた
たはその栞眮換䜓ずベンザルクロラむドたた
はその栞眮換䜓を䞻成分ずする塩玠化トル゚ン
混合物を特定の条件䞋に硝酞ず反応させるこずに
より、そのいずれをもベンズアルデヒド類ずする
こずが可胜である。そしお、トル゚ン類の塩玠化
床を特定の範囲に限定するこずによ぀お、塩玠化
トル゚ン混合物をそのたゞ硝酞ずの酞化反応の原
料にするこずが出来るので、埓来のベンザルクロ
ラむドやベンゞルクロラむドを原料ずするベンズ
アルデヒドの補造方法におけ原料調達の困難性が
解決される。埓぀お有利にベンズアルデヒド類を
補造するこずが可胜である。 本発明方法の第工皋のトル゚ン類の塩玠化は
通垞は玫倖線含有光照射䞋においお、液盞で塩玠
をバブリングする方法たたはベンゟむルパヌオキ
サむドたたはアゟビスむ゜ブチロニトリル等のラ
ゞカル発生剀を反応液に添加しお、液盞に塩玠を
バブリングしお反応を行なう方法等により行な
う。なおこの堎合、必ずしも反応溶媒を䜿甚する
必芁はないが、塩玠化炭化氎玠溶媒䟋えば四塩化
炭玠等の溶媒を䜿甚するこずは勿論可胜である。
塩玠化反応は通垞50℃〜160℃の反応枩床で行な
われるが、実際の反応枩床は溶媒の有無、その皮
類および塩玠化しようずするトル゚ン類の皮類等
によ぀お適宜遞択される。たた、塩玠化反応の時
期は反応装眮に応じた塩玠ガスの吹き蟌み方法に
よ぀お適宜決められる。本発明方法の塩玠化反応
においおは奜たしくない䞍玔物の生成を抑制する
ために、必芁に応じおアルキレンポリアミン、ベ
ンスアミド、トリアリルホスプヌト等を添加し
お反応を行なうこずも可胜である。塩玠化反応は
回分法、たたは連続法のいずれの方法でも実斜す
るこずが可胜である。 䞊蚘塩玠化反応においお重芁なのは反応させる
塩玠ずトル゚ン類のモル比であ぀お、トル゚ン類
分子に察しお、そのメチル基に平均〜個の
塩玠原子を有する塩玠化トル゚ン混合物を補造す
るためには、トル゚ン類モルに察しお〜モ
ルの塩玠を反応させる必芁がある。トル゚ン類ず
塩玠ずの反応はほずんど定量的に行なうこずが出
来るので、塩玠化トル゚ン混合物の目的ずする平
均塩玠化床に盞圓する量に実質的に等しい量の塩
玠たたはやゝ過剰の塩玠をトル゚ン類ず反応させ
るこずによ぀お目的ずする平均塩玠化床を有する
塩玠化トル゚ン混合物を埗るこずが出来る。 本発明方法の第工皋は、第工皋で補造され
た塩玠化トル゚ン混合物ず硝酞を混合し、反応さ
せる工皋である。第工皋で䜿甚する塩玠化トル
゚ン混合物は普通は特別な粟補や分離操䜜を必芁
ずしないが、塩玠化反応の際に生じたタヌルその
他の副生物が倚い堎合には、これらの副生物を陀
くために蒞留等を行なうこずは奜たしいこずであ
る。なお、硝酞ず反応を行なう前に塩玠化トル゚
ン混合物を加氎分解し、次いで硝酞ず反応させる
こずも可胜である。 本発明方法の第工皋を実斜する堎合の硝酞の
濃床は、䞀般的には0.5〜12wt、奜たしくは
〜8wtである。硝酞の濃床が高い堎合にはカル
ボン酞類の副生が倚くなる傟向があるので奜たし
くない。たた硝酞の濃床が䜎い堎合には反応効率
が悪く経枈性がなくなるので奜たしくない。 第工皋の反応枩床は通垞は垞圧の堎合70〜
105℃である。加圧の堎合は圧力の倧きさにもよ
るが100〜130℃である。奜たしい反応枩床は垞圧
䞋で、原料である塩玠化トル゚ン混合物ず硝酞氎
溶液ずを混合した反応混合物を還流する際の還流
枩床であり、通垞は100℃付近たたはそれより少
し高い枩床である。しかし、これらの枩床は、硝
酞の濃床や反応物の皮類、たたは盞察量によ぀お
若干倉動する堎合がある。 塩玠化トル゚ン混合物に察する硝酞の䜿甚量
は、塩玠化トル゚ン混合物モルに察しお、䞀般
的には0.2〜10モルであり、奜たしくは1.0〜6.0モ
ルである。硝酞の䜿甚量は反応させる物質、その
組成たたは反応条件に応じお適宜決定されるが、
䞀般的には塩玠化トル゚ン混合物の平均塩玠化床
が䜎い堎合には、硝酞の量を倚くするこずによ぀
お奜結果が埗られ、平均塩玠化床が高い堎合に
は、硝酞量を少なくするこずが可胜である。 本発明方法の第工皋の実斜に圓぀おは、觊媒
を甚いなくおもよいが、觊媒を甚いるこずによ぀
お反応が促進され、反応時間が短瞮されるので、
觊媒を甚いるこずは奜たしい態様である。この堎
合の觊媒ずしおは五酞化バナゞりム、メタバナゞ
ン酞アンモニりム、メタバナゞン酞ナトリりム、
塩化バナゞりム、硫酞バナゞル等のバナゞりム化
合物が効果の点から望たしい。觊媒の添加量は觊
媒の皮類や塩玠化トル゚ン混合物の組成たたは硝
酞の濃床によ぀お異るが、通垞は塩玠化トル゚ン
混合物重量郚に察しお0.001〜0.10重量郚であ
る。 なお、塩酞や硫酞のような鉱酞もたた觊媒ずし
お䜿甚するこずが可胜である。この堎合の觊媒量
は塩玠化トル゚ン混合物重量郚に察しお0.01〜
1.5重量郚である。 反応生成物から目的物を分離するには通垞の分
離方法が行なわれる。すなわち、反応終了埌の反
応混合物を冷华しお、晶出する結晶を別する方
法、遊離する油状郚を分離する方法、たたは反応
生成物に有機溶剀を加えお抜出する方法等によ
り、反応生成物からベンズアルデヒド類を分離す
るこずが出来る。 このようにしお分離されたベンズアルデヒド類
には、副生したカルボン酞化合物が含たれるが、
これらの酞性物質は垌アルカリ性氎溶液で掗浄す
るこずによ぀お陀くこずが可胜である。このよう
にしお埗られたベンズアルデヒド類は高玔床であ
るから、そのたゝ䜿甚するこずが出来るが、必芁
に応じお曎に蒞留たたは再結晶等の通垞の粟補法
によ぀お曎に玔床を高めるこずが出来る。たた反
応生成物のアルカリ掗浄液からは遊離のカルボン
酞を回収するこずが可胜である。 実斜䟋  第工皋 枩床蚈、撹拌機、塩玠吹蟌管、排気兌甚の還流
冷华噚および高圧氎銀灯による光照射装眮を有す
る内容積が600mlの光反応噚に、トル゚ン368
4.0モルを仕蟌み、内容物を95℃に加熱し、撹
拌しながら光照射䞋に塩玠ガスを吹き蟌んだ。塩
玠の吹き蟌み埌間もなく、塩化氎玠の発生ず共に
枩床の䞊昇がみられた。反応枩床を100℃に保持
し、光を照射し぀぀、142hr2.0モルhr
の割合で塩玠の導入を時間続けた。排出される
ガス䞭には塩玠はほずんど認められず、吹き蟌ん
だ塩玠はほずんど完党に反応しおいた。 時間の反応で、4266.0モルの塩玠を吹
き蟌んだずころで塩玠の吹き蟌みを停止し、反応
液に也燥窒玠ガスを通じお系内の塩化氎玠および
塩玠ガスを陀いた。このようにしお埗られた反応
生成物は558であ぀た。 反応生成物をガスクロマトグラフにより分析し
たずころ、その組成はトル゚ンモル、ベンゞ
ルクロラむド48モル、ベンザルクロラむド46モ
ル、ベンゟトリクロラむドモル、その他
モルであ぀た。反応液の平均塩玠化床は1.5で
あ぀た。 第工皋 枩床蚈、撹拌機、還流冷华噚を備えたの䞉
぀口フラスコに第工皋で埗られた塩玠化トル゚
ン混合物49.3平均塩玠化床1.5ずしお蚈算す
るず0.343モルに盞圓するず3wtの硝酞1440
、五酞化バナゞりム1.5を仕蟌み、この混合
物を撹拌䞋に加熱昇枩し、還流状態で時間反応
を行な぀た。 反応混合物を冷华し、油状郚を分離埌、曎に氎
局に100mlのトル゚ンを加えお回抜出を行な぀
た。油状郚ず抜出液を合せおトル゚ンを留去し、
残りの油状郚を蒞留した。この方法により111〜
114℃100mmHgの留分34.1を埗た。このもの
を赀倖線吞収スペクトル分析したずころ、ベンズ
アルデヒドであるこずが確認された。なお、ガス
クロマトグラフ分析による玔床は99.4であ぀
た。 原料であるトル゚ンに察するベンズアルデヒド
収率は90.4である。 実斜䟋  第工皋 実斜䟋の第工皋で甚いたず同じ光反応装眮
にトル゚ン3684.0モルをずり、実斜䟋の
第工皋の堎合ず同様に反応枩床を100℃に保持
し、光照射䞋で塩玠を吹き蟌んで塩玠化反応を行
な぀た。塩玠の吹き蟌みは114hr1.6モル
hrの割合で行ない、時間反応を続けた。341
4.8モルの塩玠を吹き蟌んだずころで、塩
玠の吹き蟌みを停止し、也燥窒玠ガスを通じお系
内の塩化氎玠および塩玠ガスを陀いお523の反
応液を埗た。 このものをガスクロマトグラフ分析したずこ
ろ、ベンゞルクロラむド67モル、ベンザルクロ
ラむド27モル、トル゚ンモル、その他モ
ルであ぀た。平均塩玠化床は1.2であ぀た。 第工皋 実斜䟋の第工皋ず同じ反応噚に、第工皋
で埗た塩玠化トル゚ン混合物61.0塩玠化床
1.2ずしお蚈算するず0.457モル盞圓ず4wtの
硝酞1440、メタバナゞン酞アンモニりム1.8
を仕蟌んだ。この混合物を撹拌しながら加熱昇枩
し、還流状態で時間反応を行な぀た。反応終了
埌、実斜䟋の第工皋ず同様に凊理し、蒞留に
よ぀おベンズアルデヒド留分43.6を埗た。ガス
クロマトグラフ分析の結果、玔床は99.3であ぀
た。原料であるトル゚ンに察するベンズアルデヒ
ド収率は88.3に盞圓する。 実斜䟋  第工皋 実斜䟋の第工皋で甚いたず同じ光反応装眮
に、トル゚ン3684.0モルをずり、実斜䟋
の第工皋ず同様に反応枩床を100℃に保持し、
光照射䞋に塩玠を吹き蟌んで、塩玠化反応を行な
぀た。塩玠の吹き蟌みは142hr2.0モルhr
の割合で行ない、3.6時間反応を続けた。7.2モル
の塩玠を吹き蟌んだずころで、塩玠の吹き蟌みを
停止し、也燥窒玠ガスを通じお系内の塩化氎玠お
よび塩玠ガスを陀いお606の反応液を埗た。 このものをガスクロマトグラフ分析したずこ
ろ、組成はベンゞルクロラむド27モル、ベンザ
ルクロラむド66モル、ベンゟトリクロラむド
5.5モル、その他1.5モルで、平均塩玠化床は
1.8であ぀た。 第工皋 実斜䟋の第工皋ず同じ反応噚に、第工皋
で埗た塩玠化トル゚ン混合物71塩玠化床1.8
ずしお蚈算するず0.460モル盞圓ず4wtの硝酞
1440を仕蟌んだ。この混合物を撹拌しながら加
熱昇枩し、還流状態で12時間反応を行な぀た。反
応終了埌、実斜䟋の第工皋ず同様に凊理し、
蒞留によ぀おベンズアルデヒド留分43.2を埗
た。原料であるトル゚ンに察するベンズアルデヒ
ドの収率は87に盞圓する。 実斜䟋  第工皋 実斜䟋の第工皋で甚いたず同じ光反応装眮
に、−クロルトル゚ン3803.0モルをず
り、実斜䟋の第工皋ず同様の方法で反応枩床
を130℃に保持し、光照射䞋に塩玠を吹き蟌んで
塩玠化反応を行な぀た。塩玠の吹き蟌みは106
hr1.5モルhrの割合で行ない、3.0時間
反応を続けた。4.5モルの塩玠を吹き蟌んだずこ
ろで、塩玠の吹き蟌みを停止し、実斜䟋ず同様
に凊理しお、527の反応液を埗た。 このものをガスクロマトグラフ分析したずこ
ろ、組成は−クロルトル゚ンモル、−ク
ロルベンゞルクロラむド48モル、−クロルベ
ンザルクロラむド46モル、その他モルで、
−クロルトル゚ンの平均塩玠化床は1.5であ぀
た。 第工皋 実斜䟋の第工皋ず同じ反応噚に、第工皋
で埗た−クロルトル゚ンの塩玠化混合物81.3
塩玠化床1.5ずしお蚈算するず0.456モル盞圓
ず5wtの硝酞1440、五酞化バナゞりム2.4を
仕蟌み、この混合物を撹拌䞋に加熱昇枩し、還流
状態で時間反応を行な぀た。 反応混合物を冷华し、晶出する結晶を別分離
埌、液に100mlのトル゚ンを加えお回抜出を
行な぀た。結晶郚ず抜出液を合せおトル゚ンを留
出埌、残枣を蒞留し、100〜102℃20mmHgの留
分48を埗た。 このものを赀倖線吞収スペクトル分析の結果、
−クロルベンズアルデヒドであるこずが確認さ
れた。 原料である−クロルトル゚ン基準の−クロ
ルベンズアルデヒド収率は73.9に盞圓する。 実斜䟋  第工皋 実斜䟋の第工皋で甚いたず同じ光反応装眮
に−クロルトル゚ン3803.0モルをずり、
実斜䟋の第工皋ず同様の方法で、反応枩床を
130℃に保持し、光照射䞋に塩玠を吹き蟌んで、
塩玠化反応を行な぀た。塩玠の吹き蟌みは106
hr1.5モルhrの割合で行ない、3.6時間
反応を続けた。5.4モルの塩玠を吹き蟌んだずこ
ろで、塩玠の吹き蟌みを停止し、実斜䟋ず同様
に凊理しお、558の反応液を埗た。 このものをガスクロマトグラフ分析したずこ
ろ、−クロルトル゚ン0.5モル、−クロル
ベンゞルクロラむド28モル、−クロルベンザ
ルクロラむド67モル、−クロルベンゟトリク
ロラむドモル、その他1.5モルで、−ク
ロルトル゚ンに察する平均塩玠化床は1.8であ぀
た。 第工皋 実斜䟋の第工皋ず同じ反応噚に、第工皋
で埗た−クロルトル゚ンの塩玠化混合物64.7
塩玠化床1.8ずしお蚈算するず0.343モル盞圓
ず3wtの硝酞1440、五酞化バナゞりム2.0を
仕蟌み、この混合物を撹拌䞋に加熱昇枩し、還流
状態で時間反応を行な぀た。 反応混合物を冷华し、これに200mlのトル゚ン
を加えお油盞を分離し、氎溶液郚に100mlのトル
゚ンを加えお回抜出操䜜を行な぀た。最初の油
状郚ず抜出液を合せおトル゚ンを留去埌、残぀た
郚分を蒞留し、107〜110℃30mmHgの留分36
を埗た。 このものを赀倖線吞収スペクトル分析の結果、
−クロルベンズアルデヒドであるこずが確認さ
れた。 原料である−クロルトル゚ン基準の−クロ
ルベンズアルデヒド収率は73.5である。
Toluenes 1 represented by [Formula] (wherein X represents H, Cl, Br, CN or NO 2 )
A chlorinated toluene mixture in which an average of 1 to 2 chlorines are introduced into the methyl group is produced by reacting 1 to 2 moles of chlorine per mole, and the resulting chlorinated toluene mixture is directly used as is. Alternatively, the present invention relates to a method for producing benzaldehydes in high yield by carrying out a simple distillation and then reacting with nitric acid under specific conditions in a second step. According to the method of the present invention, a chlorinated toluene mixture containing benzyl chloride (or its nuclear substituted product) and benzal chloride (or its nuclear substituted product) as main components is reacted with nitric acid under specific conditions. Any of them can be a benzaldehyde. By limiting the degree of chlorination of toluenes to a specific range, the chlorinated toluene mixture can be directly used as a raw material for the oxidation reaction with nitric acid. The difficulty in procuring raw materials is solved in the method for producing benzaldehyde using raw materials. It is therefore possible to advantageously produce benzaldehydes. The chlorination of toluenes in the first step of the method of the present invention is usually carried out by bubbling chlorine in the liquid phase under irradiation with ultraviolet light, or by adding a radical generator such as benzoyl peroxide or azobisisobutyronitrile to the reaction solution. The reaction is carried out by adding chlorine to the liquid phase and bubbling chlorine into the liquid phase to carry out the reaction. In this case, it is not always necessary to use a reaction solvent, but it is of course possible to use a chlorinated hydrocarbon solvent such as carbon tetrachloride.
The chlorination reaction is usually carried out at a reaction temperature of 50°C to 160°C, but the actual reaction temperature is appropriately selected depending on the presence or absence of a solvent, its type, and the type of toluene to be chlorinated. Further, the timing of the chlorination reaction is appropriately determined depending on the method of blowing chlorine gas depending on the reaction apparatus. In the chlorination reaction of the method of the present invention, alkylene polyamine, benzamide, triallyl phosphate, etc. may be added as necessary to suppress the formation of undesirable impurities. The chlorination reaction can be carried out either batchwise or continuously. What is important in the above chlorination reaction is the molar ratio of chlorine and toluene to be reacted, and this is because a chlorinated toluene mixture having an average of 1 to 2 chlorine atoms in the methyl group per molecule of toluene is produced. For this purpose, it is necessary to react 1 to 2 moles of chlorine per mole of toluene. Since the reaction between toluenes and chlorine can be carried out almost quantitatively, an amount of chlorine substantially equal to the amount corresponding to the desired average degree of chlorination of the chlorinated toluene mixture or a slight excess of chlorine is added to the toluene. A chlorinated toluene mixture having the desired average degree of chlorination can be obtained by reacting with chlorinated toluene. The second step of the method of the present invention is a step in which the chlorinated toluene mixture produced in the first step is mixed with nitric acid and reacted. The chlorinated toluene mixture used in the second step usually does not require any special purification or separation operations, but if there are many tars and other byproducts generated during the chlorination reaction, these byproducts may be removed. Therefore, it is preferable to perform distillation or the like. Note that it is also possible to hydrolyze the chlorinated toluene mixture before reacting with nitric acid, and then react with nitric acid. The concentration of nitric acid when carrying out the second step of the method of the present invention is generally 0.5 to 12 wt%, preferably 2
~8wt%. If the concentration of nitric acid is high, carboxylic acids tend to be produced as by-products, which is not preferable. Furthermore, when the concentration of nitric acid is low, the reaction efficiency is poor and economical efficiency is lost, which is not preferable. The reaction temperature in the second step is usually 70~70°C at normal pressure.
It is 105℃. In the case of pressurization, the temperature is 100 to 130°C, depending on the magnitude of the pressure. The preferred reaction temperature is the reflux temperature at which the reaction mixture of the raw materials chlorinated toluene mixture and nitric acid aqueous solution is refluxed under normal pressure, and is usually around 100°C or slightly higher. However, these temperatures may vary slightly depending on the concentration of nitric acid and the types or relative amounts of reactants. The amount of nitric acid used in the chlorinated toluene mixture is generally 0.2 to 10 mol, preferably 1.0 to 6.0 mol, per 1 mol of the chlorinated toluene mixture. The amount of nitric acid used is determined appropriately depending on the substance to be reacted, its composition, and reaction conditions.
Generally, when the average degree of chlorination of the chlorinated toluene mixture is low, good results can be obtained by increasing the amount of nitric acid, and when the average degree of chlorination is high, decreasing the amount of nitric acid can be obtained. Is possible. When carrying out the second step of the method of the present invention, it is not necessary to use a catalyst, but using a catalyst accelerates the reaction and shortens the reaction time.
Using a catalyst is a preferred embodiment. In this case, the catalysts include vanadium pentoxide, ammonium metavanadate, sodium metavanadate,
Vanadium compounds such as vanadium chloride and vanadyl sulfate are preferred from the viewpoint of effectiveness. The amount of catalyst added varies depending on the type of catalyst, the composition of the chlorinated toluene mixture, or the concentration of nitric acid, but is usually 0.001 to 0.10 parts by weight per 1 part by weight of the chlorinated toluene mixture. Note that mineral acids such as hydrochloric acid and sulfuric acid can also be used as catalysts. In this case, the amount of catalyst is 0.01 to 1 part by weight of the chlorinated toluene mixture.
It is 1.5 parts by weight. A conventional separation method is used to separate the target product from the reaction product. That is, the reaction product can be removed by cooling the reaction mixture after the completion of the reaction and separating the crystallized crystals, separating the liberated oil, or adding an organic solvent to the reaction product to extract it. Benzaldehydes can be separated from The benzaldehydes separated in this way include by-product carboxylic acid compounds, but
These acidic substances can be removed by washing with a dilute alkaline aqueous solution. Since the benzaldehydes obtained in this way are of high purity, they can be used as they are, but if necessary, the purity can be further increased by ordinary purification methods such as distillation or recrystallization. I can do it. Furthermore, free carboxylic acid can be recovered from the alkaline washing solution of the reaction product. Example 1 First step 368 g of toluene was placed in a photoreactor with an internal volume of 600 ml, which was equipped with a thermometer, a stirrer, a chlorine blowing pipe, a reflux condenser that also served as exhaust, and a light irradiation device using a high-pressure mercury lamp.
(4.0 mol) was charged, the contents were heated to 95°C, and chlorine gas was blown in while stirring and under light irradiation. Shortly after chlorine injection, a rise in temperature was observed along with the generation of hydrogen chloride. 142g/hr (2.0mol/hr) while maintaining the reaction temperature at 100℃ and irradiating with light.
The introduction of chlorine was continued for 3 hours at a rate of . Almost no chlorine was detected in the gas being discharged, and the chlorine injected had almost completely reacted. After 3 hours of reaction, chlorine injection was stopped after 426 g (6.0 mol) of chlorine had been blown into the reactor, and dry nitrogen gas was passed through the reaction solution to remove hydrogen chloride and chlorine gas from the system. The reaction product thus obtained was 558 g. When the reaction product was analyzed by gas chromatography, its composition was 1 mol% toluene, 48 mol% benzyl chloride, 46 mol% benzal chloride, 3 mol% benzotrichloride, and 1 mol% other.
It was in mol%. The average degree of chlorination of the reaction solution was 1.5. 2nd step: 49.3 g of the chlorinated toluene mixture obtained in the 1st step (corresponding to 0.343 mol when calculated as an average degree of chlorination of 1.5) into two three-necked flasks equipped with a thermometer, stirrer, and reflux condenser. and 3wt% nitric acid 1440
1.5 g of vanadium pentoxide were charged, and the mixture was heated to an elevated temperature while stirring, and the reaction was carried out under reflux for 5 hours. After the reaction mixture was cooled and the oily portion was separated, 100 ml of toluene was added to the aqueous layer for extraction twice. The oily part and the extract were combined and the toluene was distilled off.
The remaining oil was distilled. By this method 111~
34.1 g of a fraction at 114° C./100 mmHg was obtained. When this substance was analyzed by infrared absorption spectrum, it was confirmed that it was benzaldehyde. The purity as determined by gas chromatography was 99.4%. The yield of benzaldehyde based on the raw material toluene is 90.4%. Example 2 First step 368 g (4.0 mol) of toluene was placed in the same photoreaction device as used in the first step of Example 1, and the reaction temperature was maintained at 100°C as in the first step of Example 1. The chlorination reaction was carried out by blowing chlorine under light irradiation. Chlorine injection is 114g/hr (1.6mol/
hr), and the reaction was continued for 3 hours. 341
After blowing in chlorine (4.8 mol), the blowing of chlorine was stopped, and hydrogen chloride and chlorine gas in the system were removed by passing dry nitrogen gas to obtain 523 g of a reaction solution. Gas chromatographic analysis of this product revealed that it contained 67 mol% of benzyl chloride, 27 mol% of benzal chloride, 4 mol% of toluene, and 2 mol% of others. The average degree of chlorination was 1.2. 2nd step Into the same reactor as in the 2nd step of Example 1, 61.0 g of the chlorinated toluene mixture obtained in the 1st step (degree of chlorination
(equivalent to 0.457 moles when calculated as 1.2), 1440 g of 4wt% nitric acid, and 1.8 g of ammonium metavanadate.
I prepared it. This mixture was heated to an elevated temperature while stirring, and the reaction was carried out under reflux for 6 hours. After the reaction was completed, the same treatment as in the second step of Example 1 was carried out, and 43.6 g of benzaldehyde fraction was obtained by distillation. As a result of gas chromatography analysis, the purity was 99.3%. The yield of benzaldehyde based on toluene as a raw material is equivalent to 88.3%. Example 3 First step 368 g (4.0 mol) of toluene was placed in the same photoreactor as used in the first step of Example 1, and
As in the first step, the reaction temperature was maintained at 100 °C,
A chlorination reaction was carried out by blowing chlorine under light irradiation. Chlorine injection is 142g/hr (2.0mol/hr)
The reaction was continued for 3.6 hours. When 7.2 moles of chlorine had been blown into the system, the chlorine injection was stopped and dry nitrogen gas was passed through the system to remove hydrogen chloride and chlorine gas, yielding 606 g of a reaction solution. Gas chromatography analysis of this material revealed that the composition was 27 mol% benzyl chloride, 66 mol% benzyl chloride, and benzotrichloride.
5.5 mol%, other 1.5 mol%, the average degree of chlorination is
It was 1.8. 2nd step Into the same reactor as in the 2nd step of Example 1, 71 g of the chlorinated toluene mixture obtained in the 1st step (degree of chlorination: 1.8
(equivalent to 0.460 mol) and 4wt% nitric acid
I prepared 1440g. This mixture was heated to an elevated temperature while stirring, and the reaction was carried out under reflux for 12 hours. After the reaction was completed, the same treatment as in the second step of Example 1 was carried out,
43.2 g of benzaldehyde fraction was obtained by distillation. The yield of benzaldehyde based on toluene, the raw material, is equivalent to 87%. Example 4 First step 380 g (3.0 mol) of p-chlorotoluene was placed in the same photoreactor as used in the first step of Example 1, and the reaction temperature was raised to 130 mol in the same manner as in the first step of Example 1. The chlorination reaction was carried out by blowing chlorine into the solution while maintaining the temperature at 0.degree. C. and irradiating it with light. Chlorine blowing is 106
g/hr (1.5 mol/hr), and the reaction was continued for 3.0 hours. When 4.5 moles of chlorine had been blown into the reactor, the chlorine blowing was stopped, and the same procedure as in Example 1 was carried out to obtain 527 g of a reaction solution. Gas chromatography analysis of this material revealed that the composition was 2 mol% p-chlorotoluene, 48 mol% 4-chlorobenzyl chloride, 46 mol% 4-chlorobenzyl chloride, and 4 mol% others.
The average degree of chlorination of p-chlorotoluene was 1.5. Second step: Into the same reactor as in the second step of Example 1, add 81.3 g of the chlorinated mixture of p-chlorotoluene obtained in the first step.
(Equivalent to 0.456 moles when calculated as a degree of chlorination of 1.5)
1,440 g of 5 wt % nitric acid and 2.4 g of vanadium pentoxide were charged, and the mixture was heated to an elevated temperature with stirring, and the reaction was carried out under reflux for 6 hours. After cooling the reaction mixture and separating the crystals, 100 ml of toluene was added to the solution and extracted twice. The crystal part and the extract were combined and toluene was distilled off, and the residue was distilled to obtain 48 g of a fraction having a temperature of 100 to 102°C/20 mmHg. As a result of infrared absorption spectrum analysis,
It was confirmed that it was p-chlorobenzaldehyde. The yield of p-chlorobenzaldehyde based on the raw material p-chlorotoluene was equivalent to 73.9%. Example 5 First step 380 g (3.0 mol) of o-chlorotoluene was placed in the same photoreactor as used in the first step of Example 1.
The reaction temperature was adjusted in the same manner as in the first step of Example 1.
Maintained at 130℃ and blown chlorine under light irradiation,
A chlorination reaction was carried out. Chlorine blowing is 106
g/hr (1.5 mol/hr), and the reaction was continued for 3.6 hours. After blowing in 5.4 moles of chlorine, the blowing of chlorine was stopped, and the same treatment as in Example 1 was carried out to obtain 558 g of a reaction solution. Gas chromatographic analysis of this product revealed that o-chlorotoluene was 0.5 mol%, o-chlorobenzyl chloride was 28 mol%, o-chlorobenzal chloride was 67 mol%, o-chlorobenzotrichloride was 3 mol%, and others were 1.5 mol%. The average degree of chlorination with respect to o-chlorotoluene was 1.8. 2nd step In the same reactor as in the 2nd step of Example 1, 64.7 g of the chlorinated mixture of o-chlorotoluene obtained in the 1st step was added.
(Equivalent to 0.343 moles when calculated as a degree of chlorination of 1.8)
1,440 g of 3 wt % nitric acid and 2.0 g of vanadium pentoxide were charged, and the mixture was heated to an elevated temperature with stirring, and the reaction was carried out under reflux for 6 hours. The reaction mixture was cooled, 200 ml of toluene was added thereto to separate the oil phase, and 100 ml of toluene was added to the aqueous solution portion for two extraction operations. After combining the first oily part and the extract and distilling off the toluene, the remaining part was distilled, resulting in 36g of distillate at 107-110℃/30mmHg.
I got it. As a result of infrared absorption spectrum analysis,
It was confirmed to be o-chlorobenzaldehyde. The o-chlorobenzaldehyde yield based on the raw material o-chlorotoluene was 73.5%.

Claims (1)

【特蚱請求の範囲】  䞀般匏が【匏】たゞし、匏䞭は 、Cl、Br、CNたたはNO2をあらわすで瀺さ
れる化合物のメチル基を塩玠化しお、平均1.0〜
2.0個の塩玠原子を有する塩玠化物を補造する第
工皋ず、第工皋で埗られた塩玠化物を硝酞ず
反応させお䞀般匏が【匏】たゞし、匏䞭 は、Cl、Br、CNたたはNO2をあらわすで
瀺される化合物を補造する第工皋ずからなるこ
ずを特城ずするベンズアルデヒド類の補造方法。
[Claims] 1. By chlorinating the methyl group of a compound whose general formula is represented by [Formula] (wherein X represents H, Cl, Br, CN, or NO 2 ),
The first step is to produce a chlorinated product having 2.0 chlorine atoms, and the chlorinated product obtained in the first step is reacted with nitric acid to obtain the general formula [formula] (where X is H, Cl , Br, CN or NO 2 ).
JP9436680A 1980-07-10 1980-07-10 Preparatin of benzaldehydes Granted JPS5718644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9436680A JPS5718644A (en) 1980-07-10 1980-07-10 Preparatin of benzaldehydes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9436680A JPS5718644A (en) 1980-07-10 1980-07-10 Preparatin of benzaldehydes

Publications (2)

Publication Number Publication Date
JPS5718644A JPS5718644A (en) 1982-01-30
JPS6314693B2 true JPS6314693B2 (en) 1988-04-01

Family

ID=14108306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9436680A Granted JPS5718644A (en) 1980-07-10 1980-07-10 Preparatin of benzaldehydes

Country Status (1)

Country Link
JP (1) JPS5718644A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274929B (en) * 2013-04-09 2014-12-17 金凯(蟜宁)化工有限公叞 Preparation method of 2-trifluoromethyl benzoic acid
CN104447250A (en) * 2014-12-24 2015-03-25 垞熟垂新华化工有限公叞 Method for synthesizing p-chlorobenzaldehyde from p-chlorotoluene

Also Published As

Publication number Publication date
JPS5718644A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
EP0004636A2 (en) Process for preparing benzotrifluoride and its derivatives
JPS6314693B2 (en)
JPS61249964A (en) Preparation of 3,4,5,6-tetrachloro-2-trichloromethylpyridinerich mixture
KR940011129B1 (en) Process for the preparation of 3-chloro-4-fluoronitrobenzene
JPS5833847B2 (en) Pina Colon no Seihou
JP2001039939A (en) Production of malonitrile
JP2517304B2 (en) Method for producing bromoacetonitrile
JPS5941924B2 (en) Purification method of thionyl chloride
US4206141A (en) Process for preparation of di-substituted cyanamides using quaternary salt catalysis
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
JP3001626B2 (en) 2-Chloropropionaldehyde trimer and method for producing the same
RU2301796C1 (en) Method for preparing 3-halogen-1-(ethoxycarbonyl)-alkyladamantanes
JPS5835977B2 (en) Production method of pivalic acid chloride and aromatic carboxylic acid chloride
JP3831021B2 (en) 2-Production method of indanones
JPH11171825A (en) Production of benzoyl chloride
JP4303685B2 (en) Method for producing 2-cyclopenten-1-one
JP3334206B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
US4966993A (en) Process for preparation of 3-hydroxy-3-methyl-glutaric acid
JPH0665120A (en) Production of bromopentafluorobenzene
JPH0660130B2 (en) Method for producing 1-bromoethylhydrocarbonyl carbonate
JPS6358812B2 (en)
JPS6312467B2 (en)
JPH0841005A (en) Production of 4-fluoroalkoxycynnamonitrile compound
JP2523789B2 (en) Distillation method of chlorinated pyridine
JP2007261991A (en) Method for producing 4,4"-diformylterphenyls