JP2022090710A - Production method of chloromethyl benzoate derivative - Google Patents

Production method of chloromethyl benzoate derivative Download PDF

Info

Publication number
JP2022090710A
JP2022090710A JP2020203162A JP2020203162A JP2022090710A JP 2022090710 A JP2022090710 A JP 2022090710A JP 2020203162 A JP2020203162 A JP 2020203162A JP 2020203162 A JP2020203162 A JP 2020203162A JP 2022090710 A JP2022090710 A JP 2022090710A
Authority
JP
Japan
Prior art keywords
formula
ester derivative
acid ester
acid
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020203162A
Other languages
Japanese (ja)
Inventor
治 尾野村
Osamu Onomura
正巳 栗山
Masami Kuriyama
耕介 山本
Kosuke Yamamoto
圭介 松浦
Keisuke Matsuura
達 林
Tatsu Hayashi
直登 菊池
Naoto Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki University NUC
Tokuyama Corp
Original Assignee
Nagasaki University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University NUC, Tokuyama Corp filed Critical Nagasaki University NUC
Priority to JP2020203162A priority Critical patent/JP2022090710A/en
Publication of JP2022090710A publication Critical patent/JP2022090710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a safe and simple method for producing a chloromethyl benzoate derivative in a high yield.SOLUTION: A methyl benzoate derivative represented by the formula (1) below is chlorinated in the presence of hypochlorous acid in an organic solvent to produce a chloromethyl benzoate derivative represented by the formula (2) below. (in the formula (1) and the formula (2), R indicates an alkyl group of 1-6 carbons, and X indicates a hydrogen atom or a halogen atom.)SELECTED DRAWING: None

Description

本発明は、ベンゼン環上にメチル基を有する安息香酸エステル誘導体をベンジル位選択的にモノクロロ化することで、クロロメチル安息香酸エステル誘導体を製造する方法に関するものである。 The present invention relates to a method for producing a chloromethylbenzoic acid ester derivative by selectively monochromizing a benzoic acid ester derivative having a methyl group on the benzene ring at the benzyl position.

クロロメチル安息香酸エステル誘導体は、医薬品や農薬、化粧品原料をはじめとした種々の化学品を製造する上で重要な中間体である。本化合物はメチル安息香酸エステル誘導体のベンジル位をクロロ化することで合成可能である。 Chloromethylbenzoic acid ester derivatives are important intermediates in the production of various chemicals including pharmaceuticals, pesticides and cosmetic raw materials. This compound can be synthesized by chlorolyzing the benzyl position of the methylbenzoic acid ester derivative.

例えばp-メチル安息香酸メチルのベンジル位のクロロ化は、UV照射条件下、あるいは酸化剤共存下で基質と塩素源を反応させることで実現できる(特許文献1、2、非特許文献1)。 For example, chlorolysis of the benzylic position of methyl p-methylbenzoate can be realized by reacting a substrate with a chlorine source under UV irradiation conditions or in the presence of an oxidizing agent (Patent Documents 1 and 2 and Non-Patent Document 1).

Figure 2022090710000001
Figure 2022090710000001

しかしながらこれらの製法には以下のような改善の余地があった。例えば特許文献1では、反応温度100℃、UV照射条件下でp-メチル安息香酸メチルに対して塩素ガスを反応させることで、ベンジル位をクロロ化している。しかし本反応条件ではUV照射装置を使用しなければならない点、副生成物が生成しやすく、収率が60%程度に留まっている点、ならびに高温での反応が必要という点で改善の余地がある。 However, there is room for improvement in these manufacturing methods as follows. For example, in Patent Document 1, the benzyl position is chloroylated by reacting methyl p-methylbenzoate with chlorine gas under UV irradiation conditions at a reaction temperature of 100 ° C. However, under these reaction conditions, there is room for improvement in that a UV irradiation device must be used, by-products are easily generated, the yield remains at about 60%, and a reaction at a high temperature is required. be.

また特許文献2および非特許文献1では塩素源としてN-クロロスクシンイミド(NCS)を、酸化剤として過酸化ベンゾイルまたは2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)をそれぞれ用いることでp-メチル安息香酸メチルのベンジル位のクロロ化を実現している。しかし本反応条件では80℃程度の高温が必要な点、ならびに高価な酸化剤を使用する必要がある点で改善の余地がある。 Further, in Patent Document 2 and Non-Patent Document 1, N-chlorosuccinimide (NCS) is used as a chlorine source, and benzoyl peroxide or 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) is used as an oxidizing agent, respectively. As a result, chloroidization of the benzyl position of methyl p-methylbenzoate is realized. However, there is room for improvement in that the reaction conditions require a high temperature of about 80 ° C. and that an expensive oxidizing agent needs to be used.

中国特許出願公開第101434545号明細書Chinese Patent Application Publication No. 1014354545 インド公開公報2008MU02726India Publication 2008MU02726

Li,Zi-Hao et al,Org.Biomol.Chem.2019,17,3403-3408.Li, Zi-Hao et al, Org. Biomol. Chem. 2019, 17, 3403-3408.

前述のようにクロロメチル安息香酸エステル誘導体は種々の化学品を製造する上で重要な中間体であることから、安全かつ簡便な方法で、高収率で製造されることが望まれる。 As described above, since the chloromethylbenzoic acid ester derivative is an important intermediate in the production of various chemical products, it is desired that the chloromethylbenzoic acid ester derivative be produced in a high yield by a safe and simple method.

したがって、本発明の目的は、安全かつ簡便な方法でクロロメチル安息香酸エステル誘導体を高収率で製造する方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a chloromethyl benzoic acid ester derivative in a high yield by a safe and convenient method.

本発明者等は、前述の課題を解決するために、鋭意検討を行った。その結果、次亜塩素酸とメチル安息香酸エステル誘導体とを反応させることで、ベンジル位のみが選択的にモノクロロ化されることを見出し、本発明を完成するに至った。 The present inventors have conducted diligent studies in order to solve the above-mentioned problems. As a result, they have found that only the benzylic position is selectively monochromolated by reacting hypochlorous acid with a methylbenzoic acid ester derivative, and have completed the present invention.

すなわち本発明は、
下記式(1)
That is, the present invention
The following formula (1)

Figure 2022090710000002
Figure 2022090710000002

(式中、Rは炭素数1~6のアルキル基、Xは水素原子またはハロゲン原子である。メチル基およびXはベンゼン環上の任意の位置に存在してよい。)
で示されるメチル安息香酸エステル誘導体を、有機溶媒中、次亜塩素酸の存在下塩素化させることにより、
下記式(2)
(In the formula, R is an alkyl group having 1 to 6 carbon atoms, X is a hydrogen atom or a halogen atom. The methyl group and X may be present at arbitrary positions on the benzene ring.)
By chlorinating the methylbenzoic acid ester derivative represented by (1) in the presence of hypochlorous acid in an organic solvent,
The following formula (2)

Figure 2022090710000003
Figure 2022090710000003

(式中、RおよびXは前記式(1)におけるものと同義である。)
で示されるクロロメチル安息香酸エステル誘導体を製造する、クロロメチル安息香酸エステル誘導体の製造方法である。
(In the formula, R and X are synonymous with those in the above formula (1).)
It is a method for producing a chloromethylbenzoic acid ester derivative, which produces the chloromethylbenzoic acid ester derivative represented by.

本発明の方法によれば、安価かつ取り扱い容易な資材、具体的には次亜塩素酸を用いることで、比較的温和な条件下、前記式(2)で示されるクロロメチル安息香酸エステル誘導体を高収率で製造することができる。前述のようにクロロメチル安息香酸エステル誘導体は種々の化学品の中間体として有用なことから、本発明法の工業的利用価値は高い。 According to the method of the present invention, by using an inexpensive and easy-to-handle material, specifically hypochlorous acid, a chloromethylbenzoic acid ester derivative represented by the above formula (2) can be obtained under relatively mild conditions. It can be produced in high yield. As described above, since the chloromethylbenzoic acid ester derivative is useful as an intermediate for various chemical products, the industrial utility value of the method of the present invention is high.

本発明は、前記式(1)で示されるメチル安息香酸エステル誘導体を有機溶媒中、次亜塩素酸の存在下塩素化させることにより、前記式(2)で示されるクロロメチル安息香酸エステル誘導体を製造する方法である。以下、その実施形態を説明する。 In the present invention, the methylbenzoic acid ester derivative represented by the formula (1) is chlorinated in an organic solvent in the presence of hypochlorous acid to obtain the chloromethylbenzoic acid ester derivative represented by the formula (2). It is a method of manufacturing. Hereinafter, the embodiment will be described.

(メチル安息香酸エステル誘導体)
本発明においては、メチル安息香酸エステル誘導体は下記式(1)
(Methylbenzoic acid ester derivative)
In the present invention, the methylbenzoic acid ester derivative is represented by the following formula (1).

Figure 2022090710000004
Figure 2022090710000004

で示される化合物である。 It is a compound indicated by.

式中、Rは炭素数1~6のアルキル基である。かかるアルキル基は、直鎖状、分岐鎖状または環状のいずれであってもよい。 In the formula, R is an alkyl group having 1 to 6 carbon atoms. The alkyl group may be linear, branched or cyclic.

Xは水素原子またはハロゲン原子である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 X is a hydrogen atom or a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

メチル基およびXはベンゼン環上の任意の位置に存在してよい。 The methyl group and X may be present at any position on the benzene ring.

(有機溶媒)
本発明の方法において、用いられる有機溶媒は反応を阻害しないものであれば特に限定されない。
(Organic solvent)
The organic solvent used in the method of the present invention is not particularly limited as long as it does not inhibit the reaction.

有機溶媒としては、酢酸エチル、酢酸メチル、酢酸ブチル、酢酸イソプロピル等のエステル類;アセトニトリル、プロピオニトリル等のニトリル類;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素類が挙げられる。反応の進行しやすさからハロゲン化炭化水素類が好ましく、ジクロロメタン、クロロホルムがより好ましい。これら有機溶媒は、単独で、又はこれらの混合溶媒として用いることができる。 Examples of the organic solvent include esters such as ethyl acetate, methyl acetate, butyl acetate and isopropyl acetate; nitriles such as acetonitrile and propionitrile; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane. Kind is mentioned. Halogenated hydrocarbons are preferable, and dichloromethane and chloroform are more preferable, because the reaction can proceed easily. These organic solvents can be used alone or as a mixed solvent thereof.

有機溶媒の使用量は特に制限されるものではない。式(1)で表されるメチル安息香酸エステル誘導体の濃度が0.05~5mol/Lに相当する量を使用することが好ましく、メチル安息香酸エステル誘導体の濃度が0.2~1mol/Lに相当する量を使用することがより好ましい。なお、混合溶媒を用いる場合には、混合溶媒の全量が上記範囲を満足することが望ましい。 The amount of the organic solvent used is not particularly limited. It is preferable to use an amount corresponding to the concentration of the methyl benzoate ester derivative represented by the formula (1) of 0.05 to 5 mol / L, and the concentration of the methyl benzoate ester derivative is 0.2 to 1 mol / L. It is more preferable to use a corresponding amount. When a mixed solvent is used, it is desirable that the total amount of the mixed solvent satisfies the above range.

(次亜塩素酸)
本発明の方法において、式(1)で示されるメチル安息香酸エステル誘導体から式(2)で示されるクロロメチル安息香酸エステル誘導体を製造する際には、塩素化剤として次亜塩素酸が用いられる。即ち、次亜塩素酸の存在下、式(1)で示されるメチル安息香酸エステル誘導体を塩素化させて式(2)で示されるクロロメチル安息香酸エステル誘導体を製造する。
(Hypochlorous acid)
In the method of the present invention, hypochlorous acid is used as a chlorinating agent when producing the chloromethylbenzoic acid ester derivative represented by the formula (2) from the methylbenzoic acid ester derivative represented by the formula (1). .. That is, in the presence of hypochlorous acid, the methylbenzoic acid ester derivative represented by the formula (1) is chlorinated to produce the chloromethylbenzoic acid ester derivative represented by the formula (2).

次亜塩素酸としては特に制限されず、次亜塩素酸の水溶液を使用してもよいが、次亜塩素酸は水溶液中で不安定であり、分解する。従って、クロロメチル安息香酸エステル誘導体の製造直前または製造時に次亜塩素酸金属塩と酸とを接触させて次亜塩素酸を発生させることが好ましい。 The hypochlorous acid is not particularly limited, and an aqueous solution of hypochlorous acid may be used, but hypochlorous acid is unstable in the aqueous solution and decomposes. Therefore, it is preferable to generate hypochlorous acid by contacting the hypochlorous acid metal salt with the acid immediately before or during the production of the chloromethylbenzoic acid ester derivative.

次亜塩素酸金属塩としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等のアルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等のアルカリ土類金属塩、次亜塩素酸銅、次亜塩素酸第二銅等の遷移金属塩が挙げられる。これらの中でも、工業的な入手の容易さや塩の安定性の観点から次亜塩素酸ナトリウムが好ましい。 Examples of the hypochlorite metal salt include alkali metal salts such as sodium hypochlorite and potassium hypochlorite, alkaline earth metal salts such as calcium hypochlorite and barium hypochlorite, and copper hypochlorite. , Transition metal salts such as cupric hypochlorite. Among these, sodium hypochlorite is preferable from the viewpoint of industrial availability and salt stability.

次亜塩素酸金属塩は、安定性の観点から水溶液として使用することが好ましい。次亜塩素酸金属塩が次亜塩素酸ナトリウムの場合、使用する次亜塩素酸ナトリウム水溶液の濃度は、特に制限されるものではないが、入手のしやすさから5~12質量%のものが好ましく、塩素化の進行しやすさから8~12質量%のものがより好ましい。 The hypochlorous acid metal salt is preferably used as an aqueous solution from the viewpoint of stability. When the sodium hypochlorite metal salt is sodium hypochlorite, the concentration of the sodium hypochlorite aqueous solution used is not particularly limited, but it is 5 to 12% by mass due to its availability. Preferably, 8 to 12% by mass is more preferable because of the ease of progress of chlorination.

使用する酸の種類は、塩素化反応を阻害しないものであれば特に限定されない。酸としては、塩酸、硫酸などの無機酸;酢酸、ギ酸などの有機酸が挙げられる。塩素化の進行しやすさから塩酸が好ましい。 The type of acid used is not particularly limited as long as it does not inhibit the chlorination reaction. Examples of the acid include inorganic acids such as hydrochloric acid and sulfuric acid; and organic acids such as acetic acid and formic acid. Hydrochloric acid is preferable because of the ease of progress of chlorination.

使用する酸の濃度は、特に制限されるものではないが、塩素化の進行しやすさから希釈せずに用いることが好ましい。 The concentration of the acid used is not particularly limited, but it is preferable to use it without diluting it because of the ease of progress of chlorination.

塩素化に使用する次亜塩素酸の当量は、特に制限されるものではない。好ましくは式(1)で表されるメチル安息香酸エステル誘導体1モルに対して、2~10モル使用する。より好ましくは2~6モル使用する。 The equivalent of hypochlorous acid used for chlorination is not particularly limited. Preferably, 2 to 10 mol is used with respect to 1 mol of the methylbenzoic acid ester derivative represented by the formula (1). More preferably, 2 to 6 mol is used.

次亜塩素酸金属塩と酸とを接触させて次亜塩素酸を発生させる際に使用する次亜塩素酸金属塩と酸のモル比は、発生する次亜塩素酸の当量が上記の範囲を満たすものであれば、特に制限されるものではないが、副反応を低減するために次亜塩素酸金属塩と酸のモル比は1:1が好ましい。 The molar ratio of the hypochlorous acid metal salt to the acid used when the hypochlorite metal salt and the acid are brought into contact with each other to generate the hypochlorous acid is such that the equivalent amount of the generated hypochlorite is in the above range. The molar ratio of the hypochlorite metal salt to the acid is preferably 1: 1 in order to reduce side reactions, although it is not particularly limited as long as it satisfies the requirements.

(クロロメチル安息香酸エステル誘導体)
本発明においては、塩素化反応により得られるクロロメチル安息香酸エステル誘導体は下記式(2)
(Chloromethylbenzoic acid ester derivative)
In the present invention, the chloromethyl benzoic acid ester derivative obtained by the chlorination reaction is represented by the following formula (2).

Figure 2022090710000005
Figure 2022090710000005

で示される化合物である。 It is a compound indicated by.

式中、RおよびXは上記式(1)におけるものと同義である。 In the formula, R and X are synonymous with those in the above formula (1).

(反応条件)
本発明の方法においては、式(1)で示されるメチル安息香酸エステル誘導体を、有機溶媒中次亜塩素酸の存在下塩素化させればよく、式(1)で示されるメチル安息香酸エステル誘導体、有機溶媒および次亜塩素酸の反応容器への添加順序に特に制限はない。式(1)で示されるメチル安息香酸エステル誘導体および有機溶媒を反応容器中に用意しておき、この中に次亜塩素酸を存在させることが好ましい。
(Reaction condition)
In the method of the present invention, the methyl benzoic acid ester derivative represented by the formula (1) may be chlorinated in the presence of hypochlorous acid in an organic solvent, and the methyl benzoic acid ester derivative represented by the formula (1) may be chlorinated. , The order of addition of the organic solvent and hypochlorous acid to the reaction vessel is not particularly limited. It is preferable to prepare a methylbenzoic acid ester derivative represented by the formula (1) and an organic solvent in a reaction vessel, and to allow hypochlorous acid to be present therein.

次亜塩素酸は上記したように次亜塩素酸金属塩と酸とを接触させて発生させることが好ましい。この場合、
(i)反応容器中の式(1)で示されるメチル安息香酸エステル誘導体および有機溶媒に、次亜塩素酸金属塩と酸とを接触させて発生させた次亜塩素酸を添加する方法、
(ii)反応容器中の式(1)で示されるメチル安息香酸エステル誘導体および有機溶媒に次亜塩素酸金属塩を添加した後に、酸を添加して次亜塩素酸を発生させる方法、
(iii)反応容器中の式(1)で示されるメチル安息香酸エステル誘導体および有機溶媒に酸を添加した後に、次亜塩素酸金属塩を添加して次亜塩素酸を発生させる方法
がある。中でも、(ii)反応容器中の式(1)で示されるメチル安息香酸エステル誘導体および有機溶媒に次亜塩素酸金属塩を添加した後に酸を添加して次亜塩素酸を発生させる方法(以下、方法(ii)ともいう。)が、発生させた次亜塩素酸の分解や式(1)で示されるメチル安息香酸エステル誘導体の加水分解を低減することが可能であるため好ましい。次亜塩素酸金属塩は上記したように水溶液として使用することが好ましい。
As described above, hypochlorous acid is preferably generated by bringing the metal salt of hypochlorous acid into contact with the acid. in this case,
(I) A method of adding hypochlorite generated by contacting a hypochlorous acid metal salt and an acid to a methylbenzoic acid ester derivative represented by the formula (1) and an organic solvent in a reaction vessel.
(Ii) A method of adding a hypochlorous acid metal salt to a methylbenzoic acid ester derivative represented by the formula (1) and an organic solvent in a reaction vessel, and then adding an acid to generate hypochlorous acid.
(Iii) There is a method of adding a hypochlorous acid metal salt after adding an acid to the methylbenzoic acid ester derivative represented by the formula (1) and an organic solvent in the reaction vessel to generate hypochlorous acid. Among them, (ii) a method of adding an acid to generate hypochlorous acid after adding a hypochlorous acid metal salt to the methylbenzoic acid ester derivative represented by the formula (1) and an organic solvent in the reaction vessel (hereinafter). , Also referred to as method (ii)) is preferable because it is possible to reduce the decomposition of the generated hypochlorous acid and the hydrolysis of the methylbenzoic acid ester derivative represented by the formula (1). The hypochlorous acid metal salt is preferably used as an aqueous solution as described above.

方法(ii)において、酸は所要量を一度に一括して添加することもできるが、少量ずつ連続的に添加または何回かに分けて添加することが好ましい。 In the method (ii), the required amount of the acid can be added all at once, but it is preferable to add the acid continuously in small amounts or in several portions.

本発明の方法において、反応時間は特に制限されるものではなく、生成物であるクロロメチル安息香酸エステル誘導体への転化率を適宜確認しながら決定すればよいが、通常、1時間以上48時間以内であればよく、好ましくは2時間以上24時間以内である。 In the method of the present invention, the reaction time is not particularly limited and may be determined while appropriately confirming the conversion rate to the product chloromethylbenzoic acid ester derivative, but usually, it is 1 hour or more and 48 hours or less. However, it is preferably 2 hours or more and 24 hours or less.

本発明の方法において、反応温度は特に制限されるものではなく、0℃以上、有機溶媒の沸点以下の範囲で実施することができるが、実施の容易さから20℃から30℃の範囲が好ましい。 In the method of the present invention, the reaction temperature is not particularly limited and can be carried out in the range of 0 ° C. or higher and the boiling point or lower of the organic solvent, but the range of 20 ° C. to 30 ° C. is preferable from the viewpoint of ease of carrying out. ..

(反応の後処理)
本発明の方法において、上記反応を実施した後に、式(2)で示されるクロロメチル安息香酸エステル誘導体は、次のような方法により分離することができる。例えば、反応終了後、二層を分離し、水層をジクロロメタンで抽出した後に、有機層を合わせてチオ硫酸ナトリウム水溶液で洗浄する。洗浄した有機層を減圧下、濃縮することで、式(2)で示されるクロロメチル安息香酸エステル誘導体が得られる。
(Post-treatment of reaction)
In the method of the present invention, after carrying out the above reaction, the chloromethyl benzoic acid ester derivative represented by the formula (2) can be separated by the following method. For example, after completion of the reaction, the two layers are separated, the aqueous layer is extracted with dichloromethane, and then the organic layers are combined and washed with an aqueous solution of sodium thiosulfate. By concentrating the washed organic layer under reduced pressure, the chloromethylbenzoic acid ester derivative represented by the formula (2) can be obtained.

不純物が式(2)で示されるクロロメチル安息香酸エステル誘導体に含まれている場合、カラム分離や再結晶等の公知の方法を適用することにより高純度化することが可能である。 When impurities are contained in the chloromethyl benzoic acid ester derivative represented by the formula (2), high purity can be achieved by applying known methods such as column separation and recrystallization.

以下に例を挙げて本発明を具体的に説明するが、これらの例は本発明の範囲を限定するものではない。 The present invention will be specifically described below with reference to examples, but these examples do not limit the scope of the present invention.

<HPLC条件>
装置:液体クロマトグラフ装置(WatersCorporation製)
検出器:紫外吸光光度計
測定波長:210nm
カラム:内径4.6mm、長さ250mmのステンレス管に、粒子径5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルが充填されたもの
移動相A:0.1%リン酸水溶液
移動相B:アセトニトリル
移動相の送液:移動相Aおよび移動相Bの混合比を次のように変えて濃度勾配制御する
<HPLC conditions>
Equipment: Liquid chromatograph equipment (manufactured by Waters Corporation)
Detector: Ultraviolet absorptiometer Measurement wavelength: 210nm
Column: A stainless steel tube with an inner diameter of 4.6 mm and a length of 250 mm filled with octadecylsilylated silica gel for liquid chromatography having a particle diameter of 5 μm. Mobile phase A: 0.1% aqueous phosphate solution Mobile phase B: acetonitrile mobile phase Liquid delivery: The concentration gradient is controlled by changing the mixing ratio of mobile phase A and mobile phase B as follows.

Figure 2022090710000006
Figure 2022090710000006

流量:1.0ml/min
カラム温度:35℃付近の一定温度
測定時間:45分
反応の転化率は、上記条件で測定されたメチル安息香酸エステル誘導体の面積値およびクロロメチル安息香酸エステル誘導体の面積値を用いて以下の式より算出した。
Flow rate: 1.0 ml / min
Column temperature: Constant temperature around 35 ° C. Measurement time: 45 minutes The conversion rate of the reaction is calculated by the following formula using the area value of the methylbenzoic acid ester derivative and the area value of the chloromethylbenzoic acid ester derivative measured under the above conditions. Calculated from.

(反応転化率)=(クロロメチル安息香酸エステル誘導体の面積値)/{(クロロメチル安息香酸エステル誘導体の面積値)+(メチル安息香酸エステル誘導体の面積値)}

(製造例1)2-クロロ-4-メチル安息香酸メチルエステルの製造
(Reaction conversion rate) = (Area value of chloromethyl benzoate ester derivative) / {(Area value of chloromethyl benzoate ester derivative) + (Area value of methyl benzoate ester derivative)}

(Production Example 1) Production of 2-chloro-4-methylbenzoic acid methyl ester

Figure 2022090710000007
Figure 2022090710000007

2-クロロ-4-メチル安息香酸[Combi-Blocks Inc.製](0.96g,5.63mmol)のメタノール溶液(9.6mL)を攪拌しながら5℃に冷却し、そこに塩化チオニル(0.61mL,1.5eq)を滴下した。滴下終了後、65℃まで昇温し、一晩攪拌した。反応液を室温まで冷却後、減圧濃縮した。得られた残渣にメタノールを加え、再度濃縮することで2-クロロ-4-メチル安息香酸メチル0.77gを得た(収率74%)。 2-Chloro-4-methylbenzoic acid [Combi-Blocks Inc. Manufactured by] (0.96 g, 5.63 mmol) in methanol (9.6 mL) was cooled to 5 ° C. with stirring, and thionyl chloride (0.61 mL, 1.5 eq) was added dropwise thereto. After completion of the dropping, the temperature was raised to 65 ° C., and the mixture was stirred overnight. The reaction mixture was cooled to room temperature and then concentrated under reduced pressure. Methanol was added to the obtained residue and concentrated again to obtain 0.77 g of methyl 2-chloro-4-methylbenzoate (yield 74%).

(製造例2)3-クロロ-4-メチル安息香酸メチルエステルの製造 (Production Example 2) Production of 3-Chloro-4-methylbenzoic acid methyl ester

Figure 2022090710000008
Figure 2022090710000008

基質に3-クロロ-4-メチル安息香酸[東京化成工業株式会社製]を用いて製造例1と同様の操作を行って、3-クロロ-4-メチル安息香酸メチルを得た(収率82%)。 Using 3-chloro-4-methylbenzoic acid [manufactured by Tokyo Kasei Kogyo Co., Ltd.] as a substrate, the same operation as in Production Example 1 was carried out to obtain methyl 3-chloro-4-methylbenzoate (yield 82). %).

(製造例3)2-フルオロ-4-メチル安息香酸メチルエステルの製造 (Production Example 3) Production of 2-fluoro-4-methylbenzoic acid methyl ester

Figure 2022090710000009
Figure 2022090710000009

基質に2-フルオロ-4-メチル安息香酸[東京化成工業株式会社製]を用いて製造例1と同様の操作を行って、2-フルオロ-4-メチル安息香酸メチルを得た(収率87%)。 Using 2-fluoro-4-methylbenzoic acid [manufactured by Tokyo Kasei Kogyo Co., Ltd.] as a substrate, the same operation as in Production Example 1 was carried out to obtain methyl 2-fluoro-4-methylbenzoate (yield 87). %).

(製造例4)3-フルオロ-4-メチル安息香酸メチルエステルの製造 (Production Example 4) Production of 3-fluoro-4-methylbenzoic acid methyl ester

Figure 2022090710000010
Figure 2022090710000010

基質に3-フルオロ-4-メチル安息香酸[東京化成工業株式会社製]を用いて製造例1と同様の操作を行って、3-フルオロ-4-メチル安息香酸メチルを得た(収率72%)。 Using 3-fluoro-4-methylbenzoic acid [manufactured by Tokyo Kasei Kogyo Co., Ltd.] as a substrate, the same operation as in Production Example 1 was carried out to obtain methyl 3-fluoro-4-methylbenzoate (yield 72). %).

(実施例1)p-メチル安息香酸メチルのクロロ化 (Example 1) Chlorization of methyl p-methylbenzoate

Figure 2022090710000011
Figure 2022090710000011

p-メチル安息香酸メチル(75mg,0.5mmol)[富士フィルム和光純薬株式会社製]のジクロロメタン溶液(1mL)に対して8.8質量%次亜塩素酸ナトリウム水溶液(1.69g,4.0eq)を室温で添加した。その後、濃塩酸(0.18mL,4.0eq)をゆっくりと滴下した。室温で18時間攪拌したところ、転化率81%で反応が進行した。二層を分離し、水層をジクロロメタンで抽出した後に、有機層を合わせてチオ硫酸ナトリウム水溶液で洗浄した。洗浄後の有機層に無水硫酸ナトリウムを加えて乾燥させた後、濾過および濃縮することで得られた残渣をシリカゲルクロマトグラフィーにより精製し、p-クロロメチル安息香酸メチル68mgを得た(収率74%)。 8.8% by mass sodium hypochlorite aqueous solution (1.69 g, 4.) with respect to a dichloromethane solution (1 mL) of methyl p-methylbenzoate (75 mg, 0.5 mmol) [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.]. 0eq) was added at room temperature. Then, concentrated hydrochloric acid (0.18 mL, 4.0 eq) was slowly added dropwise. After stirring at room temperature for 18 hours, the reaction proceeded at a conversion rate of 81%. After separating the two layers and extracting the aqueous layer with dichloromethane, the organic layers were combined and washed with an aqueous sodium thiosulfate solution. Anhydrous sodium sulfate was added to the washed organic layer and dried, and then the residue obtained by filtration and concentration was purified by silica gel chromatography to obtain 68 mg of methyl p-chloromethylbenzoate (yield 74). %).

(実施例2) (Example 2)

Figure 2022090710000012
Figure 2022090710000012

p-メチル安息香酸メチル(75mg,0.5mmol)[富士フィルム和光純薬株式会社製]のアセトニトリル溶液(1mL)に対して8.8質量%次亜塩素酸ナトリウム水溶液(1.69g,4.0eq)を室温で添加した。その後、濃塩酸(0.18mL,4.0eq)をゆっくりと滴下した。室温で18時間攪拌したところ、転化率68%で反応が進行した。 8.8% by mass sodium hypochlorite aqueous solution (1.69 g, 4.) with respect to an acetonitrile solution (1 mL) of methyl p-methylbenzoate (75 mg, 0.5 mmol) [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.]. 0eq) was added at room temperature. Then, concentrated hydrochloric acid (0.18 mL, 4.0 eq) was slowly added dropwise. After stirring at room temperature for 18 hours, the reaction proceeded at a conversion rate of 68%.

(実施例3) (Example 3)

Figure 2022090710000013
Figure 2022090710000013

溶媒にクロロホルムを用いる以外は実施例2と同様の操作を実施したところ、転化率99%で反応が進行した。 When the same operation as in Example 2 was carried out except that chloroform was used as the solvent, the reaction proceeded at a conversion rate of 99%.

(実施例4)o-メチル安息香酸メチルのクロロ化 (Example 4) Chlorization of methyl o-methylbenzoate

Figure 2022090710000014
Figure 2022090710000014

o-メチル安息香酸メチル[東京化成工業株式会社製]を用いる以外は実施例2と同様の操作を実施したところ、転化率89%で反応が進行した。 When the same operation as in Example 2 was carried out except that methyl o-methylbenzoate [manufactured by Tokyo Chemical Industry Co., Ltd.] was used, the reaction proceeded at a conversion rate of 89%.

(実施例5)m-メチル安息香酸メチルのクロロ化 (Example 5) Chlorization of methyl m-methylbenzoate

Figure 2022090710000015
Figure 2022090710000015

m-メチル安息香酸メチル[東京化成工業株式会社製]を用いる以外は実施例2と同様の操作を実施したところ、転化率93%で反応が進行した。 When the same operation as in Example 2 was carried out except that methyl m-methylbenzoate [manufactured by Tokyo Chemical Industry Co., Ltd.] was used, the reaction proceeded with a conversion rate of 93%.

(実施例6)p-メチル安息香酸エチルのクロロ化 (Example 6) Chlorization of ethyl p-methylbenzoate

Figure 2022090710000016
Figure 2022090710000016

p-メチル安息香酸エチル[東京化成工業株式会社製]を用いる以外は実施例2と同様の操作を実施したところ、転化率58%で反応が進行した。 When the same operation as in Example 2 was carried out except that ethyl p-methylbenzoate [manufactured by Tokyo Chemical Industry Co., Ltd.] was used, the reaction proceeded at a conversion rate of 58%.

(実施例7)2-クロロ-4-メチル安息香酸メチルのクロロ化 (Example 7) Chlorization of methyl 2-chloro-4-methylbenzoate

Figure 2022090710000017
Figure 2022090710000017

製造例1で得た2-クロロ-4-メチル安息香酸メチルを用いる以外は実施例2と同様の操作を実施したところ、転化率51%で反応が進行した。 When the same operation as in Example 2 was carried out except that methyl 2-chloro-4-methylbenzoate obtained in Production Example 1 was used, the reaction proceeded at a conversion rate of 51%.

(実施例8)3-クロロ-4-メチル安息香酸メチルのクロロ化 (Example 8) Chlorization of methyl 3-chloro-4-methylbenzoate

Figure 2022090710000018
Figure 2022090710000018

製造例2で得た3-クロロ-4-メチル安息香酸メチルを用いる以外は実施例2と同様の操作を実施したところ、転化率69%で反応が進行した。 When the same operation as in Example 2 was carried out except that methyl 3-chloro-4-methylbenzoate obtained in Production Example 2 was used, the reaction proceeded at a conversion rate of 69%.

(実施例9)2-フルオロ-4-メチル安息香酸メチルのクロロ化 (Example 9) Chlorosis of methyl 2-fluoro-4-methylbenzoate

Figure 2022090710000019
Figure 2022090710000019

製造例3で得た2-フルオロ-4-メチル安息香酸メチルを用いる以外は実施例2と同様の操作を実施したところ、転化率50%で反応が進行した。 When the same operation as in Example 2 was carried out except that methyl 2-fluoro-4-methylbenzoate obtained in Production Example 3 was used, the reaction proceeded at a conversion rate of 50%.

(実施例10)3-フルオロ-4-メチル安息香酸メチルのクロロ化 (Example 10) Chlorosis of methyl 3-fluoro-4-methylbenzoate

Figure 2022090710000020
Figure 2022090710000020

製造例4で得た3-フルオロ-4-メチル安息香酸メチルを用いる以外は実施例2と同様の操作を実施したところ、転化率59%で反応が進行した。 When the same operation as in Example 2 was carried out except that methyl 3-fluoro-4-methylbenzoate obtained in Production Example 4 was used, the reaction proceeded at a conversion rate of 59%.

(比較例1)p-メチル安息香酸のクロロ化 (Comparative Example 1) Chlorization of p-methylbenzoic acid

Figure 2022090710000021
Figure 2022090710000021

p-メチル安息香酸[富士フィルム和光純薬株式会社製]を用いる以外は実施例2と同様の操作を実施したところ、ベンジル位がクロロ化された化合物は得られず、ベンゼン環がクロロ化された3-クロロ-4-メチル安息香酸を定量的に得た。 When the same operation as in Example 2 was carried out except that p-methylbenzoic acid [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.] was used, a compound having a chlorolated benzyl position was not obtained, and the benzene ring was chloroylated. 3-Chloro-4-methylbenzoic acid was quantitatively obtained.

Figure 2022090710000022
Figure 2022090710000022

Claims (1)

下記式(1)
Figure 2022090710000023
(式中、Rは炭素数1~6のアルキル基、Xは水素原子またはハロゲン原子である。メチル基およびXはベンゼン環上の任意の位置に存在してよい。)
で示されるメチル安息香酸エステル誘導体を、有機溶媒中、次亜塩素酸の存在下塩素化させることにより、
下記式(2)
Figure 2022090710000024
(式中、RおよびXは前記式(1)におけるものと同義である。)
で示されるクロロメチル安息香酸エステル誘導体を製造する、クロロメチル安息香酸エステル誘導体の製造方法。
The following formula (1)
Figure 2022090710000023
(In the formula, R is an alkyl group having 1 to 6 carbon atoms, X is a hydrogen atom or a halogen atom. The methyl group and X may be present at arbitrary positions on the benzene ring.)
By chlorinating the methylbenzoic acid ester derivative represented by (1) in the presence of hypochlorous acid in an organic solvent,
The following formula (2)
Figure 2022090710000024
(In the formula, R and X are synonymous with those in the above formula (1).)
A method for producing a chloromethylbenzoic acid ester derivative, which comprises producing the chloromethylbenzoic acid ester derivative represented by.
JP2020203162A 2020-12-08 2020-12-08 Production method of chloromethyl benzoate derivative Pending JP2022090710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020203162A JP2022090710A (en) 2020-12-08 2020-12-08 Production method of chloromethyl benzoate derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020203162A JP2022090710A (en) 2020-12-08 2020-12-08 Production method of chloromethyl benzoate derivative

Publications (1)

Publication Number Publication Date
JP2022090710A true JP2022090710A (en) 2022-06-20

Family

ID=82060689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020203162A Pending JP2022090710A (en) 2020-12-08 2020-12-08 Production method of chloromethyl benzoate derivative

Country Status (1)

Country Link
JP (1) JP2022090710A (en)

Similar Documents

Publication Publication Date Title
JP5761583B2 (en) Method for producing poly (pentafluorosulfanyl) aromatic compound
JP2021119113A (en) Method for producing sulfur tetrafluoride
JP2019081748A (en) Method for producing halogen compound
JP4923184B2 (en) Method for producing chloroethylene carbonate
JP2022090710A (en) Production method of chloromethyl benzoate derivative
JP2009155280A (en) METHOD FOR PRODUCING gamma-BUTYROLACTONE COMPOUND
JP2010013388A (en) Method for producing 3-chloro-4-fluorobenzotrifluoride
EP3359513B1 (en) Process for the preparation of organic halides
EP3318546A1 (en) Process for the chlorination and iodination of compounds using n-hydroxyphthalimide
JP2008255100A (en) Method for producing trifluoromethanesulfonyl fluoride
JP5197106B2 (en) Method for producing halogenated phthalic acid compound
JP2018070601A (en) Method for producing halogen compound
JP2018076289A (en) Method for producing halogenated benzene derivative
JP2014208604A (en) Method for manufacturing an aromatic acyl compound
JP5315710B2 (en) Process for producing 1-bromo-3-fluoro-5-difluoromethylbenzene
JP3641836B2 (en) (Perfluoroalkoxy) biphenyldiazonium compound, production intermediate thereof, and perfluoroalkylation method
WO1999054275A1 (en) Process for producing chloromethylphenylacetic acid
JP6520588B2 (en) Process for producing sulfonyl bromide compounds
JP5572421B2 (en) Method for producing 3,5-di-tert-butylhalogenobenzene
WO2000017187A1 (en) Processes for the preparation of isochromanones and intermediates for the preparation thereof
JPH09255617A (en) Production of alkylbenzoyl chloride
CN118184567A (en) Process for preparing 3-haloindole derivatives
WO2011093256A1 (en) Method for producing 4-chloropyridine-2-carboxylic acid chloride
JP2003171332A (en) Method for producing bisbenzyl compound
JPH08198806A (en) Production of alkylbenzoylchloride

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216