JP5572421B2 - Method for producing 3,5-di-tert-butylhalogenobenzene - Google Patents

Method for producing 3,5-di-tert-butylhalogenobenzene Download PDF

Info

Publication number
JP5572421B2
JP5572421B2 JP2010051359A JP2010051359A JP5572421B2 JP 5572421 B2 JP5572421 B2 JP 5572421B2 JP 2010051359 A JP2010051359 A JP 2010051359A JP 2010051359 A JP2010051359 A JP 2010051359A JP 5572421 B2 JP5572421 B2 JP 5572421B2
Authority
JP
Japan
Prior art keywords
antimony
compound
tert
reaction
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010051359A
Other languages
Japanese (ja)
Other versions
JP2011184359A (en
Inventor
崇之 鈴木
和弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manac Inc
Original Assignee
Manac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manac Inc filed Critical Manac Inc
Priority to JP2010051359A priority Critical patent/JP5572421B2/en
Priority to PCT/JP2011/052781 priority patent/WO2011111464A1/en
Priority to CN201180012984.XA priority patent/CN102791662B/en
Publication of JP2011184359A publication Critical patent/JP2011184359A/en
Application granted granted Critical
Publication of JP5572421B2 publication Critical patent/JP5572421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、3,5−ジ−tert−ブチルハロゲノベンゼンの製造方法に関する。   The present invention relates to a method for producing 3,5-di-tert-butylhalogenobenzene.

従来、3,5−ジ−tert−ブチルハロゲノベンゼンを製造する方法としては、1,3,5−トリ−tert−ブチルベンゼンを原料とし、四塩化炭素溶媒中で鉄と臭素を作用させて製造する方法(例えば、非特許文献1)が提案されている。しかしながらこの方法では、原料に対して鉄を当モル量以上必要とすること、用いた鉄の除去が煩雑であること及び四塩化炭素を用いていることなど工業的に有利な方法とは言い難い。   Conventionally, as a method for producing 3,5-di-tert-butylhalogenobenzene, 1,3,5-tri-tert-butylbenzene is used as a raw material and produced by reacting iron and bromine in a carbon tetrachloride solvent. The method (for example, nonpatent literature 1) to do is proposed. However, this method cannot be said to be an industrially advantageous method such as requiring an equimolar amount or more of iron with respect to the raw material, complicated removal of the iron used, and the use of carbon tetrachloride. .

鉄を用いない方法としては、1,3,5−トリ−tert−ブチルベンゼンを原料とし、四塩化炭素溶媒中で第二塩化鉄と臭素を作用させて製造する方法(例えば、非特許文献2)が提案されている。しかしながら、収率が54%と低く、四塩化炭素を用いていることなど工業的に有利な方法とは言い難い。   As a method that does not use iron, a method in which 1,3,5-tri-tert-butylbenzene is used as a raw material and ferric chloride and bromine are allowed to act in a carbon tetrachloride solvent (for example, Non-Patent Document 2). ) Has been proposed. However, the yield is as low as 54%, and it is difficult to say that it is an industrially advantageous method such as using carbon tetrachloride.

また、ベンゼンを原料とし、1,2−ジクロロエタン溶媒中でtert−ブチルクロライドと塩化アルミニウムを作用させ、1,3,5−トリ−tert−ブチルベンゼンを作った後に臭素を作用させて製造する方法(例えば、非特許文献3)が提案されている。しかしながらこの方法も、収率が低く、不純物が多く生成するなど工業的に有利な方法とは言い難い。   Also, a process for producing by using benzene as a raw material, reacting tert-butyl chloride and aluminum chloride in a 1,2-dichloroethane solvent to produce 1,3,5-tri-tert-butylbenzene and then reacting with bromine (For example, Non-Patent Document 3) has been proposed. However, this method is also difficult to say as an industrially advantageous method such as low yield and generation of many impurities.

一方、3,5−ジ−tert−ブチルアニリンをザンドマイヤー反応で臭素化して製造する方法(例えば、非特許文献4)も提案されている。しかしながら、ザンドマイヤー反応の場合、用いる芳香族アミノ化合物は毒性が強く、反応後の後処理も煩雑で、収率も54%と低いため工業的に有利な方法とは言い難い。   On the other hand, a method of producing 3,5-di-tert-butylaniline by bromination by a Sandmeyer reaction (for example, Non-Patent Document 4) has also been proposed. However, in the case of the Sandmeyer reaction, the aromatic amino compound used is highly toxic, the post-treatment after the reaction is complicated, and the yield is as low as 54%, which is not an industrially advantageous method.

Journal of the American Chemical Society 76, 2349〜2353; 1954Journal of the American Chemical Society 76, 2349-2353; 1954 Journal of the American Chemical Society 90, 2115〜2123; 1968Journal of the American Chemical Society 90, 2115-2123; 1968 Organic Preparations and Procedures Internationa 84, 1487−1503; 2006Organic Preparations and Procedures Internationala 84, 1487-1503; 2006 Canadian Journal of Chemistry 80, 1487−1503; 2006Canadian Journal of Chemistry 80, 1487-1503; 2006

本発明は、高純度且つ高収率で3,5−ジ−tert−ブチルハロゲノベンゼンを製造できる工業的に有利な製造方法を提供することを課題とする。   An object of the present invention is to provide an industrially advantageous production method capable of producing 3,5-di-tert-butylhalogenobenzene with high purity and high yield.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明は、以下の通りである。   As a result of intensive studies to solve the above problems, the present inventor has completed the present invention. That is, the present invention is as follows.

[1]下記式(1):

Figure 0005572421
で示される化合物とハロゲン化剤とをアンチモン化合物の存在下で反応させることを特徴とする下記一般式(2):
Figure 0005572421
(式中、Xは塩素または臭素原子を表す)
で示される化合物の製造方法。 [1] The following formula (1):
Figure 0005572421
A compound represented by the following general formula (2), wherein a halogenating agent is reacted in the presence of an antimony compound:
Figure 0005572421
(Wherein X represents a chlorine or bromine atom)
The manufacturing method of the compound shown by these.

[2]前記アンチモン化合物が三塩化アンチモン、五塩化アンチモン、三臭化アンチモン及び五臭化アンチモンからなる群より選ばれる一種以上の化合物であることを特徴とする、[1]記載の製造方法。 [2] The method according to [1], wherein the antimony compound is one or more compounds selected from the group consisting of antimony trichloride, antimony pentachloride, antimony tribromide, and antimony pentabromide.

[3]前記アンチモン化合物の使用量が、一般式(1)の化合物に対して1〜50モル%の範囲であることを特徴とする、請求項[1]又は[2]記載の製造方法。 [3] The production method according to [1] or [2], wherein the amount of the antimony compound used is in the range of 1 to 50 mol% with respect to the compound of the general formula (1).

[4]前記ハロゲン化剤が塩素または臭素であることを特徴とする、[1]〜[3]のいずれか一項記載の製造方法。 [4] The production method according to any one of [1] to [3], wherein the halogenating agent is chlorine or bromine.

[5]反応温度が−20〜20℃であることを特徴とする、[1]〜[4]のいずれか一項記載の製造方法。 [5] The production method according to any one of [1] to [4], wherein the reaction temperature is -20 to 20 ° C.

本発明の3,5−ジ−tert−ブチルハロゲノベンゼンの製造方法は、高純度、高収率で得ることができ、工業的な量産に適している。   The method for producing 3,5-di-tert-butylhalogenobenzene of the present invention can be obtained with high purity and high yield, and is suitable for industrial mass production.

以下、本発明を詳細に説明する。
本発明の一般式(2):

Figure 0005572421

(式中、Xは塩素または臭素原子を表す)
で示される3,5−ジ−tert−ブチルハロゲノベンゼンは、式(1):
Figure 0005572421

で示される化合物とハロゲン化剤とをアンチモン化合物の存在下で反応させることにより得ることができる。 Hereinafter, the present invention will be described in detail.
General formula (2) of the present invention:
Figure 0005572421

(Wherein X represents a chlorine or bromine atom)
3,5-di-tert-butylhalogenobenzene represented by the formula (1):
Figure 0005572421

And a halogenating agent can be obtained by reacting in the presence of an antimony compound.

本発明で用いる式(1)で示される1,3,5−トリ−tert−ブチルベンゼンは、市販されており、アルドリッチ社などの試薬会社より容易に入手することが可能である。また、公知の方法(例えば、Organic Letters 7(24),5365−5368;2005に記載の方法)により合成することも可能である。   The 1,3,5-tri-tert-butylbenzene represented by the formula (1) used in the present invention is commercially available and can be easily obtained from a reagent company such as Aldrich. Moreover, it is also possible to synthesize | combine by a well-known method (For example, the method as described in Organic Letters 7 (24), 5365-5368; 2005).

本発明で用いるハロゲン化剤は、塩素化剤、臭素化剤、フッ素化剤及びヨウ素化剤を意味し、塩素化剤及び臭素化剤が好ましい。塩素化剤の具体例としては、塩素(Cl)、N-クロロスクシンイミド、1,3−ジクロロ−5,5−ジメチルヒダントイン、塩化スルフリルなどが挙げられる。臭素化剤の具体例としては、臭素(Br)、一塩化臭素、N-ブロモスクシンイミド、1,3−ジブロモ−5,5−ジメチルヒダントイン、臭化スルフリルなどが挙げられる。入手の容易さを考慮すると、塩素(Cl)、臭素(Br)の使用が好ましい。 The halogenating agent used in the present invention means a chlorinating agent, a brominating agent, a fluorinating agent and an iodinating agent, and a chlorinating agent and a brominating agent are preferred. Specific examples of the chlorinating agent include chlorine (Cl 2 ), N-chlorosuccinimide, 1,3-dichloro-5,5-dimethylhydantoin, sulfuryl chloride and the like. Specific examples of the brominating agent include bromine (Br 2 ), bromine monochloride, N-bromosuccinimide, 1,3-dibromo-5,5-dimethylhydantoin, sulfuryl bromide and the like. Considering availability, use of chlorine (Cl 2 ) and bromine (Br 2 ) is preferable.

前記ハロゲン化剤の使用量は、式(1)で示される化合物に対して1.0〜5.0モル等量使用することが好ましく、反応率の観点から、1.0〜2.0モル等量の範囲で使用することがより好ましい。   The halogenating agent is preferably used in an amount of 1.0 to 5.0 mol equivalents relative to the compound represented by the formula (1), and 1.0 to 2.0 mol from the viewpoint of the reaction rate. It is more preferable to use in an equal amount range.

本発明で用いるアンチモン化合物は、水素化アンチモン、水酸化アンチモン、アンチモンハロゲン化物、アンチモン酸化物、アンチモン硫化物などのアンチモンを含む化合物であり、これらの化合物を単独で、又は2種以上を混合して用いてもよい。アンチモン化合物は、具体的には、三塩化アンチモン、五塩化アンチモン、三臭化アンチモン、五臭化アンチモン、三沃化アンチモン、五沃化アンチモン、三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモンが挙げられる。モノハロゲン化物を選択的に得られるという観点から、三塩化アンチモン、五塩化アンチモン、三臭化アンチモン、五臭化アンチモンを使用することが好ましい。   The antimony compound used in the present invention is a compound containing antimony such as antimony hydride, antimony hydroxide, antimony halide, antimony oxide, antimony sulfide, etc., and these compounds are used alone or in combination of two or more. May be used. Specific examples of the antimony compound include antimony trichloride, antimony pentachloride, antimony tribromide, antimony pentabromide, antimony triiodide, antimony pentaiodide, antimony trioxide, antimony tetroxide, and dioxypentoxide. Antimony. From the viewpoint of selectively obtaining a monohalide, it is preferable to use antimony trichloride, antimony pentachloride, antimony tribromide, and antimony pentabromide.

前記アンチモン化合物の使用量は、式(1)で示される化合物に対して1〜50モル%使用することが好ましく、反応率の観点から、5〜30モル%の範囲で使用することがより好ましい。   The amount of the antimony compound used is preferably 1 to 50 mol% with respect to the compound represented by the formula (1), and more preferably 5 to 30 mol% from the viewpoint of the reaction rate. .

反応には溶媒を使用してもよい。使用する溶媒は、反応に不活性な溶媒であれば特に限定されない。溶媒は、単独で、又は2種類以上を任意の割合で混合して用いてもよい。具体的には、モノクロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素、塩化メチレン、臭化メチレン、クロロホルム、四塩化炭素、エチレンジクロライド、1,1,1−トリクロロエタン、トリクロロエチレン等のハロゲン化脂肪族炭化水素が挙げられる。   A solvent may be used for the reaction. The solvent to be used is not particularly limited as long as it is a solvent inert to the reaction. Solvents may be used alone or in admixture of two or more at any ratio. Specifically, halogenated aromatic hydrocarbons such as monochlorobenzene, dichlorobenzene and trichlorobenzene, halogens such as methylene chloride, methylene bromide, chloroform, carbon tetrachloride, ethylene dichloride, 1,1,1-trichloroethane and trichloroethylene And aliphatic hydrocarbons.

前記溶媒の使用量は、式(1)で示される化合物に対して、50〜1000重量%、好ましくは100〜500重量%である。   The usage-amount of the said solvent is 50 to 1000 weight% with respect to the compound shown by Formula (1), Preferably it is 100 to 500 weight%.

反応温度は、−20〜20℃の範囲が好ましい。反応温度は、副反応を抑制する点から、−10〜10℃の範囲がより好ましい。   The reaction temperature is preferably in the range of -20 to 20 ° C. The reaction temperature is more preferably in the range of −10 to 10 ° C. from the viewpoint of suppressing side reactions.

反応時間は、選択するアンチモン化合物の種類や量により異なるが、1〜24時間が好ましく、より好ましくは3〜12時間である。   The reaction time varies depending on the type and amount of the antimony compound to be selected, but is preferably 1 to 24 hours, and more preferably 3 to 12 hours.

反応終了後、得られた反応溶液は通常の方法で後処理を行うことができる。後処理の方法としては、特に限定されないが、例えば、水、酸水溶液(塩酸水溶液など)及び/又はアルカリ性水溶液(水酸化ナトリウム水溶液、炭酸水素ナトリウム水溶液など)での洗浄を行い、アンチモン化合物及び無機塩などを系内から除去する処理方法などが挙げられる。   After completion of the reaction, the obtained reaction solution can be post-treated by a usual method. The post-treatment method is not particularly limited. For example, washing with water, an aqueous acid solution (such as aqueous hydrochloric acid solution) and / or an alkaline aqueous solution (such as aqueous sodium hydroxide solution or aqueous sodium hydrogen carbonate solution) is performed to obtain an antimony compound and an inorganic material. A treatment method for removing salts and the like from the system can be mentioned.

このようにして得られた反応液から、濃縮等の一般的な操作を行うことにより、一般式(2)で示される化合物を単離することができる。単離した化合物は必要に応じて蒸留、クロマトグラフィー、再結晶等によりさらに精製することもできる。   From the reaction solution thus obtained, the compound represented by the general formula (2) can be isolated by performing a general operation such as concentration. The isolated compound can be further purified by distillation, chromatography, recrystallization or the like, if necessary.

以下に、本発明を具体的な実施例により示すが、本発明は実施例の内容に制限されるものではない。   Hereinafter, the present invention will be illustrated by specific examples, but the present invention is not limited to the contents of the examples.

<反応純度>
実施例及び比較例における純度は、反応液をガスクロマトグラフィーにより分析し、面積百分率にて算出した。ここで、反応純度とは溶媒及び反応により副生するアルキルハライドを除いた後の目的物(3,5−ジ−tert−ブチルハロゲノベンゼン)の純度とする。
<Reaction purity>
The purity in Examples and Comparative Examples was calculated by area percentage by analyzing the reaction solution by gas chromatography. Here, the reaction purity is defined as the purity of the target product (3,5-di-tert-butylhalogenobenzene) after removing the solvent and the alkyl halide by-produced by the reaction.

<ガスクロマトグラフィー分析条件>
装置:GC−2010(島津製作所社製)
カラム:ULTRA1(アジレント・テクノロジー社製)
25m×I.D0.32μm、0.52μmdf
カラム温度:150℃→[10℃/分で昇温]→280℃
インジェクション温度:300℃
キャリヤーガス:ヘリウムガス
検出器:水素炎イオン化検出器(FID)
<Gas chromatography analysis conditions>
Apparatus: GC-2010 (manufactured by Shimadzu Corporation)
Column: ULTRA1 (manufactured by Agilent Technologies)
25 m × I. D 0.32 μm, 0.52 μm df
Column temperature: 150 ° C. → [Raise temperature at 10 ° C./min]→280° C.
Injection temperature: 300 ° C
Carrier gas: Helium gas detector: Hydrogen flame ionization detector (FID)

[実施例1]
コンデンサー、温度計及びガス吸収装置を備えた1Lの四つ口フラスコに、1,3,5−トリ−tert−ブチルベンゼン150g(0.6mol、アルドリッチ社製)、三塩化アンチモン27.4g(0.12mol)及び塩化メチレン420mlを仕込み、内温が5℃以下になるまで冷却した。次いで臭素153.4g(0.96mol)を2時間かけて滴下した後、内温5℃以下で3時間反応を行った。得られた反応液の分析結果を表1に示す。
[Example 1]
Into a 1 L four-necked flask equipped with a condenser, a thermometer and a gas absorber, 1,3,5-tri-tert-butylbenzene 150 g (0.6 mol, manufactured by Aldrich), antimony trichloride 27.4 g (0 .12 mol) and 420 ml of methylene chloride were charged and cooled until the internal temperature became 5 ° C. or lower. Next, 153.4 g (0.96 mol) of bromine was dropped over 2 hours, and then the reaction was performed at an internal temperature of 5 ° C. or less for 3 hours. Table 1 shows the analysis results of the obtained reaction solution.

[実施例2]
臭素の使用量を変更した以外は実施例1と同様の操作を行った。得られた反応液の分析結果を表1に示す。
[Example 2]
The same operation as in Example 1 was performed except that the amount of bromine used was changed. Table 1 shows the analysis results of the obtained reaction solution.

[比較例1]
コンデンサー、温度計及びガス吸収装置を備えた200mLの四つ口フラスコに、1,3,5−トリ−tert−ブチルベンゼン30g(0.122mol)、鉄粉7.15g(0.128mol)及び塩化メチレン84mlを仕込み、内温が5℃以下になるまで冷却した。次いで臭素23.3g(0.146mol)を2時間かけて滴下した後、内温5℃以下で23時間反応を行った。得られた反応液の分析結果を表1に示す。
[Comparative Example 1]
In a 200 mL four-necked flask equipped with a condenser, a thermometer and a gas absorption device, 30 g (0.122 mol) of 1,3,5-tri-tert-butylbenzene, 7.15 g (0.128 mol) of iron powder and chloride 84 ml of methylene was charged and cooled until the internal temperature became 5 ° C. or lower. Next, 23.3 g (0.146 mol) of bromine was added dropwise over 2 hours, and the reaction was carried out at an internal temperature of 5 ° C. or lower for 23 hours. Table 1 shows the analysis results of the obtained reaction solution.

[比較例2]
鉄粉を第二塩化鉄に変更した以外は比較例1と同様の操作を行った。得られた反応液の分析結果を表1に示す。
[Comparative Example 2]
The same operation as in Comparative Example 1 was performed except that the iron powder was changed to ferric chloride. Table 1 shows the analysis results of the obtained reaction solution.

Figure 0005572421
Figure 0005572421

本発明の製造方法によれば、医薬、電子材料及び有機合成中間体として有用な3,5−ジ−tert−ブチルハロゲノベンゼンを高収率・高純度かつ工業的に利用可能な方法で得ることが可能となる。   According to the production method of the present invention, 3,5-di-tert-butylhalogenobenzene useful as a pharmaceutical, an electronic material, and an organic synthetic intermediate can be obtained in a high yield, high purity, and industrially usable method. Is possible.

Claims (5)

下記式(1):
Figure 0005572421
で示される化合物とハロゲン化剤とをアンチモン化合物の存在下で反応させることを特徴とする下記一般式(2):
Figure 0005572421
(式中、Xは塩素または臭素原子を表す)
で示される化合物の製造方法。
Following formula (1):
Figure 0005572421
A compound represented by the following general formula (2), wherein a halogenating agent is reacted in the presence of an antimony compound:
Figure 0005572421
(Wherein X represents a chlorine or bromine atom)
The manufacturing method of the compound shown by these.
前記アンチモン化合物が三塩化アンチモン、五塩化アンチモン、三臭化アンチモン及び五臭化アンチモンからなる群より選ばれる一種以上の化合物であることを特徴とする、請求項1記載の製造方法。   The production method according to claim 1, wherein the antimony compound is one or more compounds selected from the group consisting of antimony trichloride, antimony pentachloride, antimony tribromide, and antimony pentabromide. 前記アンチモン化合物の使用量が、一般式(1)の化合物に対して1〜50モル%の範囲であることを特徴とする、請求項1又は2記載の製造方法。 The production method according to claim 1 or 2, wherein the amount of the antimony compound used is in the range of 1 to 50 mol% with respect to the compound of the general formula (1). 前記ハロゲン化剤が塩素または臭素であることを特徴とする、請求項1〜3のいずれか一項記載の製造方法。   The production method according to claim 1, wherein the halogenating agent is chlorine or bromine. 反応温度が−20〜20℃であることを特徴とする、請求項1〜4のいずれか一項記載の製造方法。   The production method according to any one of claims 1 to 4, wherein the reaction temperature is -20 to 20 ° C.
JP2010051359A 2010-03-09 2010-03-09 Method for producing 3,5-di-tert-butylhalogenobenzene Active JP5572421B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010051359A JP5572421B2 (en) 2010-03-09 2010-03-09 Method for producing 3,5-di-tert-butylhalogenobenzene
PCT/JP2011/052781 WO2011111464A1 (en) 2010-03-09 2011-02-09 METHOD FOR PRODUCING 3,5-DI-tert-BUTYL HALOGENOBENZENE
CN201180012984.XA CN102791662B (en) 2010-03-09 2011-02-09 Method for producing 3,5-di-tert-butyl halogenobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051359A JP5572421B2 (en) 2010-03-09 2010-03-09 Method for producing 3,5-di-tert-butylhalogenobenzene

Publications (2)

Publication Number Publication Date
JP2011184359A JP2011184359A (en) 2011-09-22
JP5572421B2 true JP5572421B2 (en) 2014-08-13

Family

ID=44563290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051359A Active JP5572421B2 (en) 2010-03-09 2010-03-09 Method for producing 3,5-di-tert-butylhalogenobenzene

Country Status (3)

Country Link
JP (1) JP5572421B2 (en)
CN (1) CN102791662B (en)
WO (1) WO2011111464A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064548B2 (en) * 1988-10-05 1994-01-19 出光興産株式会社 Method for producing 5-butyl-2,3,6-trichlorotoluene
DE4225763A1 (en) * 1992-08-04 1994-02-10 Bayer Ag Process for the production of halogen aromatics
JPH08337543A (en) * 1995-06-13 1996-12-24 Kureha Chem Ind Co Ltd Production of 2,6-dichloro-3,5-di(secondary or tertiary alkyl)toluene

Also Published As

Publication number Publication date
CN102791662B (en) 2014-12-03
CN102791662A (en) 2012-11-21
WO2011111464A1 (en) 2011-09-15
JP2011184359A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US9284239B2 (en) Process for the production of chlorinated alkanes
US7799959B2 (en) Process for producing 1,2,3,4-tetrachlorohexafluorobutane
WO2016078225A1 (en) Trans-1,1,1,4,4,4-hexafluoro-2-butene synthesis method
US20140323775A1 (en) Process for the production of chlorinated alkanes
JP7128427B2 (en) Method for producing sulfur tetrafluoride
JP6182989B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
WO2013035674A1 (en) Method for producing 2-halo-1-(1-halocyclopropyl)ethanone
JP5572421B2 (en) Method for producing 3,5-di-tert-butylhalogenobenzene
WO2007052516A1 (en) Process for production of biphenyl derivatives
JP5060098B2 (en) Method for producing biphenyl derivative
BRPI0404626B1 (en) process for the production of 4-amino-3,5-dichlorobenzotrifluoride with obtaining products in parallel with high commercial purity
JP6074279B2 (en) Chlorination of aromatic iodine compounds
JP2014208604A (en) Method for manufacturing an aromatic acyl compound
JPWO2019189716A1 (en) Method for producing fluorine-containing sulfide compound
JP3857369B2 (en) Method for producing chlorinated hydrocarbons
EP3359513A1 (en) Process for the preparation of organic halides
JP5647783B2 (en) Solvent for radical reaction consisting of fluorine-containing compounds
JP5088254B2 (en) Method for producing fluoroalkyl halide
JP4400385B2 (en) Method for producing chlorinated aromatic compound
JP2011201831A (en) Method for producing [2,3,6,7,10,11-hex(substituted)oxy]-triphenylene compound
JP4053685B2 (en) Method for producing tertiary carbon chlorinated hydrocarbon
JP4447254B2 (en) Ortho-xylene nuclear chlorination process
JP2000159699A (en) Production of 3-(4-chlorophenyl)-1-bromopropane
JP6349329B2 (en) Process for preparing 5-fluoro-1-methyl-3-difluoromethyl-1H-pyrazole-4-carbaldehyde
JP2022090710A (en) Production method of chloromethyl benzoate derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250