JP5088254B2 - Method for producing fluoroalkyl halide - Google Patents
Method for producing fluoroalkyl halide Download PDFInfo
- Publication number
- JP5088254B2 JP5088254B2 JP2008179377A JP2008179377A JP5088254B2 JP 5088254 B2 JP5088254 B2 JP 5088254B2 JP 2008179377 A JP2008179377 A JP 2008179377A JP 2008179377 A JP2008179377 A JP 2008179377A JP 5088254 B2 JP5088254 B2 JP 5088254B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- reaction
- formula
- raw material
- fluoroalkyl halide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 fluoroalkyl halide Chemical class 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 55
- 239000002904 solvent Substances 0.000 claims description 19
- 229910052740 iodine Inorganic materials 0.000 claims description 17
- 229910052731 fluorine Inorganic materials 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 150000002367 halogens Chemical class 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 150000002978 peroxides Chemical class 0.000 claims description 7
- 229910052794 bromium Inorganic materials 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 description 81
- 239000002994 raw material Substances 0.000 description 29
- 238000004821 distillation Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 3
- JGZVUTYDEVUNMK-UHFFFAOYSA-N 5-carboxy-2',7'-dichlorofluorescein Chemical compound C12=CC(Cl)=C(O)C=C2OC2=CC(O)=C(Cl)C=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 JGZVUTYDEVUNMK-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- UXPOJVLZTPGWFX-UHFFFAOYSA-N pentafluoroethyl iodide Chemical compound FC(F)(F)C(F)(F)I UXPOJVLZTPGWFX-UHFFFAOYSA-N 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 238000007348 radical reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- NZXVPCQHQVWOFD-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-1,2-diiodoethane Chemical compound FC(F)(I)C(F)(F)I NZXVPCQHQVWOFD-UHFFFAOYSA-N 0.000 description 1
- CEBDXRXVGUQZJK-UHFFFAOYSA-N 2-methyl-1-benzofuran-7-carboxylic acid Chemical compound C1=CC(C(O)=O)=C2OC(C)=CC2=C1 CEBDXRXVGUQZJK-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000998 batch distillation Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- FICFQLDYKDCJHQ-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[CH]Cl FICFQLDYKDCJHQ-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、各種有機材料の原料物質として有用なフルオロアルキルハライドの製造方法に関する。 The present invention relates to a method for producing a fluoroalkyl halide useful as a raw material for various organic materials.
従来、フルオロアルキルハライドの製造方法、例えばペンタフルオロエチルヨウ化物を製造する方法としては、テトラフルオロエチレン、ヨウ素、および五フッ化ヨウ素を触媒の存在下で反応させて製造する方法が知られている(特許文献1、特許文献2参照。)。 Conventionally, as a method for producing a fluoroalkyl halide, for example, a method for producing pentafluoroethyl iodide, a method in which tetrafluoroethylene, iodine, and iodine pentafluoride are reacted in the presence of a catalyst is known. (See Patent Document 1 and Patent Document 2.)
しかし、この製造方法においては、テトラフルオロエチレンとヨウ素が反応して1,2−ジヨードテトラフルオロエタンが副生成物として発生することや、高価な金属触媒や爆発性の高いガス状原料、さらには腐食性の高い原料を使用しなければならないことから、安全性や原料回収、精製工程等を考慮して、製造工程や装置が複雑化するという問題があった。 However, in this production method, tetrafluoroethylene and iodine react to generate 1,2-diiodotetrafluoroethane as a by-product, an expensive metal catalyst, a highly explosive gaseous raw material, Since a highly corrosive raw material has to be used, there has been a problem that the manufacturing process and equipment become complicated in consideration of safety, raw material recovery, purification process and the like.
また、撥水撥油剤(通常炭素数は4以上)、フッ素系界面活性剤等の原料として用いられる炭素数のより大きなフルオロアルキルハライドを製造する方法として、前記ペンタフルオロエチルヨウ化物のように炭素数の少ないフルオロアルキルハライドとテトラフルオロエチレンを反応させる製造方法が一般的に行われている(特許文献3参照。)。この反応においてもテトラフルオロエチレンのような取扱いに注意を要する原料等を使用しなければならず、上記同様の問題があった。
本発明は、従来の製造方法に代わって、簡便な方法で高収率にフルオロアルキルハライドを製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a fluoroalkyl halide in a high yield by a simple method instead of the conventional production method.
本発明は、前記課題を解決するためになされたものであり、下式(1)で示されるフルオロジアシルペルオキシドと下式(2)で示されるハロゲン分子とを反応させて下式(3)で示されるフルオロアルキルハライドを得ることを特徴とするフルオロアルキルハライドの製造方法である。 The present invention has been made in order to solve the above-mentioned problems. A fluorodiacyl peroxide represented by the following formula (1) and a halogen molecule represented by the following formula (2) are reacted to form the following formula (3): A process for producing a fluoroalkyl halide, characterized in that the fluoroalkyl halide shown is obtained.
{F(CF2)mCOO}2 …(1)
X1X2 …(2)
F(CF2)mX1、およびF(CF2)mX2 …(3)
(ただし、各式中、mは1〜14の整数である。また、X1およびX2は、独立してF、Cl、BrまたはIであり、X1とX2は同一でも異なっていてもよい。)
{F (CF 2 ) m COO} 2 (1)
X 1 X 2 (2)
F (CF 2 ) m X 1 and F (CF 2 ) m X 2 (3)
(However, in each formula, m is an integer of 1 to 14. X 1 and X 2 are independently F, Cl, Br or I, and X 1 and X 2 are the same or different. May be good.)
本発明によれば、取扱いに注意を要するテトラフルオロエチレンや高価な金属触媒を使用することなく、所望の鎖長のフルオロアルキルハライドを収率良く製造することができる。また副生成物の発生も少なく簡単な精製で純度の高いフルオロアルキルハライドを得ることができる。また様々なハロゲン分子との組み合わせにより多様なフルオロアルキルハライドを製造することができる。 According to the present invention, a fluoroalkyl halide having a desired chain length can be produced with good yield without using tetrafluoroethylene or an expensive metal catalyst that requires attention in handling. In addition, a high-purity fluoroalkyl halide can be obtained by simple purification with little generation of by-products. Various fluoroalkyl halides can be produced by combining with various halogen molecules.
以下に本発明の実施の形態を説明する。
なお、本明細書においては、前記式(1)で表される化合物を化合物(1)と記す。同様に前記式(2)、式(3)で表される化合物をそれぞれ化合物(2)、化合物(3)と記す。
Embodiments of the present invention will be described below.
In the present specification, the compound represented by the formula (1) is referred to as a compound (1). Similarly, the compounds represented by formula (2) and formula (3) are referred to as compound (2) and compound (3), respectively.
本発明の製造方法は、化合物(1)と化合物(2)を反応させて、目的物質である化合物(3)のフルオロアルキルハライドを製造するものである。 In the production method of the present invention, the compound (1) and the compound (2) are reacted to produce a fluoroalkyl halide of the compound (3) which is the target substance.
<化合物(1)>
本発明の製造方法に用いられる化合物(1)は、式(1)で表されるフルオロジアシルペルオキシドであり、後述の化合物(2)(ハロゲン分子)と反応してフルオロアルキルハライドを生成する原料成分の一つである。
{F(CF2)mCOO}2 …(1)
(式中mは、1〜14の整数である。)
<Compound (1)>
The compound (1) used in the production method of the present invention is a fluorodiacyl peroxide represented by the formula (1), and reacts with the compound (2) (halogen molecule) described later to produce a fluoroalkyl halide. one of.
{F (CF 2 ) m COO} 2 (1)
(In the formula, m is an integer of 1 to 14.)
ここで、前記原料成分として用いられる化合物(1)のmの数値により、得られるフルオロアルキルハライドの炭素数mが決定する。なお、mの数値の上限である14は、化合物(1)が単一化合物として容易に単離することのできるmの上限の数値である。また、化合物(1)としては、得られるフルオロアルキルハライドの産業利用上また環境問題の観点から、mが1〜7の整数であるものが好ましい。化合物(1)は、目的物質の要求に応じて、1種または2種以上の混合物として、本発明の製造方法に用いることができる。 Here, the m number of the compound (1) used as the raw material component determines the carbon number m of the fluoroalkyl halide obtained. In addition, 14 which is the upper limit of the numerical value of m is a numerical value of the upper limit of m which a compound (1) can isolate easily as a single compound. Moreover, as a compound (1), the thing whose m is an integer of 1-7 is preferable from a viewpoint of industrial utilization and an environmental problem of the fluoroalkyl halide obtained. Compound (1) can be used in the production method of the present invention as one kind or a mixture of two or more kinds according to the demand of the target substance.
化合物(1)は、例えば、以下の反応式(a)、反応式(b)等の反応を利用して製造することができる。反応式(a)、(b)中、mは1〜14の整数である。
反応式(a):2F(CF2)mCOCl + Na2CO3 + H2O2 → {F(CF2)mCOO}2 + 2NaCl +H2CO3
反応式(b):2F(CF2)mCOCl + H2O2 + 2KOH → {F(CF2)mCOO}2 + 2H2O + 2KCl
Compound (1) can be produced, for example, using the following reaction formula (a), reaction formula (b) and the like. In reaction formulas (a) and (b), m is an integer of 1 to 14.
Scheme (a): 2F (CF 2 ) m COCl + Na 2 CO 3 + H 2 O 2 → {F (CF 2) m COO} 2 + 2NaCl + H 2 CO 3
Reaction formula (b): 2F (CF 2 ) m COCl + H 2 O 2 + 2KOH → {F (CF 2 ) m COO} 2 + 2H 2 O + 2KCl
反応式(a)、反応式(b)とも公知のものであり、該反応式に従い通常の製造方法により本発明に用いる化合物(1)を製造することができる。 Both the reaction formula (a) and the reaction formula (b) are known, and the compound (1) used in the present invention can be produced by an ordinary production method according to the reaction formula.
例えば、反応式(b)により、化合物(1)を得るには、適当な濃度の水酸化カリウム水溶液に有機溶媒としてハロゲン化炭化水素類、例えば、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン等を添加し、これにH2O2水溶液、F(CF2)mCOClを順に加え、適当に温度調整をしながら攪拌して水相および有機相を有する反応液を得、有機相中に含まれる化合物(1):{F(CF2)mCOO}2(フルオロジアシルペルオキシド)を洗浄、脱水後、分離精製することで製造される。なお、この反応に用いた有機溶媒が以下に説明する本発明の製造方法において化合物(1)と化合物(2)の反応工程に阻害を与えない溶媒であれば、化合物(1)を溶液中から分離精製せずに上記用いた有機溶媒の溶液として、本発明の製造方法に用いることも可能である。 For example, in order to obtain compound (1) according to reaction formula (b), halogenated hydrocarbons such as hydrochlorofluorocarbon, hydrofluorocarbon, etc. are added as an organic solvent to an aqueous potassium hydroxide solution having an appropriate concentration. H 2 O 2 aqueous solution and F (CF 2 ) m COCl are sequentially added to the mixture, and stirred while appropriately adjusting the temperature to obtain a reaction solution having an aqueous phase and an organic phase. Compound (1) contained in the organic phase : {F (CF 2 ) m COO} 2 (fluorodiacyl peroxide) is produced by washing, dehydration, separation and purification. In addition, if the organic solvent used for this reaction is a solvent which does not inhibit the reaction process of a compound (1) and a compound (2) in the manufacturing method of this invention demonstrated below, a compound (1) will be from solution. It can also be used in the production method of the present invention as a solution of the organic solvent used above without separation and purification.
<化合物(2)>
本発明の製造方法において、上記化合物(1)とともに原料成分として用いられる化合物(2)は、式(2)で表されるハロゲン分子である。
X1X2 …(2)
(式中、X1およびX2は、独立してF、Cl、BrまたはIであり、X1とX2は同一でも異なっていてもよい。)
<Compound (2)>
In the production method of the present invention, the compound (2) used as a raw material component together with the compound (1) is a halogen molecule represented by the formula (2).
X 1 X 2 (2)
(In the formula, X 1 and X 2 are independently F, Cl, Br or I, and X 1 and X 2 may be the same or different.)
X1およびX2が同一の場合、得られるフルオロアルキルハライドは1種であるが、異なる場合、2種の混合物として製造される。多くの場合、フルオロアルキルハライドは各種有機材料を誘導する原料物質として使用されるが、その用途・目的により必要に応じてX1およびX2を同一としたり、異なる原子としたりすることができる。また、化合物(2)は、目的生成物の要求に応じて、1種または2種以上の混合物として、本発明の製造方法に用いることができる。 When X 1 and X 2 are the same, the resulting fluoroalkyl halide is one, but when different, it is produced as a mixture of the two. In many cases, the fluoroalkyl halide is used as a starting material for inducing various organic materials, but X 1 and X 2 can be made the same or different depending on the use and purpose. Moreover, a compound (2) can be used for the manufacturing method of this invention as a 1 type, or 2 or more types of mixture according to the request | requirement of the target product.
本発明の製造方法で得られるフルオロアルキルハライドの中でも、フルオロアルキルアイオダイドはさらに有用な化合物に容易に誘導することができることから、化合物(2)(ハロゲン分子)の具体例として、式中のX1およびX2がともにIであるヨウ素分子(I2)が好ましく用いられる。また、フルオロアルキルブロマイドは医農薬中間体原料として利用されることから式中のX1およびX2がともにBrである臭素分子(Br2)も好ましく用いられる。 Among the fluoroalkyl halides obtained by the production method of the present invention, fluoroalkyl iodide can be easily derived into a more useful compound. Therefore, as a specific example of compound (2) (halogen molecule), X in the formula An iodine molecule (I 2 ) in which 1 and X 2 are both I is preferably used. Further, since fluoroalkyl bromide is used as a raw material for pharmaceutical and agrochemical intermediates, a bromine molecule (Br 2 ) in which X 1 and X 2 in the formula are both Br is also preferably used.
<化合物(3)>
上述した化合物(1)および化合物(2)を反応させることで以下のラジカル反応機構により式(3)で表されるフルオロアルキルハライド、化合物(3)が得られる。
反応の第1段階:{F(CF2)mCOO}2 (化合物(1)) (加熱)→ 2F(CF2)m・ + 2CO2
反応の第2段階:2F(CF2)m・ + X1X2 (化合物(2))→ F(CF2)mX1 + F(CF2)mX2(最終生成物:化合物(3))
(式中、mは1〜14の整数である。また、X1およびX2は、独立してF、Cl、BrまたはIであり、X1とX2は同一でも異なっていてもよい。)
<Compound (3)>
By reacting the compound (1) and the compound (2) described above, the fluoroalkyl halide represented by the formula (3) and the compound (3) are obtained by the following radical reaction mechanism.
First stage of reaction: {F (CF 2 ) m COO} 2 (compound (1)) (heating) → 2F (CF 2 ) m · + 2CO 2
Second stage of reaction: 2F (CF 2 ) m · + X 1 X 2 (Compound (2)) → F (CF 2 ) m X 1 + F (CF 2 ) m X 2 (final product: compound (3))
(In the formula, m is an integer of 1 to 14. X 1 and X 2 are independently F, Cl, Br or I, and X 1 and X 2 may be the same or different. )
前記反応式の通り、化合物(3)は、F(CF2)mX1とF(CF2)mX2の混合物として得られる。実際には、1種の化合物(1)と、X1およびX2が同一の化合物(2)を用いれば、F(CF2)mI、F(CF2)mCl、F(CF2)mBr、F(CF2)mF(各化合物において、mは1〜14の整数)が化合物(3)として単体で得られ、2種以上の化合物(1)、および/または、X1とX2が異なる化合物(2)等を原料として用いれば、化合物(3)は、前記単体として得られるとして例示した化合物の混合物として得られる。 As in the above reaction formula, compound (3) is obtained as a mixture of F (CF 2 ) m X 1 and F (CF 2 ) m X 2 . Actually, if one compound (1) and compound (2) in which X 1 and X 2 are the same are used, F (CF 2 ) m I, F (CF 2 ) m Cl, F (CF 2 ) m Br, (in each compound, m is 1 to 14 integer) F (CF 2) m F compound (3) obtained alone as the two or more compounds (1), and / or, X 1 and If a compound (2) or the like having a different X 2 is used as a raw material, the compound (3) can be obtained as a mixture of the compounds exemplified as being obtained as the simple substance.
化合物(3)は、多くの場合、各種有機材料を誘導する原料物質として使用され、用途・目的により所望の構造が適宜設計される。所望の構造の化合物(3)を得るためには、化合物(1)および化合物(2)を適宜選定し、原料成分として反応に用いればよい。 In many cases, the compound (3) is used as a starting material for inducing various organic materials, and a desired structure is appropriately designed depending on the application and purpose. In order to obtain the compound (3) having a desired structure, the compound (1) and the compound (2) may be appropriately selected and used as a raw material component in the reaction.
次に、化合物(1)および化合物(2)を反応させて化合物(3)を得る反応条件について説明する。 Next, reaction conditions for obtaining the compound (3) by reacting the compound (1) and the compound (2) will be described.
<反応条件>
本発明の製造方法において、反応に用いる化合物(1)および化合物(2)の割合は、特に制限されないが、化合物(1)に対する化合物(2)のモル比で、1以上であることが、反応収率と選択率向上の点から好ましい。
<Reaction conditions>
In the production method of the present invention, the ratio of the compound (1) and the compound (2) used in the reaction is not particularly limited, but the molar ratio of the compound (2) to the compound (1) is 1 or more. This is preferable in terms of yield and selectivity improvement.
本発明の製造方法において、化合物(1)と化合物(2)の反応は無溶媒下でも進行するが、原料成分である化合物(1)、化合物(2)の撹拌効率と反応効率の観点から、溶媒存在下で反応を行うことが好ましい。溶媒としては、原料成分である化合物(1)および化合物(2)を溶解できるものであれば、特に制限なく用いることができる。 In the production method of the present invention, the reaction between the compound (1) and the compound (2) proceeds even in the absence of a solvent, but from the viewpoint of stirring efficiency and reaction efficiency of the compound (1) and the compound (2) as raw material components, It is preferable to carry out the reaction in the presence of a solvent. Any solvent can be used without particular limitation as long as it can dissolve compound (1) and compound (2), which are raw material components.
なお、上記のように化合物(1)と化合物(2)の反応はラジカル反応であるため、例えば炭化水素系溶媒のように溶媒によっては、連鎖移動しにくい溶媒を用いるのが好ましい。このような観点から反応溶媒を選択すれば、連鎖移動がしにくい点、原料成分の溶解性が良好である点で本発明に用いる溶媒として、フッ素系溶媒を好ましく挙げることができる。また、必要に応じて、目的生成物(化合物(3))を溶媒として使用することも可能である。用いる溶媒量は各原料成分にもよるが、これら原料成分が溶解する量であれば特に制限されないが、通常は、原料100質量部に対して1000〜200000質量部の溶媒が用いられる。 In addition, since the reaction of the compound (1) and the compound (2) is a radical reaction as described above, it is preferable to use a solvent that is difficult to chain transfer depending on the solvent, for example, a hydrocarbon solvent. If the reaction solvent is selected from such a viewpoint, a fluorine-based solvent can be preferably mentioned as the solvent used in the present invention in that chain transfer is difficult and the solubility of the raw material components is good. Moreover, it is also possible to use a target product (compound (3)) as a solvent as needed. The amount of the solvent to be used depends on each raw material component, but is not particularly limited as long as these raw material components are dissolved. Usually, 1000 to 200,000 parts by mass of the solvent is used with respect to 100 parts by mass of the raw material.
上記本発明の製造方法に好ましく用いられるフッ素系溶媒としては、パーフルオロアルカン、ハイドロフルオロカーボン、パーフルオロポリエーテル、ハイドロクロロフルオロカーボン、パーフルオロアルキルアイオダイド等が挙げられる。本発明においては、これらから選ばれる1種を単独で、あるいは2種以上の混合物を溶媒として用いることができる。 Examples of the fluorine-based solvent preferably used in the production method of the present invention include perfluoroalkane, hydrofluorocarbon, perfluoropolyether, hydrochlorofluorocarbon, perfluoroalkyl iodide, and the like. In the present invention, one selected from these can be used alone, or a mixture of two or more can be used as a solvent.
パーフルオロアルカンとしては、例えば、C5F12、C6F14、C7F16、C8F18、C9F20、C10F22等が挙げられる。
ハイドロクロロフルオロカーボンとしては、例えば、CF3CF2CCl2H(225ca:旭硝子(株)製品名)、ClCF2CF2CClFH(225cb:旭硝子(株)製品名)等が挙げられる。
Examples of the perfluoroalkane include C 5 F 12 , C 6 F 14 , C 7 F 16 , C 8 F 18 , C 9 F 20 , C 10 F 22 and the like.
Examples of the hydrochlorofluorocarbon include CF 3 CF 2 CCl 2 H (225ca: product name of Asahi Glass Co., Ltd.), ClCF 2 CF 2 CClFH (225cb: product name of Asahi Glass Co., Ltd.), and the like.
パーフルオロアルキルアイオダイドとしては、例えば、CF3I、CF3CF2I、CF3CF2CF2I、CF3CF2CF2CF2I、CF3CF2CF2CF2CF2I、CF3CF2CF2CF2CF2CF2I、CF3CF2CF2CF2CF2CF2CF2I、CF3CF2CF2CF2CF2CF2CF2CF2I、CF3CF2CF2CF2CF2CF2CF2CF2CF2I、CF3CF2CF2CF2CF2CF2CF2CF2CF2CF2I等が挙げられる。 Examples of the perfluoroalkyl iodide include CF 3 I, CF 3 CF 2 I, CF 3 CF 2 CF 2 I, CF 3 CF 2 CF 2 CF 2 I, CF 3 CF 2 CF 2 CF 2 CF 2 I, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 I, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 I, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 I, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 I, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 I , and the like.
ハイドロフルオロカーボンとしては、例えば、CF3H、CF3CF2H、CF3CF2CF2H、CF3CF2CF2CF2H、CF3CF2CF2CF2CF2H、CF3CF2CF2CF2CF2CF2H、CF3CF2CF2CF2CF2CF2CF2H、CF3CF2CF2CF2CF2CF2CF2CF2H、CF3CF2CF2CF2CF2CF2CF2CF2CF2H、CF3CF2CF2CF2CF2CF2CF2CF2CF2CF2H等が挙げられる。
パーフルオロポリエーテルとしては、例えば、CF3(CF2)3OCF2CF3、CF3(CF2)3O(CF2)3CF3等を好ましく挙げることができる。
Examples of the hydrofluorocarbon include CF 3 H, CF 3 CF 2 H, CF 3 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 H, and CF 3 CF. 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 H , and the like.
Preferred examples of the perfluoropolyether include CF 3 (CF 2 ) 3 OCF 2 CF 3 , CF 3 (CF 2 ) 3 O (CF 2 ) 3 CF 3, and the like.
これらのうちでも、特にハイドロクロロフルオロカーボン、ハイドロフルオロカーボンが、連鎖移動反応が起こりにくい点で好ましい。 Among these, hydrochlorofluorocarbons and hydrofluorocarbons are particularly preferable in that chain transfer reaction hardly occurs.
次に本発明の製造方法の反応工程について説明する。
まず、反応器に所定の量の原料成分(化合物(1)および化合物(2))と溶媒を導入する。原料成分の性状によって導入しやすい順番であれば特に順番は限定されない。通常は固体、液体、気体の順番で導入する方が操作上は導入しやすい。反応器の材質としては、樹脂、ガラス、ステンレス鋼、ニッケル合金などの金属、またこれらの複合材料を挙げることができる。
Next, the reaction process of the production method of the present invention will be described.
First, a predetermined amount of raw material components (compound (1) and compound (2)) and a solvent are introduced into a reactor. The order is not particularly limited as long as it is easy to introduce depending on the properties of the raw material components. Usually, it is easier to introduce in the order of solid, liquid, and gas. Examples of the material for the reactor include metals such as resin, glass, stainless steel, nickel alloy, and composite materials thereof.
原料成分投入後、必要に応じて窒素等の不活性ガスで反応器内の空気を置換した後、反応器を加熱する。加熱温度は、原料成分である化合物(1)の種類により調整される。具体的には、反応に用いる化合物(1)の10時間半減温度より概ね10〜70℃高い温度とすることが好ましい。なお、10時間半減温度とは、有機過酸化物の分解温度を表す指標で10時間でもとの有機過酸化物が分解して活性酸素量が1/2になる温度をいう。反応温度が化合物(1)の10時間半減温度より10℃を超えて低い温度であると必要以上に反応の完結に時間を要する場合があり、70℃を超えて高い温度であるとラジカル同士のカップリング反応が多く起こることがある。 After supplying the raw material components, the air in the reactor is replaced with an inert gas such as nitrogen as necessary, and then the reactor is heated. The heating temperature is adjusted according to the type of compound (1) that is a raw material component. Specifically, the temperature is preferably about 10 to 70 ° C. higher than the 10-hour half-life temperature of the compound (1) used in the reaction. The 10-hour half-life temperature is an index representing the decomposition temperature of the organic peroxide, and refers to a temperature at which the amount of active oxygen is reduced to 1/2 by decomposing the organic peroxide in 10 hours. When the reaction temperature is lower than the 10 hour half-temperature of the compound (1) by more than 10 ° C, it may take more time to complete the reaction than necessary, and when the reaction temperature is higher than 70 ° C, Many coupling reactions may occur.
例えば、{F(CF2)mCOO}2のmが2である(C2F5COO)2の10時間半減温度は28℃であり、(C2F5COO)2を原料成分として用いた反応の場合、上記条件によれば約40〜100℃での反応条件とすることが好ましい。化合物(1)に属する化合物の10時間半減温度は、−30〜50℃の範囲にあり、したがって、上記条件によれば本発明の製造方法における反応温度は、概ね−20〜120℃の範囲で実施されることとなる。加熱または冷却方法は反応器の大きさ装備によって変わるが、通常、ジャケット付き反応器であれば温度調節された水もしくはオイル、冷媒を内温が所定の温度になるまで通液する。 For example, {F (CF 2 ) m COO} 2 where m is 2 (C 2 F 5 COO) 2 has a 10-hour half-life temperature of 28 ° C., and uses (C 2 F 5 COO) 2 as a raw material component In the case of the reaction, the reaction conditions at about 40 to 100 ° C. are preferred according to the above conditions. The 10-hour half-life temperature of the compound belonging to compound (1) is in the range of −30 to 50 ° C. Therefore, according to the above conditions, the reaction temperature in the production method of the present invention is generally in the range of −20 to 120 ° C. Will be implemented. The heating or cooling method varies depending on the size of the reactor. Usually, in the case of a jacketed reactor, water, oil, or refrigerant whose temperature is adjusted is passed through until the internal temperature reaches a predetermined temperature.
反応器は撹拌翼を装備し、原料成分の性状に合わせて種類や構造を変える。例えば、ガス状原料の場合はガス吸収が良好な撹拌翼が用いられ、固体原料の場合は固液分散性に優れた撹拌翼が用いられる。回転数は特に限定されない。また、本発明の製造方法においては反応圧力は特に限定しない。具体的には、特に反応圧調整を実施せずに反応を進行させる。 The reactor is equipped with a stirring blade, and the type and structure are changed according to the properties of the ingredients. For example, in the case of a gaseous raw material, a stirring blade with good gas absorption is used, and in the case of a solid raw material, a stirring blade excellent in solid-liquid dispersibility is used. The number of rotations is not particularly limited. In the production method of the present invention, the reaction pressure is not particularly limited. Specifically, the reaction is allowed to proceed without particularly adjusting the reaction pressure.
反応器内面は金属製の場合、化合物(1)が金属表面で分解されるのを防ぐため、研磨されている方がよいが、研磨度合いは特に限定されない。化合物(1)の分解を防止するために樹脂ライニングまたはガラスライニングされた反応器であっても良い。 When the inner surface of the reactor is made of metal, it is better to be polished in order to prevent the compound (1) from being decomposed on the metal surface, but the degree of polishing is not particularly limited. The reactor may be a resin-lined or glass-lined reactor in order to prevent decomposition of the compound (1).
反応はバッチ反応、または連続反応のどちらで実施してもよいが、生産性の観点からは連続反応で行うことが好ましい。連続反応で実施する場合には、反応器に各原料成分が一定の比率、速度で導入され、所定の滞留時間の後、導入された原料成分と同量を反応粗液として連続的に抜き出す方法をとればよい。滞留時間は、化合物(1)が十分に反応する上記好ましい温度範囲においては特に限定されるものではない。 The reaction may be carried out by either a batch reaction or a continuous reaction, but it is preferably carried out by a continuous reaction from the viewpoint of productivity. In the case of carrying out by continuous reaction, each raw material component is introduced into the reactor at a constant ratio and speed, and after a predetermined residence time, the same amount as the introduced raw material component is continuously extracted as a reaction crude liquid. You can take The residence time is not particularly limited within the above preferable temperature range where the compound (1) sufficiently reacts.
バッチ反応で反応を実施する場合、反応時間は、上記好ましい反応温度において化合物(1)が実質上ほとんど分解することが可能な時間であれば特に限定されない。例えば、化合物(1)として(C2F5COO)2を用いた場合、70℃で反応すると1時間で十分に分解して反応は完結する。 When the reaction is carried out in a batch reaction, the reaction time is not particularly limited as long as the compound (1) can be substantially decomposed at the preferable reaction temperature. For example, when (C 2 F 5 COO) 2 is used as the compound (1), when it is reacted at 70 ° C., it is sufficiently decomposed in 1 hour to complete the reaction.
バッチ反応の場合は反応終了後の反応粗液を、連続反応の場合は所定の条件で連続的に抜き出された反応粗液を、必要に応じて冷却し、通常の方法、例えば蒸留等によって目的生成物の精製を行う。バッチ蒸留の場合は通常、蒸留塔の釜に反応粗液を移液し、連続蒸留の場合は釜もしくは塔に導入して蒸留を行う。 In the case of a batch reaction, the reaction crude liquid after completion of the reaction is cooled, and in the case of a continuous reaction, the reaction crude liquid continuously extracted under predetermined conditions is cooled as necessary, and is subjected to a usual method such as distillation. The desired product is purified. In the case of batch distillation, the reaction crude liquid is usually transferred to the kettle of the distillation column, and in the case of continuous distillation, the distillation is carried out by introducing it into the kettle or column.
なお、目的生成物の物性により加圧蒸留、常圧蒸留、減圧蒸留等から蒸留方法を適宜選択する。例えば、目的生成物がC2F5Iの場合は、沸点が約12℃と常温より低いため加圧蒸留を行う。蒸留は通常、充填物を充填した蒸留塔を用いて行う。蒸留装置は、通常冷却コンデンサーを装備しており、これを介して目的生成物が回収される。充填物は目的生成物と原料成分その他が分離できればよく特に限定されない。また、分離を良くするために蒸留運転は一定の還流比をもうけて実施される。このようにして、本発明の製造方法により、化合物(1)と化合物(2)を反応させることで、反応生成物として化合物(3)であるフルオロアルキルハライドが製造される。 The distillation method is appropriately selected from pressure distillation, atmospheric distillation, vacuum distillation and the like depending on the physical properties of the target product. For example, when the target product is C 2 F 5 I, since the boiling point is about 12 ° C., which is lower than normal temperature, distillation under pressure is performed. Distillation is usually carried out using a distillation column packed with packing. The distillation apparatus is usually equipped with a cooling condenser, through which the target product is recovered. The packing is not particularly limited as long as the target product and the raw material components can be separated. In order to improve the separation, the distillation operation is carried out with a certain reflux ratio. Thus, the fluoroalkyl halide which is a compound (3) is manufactured as a reaction product by making a compound (1) and a compound (2) react by the manufacturing method of this invention.
上述の通り本発明によれば、従来のフルオロアルキルハライド製造方法において原料物質として用いていた爆発性の高いテトラフルオロエチレンや高価な金属触媒を使用することなく、任意の鎖長のフルオロアルキルハライドを収率良く製造することができる。また副生成物の発生も少なく簡単な精製で純度の高いフルオロアルキルハライドを得ることができる。また様々なハロゲン分子との組み合わせにより多様なフルオロアルキルハライドを製造することができる。 As described above, according to the present invention, a fluoroalkyl halide having an arbitrary chain length can be obtained without using a highly explosive tetrafluoroethylene or an expensive metal catalyst used as a raw material in a conventional fluoroalkyl halide production method. It can be produced with good yield. In addition, a high-purity fluoroalkyl halide can be obtained by simple purification with little generation of by-products. Various fluoroalkyl halides can be produced by combining with various halogen molecules.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.
<調整例> 化合物(1):{F(CF2)2COO}2の調整
温度計と滴下ロートを備えた三口フラスコ中で、蒸留水の120gに水酸化カリウムの3.5gを溶解させ、CF2ClCF2CFClH溶媒の61gを添加し、氷浴により温度を約0℃に調節した。30質量%のH2O2水溶液の9.2gを導入し、ついでC2F5COClを14.3g導入した。
<Adjustment Example> Adjustment of Compound (1): {F (CF 2 ) 2 COO} 2 In a three-necked flask equipped with a thermometer and a dropping funnel, 3.5 g of potassium hydroxide was dissolved in 120 g of distilled water, 61 g of CF 2 ClCF 2 CFClH solvent was added and the temperature was adjusted to about 0 ° C. with an ice bath. 9.2 g of a 30% by mass H 2 O 2 aqueous solution was introduced, and then 14.3 g of C 2 F 5 COCl was introduced.
フラスコ内の温度を約2℃に調節し、30分間攪拌を続け、水相および有機相を有する液を得た。目的生成物であるフルオロジアシルペルオキシド:{F(CF2)2COO}2は有機相中に含まれているため、次いで、有機相を分液ロートにより分離し炭酸水素ナトリウム水溶液および蒸留水により洗浄し、硫酸マグネシウムで脱水して、フルオロジアシルペルオキシド:{F(CF2)2COO}2の溶液を得た。滴定により収率を求めたところ70%であった。 The temperature in the flask was adjusted to about 2 ° C. and stirring was continued for 30 minutes to obtain a liquid having an aqueous phase and an organic phase. Since the target product fluorodiacyl peroxide: {F (CF 2 ) 2 COO} 2 is contained in the organic phase, the organic phase is then separated by a separatory funnel and washed with an aqueous sodium bicarbonate solution and distilled water. And dehydrated with magnesium sulfate to obtain a solution of fluorodiacyl peroxide: {F (CF 2 ) 2 COO} 2 . The yield determined by titration was 70%.
<実施例1> CF3CF2Iの合成例1
撹拌機付きオートクレーブ(ステンレス製、容積:1L)に溶媒としてCF2ClCF2CFClHを600g、{F(CF2)2COO}2を38.5g導入し、続いてヨウ素(I2)を30g加えた。反応器内を窒素置換し50℃に加熱した。2時間後、反応粗液をガスクロマトグラフィーにて定量分析すると、CF3CF2Iが生成していた(収率80%)。
Example 1 Synthesis Example 1 of CF 3 CF 2 I
600 g of CF 2 ClCF 2 CFClH and 38.5 g of {F (CF 2 ) 2 COO} 2 as solvents are introduced into an autoclave with a stirrer (made of stainless steel, volume: 1 L), and then 30 g of iodine (I 2 ) is added. It was. The reactor was purged with nitrogen and heated to 50 ° C. Two hours later, the reaction crude liquid was quantitatively analyzed by gas chromatography, whereby CF 3 CF 2 I was produced (yield 80%).
<実施例2> CF3CF2Iの合成例2
撹拌機付きオートクレーブ(ステンレス製、容積:1L)に溶媒としてCF3CF2CF2CF2Iを500g、{F(CF2)2COO}2を38.5g導入し、続いてヨウ素(I2)を30g加えた。反応器内を窒素置換し50℃に加熱した。2時間後、反応粗液をガスクロマトグラフィーにて定量分析すると、CF3CF2Iが生成していた(収率91%)。
Example 2 Synthesis Example 2 of CF 3 CF 2 I
Into an autoclave with a stirrer (made of stainless steel, volume: 1 L), 500 g of CF 3 CF 2 CF 2 CF 2 I and 38.5 g of {F (CF 2 ) 2 COO} 2 were introduced as solvents, followed by iodine (I 2 30 g) was added. The reactor was purged with nitrogen and heated to 50 ° C. Two hours later, the reaction crude liquid was quantitatively analyzed by gas chromatography, whereby CF 3 CF 2 I was produced (yield 91%).
本発明の製造方法によれば、簡便な方法で高収率に任意の鎖長のフルオロアルキルハライドを製造することができる。また様々なハロゲン分子との組み合わせにより多様なフルオロアルキルハライドを製造することができる。このようにして得られたフルオロアルキルハライドは各種有機材料の原料物質として有用である。 According to the production method of the present invention, a fluoroalkyl halide having an arbitrary chain length can be produced in a high yield by a simple method. Various fluoroalkyl halides can be produced by combining with various halogen molecules. The fluoroalkyl halide thus obtained is useful as a raw material for various organic materials.
Claims (4)
{F(CF2)mCOO}2 …(1)
X1X2 …(2)
F(CF2)mX1、およびF(CF2)mX2 …(3)
(ただし、各式中、mは1〜14の整数である。また、X1およびX2は、独立してF、Cl、BrまたはIであり、X1とX2は同一でも異なっていてもよい。) A fluoroalkyl halide represented by the following formula (3) is obtained by reacting a fluorodiacyl peroxide represented by the following formula (1) with a halogen molecule represented by the following formula (2): Method.
{F (CF 2 ) m COO} 2 (1)
X 1 X 2 (2)
F (CF 2 ) m X 1 and F (CF 2 ) m X 2 (3)
(However, in each formula, m is an integer of 1 to 14. X 1 and X 2 are independently F, Cl, Br or I, and X 1 and X 2 are the same or different. May be good.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008179377A JP5088254B2 (en) | 2008-07-09 | 2008-07-09 | Method for producing fluoroalkyl halide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008179377A JP5088254B2 (en) | 2008-07-09 | 2008-07-09 | Method for producing fluoroalkyl halide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010018533A JP2010018533A (en) | 2010-01-28 |
JP5088254B2 true JP5088254B2 (en) | 2012-12-05 |
Family
ID=41703802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008179377A Active JP5088254B2 (en) | 2008-07-09 | 2008-07-09 | Method for producing fluoroalkyl halide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5088254B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5088253B2 (en) * | 2008-07-09 | 2012-12-05 | 旭硝子株式会社 | Method for producing fluoroalkyl halide |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE793356A (en) * | 1971-12-24 | 1973-06-27 | Hoechst Ag | PROCESS FOR PREPARING PERFLUOROALKYL IODIDES |
JPH029826A (en) * | 1988-06-28 | 1990-01-12 | Daikin Ind Ltd | Preparation of polyfluoroiodide |
JPH07109234A (en) * | 1993-10-12 | 1995-04-25 | Idemitsu Petrochem Co Ltd | Production of perfluoroalkyl iodide |
JPH09309854A (en) * | 1996-05-22 | 1997-12-02 | Tokuyama Corp | Production of fluorine-containing vinyl ether |
JPH09309847A (en) * | 1996-05-22 | 1997-12-02 | Asahi Glass Co Ltd | Production of pentafluoroethyl iodide |
JP4802544B2 (en) * | 2005-04-20 | 2011-10-26 | 旭硝子株式会社 | Fluoroalkyl iodide and method for producing the same |
KR20100065142A (en) * | 2007-09-13 | 2010-06-15 | 아사히 가라스 가부시키가이샤 | Process for producing fluoroalkyl iodide |
-
2008
- 2008-07-09 JP JP2008179377A patent/JP5088254B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010018533A (en) | 2010-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7799959B2 (en) | Process for producing 1,2,3,4-tetrachlorohexafluorobutane | |
KR101045717B1 (en) | Method for producing hexafluoro-1,3-butadiene | |
JP5347431B2 (en) | Process for producing trifluoromethanesulfonyl fluoride | |
JP2017137267A (en) | Method for producing cyclic sulfate | |
TWI735700B (en) | Manufacturing method of sulfur tetrafluoride | |
JP2006342059A (en) | Manufacturing method of chlorofluorobutane | |
JP5412742B2 (en) | Process for producing 4-perfluoroisopropylanilines | |
US20060205983A1 (en) | Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether | |
JPWO2008120652A1 (en) | Method for producing chlorine-containing fluorine-containing compound | |
JP5088254B2 (en) | Method for producing fluoroalkyl halide | |
JP2001302571A (en) | Method for producing fluoroalcohol | |
JP5088253B2 (en) | Method for producing fluoroalkyl halide | |
KR101775192B1 (en) | Producing short chain perfluoroalkyl iodides | |
JP5610917B2 (en) | Method for producing chloropropane | |
JP2006225296A (en) | Method for producing trans-1,1,2,2,3,4-hexafluorocyclobutane | |
JP7184055B2 (en) | Method for producing 1,3-dioxolane compound and perfluoro(2,2-dimethyl-1,3-dioxole) | |
JP4292412B2 (en) | Method for producing fluorine-containing ether compound | |
JP5194500B2 (en) | Method for producing high purity fluorine-containing alkyl ether | |
JP2008174552A (en) | Method for producing 4-perfluoroisopropylanilines | |
JP2008297234A (en) | Method for producing bromotetrafluoroalkanol | |
WO2022085727A1 (en) | Method for producing composition containing purified fluorine-containing ether compound | |
JP2014108925A (en) | Method of manufacturing 3,3,3-trifluoro propionyl compound | |
JP2005068142A (en) | Method for producing fluorine-containing ether compound | |
JP2019156732A (en) | PROCESS FOR REFINING HCFC-224ca AND/OR CFO-1213ya, PROCESS FOR PRODUCING HCFC-224ca, AND PROCESS FOR PRODUCING CFO-1213ya | |
JP2003081894A (en) | Method for producing fluoroalcohol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120827 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5088254 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |