JP2006342059A - Manufacturing method of chlorofluorobutane - Google Patents

Manufacturing method of chlorofluorobutane Download PDF

Info

Publication number
JP2006342059A
JP2006342059A JP2003310186A JP2003310186A JP2006342059A JP 2006342059 A JP2006342059 A JP 2006342059A JP 2003310186 A JP2003310186 A JP 2003310186A JP 2003310186 A JP2003310186 A JP 2003310186A JP 2006342059 A JP2006342059 A JP 2006342059A
Authority
JP
Japan
Prior art keywords
compound
reaction
cfcl
compound represented
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003310186A
Other languages
Japanese (ja)
Inventor
Shoji Furuta
昇二 古田
Daisuke Shirakawa
大祐 白川
Kazuya Oharu
一也 大春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003310186A priority Critical patent/JP2006342059A/en
Priority to PCT/JP2004/012733 priority patent/WO2005023734A1/en
Priority to TW093126539A priority patent/TW200510270A/en
Publication of JP2006342059A publication Critical patent/JP2006342059A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new manufacturing method for manufacturing a fluorine-containing organic compound of high purity selectively and efficiently with a light environmental load. <P>SOLUTION: A compound represented by formula (1) below is fluorinated by reacting it with fluorine in a liquid phase to give a compound represented by formula (A) below. The compound represented by formula (A) is dechlorinated to give a compound represented by formula (B) below. The compound represented by formula (A) is used as a solvent in a liquid phase fluorination method or as a diluent of a raw material for fluorination. CClX<SP>1</SP>X<SP>2</SP>-CClX<SP>3</SP>-CClX<SP>4</SP>-CClX<SP>5</SP>X<SP>6</SP>(1). CF<SB>2</SB>Cl-CFCl-CFCl-CF<SB>2</SB>Cl (A). CF<SB>2</SB>=CF-CF=CF<SB>2</SB>(B). In formula (1), X<SP>1</SP>-X<SP>6</SP>are each independently a hydrogen atom or a fluorine atom and at least one of them is a hydrogen atom. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、式CFCl−CFCl−CFCl−CFClで表される化合物、および式CF=CF−CF=CFで表される化合物の製造方法に関する。また、式CFCl−CFCl−CFCl−CFClで表される化合物を用いるフッ素化された有機化合物の製造方法に関する。 The present invention is a compound represented by the formula CF 2 Cl-CFCl-CFCl- CF 2 Cl, and a method for producing a compound represented by the formula CF 2 = CF-CF = CF 2. The present invention also relates to a method for producing a fluorinated organic compound using a compound represented by the formula CF 2 Cl—CFCl—CFCl—CF 2 Cl.

式CFCl−CFCl−CFCl−CFClで表される化合物の製造法に関しては、これまでに以下の方法が提案されている。
(1)CFClCFClIを、CHCl溶媒中、無水酢酸存在下で亜鉛を用いてカップリングさせて製造する方法(非特許文献1参照)。
(2)CFClCFClIを水銀の存在下、光カップリング反応によって製造する方法(非特許文献2参照)。
(3)CHCl=CHCl−CHCl=CHClをClFまたはClFでフッ素化する製造方法(非特許文献3参照)。
As for the production method of the compound represented by the formula CF 2 Cl—CFCl—CFCl—CF 2 Cl, the following methods have been proposed so far.
(1) A process for producing CF 2 ClCFClI by coupling with zinc in a CH 2 Cl 2 solvent in the presence of acetic anhydride (see Non-Patent Document 1).
(2) A method for producing CF 2 ClCFClI by a photocoupling reaction in the presence of mercury (see Non-Patent Document 2).
(3) A manufacturing method in which CHCl = CHCl—CHCl = CHCl is fluorinated with ClF 3 or ClF (see Non-Patent Document 3).

「Journal of Fluorine Chemistry」、(スイス)、1987、35巻、421〜424頁“Journal of Fluorine Chemistry” (Switzerland), 1987, 35, 421-424. 「Journal of Chemical Society」、(英国)、1952、4423〜4431頁“Journal of Chemical Society” (UK), 1952, pages 4423-4431. 「Journal of Chemical Society、 Abstracts」、(英国)、1959、1884〜1887頁“Journal of Chemical Society, Abstracts” (UK), 1959, 1884-1887.

しかし、上記の方法には、つぎの欠点がある。
(1)の方法においては、目的のCFCl−CFCl−CFCl−CFCl以外に、CFCl−CF−CF−CFCl、およびCFCl−CFCl−CF−CFCl等の不純物が副生して生成物が複雑になる欠点がある。また、これらの不純物の多くは目的物と沸点が近いために分離が困難な欠点がある。(2)の方法においては、環境上好ましくない水銀を使用する欠点がある。(3)の方法では、目的のCFCl−CFCl−CFCl−CFCl以外に、CCl、CCl、およびCCl等の高次塩素化物が副生し、生成物が複雑になる欠点がある。
However, the above method has the following drawbacks.
In the method (1), in addition to the target CF 2 Cl—CFCl—CFCl—CF 2 Cl, CFCl 2 —CF 2 —CF 2 —CFCl 2 , CF 2 Cl—CFCl—CF 2 —CFCl 2, etc. There is a drawback in that impurities are by-produced and the product becomes complicated. In addition, many of these impurities have a drawback that they are difficult to separate because their boiling points are close to those of the target product. In the method (2), there is a drawback of using mercury which is environmentally undesirable. In the method (3), in addition to the target CF 2 Cl—CFCl—CFCl—CF 2 Cl, higher-order chlorinated products such as C 4 Cl 5 F 5 , C 4 Cl 6 F 4 , and C 4 Cl 7 F 3 As a by-product, the product becomes complicated.

本発明は、上記の問題点を解決するためになされたものであり、環境に対する負荷が小さく、選択的に、かつ収率よく、高純度の含フッ素有機化合物を得る新規な製造方法を提供する。すなわち、本発明は、以下の発明を提供する。
<1>下式(1)で表わされる化合物を液相中でフッ素と反応させることによってフッ素化することを特徴とする下式(A)で表される化合物の製造方法。
CClX−CClX−CClX−CClX・・・(1)
CFCl−CFCl−CFCl−CFCl・・・(A)
ただし、X〜Xは、それぞれ独立に水素原子またはフッ素原子を示し、少なくとも1つは水素原子である。
The present invention has been made to solve the above-mentioned problems, and provides a novel production method for obtaining a high-purity fluorine-containing organic compound that has a low environmental burden, is selective, and has a high yield. . That is, the present invention provides the following inventions.
<1> A process for producing a compound represented by the following formula (A), wherein the compound represented by the following formula (1) is fluorinated by reacting with fluorine in a liquid phase.
CClX 1 X 2 -CClX 3 -CClX 4 -CClX 5 X 6 (1)
CF 2 Cl—CFCl—CFCl—CF 2 Cl (A)
However, X < 1 > -X < 6 > shows a hydrogen atom or a fluorine atom each independently, and at least 1 is a hydrogen atom.

<2>式(1)で表される化合物が、下式(2)で表わされる化合物、下式(3)で表される化合物、および下式(4)で表される化合物から選ばれる1種以上の化合物と塩素とを反応させて得られた化合物である、<1>に記載の製造方法。
CClX−CX=CX−CClX・・・(2)
CX=CX−CClX−CClX・・・(3)
CX=CX−CX=CX・・・(4)
<3>塩素との反応を式CFCl−CFCl−CFCl−CFClで表される化合物からなる溶媒中で行う<2>に記載の製造方法。
<4>X〜Xの全てが水素原子である<1>〜<3>のいずれかに記載の製造方法。
<5>フッ素化反応を、式(1)で表される化合物を式(A)で表される化合物中に溶解または分散させた液相中にフッ素を導入することによって行う<1>〜<4>のいずれかに記載の製造方法。
<6><1>〜<5>のいずれかに記載の製造方法によって得た式(A)で表される化合物を脱塩素化することによる下式(B)で表される化合物の製造方法。
CF=CF−CF=CF・・・(B)
<7>フッ素化されうる有機化合物を液相中でフッ素と反応させてフッ素化された有機化合物を得る方法において、液相が式(A)で表される化合物を含むことを特徴とするフッ素化された有機化合物の製造方法。
<8>フッ素化されうる有機化合物を液相中でフッ素と反応させてフッ素化された有機化合物を得る方法において、フッ素化されうる有機化合物を式(A)で表される化合物に溶解させた溶液およびフッ素を液相中に導入することによってフッ素化を行うことを特徴とするフッ素化された有機化合物の製造方法。
<2> The compound represented by the formula (1) is selected from the compound represented by the following formula (2), the compound represented by the following formula (3), and the compound represented by the following formula (4) <1> The production method according to <1>, which is a compound obtained by reacting at least one kind of compound with chlorine.
CClX 1 X 2 -CX 3 = CX 4 -CClX 5 X 6 (2)
CX 1 X 2 = CX 3 -CClX 4 -CClX 5 X 6 (3)
CX 1 X 2 = CX 3 -CX 4 = CX 5 X 6 ··· (4)
<3> The production method according to <2>, wherein the reaction with chlorine is performed in a solvent composed of a compound represented by the formula CF 2 Cl—CFCl—CFCl—CF 2 Cl.
<4> The production method according to any one of <1> to <3>, wherein all of X 1 to X 6 are hydrogen atoms.
<5> The fluorination reaction is performed by introducing fluorine into a liquid phase in which the compound represented by formula (1) is dissolved or dispersed in the compound represented by formula (A). 4> The manufacturing method in any one of.
<6> A method for producing a compound represented by the following formula (B) by dechlorinating a compound represented by the formula (A) obtained by the production method according to any one of <1> to <5> .
CF 2 = CF-CF = CF 2 ··· (B)
<7> A method for obtaining a fluorinated organic compound by reacting an fluorinated organic compound with fluorine in a liquid phase, wherein the liquid phase contains a compound represented by the formula (A) Method for producing a converted organic compound.
<8> In a method of obtaining a fluorinated organic compound by reacting a fluorinated organic compound with fluorine in a liquid phase, the fluorinated organic compound is dissolved in the compound represented by the formula (A). A method for producing a fluorinated organic compound, which comprises performing fluorination by introducing a solution and fluorine into a liquid phase.

本発明によれば、従来の方法に比べて環境に対する負荷が小さく、選択的に、かつ収率よく、高純度の式CFCl−CFCl−CFCl−CFClで表される化合物を製造することができる。また、該化合物からは、高純度の式CF=CF−CF=CFで表される化合物を製造できる。さらに、式CFCl−CFCl−CFCl−CFClで表される化合物を、液相フッ素化反応における溶媒またはフッ素化反応の原料の希釈剤として用いることにより、溶媒に対する溶解度が小さい原料の液相フッ素化を実施することができ、また溶媒自身の分解を抑制することができる。 According to the present invention, a high-purity compound represented by the formula CF 2 Cl—CFCl—CFCl—CF 2 Cl is produced, which is less burdensome on the environment than a conventional method, and selectively and in a high yield. be able to. Further, from this compound, a compound represented by the high-purity formula CF 2 = CF-CF = CF 2 can be produced. Furthermore, by using a compound represented by the formula CF 2 Cl—CFCl—CFCl—CF 2 Cl as a solvent in a liquid phase fluorination reaction or a diluent for a raw material of a fluorination reaction, a raw material liquid having low solubility in the solvent Phase fluorination can be carried out, and decomposition of the solvent itself can be suppressed.

本明細書においては、式(1)で表される化合物を化合物(1)とも記す。他の化合物についても同様である。また、圧力は特に記載のない限りゲージ圧で表す。   In the present specification, the compound represented by the formula (1) is also referred to as the compound (1). The same applies to other compounds. The pressure is expressed as a gauge pressure unless otherwise specified.

本発明における化合物(1)としては、たとえば下記化合物(1a)〜(1d)等が挙げられる。
CHCl−CHCl−CHCl−CHCl・・・(1a)
CFCl−CHCl−CHCl−CFCl・・・(1b)
CHCl−CFCl−CFCl−CHCl・・・(1c)
CFCl−CFCl−CHCl−CHCl・・・(1d)
これらの化合物のうち、X〜Xの全てが水素原子である化合物(1a)は、入手が容易である利点がある。また、化合物(1b)〜(1d)等の、フッ素原子を含有する化合物は、後述するフッ素化反応において、溶媒への溶解性が良好である利点がある。本発明における化合物(1)としては、化合物(1a)が好ましい。
Examples of the compound (1) in the present invention include the following compounds (1a) to (1d).
CH 2 Cl—CHCl—CHCl—CH 2 Cl (1a)
CF 2 Cl—CHCl—CHCl—CF 2 Cl (1b)
CH 2 Cl—CFCl—CFCl—CH 2 Cl (1c)
CF 2 Cl—CFCl—CHCl—CH 2 Cl (1d)
Among these compounds, compound (1a) in which all of X 1 to X 6 are hydrogen atoms has an advantage that it is easily available. In addition, compounds containing fluorine atoms, such as compounds (1b) to (1d), have an advantage of good solubility in a solvent in the fluorination reaction described later. As the compound (1) in the present invention, the compound (1a) is preferable.

化合物(1a)〜(1d)等の化合物(1)は公知の化合物であるか、または公知の化合物に公知の反応の手法を適用することにより製造できる。本発明においては、下記化合物(2)、下記化合物(3)、および下記化合物(4)から選ばれる1種以上の化合物と塩素とを反応させることによって、化合物(1)を得るのが好ましい。
CClX−CX=CX−CClX・・・(2)
CX=CX−CClX−CClX・・・(3)
CX=CX−CX=CX・・・(4)
化合物(2)、化合物(3)、および化合物(4)は公知の化合物であるか、または公知の化合物に公知の反応の手法を適用することにより製造できる。化合物(2)としては、下記化合物(2a)が好ましく、化合物(3)としては、下記化合物(3a)が好ましい。化合物(4)としては、下記化合物(4a)、および下記化合物(4d)等が挙げられ、入手が容易であることから、下記化合物(4a)が好ましい。
CHCl−CH=CH−CHCl・・・(2a)
CH=CH−CHCl−CHCl・・・(3a)
CH=CH−CH=CH・・・(4a)
CF=CF−CH=CH・・・(4d)
化合物(2)〜(4)と塩素との反応は、化合物(2)〜(4)中の炭素−炭素不飽和結合に塩素を付加させる反応である。たとえば、化合物(2a)〜(4a)と塩素との反応では、化合物(1a)が生成し、化合物(4d)と塩素との反応では、化合物(1d)が生成する。
化合物(1)の製造における塩素化反応は、化合物(2)〜(4)から選ばれる1種以上の化合物(以下、塩素化反応の原料と記す。)と塩素とを接触させることによって実施するのが好ましい。反応は塩素を反応系中に供給しながら行うのが好ましい。また、該塩素は連続的に供給しても逐次的に供給してもよく、反応熱を制御しながら供給するのが好ましい。
Compounds (1) such as compounds (1a) to (1d) are known compounds, or can be produced by applying known reaction techniques to known compounds. In the present invention, it is preferable to obtain compound (1) by reacting chlorine with one or more compounds selected from the following compound (2), the following compound (3), and the following compound (4).
CClX 1 X 2 -CX 3 = CX 4 -CClX 5 X 6 (2)
CX 1 X 2 = CX 3 -CClX 4 -CClX 5 X 6 (3)
CX 1 X 2 = CX 3 -CX 4 = CX 5 X 6 ··· (4)
Compound (2), compound (3), and compound (4) are known compounds, or can be produced by applying known reaction techniques to known compounds. As the compound (2), the following compound (2a) is preferable, and as the compound (3), the following compound (3a) is preferable. Examples of the compound (4) include the following compound (4a) and the following compound (4d), and the following compound (4a) is preferable because it is easily available.
CH 2 Cl—CH═CH—CH 2 Cl (2a)
CH 2 = CH-CHCl-CH 2 Cl ··· (3a)
CH 2 = CH-CH = CH 2 ··· (4a)
CF 2 = CF-CH = CH 2 ··· (4d)
The reaction between the compounds (2) to (4) and chlorine is a reaction in which chlorine is added to the carbon-carbon unsaturated bond in the compounds (2) to (4). For example, the reaction of compounds (2a) to (4a) with chlorine produces compound (1a), and the reaction of compound (4d) with chlorine produces compound (1d).
The chlorination reaction in the production of the compound (1) is carried out by bringing chlorine into contact with one or more compounds selected from the compounds (2) to (4) (hereinafter referred to as raw materials for the chlorination reaction). Is preferred. The reaction is preferably performed while supplying chlorine into the reaction system. The chlorine may be supplied continuously or sequentially, and is preferably supplied while controlling the heat of reaction.

塩素の量は、塩素化反応の原料となる化合物中に存在する不飽和基の総モル数に対して1.0〜1.5倍モルが好ましく、特に1.0〜1.2倍モルが好ましい。また、塩素化反応の反応温度は−30〜+60℃が好ましく、特に−20〜+40℃が好ましく、とりわけ−20〜+20℃が好ましい。反応圧力は特に限定されず、0〜1.5MPaが好ましく、特に0.1〜0.3MPaが好ましい。塩素化反応を促進するために触媒を用いてもよく、触媒としては、たとえばテトラアルキルアンモニウム塩、テトラアルキルホスニウム塩、トリアルキルスルホニウムクロライド、アミン類、および塩化鉄等が挙げられる。   The amount of chlorine is preferably 1.0 to 1.5 times moles, particularly 1.0 to 1.2 times moles relative to the total number of moles of unsaturated groups present in the compound as a raw material for the chlorination reaction. preferable. The reaction temperature for the chlorination reaction is preferably from -30 to + 60 ° C, particularly preferably from -20 to + 40 ° C, particularly preferably from -20 to + 20 ° C. The reaction pressure is not particularly limited and is preferably 0 to 1.5 MPa, particularly preferably 0.1 to 0.3 MPa. A catalyst may be used to promote the chlorination reaction, and examples of the catalyst include tetraalkylammonium salts, tetraalkylphosnium salts, trialkylsulfonium chlorides, amines, and iron chloride.

また、塩素化反応は、溶媒の存在下に行うのが好ましい。溶媒としては、塩素化フッ素化炭化水素系溶媒、または塩素化炭化水素系溶媒が好ましい。好ましい溶媒の具体例としては、本発明の目的物である化合物(A)、CHCl、CHCl、およびCCl等が挙げられ、化合物(A)、および/またはCHClが好ましい。このうち、化合物(A)を塩素化反応の溶媒に使用することは、塩素化反応および後述するフッ素化反応において、生成物を溶媒と分離する必要がない利点があるので、特に好ましい。
溶媒を使用する場合の量は特に限定されず、塩素化反応の原料、および塩素化反応の生成物の溶解性に応じて適宜変更することができる。
The chlorination reaction is preferably performed in the presence of a solvent. As the solvent, a chlorinated fluorinated hydrocarbon solvent or a chlorinated hydrocarbon solvent is preferable. Specific examples of the preferred solvent include compound (A), CH 2 Cl 2 , CHCl 3 and CCl 4 which are the object of the present invention, and compound (A) and / or CHCl 3 are preferred. Among these, it is particularly preferable to use the compound (A) as a solvent for the chlorination reaction because there is an advantage that the product does not need to be separated from the solvent in the chlorination reaction and the fluorination reaction described later.
The amount in the case of using the solvent is not particularly limited, and can be appropriately changed according to the solubility of the raw material for the chlorination reaction and the product of the chlorination reaction.

塩素化反応によって生成した化合物(1)は、必要に応じて後処理を行うのが好ましい。後処理の方法としては、洗浄、蒸留、再結晶、ろ過、およびシリカゲル吸着等の方法が挙げられ、該方法から選ばれる1つ、または2つ以上の方法の組み合わせによって適宜実施できる。後処理においては、未反応の原料、原料に含まれる不飽和結合の一部のみが塩素化された化合物、および目的外の反応による生成物を除くのが好ましい。たとえば、塩素化反応において、水素原子が塩素原子に置換される等の副反応がおきた場合には、該副反応の生成物は後処理において除くのが好ましい。副反応の生成物としては、塩素化反応の目的化合物(1)におけるX〜Xのいずれかが水素原子である場合の該水素原子が塩素原子に置換された構造の化合物が挙げられる。 The compound (1) produced by the chlorination reaction is preferably post-treated as necessary. Examples of the post-treatment method include methods such as washing, distillation, recrystallization, filtration, and silica gel adsorption, and can be appropriately performed by one or a combination of two or more methods selected from the methods. In the post-treatment, it is preferable to remove unreacted raw materials, compounds in which only a part of unsaturated bonds contained in the raw materials are chlorinated, and products resulting from unintended reactions. For example, when a side reaction such as substitution of a hydrogen atom with a chlorine atom occurs in the chlorination reaction, the product of the side reaction is preferably removed in post-treatment. The product of the side reaction includes a compound having a structure in which the hydrogen atom is substituted with a chlorine atom when any of X 1 to X 6 in the target compound (1) of the chlorination reaction is a hydrogen atom.

本発明においては、化合物(1)を液相中でフッ素と反応させる。液相中でフッ素と反応させる方法は、液相フッ素化法とよばれる公知の方法であり、たとえば、特許第2945693号公報に記載の方法にしたがって実施できる。本発明においては、まず、フッ素を溶媒中に導入し、つぎに、化合物(1)を溶媒中に導入し、同時にフッ素を反応系中に供給する方法で液相フッ素化反応を実施するのが好ましい。化合物(1)は、溶媒で希釈した溶液として、液相中に供給されるのが好ましい。   In the present invention, compound (1) is reacted with fluorine in the liquid phase. The method of reacting with fluorine in the liquid phase is a known method called a liquid phase fluorination method, and can be carried out, for example, according to the method described in Japanese Patent No. 2945693. In the present invention, first, the liquid phase fluorination reaction is carried out by introducing fluorine into the solvent, then introducing the compound (1) into the solvent, and simultaneously supplying fluorine into the reaction system. preferable. Compound (1) is preferably supplied into the liquid phase as a solution diluted with a solvent.

溶媒としては、液相フッ素化法に用いうる公知の溶媒が採用できる。該溶媒としては、ペルフルオロアルカン類、ペルフルオロエーテル類、ペルフルオロポリエーテル類、塩素化フッ素化炭化水素類、およびペルフルオロアルキルアミン類等が挙げられ、塩素化フッ素化炭化水素類が好ましい。該塩素化フッ素化炭化水素類としては、CFCl−CFCl、CFCl−CF−CCl−CF−CF、および化合物(A)等から選ばれる1種または2種類以上の溶媒が挙げられ、地球環境に与える影響が少ない点からCFCl−CF−CCl−CF−CF、および/または化合物(A)が好ましい。さらに、化合物(A)をフッ素化反応の溶媒としたときには、溶媒と生成物の分離が不要になる利点があるので、特に好ましい。 As the solvent, a known solvent that can be used in the liquid phase fluorination method can be employed. Examples of the solvent include perfluoroalkanes, perfluoroethers, perfluoropolyethers, chlorinated fluorinated hydrocarbons, and perfluoroalkylamines, and chlorinated fluorinated hydrocarbons are preferable. Examples of the chlorinated fluorinated hydrocarbons include one or more kinds selected from CF 2 Cl—CFCl 2 , CF 2 Cl—CF 2 —CCl 2 —CF 2 —CF 3 , and the compound (A). A solvent is mentioned, and CF 2 Cl—CF 2 —CCl 2 —CF 2 —CF 3 and / or compound (A) are preferred from the viewpoint of little influence on the global environment. Further, when the compound (A) is used as a solvent for the fluorination reaction, it is particularly preferable because there is an advantage that the separation of the solvent and the product is unnecessary.

また、化合物(1)の溶媒に対する溶解性が不充分な場合は、溶解補助剤を併用してもよい。溶解補助剤としては、1,2,3−トリクロロプロパン等の塩素化炭化水素類、および部分的にフッ素化されたエステル類等が挙げられる。溶解補助剤として、水素原子を含有する構造の化合物を用いた場合は、フッ素化反応により該化合物における水素原子がフッ素原子に置換された化合物が生成する。   Moreover, when the solubility with respect to the solvent of a compound (1) is inadequate, you may use a solubilizing agent together. Examples of the solubilizer include chlorinated hydrocarbons such as 1,2,3-trichloropropane, and partially fluorinated esters. When a compound having a structure containing a hydrogen atom is used as a solubilizer, a compound in which a hydrogen atom in the compound is substituted with a fluorine atom is generated by a fluorination reaction.

フッ素化反応の反応温度は0℃〜+100℃が好ましく、化合物(1)が反応中に析出することを防ぐために、+20℃〜+80℃がより好ましく、とりわけ+20℃〜+60℃が好ましい。フッ素化反応の反応圧力は特に限定されず、大気圧〜2MPaが、反応収率、選択率、工業的な実施のしやすさの点から特に好ましい。   The reaction temperature of the fluorination reaction is preferably 0 ° C. to + 100 ° C., and in order to prevent the compound (1) from being precipitated during the reaction, + 20 ° C. to + 80 ° C. is more preferable, and + 20 ° C. to + 60 ° C. is particularly preferable. The reaction pressure of the fluorination reaction is not particularly limited, and atmospheric pressure to 2 MPa is particularly preferable from the viewpoint of reaction yield, selectivity, and ease of industrial implementation.

さらに、フッ素化反応を効率的に進行させるためには、反応系中にC−H結合含有化合物を添加する、または、紫外線照射を行う等の操作を行うのが好ましく、工業的な実施の容易さからC−H結合含有化合物を添加する操作を行うのが特に好ましい。該操作はフッ素化反応をバッチ方式で行う場合であっても、連続式で行う場合であっても適用できる。フッ素化反応をバッチ方式で行う場合は、特に反応の後期に該操作を行うのが好ましい。これにより、反応系中に存在する化合物(1)を効率的にフッ素化でき、反応率を飛躍的に向上させうる。   Furthermore, in order to advance the fluorination reaction efficiently, it is preferable to perform an operation such as adding a C—H bond-containing compound to the reaction system or irradiating with ultraviolet rays. It is particularly preferable to perform the operation of adding the C—H bond-containing compound. This operation can be applied regardless of whether the fluorination reaction is carried out batchwise or continuously. When the fluorination reaction is performed in a batch mode, it is preferable to perform the operation particularly in the latter stage of the reaction. Thereby, the compound (1) present in the reaction system can be efficiently fluorinated, and the reaction rate can be dramatically improved.

C−H結合含有化合物としては、通常は芳香族炭化水素が用いられ、ベンゼン、またはトルエンを用いるのが好ましい。該C−H結合含有化合物の添加量は、化合物(1)中の水素原子の総モル数に対して0.1〜10モル%であるのが好ましく、特に0.1〜5モル%であるのが好ましい。C−H結合含有化合物は、反応系中にフッ素が存在する状態で添加するのが好ましい。さらに、C−H結合含有化合物を加えた場合には、反応系を加圧するのが好ましい。加圧時の圧力としては、0.01〜5MPaが好ましい。   As the C—H bond-containing compound, an aromatic hydrocarbon is usually used, and benzene or toluene is preferably used. The amount of the CH bond-containing compound added is preferably 0.1 to 10 mol%, particularly 0.1 to 5 mol%, based on the total number of moles of hydrogen atoms in the compound (1). Is preferred. The C—H bond-containing compound is preferably added in a state where fluorine is present in the reaction system. Furthermore, when a C—H bond-containing compound is added, it is preferable to pressurize the reaction system. The pressure at the time of pressurization is preferably 0.01 to 5 MPa.

フッ素化反応の原料である化合物(1)においては、dl異性体およびmeso異性体が存在しうるが、これらのdl異性体およびmeso異性体は、単独で使用しても異性体の混合物として使用してもよい。異性体混合物として使用する場合においては、各々の異性体の混合比については特に限定されない。ただし、液相フッ素化反応においては、化合物(1)中の炭素原子の絶対配置は保持されないことが多いため、異性体混合物を各異性体に分離して反応に用いる必要はなく、化合物(1)を異性体混合物として使用しても何ら問題ない。   In the compound (1) which is a raw material for the fluorination reaction, dl isomer and meso isomer may exist, but these dl isomer and meso isomer may be used alone or as a mixture of isomers. May be. When used as an isomer mixture, the mixing ratio of each isomer is not particularly limited. However, in the liquid phase fluorination reaction, since the absolute configuration of the carbon atom in the compound (1) is often not retained, it is not necessary to separate the isomer mixture into each isomer and use it for the reaction. ) As an isomer mixture.

液相フッ素化反応では、化合物(A)を含む反応生成物が生成する。該反応生成物は、必要に応じて後処理を行うのが好ましい。後処理の方法としては、洗浄、蒸留、ろ過、およびシリカゲル吸着等の方法が挙げられ、これらの中から選ばれる1つ、または2つ以上の方法の組み合わせによって適宜実施できる。   In the liquid phase fluorination reaction, a reaction product containing the compound (A) is generated. The reaction product is preferably post-treated as necessary. Examples of post-treatment methods include methods such as washing, distillation, filtration, and silica gel adsorption. The post-treatment methods can be appropriately carried out by one or a combination of two or more methods selected from these methods.

通常、塩素原子を含む化合物の液相フッ素化反応を行うと、生成物中には塩素原子が転移した異性体が含まれるが、本発明においては、通常は塩素原子が転移した異性体は生成しないか、生成したとしても非常にわずかである。したがって、本発明の方法によれば高純度の化合物(A)を得ることができる。   Usually, when a liquid phase fluorination reaction of a compound containing a chlorine atom is performed, an isomer having a chlorine atom transferred is included in the product, but in the present invention, an isomer having a chlorine atom transferred is usually generated. No or very little if generated. Therefore, according to the method of the present invention, a highly pure compound (A) can be obtained.

本発明の製造方法によって得られる化合物(A)は、それ自体が溶媒等として有用な化合物であるが、さらに脱塩素化反応を行うことによって化合物(B)を生成させうる。化合物(B)はフッ素含有樹脂用モノマー、フッ素含有化合物中間体、および半導体用のエッチングガス等として有用な化合物である。また、前記の製造方法によって得た化合物(A)は高純度であるので、脱塩素化反応の生成物である化合物(B)も高純度のものとして得ることができる。   The compound (A) obtained by the production method of the present invention itself is a useful compound as a solvent or the like, but the compound (B) can be generated by further performing a dechlorination reaction. The compound (B) is a useful compound as a fluorine-containing resin monomer, a fluorine-containing compound intermediate, an etching gas for semiconductors, and the like. Moreover, since the compound (A) obtained by the said manufacturing method is highly purified, the compound (B) which is a product of a dechlorination reaction can also be obtained as a highly purified thing.

化合物(A)の脱塩素化反応としては、公知または周知の方法が採用でき、溶媒の存在下に金属と接触させて行うのが好ましい。金属としては、マグネシウム、亜鉛、カドミウム、銅、アルミニウム、ナトリウムおよびリチウムから選ばれる1種もしくは2種以上の金属を用いることができ、工業的な取り扱いが容易でかつ環境への負荷が小さいマグネシウム、亜鉛、またはアルミニウムが好ましく、反応効率の点からマグネシウム、または亜鉛が特に好ましい。また、金属としては、切削片状、粉末状、塊状、顆粒状、粒状、砂状、および棒状等の種々の形状の金属が使用できる。金属の使用量としては、化合物(A)中の塩素原子の総モル数に対して0.5〜10.0倍モルが好ましく、0.5〜5.0倍モルが特に好ましい。   As the dechlorination reaction of the compound (A), a known or well-known method can be adopted, and it is preferably carried out by contacting with a metal in the presence of a solvent. As the metal, one or more metals selected from magnesium, zinc, cadmium, copper, aluminum, sodium, and lithium can be used, magnesium that is easy to handle industrially and has a low environmental impact, Zinc or aluminum is preferred, and magnesium or zinc is particularly preferred from the viewpoint of reaction efficiency. Further, as the metal, various shapes of metal such as a cut piece, a powder, a lump, a granule, a granule, a sand, and a rod can be used. As a usage-amount of a metal, 0.5-10.0 times mole is preferable with respect to the total number of moles of the chlorine atom in a compound (A), and 0.5-5.0 times mole is especially preferable.

脱塩素化反応における溶媒としては、1,4−ジオキサン、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のモノエーテル類;1,3−ジオキソラン、ジエチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールジメチルエーテル等のポリエーテル類;へキサン、オクタン、ノナン、石油エーテル等の炭化水素類;酢酸エチル、酢酸メチル、プロピオン酸エチル等のエステル類;リン酸エステル類;炭酸エステル類;アセトニトリル、ベンゾニトリル等のニトリル類;アセトン、メチルエチルケトン等のケトン類;無水酢酸などの酸無水物;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド類;ジメチルスルホキシド;ニトロエタン等のニトロ化合物;ピリジン、ピペリジン等の含窒素複素環化合物類;ジメチルスルホン、フェニルスルホン等のスルホン類;スルフィド類;水;メタノール、エタノール、イソプロピルアルコール等の炭素数1〜5の炭化水素系アルコール類等が挙げられる。   As a solvent in the dechlorination reaction, monoethers such as 1,4-dioxane, tetrahydrofuran, diethyl ether, diisopropyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether; 1,3-dioxolane, diethylene glycol monomethyl ether, ethylene glycol Polyethers such as dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol dimethyl ether; hydrocarbons such as hexane, octane, nonane, petroleum ether; esters such as ethyl acetate, methyl acetate, ethyl propionate; Phosphate esters; Carbonate esters; Nitriles such as acetonitrile and benzonitrile; Acetone, Methyl ethyl ketone Ketones such as acetic acid; acid anhydrides such as acetic anhydride; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; dimethyl sulfoxide; nitro compounds such as nitroethane; pyridine And nitrogen-containing heterocyclic compounds such as piperidine; sulfones such as dimethylsulfone and phenylsulfone; sulfides; water; hydrocarbon alcohols having 1 to 5 carbon atoms such as methanol, ethanol and isopropyl alcohol.

該溶媒は1種のみを、または2種以上を組み合わせて用いることができる。これらのうち溶媒としては、化合物(A)の溶解性、および副生する金属塩化物の溶解性の点から、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、メタノール、エタノール、水、またはこれらの混合溶媒が好ましく、1,4−ジオキサン、エタノール、N−メチル−2−ピロリドン、水、またはこれらの混合溶媒が特に好ましい。
溶媒の量は特に限定されず、溶媒に対する化合物(A)の溶解性、および反応によって副生する金属塩化物の溶解性によって適宜変更されうる。
The solvent can be used alone or in combination of two or more. Among these, as the solvent, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, N, N-dimethylformamide, from the viewpoint of the solubility of the compound (A) and the by-product metal chloride, N-methyl-2-pyrrolidone, methanol, ethanol, water, or a mixed solvent thereof is preferable, and 1,4-dioxane, ethanol, N-methyl-2-pyrrolidone, water, or a mixed solvent thereof is particularly preferable.
The amount of the solvent is not particularly limited and can be appropriately changed depending on the solubility of the compound (A) in the solvent and the solubility of the metal chloride by-produced by the reaction.

脱塩素化反応の反応温度は、−70℃〜+200℃が好ましく、特に−20℃〜+100℃が好ましく、とりわけ0℃〜+80℃が好ましい。反応圧力は特に限定されず、大気圧〜2MPaが、反応収率、選択率、工業的な実施のしやすさの点から好ましい。
脱塩素化反応は、生成物である化合物(B)を連続的に反応器から取り出す方法(たとえば反応蒸留法が好ましい。)によって行うのが好ましい。脱塩素化反応により得られた化合物(B)は蒸留等の方法により、精製するのが好ましい。
The reaction temperature of the dechlorination reaction is preferably −70 ° C. to + 200 ° C., particularly preferably −20 ° C. to + 100 ° C., and particularly preferably 0 ° C. to + 80 ° C. The reaction pressure is not particularly limited, and atmospheric pressure to 2 MPa is preferable from the viewpoint of reaction yield, selectivity, and ease of industrial implementation.
The dechlorination reaction is preferably carried out by a method in which the product compound (B) is continuously removed from the reactor (for example, a reactive distillation method is preferred). The compound (B) obtained by the dechlorination reaction is preferably purified by a method such as distillation.

また、本発明においては、化合物(A)を液相フッ素化法における溶媒として、またはフッ素化反応の原料の希釈剤として用いることによるフッ素化された有機化合物の製造方法を提供する。溶媒またはフッ素化反応の原料の希釈剤として化合物(A)を用いる場合、単独で用いることもでき、液相フッ素化法に用いうる他の公知の溶媒、または希釈剤と混合して用いることもできる。他の公知の溶媒、または希釈剤と混合して用いる場合の混合比は、フッ素化反応の原料の溶解性により適宜変更されうる。   The present invention also provides a method for producing a fluorinated organic compound by using the compound (A) as a solvent in a liquid phase fluorination method or as a diluent for a raw material for a fluorination reaction. When the compound (A) is used as a solvent or a diluent for the raw material of the fluorination reaction, it can be used alone or in combination with other known solvents or diluents that can be used in the liquid phase fluorination method. it can. The mixing ratio when used by mixing with other known solvents or diluents can be appropriately changed depending on the solubility of the raw material for the fluorination reaction.

たとえば、液相フッ素化法における溶媒であるペルフルオロアルカン類、ペルフルオロエーテル類等のペルフルオロ化された化合物は、分子中のフッ素含有量が多いため、フッ素化反応の原料の構造によっては、溶解度が小さくなる場合がある。このような場合に、化合物(A)を液相中に含ませることによって、フッ素化反応の原料の溶解度が大きくなり好ましい。また、化合物(A)を溶媒またはフッ素化反応の原料の希釈剤として用いた場合には、溶媒自身の分解が起きにくい利点もある。   For example, perfluorinated compounds such as perfluoroalkanes and perfluoroethers that are solvents in the liquid phase fluorination method have a high fluorine content in the molecule, so that the solubility is low depending on the structure of the raw material for the fluorination reaction. There is a case. In such a case, it is preferable to include the compound (A) in the liquid phase because the solubility of the raw material for the fluorination reaction is increased. Further, when the compound (A) is used as a solvent or a diluent of a raw material for the fluorination reaction, there is an advantage that the solvent itself is hardly decomposed.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらによって限定されない。ガスクロマトグラフィーはGC、窒素で20%に希釈されたフッ素ガスは20%フッ素ガス、窒素で50%に希釈されたフッ素ガスは50%フッ素ガスと略記する。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Gas chromatography is abbreviated as GC, fluorine gas diluted to 20% with nitrogen is abbreviated as 20% fluorine gas, and fluorine gas diluted to 50% with nitrogen is abbreviated as 50% fluorine gas.

[例1]CHCl−CH=CH−CHClの塩素化反応の例(その1)
−78℃に冷却したトラップを上部に装備したジムロート、ガス導入管、温度計と撹拌機を備えた3Lの4つ口フラスコに、窒素気流下でクロロホルム(3000ml)およびCHCl−CH=CH−CHCl(582g)を加えた。反応器を温度制御が可能な恒温浴槽に入れて、この溶液を−20℃まで冷却した。反応温度が−25〜−15℃になるように制御しながら、ガス導入管より塩素ガスを200ml/分〜500ml/分で導入した。塩素ガス導入量は110Lであった。反応粗液をGCで分析したところ、未反応のCHCl−CH=CH−CHClは検出されなかった。ジムロート上部に装備したトラップをはずして、反応粗液に窒素を500ml/分で3時間導入した。その後、ダイヤフラムポンプで50kPa(絶対圧)まで減圧して反応粗液から塩素ガスを除去した。
[Example 1] CH 2 Cl-CH = CH-CH 2 Cl examples of the chlorination reaction (Part 1)
To a 3 L four-necked flask equipped with a Dimroth equipped with a trap cooled to −78 ° C., a gas introduction tube, a thermometer and a stirrer, chloroform (3000 ml) and CH 2 Cl—CH═CH under a nitrogen stream was added -CH 2 Cl (582g). The reactor was placed in a thermostatic bath with temperature control, and the solution was cooled to -20 ° C. While controlling the reaction temperature to be −25 to −15 ° C., chlorine gas was introduced at 200 ml / min to 500 ml / min from the gas introduction pipe. The amount of chlorine gas introduced was 110L. When the reaction crude liquid was analyzed by GC, unreacted CH 2 Cl—CH═CH—CH 2 Cl was not detected. The trap equipped at the top of the Dimroth was removed, and nitrogen was introduced into the reaction crude liquid at 500 ml / min for 3 hours. Thereafter, the pressure was reduced to 50 kPa (absolute pressure) with a diaphragm pump to remove chlorine gas from the reaction crude liquid.

クロロホルムをロータリーエバポレータで留去し、わずかに褐色を帯びた粗結晶(903g)を得た。この粗結晶をヘキサンで洗浄し、ろ過した後に乾燥することによって、CHCl−CHCl−CHCl−CHCl(790g)を得た(収率86%)。得られたCHCl−CHCl−CHCl−CHClは、meso体を99.5%含有しており、dl体は認められなかった。 Chloroform was distilled off with a rotary evaporator to obtain a slightly brownish crude crystal (903 g). The crude crystals were washed with hexane, filtered and dried to obtain CH 2 Cl—CHCl—CHCl—CH 2 Cl (790 g) (yield 86%). The obtained CH 2 Cl—CHCl—CHCl—CH 2 Cl contained 99.5% meso form, and no dl form was observed.

[例2]CHCl−CH=CH−CHClの塩素化反応の例(その2)
反応温度が0〜+15℃になるように制御しながら、ガス導入管より塩素ガスを導入すること以外は例1と同様に塩素化反応を行い、褐色を帯びた粗結晶(897g)を得た。この粗結晶をヘキサンで洗浄し、ろ過した後に乾燥することによって、CHCl−CHCl−CHCl−CHCl(760g)を得た(収率83%)。
Examples of [Example 2] CH 2 Cl-CH = CH-CH 2 Cl chlorination reaction (Part 2)
The chlorination reaction was carried out in the same manner as in Example 1 except that chlorine gas was introduced from the gas introduction tube while controlling the reaction temperature to be 0 to + 15 ° C., thereby obtaining brownish crude crystals (897 g). . The crude crystals were washed with hexane, filtered, and dried to obtain CH 2 Cl—CHCl—CHCl—CH 2 Cl (760 g) (yield 83%).

[例3]CHCl−CH=CH−CHClの塩素化反応の例(その3)
−78℃に冷却したトラップを上部に装備したジムロート、ガス導入管、温度計と撹拌機を備えた500mlの4つ口フラスコに、窒素気流下でCFCl−CFCl−CFCl−CFCl(800g)およびCHCl−CH=CH−CHCl(19.4g)を加える。反応器を温度制御が可能な恒温浴槽に入れて、この溶液を0℃まで冷却する。反応温度が0〜+15℃になるように制御しながらガス導入管より塩素ガスを10ml/分〜20ml/分導入する。塩素ガス導入量は3.7Lである。反応粗液をGCで分析すると、未反応のCHCl−CH=CH−CHClは検出されない。ジムロート上部に装備したトラップをはずして、反応粗液に窒素を20ml/分で2時間導入する。その後、ダイヤフラムポンプで50kPa(絶対圧)まで減圧して反応粗液から塩素を除去して、わずかに褐色を帯びた反応粗液を得る。GCでの定量分析では、CHCl−CHCl−CHCl−CHClが含まれている。
[Example 3] CH 2 Cl-CH = CH-CH 2 Cl examples of the chlorination reaction (Part 3)
A 500 ml four-necked flask equipped with a Dimroth equipped with a trap cooled to −78 ° C. at the top, a gas introduction tube, a thermometer and a stirrer was charged with CF 2 Cl—CFCl—CFCl—CF 2 Cl ( 800 g) and CH 2 Cl-CH = CH- CH 2 Cl is added (19.4 g). The reactor is placed in a temperature-controlled thermostatic bath and the solution is cooled to 0 ° C. Chlorine gas is introduced from the gas introduction pipe at 10 ml / min to 20 ml / min while controlling the reaction temperature to be 0 to + 15 ° C. The amount of chlorine gas introduced is 3.7L. When the reaction crude liquid is analyzed by GC, unreacted CH 2 Cl—CH═CH—CH 2 Cl is not detected. The trap equipped at the top of the Dimroth is removed, and nitrogen is introduced into the reaction crude liquid at 20 ml / min for 2 hours. Thereafter, the pressure is reduced to 50 kPa (absolute pressure) with a diaphragm pump to remove chlorine from the reaction crude liquid, thereby obtaining a slightly brownish reaction crude liquid. The quantitative analysis by GC includes CH 2 Cl—CHCl—CHCl—CH 2 Cl.

[例4]CH=CH−CHCl−CHClの塩素化反応の例(その1)
CHCl−CH=CH−CHClをCH=CH−CHCl−CHClに変更すること以外は例1と同様に塩素化反応を行い、わずかに褐色を帯びた粗結晶を得る。この粗結晶をヘキサンで洗浄し、ろ過、乾燥することによってCHCl−CHCl−CHCl−CHClを得る。
[Example 4] CH 2 = CH-CHCl -CH 2 Examples of Cl chlorination reaction (Part 1)
CH 2 Cl-CH = CH- CH 2 Cl and CH 2 = except for changing the CH-CHCl-CH 2 Cl is carried out in the same manner as in chlorination reaction as in Example 1, to obtain a slightly crude crystals brownish. The crude crystals were washed with hexane, filtered to give the CH 2 Cl-CHCl-CHCl- CH 2 Cl followed by drying.

[例5]CHCl−CHCl−CHCl−CHClのフッ素化反応の例(その1)
500mLのニッケル製オートクレーブに、1,1,2−トリクロロ−1,2,2−トリフルオロエタン(以下、R−113と記す。)(312g)を加えて撹拌し、40℃に保った。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、および−20℃に保持した冷却器を直列に設置した。−20℃に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。窒素ガスを1.0時間吹き込んだ後、20%フッ素ガスを流速6.43L/hで1時間吹き込み、反応器出口に設置した圧力調整弁で内圧を0.15MPaに調整した。つぎに、20%フッ素ガスを同じ流速で吹き込みながら、例1で得たCHCl−CHCl−CHCl−CHCl(3.8g)をR−113(95.6g)に溶解した溶液を2.9時間かけて注入した。
Example 5 Example of CH 2 Cl—CHCl—CHCl—CH 2 Cl Fluorination Reaction (Part 1)
1,1,2-Trichloro-1,2,2-trifluoroethane (hereinafter referred to as R-113) (312 g) was added to a 500 mL nickel autoclave, and the mixture was stirred and kept at 40 ° C. At the autoclave gas outlet, a cooler maintained at 20 ° C., a NaF pellet packed bed, and a cooler maintained at −20 ° C. were installed in series. A liquid return line for returning the condensed liquid from the cooler maintained at −20 ° C. to the autoclave was installed. After blowing nitrogen gas for 1.0 hour, 20% fluorine gas was blown at a flow rate of 6.43 L / h for 1 hour, and the internal pressure was adjusted to 0.15 MPa with a pressure regulating valve installed at the reactor outlet. Next, 2% of a solution obtained by dissolving CH 2 Cl—CHCl—CHCl—CH 2 Cl (3.8 g) obtained in Example 1 in R-113 (95.6 g) was introduced while blowing 20% fluorine gas at the same flow rate. Injected over 9 hours.

続けて、20%フッ素ガスを、上記の圧力と流速を保って吹き込みながら、ベンゼンのR−113溶液(0.01g/mL)を9ml注入した。つぎに、注入を停止して10分間撹拌を続ける操作を行った。その後、ベンゼンのR−113溶液の注入を2回くり返した。ベンゼンの総使用量は0.25gであり、R−113の総使用量は32.2gであった。さらに、20%フッ素ガスを1時間吹き込んだ後、反応器内圧を大気圧に戻して窒素ガスを2時間吹き込んだ。反応終了後、反応混合物をデカンテーションで取り出した。得られた粗液をエバポレータで濃縮し、19FNMRで生成物を定量したところ、CFCl−CFCl−CFCl−CFClが収率91%で含まれていることを確認した。生成したCFCl−CFCl−CFCl−CFClはdl体およびmeso体の異性体混合物であった。塩素原子が転位した生成物はまったく認められなかった。 Subsequently, 9 ml of a benzene R-113 solution (0.01 g / mL) was injected while blowing 20% fluorine gas while maintaining the above pressure and flow rate. Next, the injection was stopped and stirring was continued for 10 minutes. Thereafter, the injection of the R-113 solution of benzene was repeated twice. The total amount of benzene used was 0.25 g, and the total amount of R-113 used was 32.2 g. Further, 20% fluorine gas was blown for 1 hour, the internal pressure of the reactor was returned to atmospheric pressure, and nitrogen gas was blown for 2 hours. After completion of the reaction, the reaction mixture was removed by decantation. The obtained crude liquid was concentrated with an evaporator and the product was quantified by 19 FNMR. As a result, it was confirmed that CF 2 Cl—CFCl—CFCl—CF 2 Cl was contained in a yield of 91%. The produced CF 2 Cl—CFCl—CFCl—CF 2 Cl was an isomer mixture of the dl form and the meso form. No product with a rearranged chlorine atom was observed.

CFCl−CFCl−CFCl−CFClのNMRスペクトル;
19FNMR(564.6MHz、溶媒:CDCl、標準物質:CClF、定量用の内部標準物質:C):δ(ppm)−61.7(4F)、−120.8(1F)、−121.0(1F)。
沸点;134〜135℃/1.01325×10kPa(絶対圧)。
NMR spectrum of CF 2 Cl—CFCl—CFCl—CF 2 Cl;
19 FNMR (564.6 MHz, solvent: CDCl 3 , standard substance: CCl 3 F, internal standard substance for determination: C 6 F 6 ): δ (ppm) -61.7 (4F), -120.8 (1F ), -121.0 (1F).
Boiling point: 134-135 ° C./1.01325×10 2 kPa (absolute pressure).

[例6]CHCl−CHCl−CHCl−CHClのフッ素化反応の例(その2)
フッ素化溶媒としてR−113をCFCl−CF−CCl−CF−CF(R−419lca)に変更する以外は例5と同様にフッ素化反応を行い、CFCl−CFCl−CFCl−CFClを得る。
[Example 6] Example of CH 2 Cl-CHCl-CHCl- CH 2 Cl fluorination reaction (Part 2)
A fluorination reaction was carried out in the same manner as in Example 5 except that R-113 was changed to CF 2 Cl—CF 2 —CCl 2 —CF 2 —CF 3 (R-419 lca) as the fluorinated solvent, and CF 2 Cl—CFCl— CFCl—CF 2 Cl is obtained.

[例7]CHCl−CHCl−CHCl−CHClのフッ素化反応の例(その3)
フッ素化溶媒として、R−113をCFCl−CFCl−CFCl−CFClに変更する以外は例5と同様にフッ素化反応を行い、CFCl−CFCl−CFCl−CFClを含む反応粗液を得る。反応粗液のGCによる定量分析では、CHCl−CHCl−CHCl−CHClがフッ素化されて生成するCFCl−CFCl−CFCl−CFClが含まれている。
[Example 7] CH 2 Cl-CHCl- CHCl-CH of 2 Cl fluorination reaction example (3)
A reaction including CF 2 Cl—CFCl—CFCl—CF 2 Cl is carried out in the same manner as in Example 5 except that R-113 is changed to CF 2 Cl—CFCl—CFCl—CF 2 Cl as the fluorinated solvent. A crude liquid is obtained. The quantitative analysis by GC of the reaction crude liquid contains CF 2 Cl—CFCl—CFCl—CF 2 Cl produced by fluorination of CH 2 Cl—CHCl—CHCl—CH 2 Cl.

[例8]CHCl−CHCl−CHCl−CHClのフッ素化反応の例(その4)
フッ素化溶媒として、R−113をCFCl−CF−CCl−CF−CF(R−419lca)に変更し、20%フッ素ガスを50%フッ素ガスに変更する以外は例5と同様にフッ素化反応を行い、CFCl−CFCl−CFCl−CFClを得る。
[例9]CHCl−CHCl−CHCl−CHClのフッ素化反応の例(その5)
フッ素化溶媒としてR−113をCFCl−CFCl−CFCl−CFClに変更し、20%フッ素ガスを50%フッ素ガスに変更する以外は、例5と同様にフッ素化反応を行い、CFCl−CFCl−CFCl−CFClを含む粗液を得る。反応粗液のGCによる定量分析では、CHCl−CHCl−CHCl−CHClがフッ素化されて生成するCFCl−CFCl−CFCl−CFClが含まれている。
Examples of [Example 8] CH 2 Cl-CHCl- CHCl-CH 2 Cl fluorination reaction (Part 4)
As Example 5 except that R-113 is changed to CF 2 Cl—CF 2 —CCl 2 —CF 2 —CF 3 (R-419 lca) as a fluorinated solvent, and 20% fluorine gas is changed to 50% fluorine gas. Similarly, fluorination reaction is performed to obtain CF 2 Cl—CFCl—CFCl—CF 2 Cl.
Example 9 Example of CH 2 Cl—CHCl—CHCl—CH 2 Cl Fluorination Reaction (Part 5)
A fluorination reaction was performed in the same manner as in Example 5 except that R-113 was changed to CF 2 Cl—CFCl—CFCl—CF 2 Cl as a fluorinated solvent, and 20% fluorine gas was changed to 50% fluorine gas. obtaining a crude solution containing 2 Cl-CFCl-CFCl-CF 2 Cl. The quantitative analysis by GC of the reaction crude liquid contains CF 2 Cl—CFCl—CFCl—CF 2 Cl produced by fluorination of CH 2 Cl—CHCl—CHCl—CH 2 Cl.

[例10]CHCl−CHCl−CHCl−CHClのフッ素化反応の例(その6)
500mLのニッケル製オートクレーブに、CFCl−CFCl−CFCl−CFCl(312g)を加えて撹拌し、40℃に保つ。オートクレーブガス出口には、例5と同様の冷却器、NaFペレット充填層、および液体返送ラインを設置する。窒素ガスを1.0時間吹き込み、つぎに20%フッ素ガスを、流速6.43L/hで1時間吹き込み、反応器出口に設置した圧力調整弁で内圧を0.15MPaに調整する。つぎに、20%フッ素ガスを同じ流速で吹き込みながら、例3で得られる反応粗液(100g)を2.9時間かけて注入する。
Examples of [Example 10] CH 2 Cl-CHCl- CHCl-CH 2 Cl fluorination reaction (Part 6)
To a 500 mL nickel autoclave, add CF 2 Cl—CFCl—CFCl—CF 2 Cl (312 g), stir and keep at 40 ° C. The same cooler, NaF pellet packed bed, and liquid return line as in Example 5 are installed at the autoclave gas outlet. Nitrogen gas is blown for 1.0 hour, then 20% fluorine gas is blown for 1 hour at a flow rate of 6.43 L / h, and the internal pressure is adjusted to 0.15 MPa with a pressure regulating valve installed at the outlet of the reactor. Next, while blowing 20% fluorine gas at the same flow rate, the reaction crude liquid (100 g) obtained in Example 3 is injected over 2.9 hours.

続けて、20%フッ素ガスを、上記の圧力と流速を保って吹き込みながら、ベンゼンのCFCl−CFCl−CFCl−CFCl溶液(0.01g/mL)を9ml注入する。つぎに、注入を停止して10分間撹拌を続ける操作を行う。その後、ベンゼンのCFCl−CFCl−CFCl−CFCl溶液の注入を2回くり返す。ベンゼンの総使用量は0.25gであり、CFCl−CFCl−CFCl−CFClの総使用量は32.2gである。さらに、20%フッ素ガスを1時間吹き込み、次いで反応器内圧を大気圧に戻して窒素ガスを2時間吹き込む。反応粗液のGCによる定量分析では、CHCl−CHCl−CHCl−CHClがフッ素化されて生成するCFCl−CFCl−CFCl−CFClが含まれている。 Subsequently, 9 ml of a benzene CF 2 Cl—CFCl—CFCl—CF 2 Cl solution (0.01 g / mL) is injected while blowing 20% fluorine gas while maintaining the above pressure and flow rate. Next, the operation of stopping the injection and continuing the stirring for 10 minutes is performed. Thereafter, the injection of the benzene in CF 2 Cl—CFCl—CFCl—CF 2 Cl solution is repeated twice. The total amount of benzene used is 0.25 g, and the total amount of CF 2 Cl—CFCl—CFCl—CF 2 Cl used is 32.2 g. Further, 20% fluorine gas is blown for 1 hour, and then the reactor internal pressure is returned to atmospheric pressure, and nitrogen gas is blown for 2 hours. The quantitative analysis by GC of the reaction crude liquid contains CF 2 Cl—CFCl—CFCl—CF 2 Cl produced by fluorination of CH 2 Cl—CHCl—CHCl—CH 2 Cl.

[例11]CFCl−CFCl−CFCl−CFClの脱塩素化反応の例(その1)
−78℃に冷却したトラップ管を接続したジムロート、等圧管付き滴下ロート、温度計と撹拌機を備えた2Lの4つ口フラスコに、窒素気流下で1,4−ジオキサン(1000ml)およびマグネシウム(29.2g)を加える。反応器を温度制御が可能な恒温浴槽に入れて、この溶液を60℃まで加熱する。これに例5で得られたCFCl−CFCl−CFCl−CFCl(152g)を泡立ちが激しくならない程度にゆっくりと滴下する。発生した気体を−78℃に冷却したトラップ管で捕集する。GCでの定量分析では、CF=CF−CF=CFが含まれている。
Examples of [Example 11] CF 2 Cl-CFCl- CFCl-CF 2 Cl dechlorination reaction (Part 1)
A Dim funnel connected with a trap tube cooled to −78 ° C., a dropping funnel with an isobaric tube, a 4 L flask equipped with a thermometer and a stirrer, and 1,4-dioxane (1000 ml) and magnesium (under nitrogen flow) 29.2 g) is added. The reactor is placed in a thermostatic bath with temperature control and the solution is heated to 60 ° C. To this, CF 2 Cl—CFCl—CFCl—CF 2 Cl (152 g) obtained in Example 5 is slowly added dropwise to such an extent that foaming does not become intense. The generated gas is collected by a trap tube cooled to -78 ° C. Quantitative analysis in GC, contains CF 2 = CF-CF = CF 2.

[例12]CFCl−CFCl−CFCl−CFClの脱塩素化反応の例(その2)
1,4−ジオキサンをエタノールに変更し、マグネシウム(29.2g)を亜鉛(78.5g)に変更する以外は、例11と同様に脱塩素化反応を行う。GCでの定量分析では、CF=CF−CF=CFが含まれている。
Examples of [Example 12] CF 2 Cl-CFCl- CFCl-CF 2 Cl dechlorination reaction (Part 2)
The dechlorination reaction is carried out in the same manner as in Example 11 except that 1,4-dioxane is changed to ethanol and magnesium (29.2 g) is changed to zinc (78.5 g). Quantitative analysis in GC, contains CF 2 = CF-CF = CF 2.

本発明によれば、従来の方法よりも環境に対する負荷が小さい方法で、選択的に、かつ収率よく、高純度のCFCl−CFCl−CFCl−CFClを製造する方法が提供される。本発明はCFCl−CFCl−CFCl−CFClを、液相フッ素化反応の溶媒またはフッ素化原料の希釈剤として用いる、フッ素化された有機化合物の製造方法を提供する。また、本発明はフッ素含有樹脂用モノマー、フッ素含有化合物中間体、および半導体用のエッチングガス等として有用なCF=CF−CF=CFの製造方法を提供する。
According to the present invention, in the method the load is small on the environment, selectively, and good yield, a method for producing high-purity CF 2 Cl-CFCl-CFCl- CF 2 Cl is provided than conventional methods . The present invention provides a method for producing a fluorinated organic compound using CF 2 Cl—CFCl—CFCl—CF 2 Cl as a solvent for a liquid phase fluorination reaction or a diluent for a fluorinated raw material. Further, the present invention provides a fluorine-containing resin monomer, a fluorine-containing compound intermediates, and useful method for manufacturing a CF 2 = CF-CF = CF 2 as an etching gas or the like for a semiconductor.

Claims (8)

下式(1)で表わされる化合物を液相中でフッ素と反応させることによってフッ素化することを特徴とする下式(A)で表される化合物の製造方法。
CClX−CClX−CClX−CClX・・・(1)
CFCl−CFCl−CFCl−CFCl・・・(A)
ただし、X〜Xは、それぞれ独立に水素原子またはフッ素原子を示し、少なくとも1つは水素原子である。
A method for producing a compound represented by the following formula (A), wherein the compound represented by the following formula (1) is fluorinated by reacting with fluorine in a liquid phase.
CClX 1 X 2 -CClX 3 -CClX 4 -CClX 5 X 6 (1)
CF 2 Cl—CFCl—CFCl—CF 2 Cl (A)
However, X < 1 > -X < 6 > shows a hydrogen atom or a fluorine atom each independently, and at least 1 is a hydrogen atom.
式(1)で表される化合物が、下式(2)で表わされる化合物、下式(3)で表される化合物、および下式(4)で表される化合物から選ばれる1種以上の化合物と塩素とを反応させて得られた化合物である、請求項1に記載の製造方法。
CClX−CX=CX−CClX・・・(2)
CX=CX−CClX−CClX・・・(3)
CX=CX−CX=CX・・・(4)
The compound represented by the formula (1) is one or more selected from a compound represented by the following formula (2), a compound represented by the following formula (3), and a compound represented by the following formula (4): The manufacturing method of Claim 1 which is a compound obtained by making a compound and chlorine react.
CClX 1 X 2 -CX 3 = CX 4 -CClX 5 X 6 (2)
CX 1 X 2 = CX 3 -CClX 4 -CClX 5 X 6 (3)
CX 1 X 2 = CX 3 -CX 4 = CX 5 X 6 ··· (4)
塩素との反応を式CFCl−CFCl−CFCl−CFClで表される化合物からなる溶媒中で行う請求項2に記載の製造方法。 The method according to claim 2 for reaction with chlorine in a solvent consisting of a compound represented by the formula CF 2 Cl-CFCl-CFCl- CF 2 Cl. 〜Xの全てが水素原子である請求項1〜3のいずれかに記載の製造方法。 All of X < 1 > -X < 6 > is a hydrogen atom, The manufacturing method in any one of Claims 1-3. フッ素化反応を、式(1)で表される化合物を式(A)で表される化合物中に溶解または分散させた液相中にフッ素を導入することによって行う請求項1〜4のいずれかに記載の製造方法。   The fluorination reaction is carried out by introducing fluorine into a liquid phase in which the compound represented by the formula (1) is dissolved or dispersed in the compound represented by the formula (A). The manufacturing method as described in. 請求項1〜5のいずれかに記載の製造方法によって得た式(A)で表される化合物を脱塩素化することによる下式(B)で表される化合物の製造方法。
CF=CF−CF=CF・・・(B)
The manufacturing method of the compound represented by the following Formula (B) by dechlorinating the compound represented by Formula (A) obtained by the manufacturing method in any one of Claims 1-5.
CF 2 = CF-CF = CF 2 ··· (B)
フッ素化されうる有機化合物を液相中でフッ素と反応させてフッ素化された有機化合物を得る方法において、液相が式(A)で表される化合物を含むことを特徴とするフッ素化された有機化合物の製造方法。   A method for obtaining a fluorinated organic compound by reacting a fluorinated organic compound with fluorine in a liquid phase, wherein the liquid phase contains a compound represented by the formula (A) A method for producing an organic compound. フッ素化されうる有機化合物を液相中でフッ素と反応させてフッ素化された有機化合物を得る方法において、フッ素化されうる有機化合物を式(A)で表される化合物に溶解させた溶液およびフッ素を液相中に導入することによってフッ素化を行うことを特徴とするフッ素化された有機化合物の製造方法。
In a method for obtaining a fluorinated organic compound by reacting a fluorinated organic compound with fluorine in a liquid phase, a solution in which the fluorinated organic compound is dissolved in a compound represented by formula (A) and fluorine A method for producing a fluorinated organic compound, characterized in that fluorination is carried out by introducing a liquid into the liquid phase.
JP2003310186A 2003-09-02 2003-09-02 Manufacturing method of chlorofluorobutane Pending JP2006342059A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003310186A JP2006342059A (en) 2003-09-02 2003-09-02 Manufacturing method of chlorofluorobutane
PCT/JP2004/012733 WO2005023734A1 (en) 2003-09-02 2004-09-02 Process for producing chlorinated fluorine compound
TW093126539A TW200510270A (en) 2003-09-02 2004-09-02 Method for producingfluoric organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310186A JP2006342059A (en) 2003-09-02 2003-09-02 Manufacturing method of chlorofluorobutane

Publications (1)

Publication Number Publication Date
JP2006342059A true JP2006342059A (en) 2006-12-21

Family

ID=34269641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310186A Pending JP2006342059A (en) 2003-09-02 2003-09-02 Manufacturing method of chlorofluorobutane

Country Status (3)

Country Link
JP (1) JP2006342059A (en)
TW (1) TW200510270A (en)
WO (1) WO2005023734A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120642A1 (en) * 2007-03-30 2008-10-09 Showa Denko K.K. Method for producing 1,2,3,4-tetrachlorohexafluorobutane and method for purifying 1,2,3,4-tetrachlorohexafluorobutane
WO2008120652A1 (en) * 2007-03-30 2008-10-09 Showa Denko K.K. Method for production of chlorinated and fluorinated compound
WO2009139352A1 (en) * 2008-05-16 2009-11-19 昭和電工株式会社 Manufacturing method and refining method for 1,2,3,4‑tetrachlorohexafluorobutane
WO2010001774A1 (en) * 2008-07-01 2010-01-07 昭和電工株式会社 Process for production of 1,2,3,4-tetrachlorohexafluorobutane
KR101050919B1 (en) 2006-04-28 2011-07-20 쇼와 덴코 가부시키가이샤 Method for preparing 1,2,3,4-tetrachlorohexafluorobutane
US8030528B2 (en) 2007-04-20 2011-10-04 Showa Denko K.K. Process for producing 1,2,3,4-tetrachlorohexafluorobutane
JP2018516269A (en) * 2015-06-04 2018-06-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Process for the synthesis of 1,2,3,4-tetrachloro-hexafluoro-butane
WO2022249852A1 (en) * 2021-05-24 2022-12-01 昭和電工株式会社 1,2,3,4-tetrachloro-1-fluorobutane and method for producing same, and method for producing 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane
WO2022249853A1 (en) * 2021-05-24 2022-12-01 昭和電工株式会社 Method for producing 1,2,3,4-tetrachloro-1,1,4-trifluorobutane, and method for producing 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077727A1 (en) * 2004-12-28 2006-07-27 Zeon Corporation Method for producing octafluoro-1,4-pentadiene
WO2007114302A1 (en) 2006-03-30 2007-10-11 Asahi Glass Company, Limited Liquid repellent composition, method for liquid-repellent finishing, and articles with liquid-repellent films
KR101045717B1 (en) * 2006-04-28 2011-06-30 쇼와 덴코 가부시키가이샤 Method for producing hexafluoro-1,3-butadiene
KR20090127121A (en) * 2007-03-30 2009-12-09 아사히 가라스 가부시키가이샤 Novel fluorine-containing compound, fluorine-containing polymer, and method for producing the compound
JP5332824B2 (en) * 2009-03-31 2013-11-06 ダイキン工業株式会社 Method for producing pentafluoroallyl chloride
KR102312153B1 (en) 2017-05-22 2021-10-12 쇼와 덴코 가부시키가이샤 Method for producing hexafluoro-1,3-butadiene
KR102662109B1 (en) * 2018-03-20 2024-05-02 가부시끼가이샤 레조낙 Method and apparatus for producing 1,2,3,4-tetrachlorobutane
JP7287391B2 (en) * 2018-05-28 2023-06-06 Agc株式会社 Method for producing fluorine-containing propene
EP3812357B1 (en) 2018-06-22 2022-07-20 Showa Denko K.K. Method for producing hexafluoro-1,3-butadiene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003353A1 (en) * 1988-09-28 1990-04-05 Exfluor Research Corporation Liquid phase fluorination

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050919B1 (en) 2006-04-28 2011-07-20 쇼와 덴코 가부시키가이샤 Method for preparing 1,2,3,4-tetrachlorohexafluorobutane
US8293955B2 (en) 2007-03-30 2012-10-23 Showa Denko K.K. Production process for 1,2,3,4-tetrachlorohexafluorobutane and refining process
US8258352B2 (en) 2007-03-30 2012-09-04 Showa Denko K.K. Production process for chlorine-containing fluorine-containing compound
JP5274449B2 (en) * 2007-03-30 2013-08-28 昭和電工株式会社 Process for producing and purifying 1,2,3,4-tetrachlorohexafluorobutane
TWI402244B (en) * 2007-03-30 2013-07-21 Showa Denko Kk Production method of chlorine containing fluorine compounds
TWI409243B (en) * 2007-03-30 2013-09-21 Showa Denko Kk 1,2,3,4-tetrachlorohexafluorobutane and its purification method
WO2008120652A1 (en) * 2007-03-30 2008-10-09 Showa Denko K.K. Method for production of chlorinated and fluorinated compound
WO2008120642A1 (en) * 2007-03-30 2008-10-09 Showa Denko K.K. Method for producing 1,2,3,4-tetrachlorohexafluorobutane and method for purifying 1,2,3,4-tetrachlorohexafluorobutane
KR101127322B1 (en) 2007-03-30 2012-03-29 쇼와 덴코 가부시키가이샤 Method for producing 1,2,3,4-tetrachlorohexafluorobutane and method for purifying 1,2,3,4-tetrachlorohexafluorobutane
KR101127293B1 (en) 2007-03-30 2012-03-29 쇼와 덴코 가부시키가이샤 Method for production of chlorinated and fluorinated compound
JPWO2008120652A1 (en) * 2007-03-30 2010-07-15 昭和電工株式会社 Method for producing chlorine-containing fluorine-containing compound
KR101132492B1 (en) * 2007-04-20 2012-03-30 쇼와 덴코 가부시키가이샤 Method for producing 1,2,3,4-tetrachlorohexafluorobutane
US8030528B2 (en) 2007-04-20 2011-10-04 Showa Denko K.K. Process for producing 1,2,3,4-tetrachlorohexafluorobutane
TWI410395B (en) * 2007-04-20 2013-10-01 Showa Denko Kk 1,2,3,4-tetrachlorohexafluorobutane
JP5374364B2 (en) * 2007-04-20 2013-12-25 昭和電工株式会社 Process for producing 1,2,3,4-tetrachlorohexafluorobutane
KR101357455B1 (en) * 2008-05-16 2014-02-03 쇼와 덴코 가부시키가이샤 Manufacturing method and refining method for 1,2,3,4-tetrachlorohexafluorobutane
US8415516B2 (en) 2008-05-16 2013-04-09 Showa Denko K.K. Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane
WO2009139352A1 (en) * 2008-05-16 2009-11-19 昭和電工株式会社 Manufacturing method and refining method for 1,2,3,4‑tetrachlorohexafluorobutane
JP5528334B2 (en) * 2008-05-16 2014-06-25 昭和電工株式会社 Process for producing and purifying 1,2,3,4-tetrachlorohexafluorobutane
WO2010001774A1 (en) * 2008-07-01 2010-01-07 昭和電工株式会社 Process for production of 1,2,3,4-tetrachlorohexafluorobutane
CN102076644A (en) * 2008-07-01 2011-05-25 昭和电工株式会社 Process for production of 1, 2, 3, 4-tetrachlorohexafluorobutane
CN102076644B (en) * 2008-07-01 2015-03-11 昭和电工株式会社 Process for production of 1, 2, 3, 4-tetrachlorohexafluorobutane
US8404906B2 (en) 2008-07-01 2013-03-26 Showa Denko K.K. Process for producing 1,2,3,4-tetrachlorohexafluorobutane
JP2018516269A (en) * 2015-06-04 2018-06-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Process for the synthesis of 1,2,3,4-tetrachloro-hexafluoro-butane
US10414703B2 (en) * 2015-06-04 2019-09-17 Solvay Specialty Polymers Italy S.P.A. Processes for the synthesis of 1,2,3,4-tetrachloro-hexafluoro-butane
WO2022249853A1 (en) * 2021-05-24 2022-12-01 昭和電工株式会社 Method for producing 1,2,3,4-tetrachloro-1,1,4-trifluorobutane, and method for producing 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane
WO2022249852A1 (en) * 2021-05-24 2022-12-01 昭和電工株式会社 1,2,3,4-tetrachloro-1-fluorobutane and method for producing same, and method for producing 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane

Also Published As

Publication number Publication date
TW200510270A (en) 2005-03-16
WO2005023734A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP2006342059A (en) Manufacturing method of chlorofluorobutane
KR101045717B1 (en) Method for producing hexafluoro-1,3-butadiene
JP4896965B2 (en) Process for producing 1,2,3,4-tetrachlorohexafluorobutane
RU2433992C2 (en) Method of producing fluorohalogenated ethers
US8415516B2 (en) Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane
MX2011003147A (en) Process for producing 1,3,3,3-tetrafluoropropene.
KR100768026B1 (en) Process for producing fluorinated ester compound
JPH10500135A (en) Method for producing fluorinated olefin and method for producing hydrofluorocarbon using fluorinated olefin
WO2007119585A1 (en) Method for producing 3,3,3-trifluoropropionic acid chloride
JP4520712B2 (en) Method for producing fluorohalogen ethers
JPWO2008120652A1 (en) Method for producing chlorine-containing fluorine-containing compound
JP2000007593A (en) Production of perfluoro(n-pentane)
WO2019230456A1 (en) Method for producing fluorine-containing propene
JP2001302571A (en) Method for producing fluoroalcohol
Olah et al. Organic fluorine compounds. XXXIII. Electrophilic additions to fluoro olefins in superacids
US6203671B1 (en) Method of producing fluorinated compounds
JP4126542B2 (en) Method for producing decomposition reaction product of fluorine-containing ester compound
JP2012171884A (en) Method of producing hydrogen-containing fluorodiene compound
WO2002066452A1 (en) Processes for producing fluorinated cyclic ethers and use thereof
JP7532576B2 (en) Uses of 1,1,2-trichloro-2-fluoroethene (TCFE)
RU2815834C1 (en) Method of producing composition containing purified fluorine-containing ether compound
JP2001240568A (en) Preparation method of 1-chloroheptafluorocyclopentene
JP5088253B2 (en) Method for producing fluoroalkyl halide
JP2005306800A (en) Method for producing fluorine-containing ether compound
JP5088254B2 (en) Method for producing fluoroalkyl halide