WO2016078225A1 - Trans-1,1,1,4,4,4-hexafluoro-2-butene synthesis method - Google Patents
Trans-1,1,1,4,4,4-hexafluoro-2-butene synthesis method Download PDFInfo
- Publication number
- WO2016078225A1 WO2016078225A1 PCT/CN2015/072307 CN2015072307W WO2016078225A1 WO 2016078225 A1 WO2016078225 A1 WO 2016078225A1 CN 2015072307 W CN2015072307 W CN 2015072307W WO 2016078225 A1 WO2016078225 A1 WO 2016078225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chclch
- hexafluoro
- reaction
- butene
- ccl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
Definitions
- the telomerization catalyst uses a zero, one or two valent copper salt, including elemental copper, halogenated copper, cuprous halide, copper salicylate, copper oxalate or copper acetylacetonate, preferably cuprous chloride or copper chloride. .
- the reaction needs to be carried out under ultraviolet light conditions of 250 nm to 400 nm.
- the light source is a mercury lamp or a halogen lamp.
- the reactor selects a material having a certain light transmittance to ensure that the light can be transmitted to CF 3 CHClCH 2 CClX 2 and reacted with chlorine gas. For a period of time, CF 3 CHClCH 2 CClX 2 can be at least partially converted to the product CF 3 CHClCH 2 CCl 3 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Provided is a method for synthesising trans-1,1,1,4,4,4-hexafluoro-2-butene, said method using 1,1,1-trifluoro-2,2-dichloroethane and a chlorinated ethene CH2=CX2 as raw materials, and being divided into three steps: (a) the reaction of 1,1,1-trifluoro-2,2-dichloroethane with CH2=CX2 in the presence of a telomerisation catalyst and a catalytic additive to synthesise CF3CHClCH2CClX2; (b) the photochlorination of CF3CHClCH2CClX2 to synthesise CF3CHClCH2CCl3; (c) the gas phase fluorination of CF3CHClCH2CCl3 in the presence of a fluorination catalyst to synthesise trans-1,1,1,4,4,4-hexafluoro-2-butene. CH2=CX2 is ethene, chloroethene or 1,1-dichloroethene. The present invention has the features of high trans selectivity and inexpensive raw materials.
Description
本发明涉及到一种氢氟烯烃的合成方法,尤其涉及反式-1,1,1,4,4,4-六氟-2-丁烯的合成方法。The present invention relates to a process for the synthesis of hydrofluoroolefins, and more particularly to a process for the synthesis of trans-1,1,1,4,4,4-hexafluoro-2-butene.
由于第一、二代发泡剂(一氟三氯甲烷CFC-11、一氟二氯乙烷HCFC-141b等)破坏臭氧层,已经被禁止使用,而第三代发泡剂(1,1,1,3,3-五氟丙烷HFC-245fa等)会产生较强的温室效应。随着全球变暖对地球生态影响的日益加剧,迫切需要寻找绿色环保的发泡剂。Since the first and second generation of blowing agents (monofluorotrichloromethane CFC-11, monofluorodichloroethane HCFC-141b, etc.) destroy the ozone layer, it has been banned from use, and the third generation of blowing agent (1, 1, 1,3,3-pentafluoropropane HFC-245fa, etc.) will produce a strong greenhouse effect. With the increasing impact of global warming on the Earth's ecology, there is an urgent need to find green and environmentally friendly foaming agents.
作为氢氟烯烃(HFO)类物质,顺-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336)的臭氧消耗潜值(ODP)为零,温室效应潜值(GWP)极低,对环境影响很小,因其性能与前几代发泡剂相近,被看作新一代绿色环保发泡剂,以反-HFO-1336转型合成顺-HFO-1336具有路线短,绿色无污染等特点。As a hydrofluoroolefin (HFO) substance, cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336) has zero ozone depletion potential (ODP), greenhouse effect potential The value (GWP) is extremely low and has little impact on the environment. Because its performance is similar to that of previous generations of foaming agents, it is regarded as a new generation of green foaming agent, and the anti-HFO-1336 transformation synthesis cis-HFO-1336 has The route is short, green and pollution-free.
现有合成反-1,1,1,4,4,4-六氟-2-丁烯的方法,有的原料价格较高,有的反式选择性较低。例如:WO 2009117458报道了以化学量的铜粉与HCFC-123反应合成HFO-1336,产物中顺式与反式比例接近1:1,不仅选择性低而且污染较大。There are existing methods for synthesizing trans-1,1,1,4,4,4-hexafluoro-2-butene, some of which have higher raw materials and some have lower trans selectivity. For example, WO 2009117458 reports that a chemical amount of copper powder reacts with HCFC-123 to synthesize HFO-1336. The ratio of cis to trans in the product is close to 1:1, which is not only low in selectivity but also highly polluted.
WO 2011119370报道了催化调聚三氟丙烯与四氯化碳合成四氯三氟丁烷,催化氟化合成产物1,1,1,4,4,4-六氟-2-丁烯,使用原料三氟丙烯尚未大规模生产,价格昂贵,产物中顺式HFO-1336和反式HFO-1336选择性之和为93%。WO 2011119370 reports the catalytic synthesis of trichloropropene and carbon tetrachloride to synthesize tetrachlorotrifluorobutane, catalyzing the fluorination of the synthesis product 1,1,1,4,4,4-hexafluoro-2-butene, using raw materials Trifluoropropene has not been produced on a large scale and is expensive, and the sum of the selectivity of cis-HFO-1336 and trans-HFO-1336 in the product is 93%.
发明内容Summary of the invention
针对现有技术的缺陷或不足,本发明的目的在于提供一种反式选择性高,
原料廉价易得的反式-1,1,1,4,4,4-六氟-2-丁烯的合成方法。In view of the deficiencies or deficiencies of the prior art, it is an object of the present invention to provide a high trans selectivity.
A method for synthesizing trans-1,1,1,4,4,4-hexafluoro-2-butene which is inexpensive and readily available.
为解决上述问题,本发明提供一种反式-1,1,1,4,4,4-六氟-2-丁烯的合成方法,反式-1,1,1,4,4,4-六氟-2-丁烯的结构式如式(I)所示:In order to solve the above problems, the present invention provides a method for synthesizing trans-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,1,1,4,4,4 - The structural formula of hexafluoro-2-butene is as shown in formula (I):
包括以下步骤:Includes the following steps:
(a)原料1,1,1-三氟-2,2-二氯乙烷与CH2=CX2摩尔比1~10:1,在调聚催化剂与催化助剂存在下,极性溶剂中,反应温度80~180℃,反应压力0.8~5.0MPa下,反应1~48h,得到CF3CHClCH2CClX2,其中,X为Cl或H,调聚催化剂采用0价、1价或2价的铜盐;(a) a molar ratio of 1,1,1-trifluoro-2,2-dichloroethane to CH 2 =CX 2 of from 1 to 10:1 in the presence of a telomerization catalyst and a catalytic aid in a polar solvent , the reaction temperature is 80-180 ° C, the reaction pressure is 0.8-5.0 MPa, the reaction is 1-48 h, and CF 3 CHClCH 2 CClX 2 is obtained , wherein X is Cl or H, and the telomerization catalyst is 0, 1 or 2 Copper salt
(b)氯气与CF3CHClCH2CClX2摩尔比1~3:1,在光照下,温度-40~80℃,反应5~48h,得到CF3CHClCH2CCl3;(b) The molar ratio of chlorine gas to CF 3 CHClCH 2 CClX 2 is 1 to 3:1, and under the illumination, the temperature is -40 to 80 ° C, and the reaction is carried out for 5 to 48 hours to obtain CF 3 CHClCH 2 CCl 3 ;
(c)在氟化催化剂存在下,控制HF与CF3CHClCH2CCl3摩尔比为1:3~20,通过列管式固定床反应器,反应温度100~500℃,接触时间0.1~10s,合成得到反式-1,1,1,4,4,4-六氟-2-丁烯。(c) controlling the molar ratio of HF to CF 3 CHClCH 2 CCl 3 in the presence of a fluorination catalyst from 1:3 to 20, through a tubular fixed-bed reactor, a reaction temperature of 100 to 500 ° C, and a contact time of 0.1 to 10 s, Synthesis of trans-1,1,1,4,4,4-hexafluoro-2-butene.
步骤(a):CF3CHCl2+CX2=CH2→CF3CHClCH2CClX2
Step (a): CF 3 CHCl 2 + CX 2 = CH 2 → CF 3 CHClCH 2 CClX 2
原料CH2=CX2为CH2=CH2、CH2=CHCl或CH2=CCl2,CF3CHClCH2CClX2为CF3CHClCH2CH2Cl、CF3CHClCH2CHCl2或CF3CHClCH2CCl3。The starting material CH 2 =CX 2 is CH 2 =CH 2 , CH 2 =CHCl or CH 2 =CCl 2 , CF 3 CHClCH 2 CClX 2 is CF 3 CHClCH 2 CH 2 Cl, CF 3 CHClCH 2 CHCl 2 or CF 3 CHClCH 2 CCl 3 .
调聚催化剂采用0价、1价或2价的铜盐,包括单质铜、卤代铜、卤代亚铜、水杨酸铜、草酸铜或者乙酰丙酮铜,优选氯化亚铜或氯化铜。The telomerization catalyst uses a zero, one or two valent copper salt, including elemental copper, halogenated copper, cuprous halide, copper salicylate, copper oxalate or copper acetylacetonate, preferably cuprous chloride or copper chloride. .
催化助剂为有机胺类、多吡啶类化合物,加入催化助剂可提高调聚催化剂的溶解性,降低氧化还原电势,虽然反应不加入催化助剂也能够进行,但为
达到较高的转化率和选择性,优选催化助剂2,2-联吡啶、五甲基二乙烯三胺、三(2-吡啶基甲基)胺或三(2-二甲氨基乙基)胺。The catalytic auxiliary agent is an organic amine or a polypyridine compound, and the addition of a catalytic auxiliary agent can improve the solubility of the telomerization catalyst and lower the redox potential, although the reaction can be carried out without adding a catalytic aid, but
To achieve higher conversion and selectivity, preferably the catalytic aid 2,2-bipyridine, pentamethyldiethylenetriamine, tris(2-pyridylmethyl)amine or tris(2-dimethylaminoethyl) amine.
溶剂为极性溶剂,包括:醇类、酮类、腈类、酰胺类、砜类,反应中不加入溶剂,反应也能够进行,加入极性溶剂可有效提高反应速率和产物选择性,因此优选溶剂为乙腈、甲醇、丙酮、二甲基甲酰胺或二甲基亚砜。The solvent is a polar solvent, including: alcohols, ketones, nitriles, amides, sulfones, the reaction can also be carried out without adding a solvent in the reaction, and the addition of a polar solvent can effectively increase the reaction rate and product selectivity, so it is preferred. The solvent is acetonitrile, methanol, acetone, dimethylformamide or dimethyl sulfoxide.
反应条件为:催化剂用量为1,1,1-三氟-2,2-二氯乙烷摩尔百分比为0.01%~50%,优选摩尔百分比为0.5%~20%,更优选摩尔百分比为1%~5%;调聚摩尔比为1~10:1,优选2~5:1;反应温度为80~180℃,优选温度为100~130℃;反应时间1~48h,优选5~24h;反应压力0.8~5.0MPa,优选压力为1.2~2.0MPa,反应后,产物移至精馏塔内进行纯化。The reaction conditions are as follows: the catalyst is used in an amount of 0.01% to 50% by moles of 1,1,1-trifluoro-2,2-dichloroethane, preferably 0.5% to 20% by mole, more preferably 1% by mole. ~5%; the molar ratio of the telomer is 1 to 10:1, preferably 2 to 5:1; the reaction temperature is 80 to 180 ° C, preferably the temperature is 100 to 130 ° C; the reaction time is 1 to 48 h, preferably 5 to 24 h; The pressure is 0.8 to 5.0 MPa, preferably the pressure is 1.2 to 2.0 MPa. After the reaction, the product is transferred to a rectification column for purification.
步骤(b):CF3CHClCH2CClX2+Cl2→CF3CHClCH2CCl3
Step (b): CF 3 CHClCH 2 CClX 2 + Cl 2 → CF 3 CHClCH 2 CCl 3
反应在气相、液相均能够进行,但为达到更优的选择性,反应选择低温液相进行。The reaction can be carried out in both the gas phase and the liquid phase, but in order to achieve better selectivity, the reaction is carried out in a low temperature liquid phase.
反应需在250nm~400nm的紫外光照条件下进行,光源为汞灯或卤素灯,反应器选择有一定的透光率的材料,以保证光线能够透射到CF3CHClCH2CClX2,通入氯气反应一段时间,能够使CF3CHClCH2CClX2至少部分转化为产物CF3CHClCH2CCl3。The reaction needs to be carried out under ultraviolet light conditions of 250 nm to 400 nm. The light source is a mercury lamp or a halogen lamp. The reactor selects a material having a certain light transmittance to ensure that the light can be transmitted to CF 3 CHClCH 2 CClX 2 and reacted with chlorine gas. For a period of time, CF 3 CHClCH 2 CClX 2 can be at least partially converted to the product CF 3 CHClCH 2 CCl 3 .
反应可加入不含活泼H原子的溶剂以提高产物的选择性,溶剂优选四氯化碳、1,1,2-三氯三氟乙烷、氯苯或氟苯。The reaction may be carried out by adding a solvent containing no active H atom to increase the selectivity of the product, and the solvent is preferably carbon tetrachloride, 1,1,2-trichlorotrifluoroethane, chlorobenzene or fluorobenzene.
反应条件为:氯气与CF3CHClCH2CClX2摩尔比1~3:1,优选1.2~1.4:1;反应温度-40~80℃,-10~40℃;反应时间为5~48h,12~36h。The reaction conditions are as follows: a molar ratio of chlorine gas to CF 3 CHClCH 2 CClX 2 of 1 to 3:1, preferably 1.2 to 1.4:1; a reaction temperature of -40 to 80 ° C, -10 to 40 ° C; and a reaction time of 5 to 48 hours, 12 to 36h.
步骤(c):CF3CHClCH2CCl3+HF→CF3CH=CHCF3
Step (c): CF 3 CHClCH 2 CCl 3 + HF → CF 3 CH=CHCF 3
反应在液相、气相均能得到产物,但为达到更优的转化率,反应选择在
温度较高的气相进行,由于Cr基催化剂,存在生物毒性,环境污染等问题,使用温度较低等问题,本步骤中使用了毒性、污染较小、使用温度更高的Fe基气相氟化催化剂。The reaction can obtain the product in the liquid phase and the gas phase, but in order to achieve a better conversion rate, the reaction is selected in the reaction.
In the higher temperature gas phase, due to problems such as bio-toxicity, environmental pollution, and low temperature, the Fe-based gas phase fluorination catalyst with less toxicity and less pollution is used in this step. .
Fe基气相氟化催化剂由含铁元素的化合物、含稀土金属元素的化合物、含A元素的化合物组成,其中稀土元素为La或Ce,A元素选自Ca、Al、Mg和Ti中的一种,三种元素比例为铁元素10~50%,A元素48~89.5%,稀土元素0.5~2%。The Fe-based vapor phase fluorination catalyst is composed of a compound containing an iron element, a compound containing a rare earth metal element, a compound containing an element A, wherein the rare earth element is La or Ce, and the element A is selected from one of Ca, Al, Mg, and Ti. The ratio of the three elements is 10 to 50% of iron, 48 to 89.5% of A, and 0.5 to 2% of rare earth.
将所述前驱体经焙烧、氟化处理后制得无铬气相氟化催化剂。可采用浸渍法、共沉淀法或共混法合成本发明的各种Fe基气相氟化催化剂,高温焙烧后的Fe基气相氟化催化剂前躯体用氟化氢400℃处理后,用于气相氟化反应。The precursor is subjected to calcination and fluorination treatment to obtain a chromium-free gas phase fluorination catalyst. The various Fe-based gas phase fluorination catalysts of the present invention can be synthesized by a dipping method, a coprecipitation method or a blending method, and the Fe-based gas phase fluorination catalyst precursor after high-temperature calcination is treated with hydrogen fluoride at 400 ° C for gas phase fluorination reaction. .
氟化反应的反应器类型优选具有抗氟化氢腐蚀作用的材料例如镍及其合金(包括Hastelloy、Inconel、Incoloy和Monel)制成的列管式固定床反应器。反应时,HF气体持续通入催化固定床。一段时间后,开始连续通入CF3CHClCH2CCl3,控制CF3CHClCH2CCl3/HF摩尔比为1:3~20,优选1:6~10。CF3CHClCH2CCl3与HF反应温度为100~500℃,优选300~400℃,反应接触时间为0.1~10s,优选3~8s,得到反式-1,1,1,4,4,4-六氟-2-丁烯。The type of reactor for the fluorination reaction is preferably a tubular fixed bed reactor made of a material resistant to hydrogen fluoride corrosion such as nickel and its alloys including Hastelloy, Inconel, Incoloy and Monel. During the reaction, the HF gas is continuously passed to the catalytic fixed bed. After a period of time, CF 3 CHClCH 2 CCl 3 is continuously introduced, and the CF 3 CHClCH 2 CCl 3 /HF molar ratio is controlled to be 1:3 to 20, preferably 1:6 to 10. The reaction temperature of CF 3 CHClCH 2 CCl 3 and HF is 100 to 500 ° C, preferably 300 to 400 ° C, and the reaction contact time is 0.1 to 10 s, preferably 3 to 8 s, to obtain trans-1, 1, 1, 4, 4, 4 - hexafluoro-2-butene.
本发明优点:The advantages of the invention:
(1)本发明使用合成反-1,1,1,4,4,4-六氟-2-丁烯反式选择性不低于95%,对比文件顺、反式产物选择性和为93%。(2)本发明采用1,1,1-三氟-2,2-二氯乙烷与氯乙烯为原料,其中1,1,1-三氟-2,2-二氯乙烷为合成制冷剂HFC-125的原料来源广泛、廉价,氯乙烯也是化工常用原料,因此原料成本低,而对比文件报道的方法采用三氟丙烯与四氯化碳为原料,其中三氟丙烯尚未大规模生产,价格昂贵不易得。
(1) The present invention uses a synthetic trans-1,1,1,4,4,4-hexafluoro-2-butene having a trans selectivity of not less than 95%, and the comparative file cis and trans product selectivity is 93. %. (2) The present invention uses 1,1,1-trifluoro-2,2-dichloroethane and vinyl chloride as raw materials, wherein 1,1,1-trifluoro-2,2-dichloroethane is a synthetic refrigeration. HFC-125 has a wide range of raw materials and low cost. Vinyl chloride is also a common raw material for chemical industry, so the cost of raw materials is low. The method reported in the comparative document uses trifluoropropene and carbon tetrachloride as raw materials, of which trifluoropropene has not been mass produced. It is expensive and not easy to get.
实施例1Example 1
(a)向500mL钛合金带搅拌高压反应釜中加入1.4克氯化铜,3.2克2,2-联吡啶,溶解于20mL甲醇中,用氮气置换釜中空气,以氮气压入312克R123和63克CH2=CHCl,反应温度120℃,反应压力1.2MPa,反应时间10小时,反应后粗品用常压蒸馏脱除R123与甲醇,R123与甲醇回收利用,继续减压蒸馏收集CF3CHClCH2CHCl2,转化率91.3%,选择性87.6%。(a) Adding 1.4 g of copper chloride, 3.2 g of 2,2-bipyridine to a 500 mL titanium alloy stirred high pressure autoclave, dissolving in 20 mL of methanol, replacing the air in the autoclave with nitrogen, and pressing 312 g of R123 with nitrogen. 63 g CH 2 = CHCl, reaction temperature 120 ° C, reaction pressure 1.2 MPa, reaction time 10 hours, the crude product after reaction was removed by atmospheric distillation to remove R123 and methanol, R123 and methanol were recycled, and the distillation was continued to collect CF 3 CHClCH 2 under reduced pressure. CHCl 2 had a conversion of 91.3% and a selectivity of 87.6%.
(b)向500mL石英光化反应器中加入150克CF3CHClCH2CHCl2溶解于300mL四氯化碳的溶液,在搅拌下缓慢通入约140克氯气,于0℃反应24小时,减压蒸馏分离出四氯化碳后继续收集产物CF3CHClCH2CCl3,转化率90.5%,选择性78.7%。(b) Adding 150 g of CF 3 CHClCH 2 CHCl 2 to a solution of 300 mL of carbon tetrachloride in a 500 mL quartz photochemical reactor, slowly introducing about 140 g of chlorine gas under stirring, reacting at 0 ° C for 24 hours, and decompressing. After separation of carbon tetrachloride by distillation, the product CF 3 CHClCH 2 CCl 3 was continuously collected with a conversion of 90.5% and a selectivity of 78.7%.
(c)在内径为38mm的镍管固定床管式反应器中,装入60ml氟化催化剂,通入HF和1,1,1-三氟-2,4,4,4-四氯丁烷CF3CHClCH2CCl3进行反应,控制HF/CF3CHClCH2CCl3的摩尔比为6:1,接触时间为6.9秒,反应温度350℃,反应连续进行20小时后,反应产物经水洗、碱洗除去HCl和HF后,用气相色谱分析CF3CHClCH2CCl3的转化率为100%,反式选择性为95.8%。(c) In a fixed-tube tubular reactor of nickel tube having an inner diameter of 38 mm, 60 ml of a fluorination catalyst was introduced, and HF and 1,1,1-trifluoro-2,4,4,4-tetrachlorobutane were introduced. CF 3 CHClCH 2 CCl 3 was reacted, the molar ratio of HF/CF 3 CHClCH 2 CCl 3 was controlled to 6:1, the contact time was 6.9 seconds, the reaction temperature was 350 ° C, and the reaction was continuously carried out for 20 hours, and the reaction product was washed with water and alkali. After washing with HCl and HF, the conversion of CF 3 CHClCH 2 CCl 3 was analyzed by gas chromatography to be 100%, and the trans selectivity was 95.8%.
实施例2~20按照步骤(a)中相同的合成方法合成CF3CHClCH2CClX2,所不同的是实施例2~20分别对反应温度、压力、反应时间和烯烃种类进行了条件优化。Examples 2 to 20 were synthesized according to the same synthesis method in the step (a) as CF 3 CHClCH 2 CClX 2 except that the conditions of the reaction temperature, the pressure, the reaction time and the olefin type were optimized for each of Examples 2 to 20.
表1反应温度影响Table 1 reaction temperature effect
实施例Example | 催化剂(%)catalyst(%) | 反应温度temperature reflex | 转化率(%)Conversion rates(%) | 选择性(%)Selectivity (%) |
22 | 22 | 100100 | 94.794.7 | 96.696.6 |
33 | 22 | 120120 | 97.097.0 | 90.390.3 |
44 | 22 | 140140 | 85.785.7 | 80.680.6 |
55 | 22 | 8080 | 32.932.9 | 86.486.4 |
66 | 22 | 180180 | 89.389.3 | 38.738.7 |
表2压力对反应影响Table 2 pressure on the reaction
表3反应时间对反应影响Table 3 reaction time on the reaction
表4烯烃种类对反应影响Table 4 Effect of olefin species on reaction
实施例Example | 烯烃Olefins | 反应温度temperature reflex | 转化率(%)Conversion rates(%) | 选择性(%)Selectivity (%) |
1818 | CH2=CH2 CH 2 =CH 2 | 130130 | 100100 | 94.594.5 |
1919 | CHCl=CH2 CHCl=CH 2 | 130130 | 96.396.3 | 89.289.2 |
2020 | CCl2=CH2 CCl 2 =CH 2 | 130130 | 74.374.3 | 63.163.1 |
从实施例2~20结果来看,步骤(a)的反应最优条件为:反应温度100~130℃,反应压力1.2~2.0MPa,反应时间为5~24h。From the results of Examples 2 to 20, the optimum conditions for the reaction of the step (a) are: a reaction temperature of 100 to 130 ° C, a reaction pressure of 1.2 to 2.0 MPa, and a reaction time of 5 to 24 hours.
实施例21~42按照步骤(b)中相同的合成方法合成CF3CHClCH2CCl3,所不同的是实施例21~42分别对步骤(b)的反应温度、反应时间、反应溶剂和物料比进行了条件优化。
Examples 21 to 42 were synthesized according to the same synthesis method in the step (b) as CF 3 CHClCH 2 CCl 3 , except that the reaction temperature, reaction time, reaction solvent and material ratio of the steps (b) of Examples 21 to 42 were respectively carried out. Condition optimization was performed.
表5反应温度影响Table 5 reaction temperature effects
表6反应时间对反应影响Table 6 reaction time on the reaction
表7反应溶剂对反应的影响Table 7 Effect of reaction solvent on the reaction
表8氯气用量对反应影响Table 8 Effect of chlorine gas consumption on reaction
实施例Example | 溶剂Solvent | 氯气摩尔比Chlorine molar ratio | 转化率(%)Conversion rates(%) | 选择性(%)Selectivity (%) |
3838 | CCl4 CCl 4 | 1:11:1 | 43.643.6 | 78.778.7 |
3939 | CCl4 CCl 4 | 1.2:11.2:1 | 98.698.6 | 80.280.2 |
4040 | CCl4 CCl 4 | 1.5:11.5:1 | 96.296.2 | 75.975.9 |
4141 | CCl4 CCl 4 | 2.0:12.0:1 | 96.996.9 | 68.368.3 |
4242 | CCl4 CCl 4 | 3.0:13.0:1 | 97.897.8 | 57.857.8 |
从实施例21~42结果来看,步骤(b)的反应最优条件为:反应温度-10~40℃,反应时间12~36h,氯气与CF3CHClCH2CClX2摩尔比1.2~1.4:1。From the results of Examples 21 to 42, the optimum conditions for the reaction of the step (b) are: the reaction temperature is -10 to 40 ° C, the reaction time is 12 to 36 h, and the molar ratio of chlorine gas to CF 3 CHClCH 2 CClX 2 is 1.2 to 1.4:1. .
实施例43~58按照步骤(c)中相同的合成方法合成反式-1,1,1,4,4,4-六氟-2-丁烯,所不同的是实施例43~58分别对步骤(c)的反应温度、摩尔比和接触时间进行了条件优化。Examples 43 to 58 were synthesized according to the same synthesis method as in the step (c): trans-1,1,1,4,4,4-hexafluoro-2-butene, except that the examples 43 to 58 were respectively The reaction temperature, molar ratio and contact time of step (c) were conditionally optimized.
表9反应温度影响Table 9 reaction temperature effect
表10摩尔比对反应影响Table 10 molar ratio on the reaction
实施例Example | 反应温度temperature reflex | 摩尔比The molar ratio of | 转化率(%)Conversion rates(%) | 选择性(%)Selectivity (%) |
4848 | 350350 | 1:31:3 | 70.570.5 | 84.784.7 |
4949 | 350350 | 1:51:5 | 94.694.6 | 90.390.3 |
5050 | 350350 | 1:101:10 | 100100 | 95.795.7 |
5151 | 350350 | 1:151:15 | 100100 | 92.192.1 |
5252 | 350350 | 1:201:20 | 100100 | 90.790.7 |
表11接触时间对反应影响Table 11 Contact time impact on the reaction
从实施例43~58结果来看,步骤(c)的反应最优条件为:反应温度300~400℃,HF与CF3CHClCH2CCl3摩尔比1:6~10,接触时间3~8s。
From the results of Examples 43 to 58, the optimum conditions for the reaction of the step (c) are: a reaction temperature of 300 to 400 ° C, a molar ratio of HF to CF 3 CHClCH 2 CCl 3 of 1:6 to 10, and a contact time of 3 to 8 s.
Claims (9)
- 一种反式-1,1,1,4,4,4-六氟-2-丁烯的合成方法,反式-1,1,1,4,4,4-六氟-2-丁烯的结构式如式(I)所示:Method for synthesizing trans-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,1,1,4,4,4-hexafluoro-2-butene The structural formula is as shown in formula (I):包括以下步骤:Includes the following steps:(a)原料1,1,1-三氟-2,2-二氯乙烷与CH2=CX2摩尔比1~10:1,在调聚催化剂与催化助剂存在下,极性溶剂中,反应温度80~180℃,反应压力0.8~5.0MPa下,反应1~48h,得到CF3CHClCH2CClX2,其中,X为Cl或H,调聚催化剂为0价、1价或2价的铜盐;(a) a molar ratio of 1,1,1-trifluoro-2,2-dichloroethane to CH 2 =CX 2 of from 1 to 10:1 in the presence of a telomerization catalyst and a catalytic aid in a polar solvent , the reaction temperature is 80-180 ° C, the reaction pressure is 0.8-5.0 MPa, the reaction is 1 to 48 h, and CF 3 CHClCH 2 CClX 2 is obtained , wherein X is Cl or H, and the telomerization catalyst is 0-valent, monovalent or divalent. Copper salt(b)氯气与CF3CHClCH2CClX2摩尔比1~3:1在光照下,温度-40~80℃,反应5~48h,得到CF3CHClCH2CCl3;(b) chlorine gas and CF 3 CHClCH 2 CClX 2 molar ratio of 1 ~ 3: 1 under light, temperature -40 ~ 80 ° C, reaction 5 ~ 48h, to obtain CF 3 CHClCH 2 CCl 3 ;(c)在氟化催化剂存在下,控制HF与CF3CHClCH2CCl3摩尔比为1:3~20通过列管式固定床反应器,反应温度100~500℃,接触时间0.1~10s,合成得到反式-1,1,1,4,4,4-六氟-2-丁烯。(c) controlling the molar ratio of HF to CF 3 CHClCH 2 CCl 3 in the presence of a fluorination catalyst from 1:3 to 20 through a tubular fixed-bed reactor at a reaction temperature of 100 to 500 ° C and a contact time of 0.1 to 10 s. Trans-1,1,1,4,4,4-hexafluoro-2-butene was obtained.
- 根据权利要求1所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于原料CH2=CX2为CH2=CH2、CH2=CHCl或CH2=CCl2。The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 1, wherein the raw material CH 2 =CX 2 is CH 2 =CH 2 , CH 2 =CHCl Or CH 2 =CCl 2 .
- 根据权利要求1所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于CF3CHClCH2CClX2为CF3CHClCH2CH2Cl、CF3CHClCH2CHCl2或CF3CHClCH2CCl3。The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 1, wherein CF 3 CHClCH 2 CClX 2 is CF 3 CHClCH 2 CH 2 Cl, CF 3 CHClCH 2 CHCl 2 or CF 3 CHClCH 2 CCl 3 .
- 根据权利要求1所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于步骤(a)中所述调聚催化剂为单质铜、卤代铜、卤代亚铜、水杨酸铜、草酸铜或 者乙酰丙酮铜。The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 1, wherein the telomerization catalyst in the step (a) is elemental copper or halogenated copper. , cuprous halide, copper salicylate, copper oxalate or Copper acetylacetonate.
- 根据权利要求1所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于步骤(a)中所述催化助剂为2,2-联吡啶、五甲基二乙烯三胺、三(2-吡啶基甲基)胺或三(2-二甲氨基乙基)胺。The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 1, wherein the catalytic auxiliary in the step (a) is 2,2-bipyridine. , pentamethyldiethylenetriamine, tris(2-pyridylmethyl)amine or tris(2-dimethylaminoethyl)amine.
- 根据权利要求1所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于步骤(a)中所述的极性溶剂为乙腈、甲醇、丙酮、二甲基甲酰胺或二甲基亚砜。The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 1, wherein the polar solvent in the step (a) is acetonitrile, methanol or acetone. , dimethylformamide or dimethyl sulfoxide.
- 根据权利要求1所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于步骤(c)中所述的氟化催化剂由含铁元素的化合物,含稀土金属元素的化合物,含A元素的化合物组成,其中稀土金属为La或Ce,A元素选自Ca、Al、Mg和Ti中的一种。The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 1, wherein the fluorination catalyst described in the step (c) is a compound containing an iron element A compound containing a rare earth metal element, wherein the rare earth metal is La or Ce, and the A element is selected from one of Ca, Al, Mg, and Ti.
- 根据权利要求7所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于所述的氟化催化剂由10~50%的铁元素,48~89.5%的A元素及0.5~2%的稀土元素构成。The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 7, wherein the fluorination catalyst is composed of 10 to 50% of iron, 48 to 89.5% of A element and 0.5-2% of rare earth element.
- 根据权利要求1所述的1,1,1,4,4,4-六氟-2-丁烯的合成方法,其特征在于:The method for synthesizing 1,1,1,4,4,4-hexafluoro-2-butene according to claim 1, wherein:(a)原料CH2=CX2与1,1,1-三氟-2,2-二氯乙烷摩尔比2~5:1,在铜盐和有机胺类配体存在下,于甲醇、乙腈或二甲亚砜中反应5~24h,反应温度100~130℃,反应压力1.2~2.0MPa,合成得到CF3CHClCH2CClX2,其中,X为Cl或H;(a) a molar ratio of the starting material CH 2 =CX 2 to 1,1,1-trifluoro-2,2-dichloroethane of 2 to 5:1 in the presence of a copper salt and an organic amine ligand in methanol, The reaction is carried out for 5 to 24 hours in acetonitrile or dimethyl sulfoxide, the reaction temperature is 100 to 130 ° C, the reaction pressure is 1.2 to 2.0 MPa, and CF 3 CHClCH 2 CClX 2 is synthesized, wherein X is Cl or H;(b)高压汞灯照射下,氯气与CF3CHClCH2CClX2摩尔比1.2~1.4:1于四氯化碳,1,1,2-三氯三氟乙烷或氯苯中,-10~40℃,反应12~36h,合成得到CF3CHClCH2CCl3;(b) Under a high pressure mercury lamp, the molar ratio of chlorine gas to CF 3 CHClCH 2 CClX 2 is 1.2 to 1.4:1 in carbon tetrachloride, 1,1,2-trichlorotrifluoroethane or chlorobenzene, -10~ 40 ° C, the reaction 12 ~ 36h, the synthesis of CF 3 CHClCH 2 CCl 3 ;(c)Fe基气相氟化催化剂存在下,控制HF与CF3CHClCH2CCl3摩尔比1:6~10通过列管式固定床反应器,反应温度300~400℃进行氟化反应,接触时间3~8s,得到反式-1,1,1,4,4,4-六氟-2-丁烯。 (c) In the presence of Fe-based gas phase fluorination catalyst, control the molar ratio of HF to CF 3 CHClCH 2 CCl 3 1:6-10 through a tubular fixed-bed reactor, the reaction temperature is 300-400 ° C for fluorination reaction, contact time 3 to 8 s, trans-1,1,1,4,4,4-hexafluoro-2-butene is obtained.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410667275.0A CN104370690B (en) | 2014-11-20 | 2014-11-20 | A kind of anti-form-1, the synthetic method of 1,1,4,4,4-hexafluoro-2-butylene |
CN201410667275.0 | 2014-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016078225A1 true WO2016078225A1 (en) | 2016-05-26 |
Family
ID=52549931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/072307 WO2016078225A1 (en) | 2014-11-20 | 2015-02-05 | Trans-1,1,1,4,4,4-hexafluoro-2-butene synthesis method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104370690B (en) |
WO (1) | WO2016078225A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019051389A1 (en) * | 2017-09-11 | 2019-03-14 | The Chemours Company, Fc, Llc | Liquid phase process for preparing (e)-1,1,1,4,4,4-hexafluorobut-2-ene |
CN114262255A (en) * | 2021-12-01 | 2022-04-01 | 西安近代化学研究所 | Method for synthesizing trans-1, 1,1,4,4, 4-hexafluoro-2-butene |
CN116037118A (en) * | 2023-03-31 | 2023-05-02 | 北京宇极科技发展有限公司 | Preparation method of perfluoro-3-methyl-2-butanone |
CN116874344A (en) * | 2023-09-06 | 2023-10-13 | 北京宇极科技发展有限公司 | Process for the continuous preparation of E-1, 4, 5-heptafluoro-4- (trifluoromethyl) pent-2-ene |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104529695B (en) * | 2015-01-26 | 2016-06-22 | 杭州芳环科技有限公司 | A kind of method preparing 1,1,1,4,4,4-hexafluoro-2-butylene |
CN106925354B (en) * | 2015-12-30 | 2020-04-17 | 浙江省化工研究院有限公司 | Liquid phase catalyst for preparing halogenated olefin |
CN111094503B (en) | 2017-09-11 | 2022-04-01 | 科慕埃弗西有限公司 | Azeotropic compositions comprising hydrogen fluoride and fluorocarbon |
CN108863709A (en) * | 2018-06-26 | 2018-11-23 | 浙江巨圣氟化学有限公司 | A kind of method that liquid phase light chlorination process prepares dichloro octafluorobutane |
CN109331864B (en) * | 2018-10-26 | 2019-12-31 | 东莞东阳光科研发有限公司 | Hydrogenation coupling catalyst, preparation method thereof and method for preparing 1,1,1,4,4, 4-hexafluoro-2-butene |
CN109499589B (en) * | 2018-12-17 | 2021-11-23 | 西安近代化学研究所 | Chromium-free environment-friendly catalyst for gas-phase fluorination synthesis of 1,1,1,3,3, 3-hexafluoro-2-butene |
CN109553506B (en) * | 2018-12-20 | 2021-10-01 | 西安近代化学研究所 | Method for synthesizing trans-1, 1,1,4,4, 4-hexafluoro-2-butene |
KR20210148284A (en) * | 2019-04-05 | 2021-12-07 | 더 케무어스 컴퍼니 에프씨, 엘엘씨 | Method for producing 1,1,1,4,4,4-hexafluorobut-2-ene |
CN110590494A (en) * | 2019-09-24 | 2019-12-20 | 浙江三美化工股份有限公司 | Method for synthesizing 1,1,1,4,4, 4-hexafluoro-2-butene in illumination environment |
CN111574321B (en) * | 2020-06-17 | 2021-09-03 | 广东电网有限责任公司电力科学研究院 | Preparation method of trans-1, 1,1,4,4, 4-hexafluoro-2-butene |
KR20240073031A (en) * | 2021-09-30 | 2024-05-24 | 가부시끼가이샤 레조낙 | Method for producing (E)-1,1,1,4,4,4-hexafluoro-2-butene |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5516951A (en) * | 1992-11-20 | 1996-05-14 | Daikin Industries Ltd. | Process for preparing 1,1,1,4,4,4-hexafluoro-2-butene and 1,1,1,4,4,4-hexafluorobutane |
CN102015592A (en) * | 2008-03-19 | 2011-04-13 | 纳幕尔杜邦公司 | Process for making 1,1,1,4,4,4-hexafluoro-2-butene |
CN102884030A (en) * | 2010-03-26 | 2013-01-16 | 霍尼韦尔国际公司 | Method for making hexafluoro-2-butene |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4305163A1 (en) * | 1993-02-19 | 1994-08-25 | Bayer Ag | Process for the preparation of hexafluorobutene |
RU2010147004A (en) * | 2010-11-17 | 2012-05-27 | Е.И.Дюпон де Немур энд Компани (US) | CATALYTIC SYNTHESIS OF INTERNAL FLUORBUTENES AND INTERNAL FLUOROPENTENES |
-
2014
- 2014-11-20 CN CN201410667275.0A patent/CN104370690B/en active Active
-
2015
- 2015-02-05 WO PCT/CN2015/072307 patent/WO2016078225A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5516951A (en) * | 1992-11-20 | 1996-05-14 | Daikin Industries Ltd. | Process for preparing 1,1,1,4,4,4-hexafluoro-2-butene and 1,1,1,4,4,4-hexafluorobutane |
CN102015592A (en) * | 2008-03-19 | 2011-04-13 | 纳幕尔杜邦公司 | Process for making 1,1,1,4,4,4-hexafluoro-2-butene |
CN102884030A (en) * | 2010-03-26 | 2013-01-16 | 霍尼韦尔国际公司 | Method for making hexafluoro-2-butene |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019051389A1 (en) * | 2017-09-11 | 2019-03-14 | The Chemours Company, Fc, Llc | Liquid phase process for preparing (e)-1,1,1,4,4,4-hexafluorobut-2-ene |
US10611709B2 (en) | 2017-09-11 | 2020-04-07 | The Chemours Company Fc, Llc | Liquid phase process for preparing (E)-1,1,1,4,4,4-hexafluorobut-2-ene |
CN114262255A (en) * | 2021-12-01 | 2022-04-01 | 西安近代化学研究所 | Method for synthesizing trans-1, 1,1,4,4, 4-hexafluoro-2-butene |
CN114262255B (en) * | 2021-12-01 | 2023-10-20 | 西安近代化学研究所 | Method for synthesizing trans-1, 4-hexafluoro-2-butene |
CN116037118A (en) * | 2023-03-31 | 2023-05-02 | 北京宇极科技发展有限公司 | Preparation method of perfluoro-3-methyl-2-butanone |
CN116037118B (en) * | 2023-03-31 | 2023-07-25 | 北京宇极科技发展有限公司 | Preparation method of perfluoro-3-methyl-2-butanone |
CN116874344A (en) * | 2023-09-06 | 2023-10-13 | 北京宇极科技发展有限公司 | Process for the continuous preparation of E-1, 4, 5-heptafluoro-4- (trifluoromethyl) pent-2-ene |
CN116874344B (en) * | 2023-09-06 | 2023-12-08 | 北京宇极科技发展有限公司 | Process for the continuous preparation of E-1, 4, 5-heptafluoro-4- (trifluoromethyl) pent-2-ene |
Also Published As
Publication number | Publication date |
---|---|
CN104370690B (en) | 2016-08-17 |
CN104370690A (en) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016078225A1 (en) | Trans-1,1,1,4,4,4-hexafluoro-2-butene synthesis method | |
JP4864879B2 (en) | Method for synthesizing 1,3,3,3-tetrafluoropropene | |
JP5484820B2 (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
JP5732492B2 (en) | process | |
JP5704264B2 (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
JP6271676B2 (en) | Method for producing tetrafluoropropene | |
JP5118645B2 (en) | Method for producing a fluorinated organic compound | |
JP5926297B2 (en) | Selective catalytic catalytic dehydrochlorination of hydrochlorofluorocarbons | |
KR20080066856A (en) | Method for producing fluorinated organic compounds | |
CN102858725A (en) | Process for the manufacture of tetrafluoroolefins | |
US20190169099A1 (en) | Process for the preparation of fluoroolefin compounds | |
TW200800846A (en) | Method for producing 1,2,3,4-tetrachlorohexafluorobutane | |
KR101950323B1 (en) | Selective catalytic dehydrochlorination of hydrochlorofluorocarbons | |
US8889924B2 (en) | Process for the production of 1,3,3,3-tetrafluoropropene | |
JP2016505578A (en) | Method for producing 1,3,3,3-tetrafluoropropene | |
TW201238658A (en) | Selective catalytic dehydrochlorination of hydrochlorofluorocarbons | |
CN116060010B (en) | Initiator, fluorination catalyst and process for the preparation of E-1, 4-hexafluoro-2-butene | |
TWI828924B (en) | How to make alkanes | |
JP2005254064A (en) | Catalyst for fluorination reaction | |
JP2019151629A (en) | Method of producing compound | |
JP2019218285A (en) | Process for producing fluorine compound | |
MX2008008572A (en) | Method for producing fluorinated organic compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861182 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15861182 Country of ref document: EP Kind code of ref document: A1 |