JP2013245141A - Method and apparatus for producing glass preform - Google Patents

Method and apparatus for producing glass preform Download PDF

Info

Publication number
JP2013245141A
JP2013245141A JP2012120624A JP2012120624A JP2013245141A JP 2013245141 A JP2013245141 A JP 2013245141A JP 2012120624 A JP2012120624 A JP 2012120624A JP 2012120624 A JP2012120624 A JP 2012120624A JP 2013245141 A JP2013245141 A JP 2013245141A
Authority
JP
Japan
Prior art keywords
partition plate
core tube
glass
glass particulate
particulate deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012120624A
Other languages
Japanese (ja)
Other versions
JP5935508B2 (en
Inventor
Kazumasa Makihara
和昌 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012120624A priority Critical patent/JP5935508B2/en
Publication of JP2013245141A publication Critical patent/JP2013245141A/en
Application granted granted Critical
Publication of JP5935508B2 publication Critical patent/JP5935508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing a glass preform, whereby the glass preform of high quality can be obtained by satisfactorily performing sintering while preventing increase in cost.SOLUTION: A method for producing a glass preform comprises, while feeding inert gas from a lower part of a furnace core tube 11, moving a glass particulate deposited body 14 placed inside the furnace core tube 11 downward or upward, thereby heating and sintering the same by heat in a heat zone in the furnace core tube 11. A lid 12 is installed at an upper part of the furnace core tube 11, and a partition plate 20 is installed above the glass particulate deposited body 14. When the glass particulate deposited body 14 is located above a prescribed position, the partition plate 20 is moved with the glass particulate deposited body 14. When the glass particulate deposited body 14 is located below the prescribed position, the partition plate 20 is placed at a stop position that is ≥500 mm below an upper end of the lid 12 and only the glass particulate deposited body 14 is moved.

Description

本発明は、ガラス微粒子堆積体を加熱炉内で加熱して焼結させるガラス母材の製造方法および製造装置に関する。   The present invention relates to a glass base material manufacturing method and manufacturing apparatus for heating and sintering a glass particulate deposit in a heating furnace.

光ファイバの母材となるガラス母材は、出発棒にガラス微粒子を堆積させたガラス微粒子堆積体を炉心管内に挿入して、炉心管の下端からヘリウムガス等の不活性ガスを供給し、ガラス微粒子堆積体を軸回りに回転させながら加熱して焼結させることで得られる。   The glass base material that is the base material of the optical fiber is a glass base material in which glass fine particles are deposited on a starting rod is inserted into the core tube, and an inert gas such as helium gas is supplied from the lower end of the core tube. It is obtained by heating and sintering the fine particle deposit while rotating around the axis.

上記のようにガラス微粒子堆積体を焼結する際に、ガラス微粒子堆積体の上方及び下方に熱遮蔽具を配置し、輻射熱の逃散を制御して炉心管の温度ムラや自然対流を抑制することが知られている(例えば、特許文献1参照)。   When sintering the glass particulate deposit as described above, heat shields are placed above and below the glass particulate deposit to control the escape of radiant heat and suppress temperature irregularities and natural convection in the core tube. Is known (see, for example, Patent Document 1).

また、光ファイバ母材から光ファイバを線引きする際に、線引室の光ファイバ母材の上部空間で線引室の周囲壁面近傍以外の空間を上下方向に画成する仕切板を設けて線引き時の線径変動を小さく抑えることも知られている(例えば、特許文献2,3参照)。   Also, when drawing an optical fiber from the optical fiber preform, a partition plate that vertically defines a space other than the vicinity of the surrounding wall surface of the drawing chamber in the upper space of the optical fiber preform in the drawing chamber is provided. It is also known to keep the wire diameter variation small (for example, see Patent Documents 2 and 3).

特開2000−219519号公報JP 2000-219519 A 特開平5−147969号公報JP-A-5-147969 特開平11−343137号公報Japanese Patent Laid-Open No. 11-343137

ところで、ガラス微粒子堆積体を炉心管内の上方から下方に移動させて焼結が進んでいくと、炉心管内におけるガラス微粒子堆積体の上部空間が大きくなる。この上部空間では、不活性ガスの上昇気流により乱流が発生することがある。このような乱流が発生すると、炉心管内は圧力変動が大きくなって負圧となり、出発棒に接続されたダミー棒と炉心管の上蓋との隙間から炉心管内に外気が巻き込まれることがある。これにより、焼結時にガラス母材に不純物が混入し、焼結後のガラス母材から線引きして得られた光ファイバの伝送損失が増加してしまうことがある。これを防ぐため、炉心管内への不活性ガスの供給量を多くして外気の巻き込みを抑制することも考えられるが、使用するガス量が増加するためにコストアップを招いてしまう。   By the way, when the glass fine particle deposit is moved from the upper side to the lower side in the furnace core tube and the sintering proceeds, the upper space of the glass fine particle deposit body in the furnace core tube becomes larger. In this upper space, turbulent flow may occur due to the rising airflow of the inert gas. When such a turbulent flow occurs, the pressure fluctuation in the reactor core tube becomes large and becomes negative pressure, and external air may be caught in the reactor core tube through a gap between the dummy rod connected to the starting rod and the top cover of the reactor core tube. Thereby, impurities may be mixed in the glass base material during sintering, and transmission loss of the optical fiber obtained by drawing from the glass base material after sintering may increase. In order to prevent this, it may be possible to suppress the entrainment of outside air by increasing the amount of inert gas supplied into the furnace core tube, but this increases the amount of gas used, resulting in an increase in cost.

特許文献1の技術によれば、熱遮蔽具によって輻射熱の逃散を制御して炉心管の温度ムラや自然対流を抑制することは可能であるが、外気の巻き込みを抑制することは困難である。また、特許文献2,3の技術では、光ファイバの線引き時における線径変動を小さく抑えることができるが、単に光ファイバの線引き時の線径変動を抑える技術をガラス微粒子堆積体の焼結に用いても、ガラス微粒子堆積体の焼結を良好に行うことは困難である。   According to the technique of Patent Document 1, it is possible to control the radiant heat escape by the heat shield to suppress the temperature unevenness and natural convection of the core tube, but it is difficult to suppress the entrainment of outside air. In addition, in the techniques of Patent Documents 2 and 3, the fluctuation of the diameter of the optical fiber can be suppressed to a small level, but the technique of simply suppressing the fluctuation of the diameter of the optical fiber when the optical fiber is drawn is used for sintering of the glass fine particle deposit. Even if it is used, it is difficult to satisfactorily sinter the glass particulate deposit.

本発明の目的は、コストアップを抑えつつガラス微粒子堆積体を良好に焼結して、高品質なガラス母材を得ることが可能なガラス母材の製造方法および製造装置を提供することにある。   An object of the present invention is to provide a glass base material manufacturing method and a manufacturing apparatus capable of obtaining a high-quality glass base material by satisfactorily sintering a glass particulate deposit while suppressing an increase in cost. .

上記課題を解決することのできる本発明のガラス母材の製造方法は、炉心管の下部から前記炉心管内に不活性ガスを供給しながら、前記炉心管内に配置したガラス微粒子堆積体を下方または上方へ移動させて前記炉心管におけるヒートゾーンの熱により加熱して焼結させるガラス母材の製造方法であって、
前記炉心管の上部に蓋部を設け、前記ガラス微粒子堆積体の上方に仕切り板を設け、
前記ガラス微粒子堆積体が所定の位置より上方にあるときは、前記仕切り板を前記ガラス微粒子堆積体ととともに移動させ、
前記ガラス微粒子堆積体が所定の位置より下方にあるときは、前記仕切り板を前記蓋部の上端より500mm以上下方に離れた停止位置に配置させて、前記ガラス微粒子堆積体のみを移動させることを特徴とする。
The method for producing a glass base material of the present invention capable of solving the above-described problem is to supply an inert gas from the lower part of the core tube into the core tube, while lowering or upward the glass particulate deposit disposed in the core tube. A method of manufacturing a glass base material that is heated and sintered by heat of a heat zone in the furnace core tube,
A lid is provided at the top of the furnace core tube, a partition plate is provided above the glass particulate deposit,
When the glass particulate deposit is above a predetermined position, the partition plate is moved together with the glass particulate deposit,
When the glass particulate deposit is below a predetermined position, the partition plate is disposed at a stop position 500 mm or more below the upper end of the lid, and only the glass particulate deposit is moved. Features.

本発明のガラス母材の製造装置は、出発種棒によって吊り下げられたガラス微粒子堆積体を上下に移動可能に収容する炉心管と、
前記炉心管の上部に設けられた蓋部と、
前記炉心管の下部から前記炉心管内に不活性ガスを供給するガス供給部と、
前記炉心管の外周側に設けられた熱源と、
前記ガラス微粒子堆積体の上方における前記出発種棒に設けられた仕切り板と、
前記出発種棒に設けられて前記ガラス微粒子堆積体の上部近傍で前記仕切り板を支持する仕切り板保持部と、
前記仕切り板を前記蓋部の上端より500mm以上下方に離れた停止位置に留める配置される留め部と、を備え、
前記ガラス微粒子堆積体が所定の位置より上方にあるときは、前記仕切り板が前記仕切り板保持部に支持された状態で前記ガラス微粒子堆積体ととともに移動され、
前記ガラス微粒子堆積体が所定の位置より下方にあるときは、前記仕切り板が前記留め部により移動が規制されて前記ガラス微粒子堆積体のみが移動されることを特徴とする。
An apparatus for producing a glass base material of the present invention includes a furnace tube that accommodates a glass particulate deposit suspended by a starting seed bar so as to be movable up and down,
A lid provided at the top of the furnace core tube;
A gas supply unit for supplying an inert gas into the furnace core tube from a lower part of the core tube;
A heat source provided on the outer peripheral side of the core tube,
A partition plate provided on the starting seed bar above the glass particulate deposit;
A partition plate holding part that is provided on the starting seed bar and supports the partition plate in the vicinity of the upper part of the glass particulate deposit;
A fastening part arranged to fasten the partition plate at a stop position 500 mm or more away from the upper end of the lid part, and
When the glass particulate deposit is above a predetermined position, the partition plate is moved together with the glass particulate deposit while being supported by the partition plate holder,
When the glass particulate deposit is located below a predetermined position, movement of the partition plate is restricted by the retaining portion, and only the glass particulate deposit is moved.

本発明によれば、ガラス微粒子堆積体が炉心管内の下方側に配置されると、仕切り板と炉心管の上端との間にバッファ空間が形成される。したがって、ガラス微粒子堆積体の上部空間で乱流が生じたとしても、この乱流は仕切り板によって遮られ、乱流によって生じる圧力変動はバッファ空間で吸収される。そのため、乱流により外気が巻き込まれることはなく、このことがガラス微粒子堆積体の焼結箇所に影響を与えることはない。したがって、焼結時におけるガラス母材への不純物の混入を防止することができ、焼結後のガラス母材を線引きして得られる光ファイバを、伝送特性の良好なものとすることができる。
また、バッファとなる空間を炉心管に予め設けておくと、製造装置自体が大型化し、また上部空間の拡がりによる乱流の発生を抑えるため、不活性ガスの供給量も多く必要となる。そこで本発明では、ガラス微粒子堆積体が炉心管の上方側に配置されているときには仕切り板をガラス微粒子堆積体とともに移動させるため、ガラス微粒子堆積体の上部空間が拡がることがなく、この空間で乱流が発生することがない。このため、不活性ガスの供給量をそれほど多くする必要がなく、設備が大型化することもない。このように、製造費や設備費の増加を抑制しつつ、高品質なガラス母材を得ることができる。
なお、仕切り板を焼結終了時までガラス微粒子堆積体とともに移動させることができれば、ガラス微粒子堆積体の上部空間において乱流は発生しないと考えられるが、バッファ空間が大きくなることによりバッファ空間で乱流が発生しやすくなること、仕切り板がヒートゾーンに入ってしまうこと、などの問題が生じるため、本発明では、仕切り板を所定の位置で係止するようにしている。
According to the present invention, when the glass particulate deposit is disposed on the lower side in the core tube, a buffer space is formed between the partition plate and the upper end of the core tube. Therefore, even if turbulent flow is generated in the upper space of the glass particulate deposit, this turbulent flow is blocked by the partition plate, and pressure fluctuations caused by the turbulent flow are absorbed in the buffer space. Therefore, outside air is not involved by turbulent flow, and this does not affect the sintered portion of the glass fine particle deposit. Accordingly, it is possible to prevent impurities from being mixed into the glass base material during sintering, and an optical fiber obtained by drawing the glass base material after sintering can have good transmission characteristics.
In addition, if a space serving as a buffer is provided in the core tube in advance, the manufacturing apparatus itself is increased in size and a large amount of inert gas is required to suppress the occurrence of turbulent flow due to the expansion of the upper space. Therefore, in the present invention, when the glass particulate deposit is disposed on the upper side of the core tube, the partition plate is moved together with the glass particulate deposit, so that the upper space of the glass particulate deposit does not expand, and the space is disturbed in this space. There is no flow. For this reason, it is not necessary to increase the supply amount of the inert gas so much, and the facility is not increased in size. In this manner, a high-quality glass base material can be obtained while suppressing an increase in manufacturing costs and equipment costs.
If the partition plate can be moved together with the glass fine particle deposit until the end of sintering, it is considered that turbulent flow will not occur in the upper space of the glass fine particle deposit, but the buffer space becomes turbulent and becomes turbulent. In the present invention, the partition plate is locked at a predetermined position because problems such as easy flow generation and the partition plate entering the heat zone occur.

本発明に係るガラス母材の製造装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the manufacturing apparatus of the glass base material which concerns on this invention. ガラス母材の焼結作業状態を示す図であって、(a)および(b)はそれぞれ図1の状態から焼結作業が進行した際の製造装置の状態を示す概略構成図である。It is a figure which shows the sintering operation state of a glass base material, Comprising: (a) And (b) is a schematic block diagram which shows the state of a manufacturing apparatus when a sintering operation advances from the state of FIG. 1, respectively. 仕切り板を備えていない製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus which is not provided with the partition plate. 炉内ガス流量と光ファイバの伝送損失不良率との関係を示すグラフである。It is a graph which shows the relationship between the gas flow rate in a furnace, and the transmission loss defect rate of an optical fiber.

以下、本発明に係るガラス母材の製造方法および製造装置の実施の形態の例を、図面を参照して説明する。
図1に示すように、本実施形態のガラス母材を製造する製造装置10は、上部が蓋部12により閉塞され、出発種棒15によって吊り下げられたガラス微粒子堆積体14を上下に移動可能に収容する炉心管11と、炉心管11の外周側に設けられた熱源であるヒータ13とを備えている。また、製造装置10は、ヘリウムガス等の不活性ガスを炉心管11内に供給するガス供給部17と、不要なガスを炉心管11から排出するガス排出部18とを備えている。
Hereinafter, an example of an embodiment of a glass base material manufacturing method and a manufacturing apparatus according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the manufacturing apparatus 10 for manufacturing the glass base material of the present embodiment is capable of moving up and down a glass particulate deposit 14 whose upper part is closed by a lid 12 and suspended by a starting seed rod 15. And a heater 13 which is a heat source provided on the outer peripheral side of the core tube 11. The manufacturing apparatus 10 also includes a gas supply unit 17 that supplies an inert gas such as helium gas into the core tube 11, and a gas discharge unit 18 that discharges unnecessary gas from the core tube 11.

ガラス微粒子堆積体14は、出発種棒15によって炉心管11内に吊り下げられている。ガラス微粒子堆積体14は出発種棒15にガラス微粒子を堆積させたものであり、出発種棒15の上部はダミー棒に接続されたものである。出発種棒15は、そのダミー棒の部分が把持機構(図示略)に把持されている。把持機構に把持された出発種棒15は、把持機構によって軸回りに回転されながら上方から下方へ向けて移動される。製造装置10は、ヒータ13により炉心管11内の所定位置にヒートゾーンを形成し、ヒートゾーン内に配置したガラス微粒子堆積体14を加熱して焼結させる。これにより、ガラス微粒子堆積体14は、下方へ移動されながらヒートゾーンからの熱により下方側から順に加熱して焼結される。その際、ガス供給部17から炉心管11内の下部に不活性ガスが供給されつつ、炉心管11内の不要なガスはガス排出部18を介して炉心管11の上部から排出される。   The glass particulate deposit 14 is suspended in the core tube 11 by a starting seed rod 15. The glass particulate deposit 14 is obtained by depositing glass particulates on a starting seed rod 15, and the upper portion of the starting seed rod 15 is connected to a dummy rod. The starting seed bar 15 has its dummy bar portion held by a holding mechanism (not shown). The starting seed bar 15 gripped by the gripping mechanism is moved from above to below while being rotated about the axis by the gripping mechanism. The manufacturing apparatus 10 forms a heat zone at a predetermined position in the furnace core tube 11 by the heater 13, and heats and sinters the glass fine particle deposit 14 disposed in the heat zone. Thereby, the glass particulate deposit 14 is heated and sintered sequentially from the lower side by the heat from the heat zone while being moved downward. At that time, an inert gas is supplied from the gas supply unit 17 to the lower portion of the core tube 11, and unnecessary gas in the core tube 11 is discharged from the upper portion of the core tube 11 through the gas discharge unit 18.

出発種棒15には、ガラス微粒子堆積体14の上部近傍に、出発種棒15の径方向外方へ張り出した仕切り板保持部16が設けられている。また、出発種棒15には、仕切り板保持部16よりも上方側に、仕切り板20が設けられている。この仕切り板20は、中心に形成された挿通孔21に出発種棒15が挿通された状態で、仕切り板保持部16に係止されてガラス微粒子堆積体14の上部近傍に配置されている。この仕切り板20は、その外径が、炉心管11の内径よりも僅かに小さくされている。これにより、仕切り板20は、ガラス微粒子堆積体14とともに移動可能とされている。そして、仕切り板20が下方へ移動されることで、仕切り板20と炉心管11の蓋部12との間に、バッファ空間Sが形成される。   The starting seed bar 15 is provided with a partition plate holding portion 16 that projects outward in the radial direction of the starting seed bar 15 in the vicinity of the upper portion of the glass particulate deposit 14. In addition, the starting seed bar 15 is provided with a partition plate 20 above the partition plate holding portion 16. The partition plate 20 is disposed in the vicinity of the upper portion of the glass particulate deposit body 14 while being locked to the partition plate holding portion 16 in a state where the starting seed rod 15 is inserted into the insertion hole 21 formed in the center. The outer diameter of the partition plate 20 is slightly smaller than the inner diameter of the core tube 11. Thereby, the partition plate 20 is movable together with the glass fine particle deposit 14. And the buffer space S is formed between the partition plate 20 and the cover part 12 of the core tube 11 by moving the partition plate 20 below.

炉心管11の内面には、ヒータ13よりも上方側に留め部22が設けられており、この留め部22は炉心管11の内面から径方向内方へ突出している。そして、この留め部22には、ガラス微粒子堆積体14とともに下方へ移動される仕切り板20が係止される。これにより、仕切り板20は、留め部22によって係止された時点から下方への移動が規制されて、それ以降は、ガラス微粒子堆積体14だけが下方へ移動されることとなる。この留め部22によって下方への移動が規制された仕切り板20の停止位置は、平板状の蓋部12の内面における上端位置(すなわち本例では炉心管11の上端)より500mm以上下方に離れた位置である。   A retaining portion 22 is provided on the inner surface of the core tube 11 above the heater 13, and the retaining portion 22 projects radially inward from the inner surface of the reactor core tube 11. And the partition plate 20 moved downward together with the glass fine particle deposit 14 is locked to the fastening portion 22. As a result, the downward movement of the partition plate 20 from the time when it is locked by the fastening portion 22 is restricted, and thereafter, only the glass particulate deposit 14 is moved downward. The stop position of the partition plate 20 whose downward movement is restricted by the fastening portion 22 is separated by 500 mm or more below the upper end position (that is, the upper end of the core tube 11 in this example) on the inner surface of the flat lid portion 12. Position.

次に、ガラス微粒子堆積体14を焼結させる場合について説明する。
まず、仕切り板20の挿通孔21に出発種棒15を挿通させ、仕切り板保持部16に係止させた状態としておく。
また、出発種棒15を把持機構に把持させることで、炉心管11内の上方側にガラス微粒子堆積体14を吊り下げる(図1参照)。
Next, the case where the glass fine particle deposit body 14 is sintered will be described.
First, the starting seed bar 15 is inserted into the insertion hole 21 of the partition plate 20 and is locked to the partition plate holding portion 16.
Further, the glass seed deposit 14 is suspended from the upper side of the core tube 11 by causing the starting seed bar 15 to be gripped by the gripping mechanism (see FIG. 1).

次に、ヒータ13により炉心管11内を約1500℃に加熱することで、炉心管11内の所定位置(ヒータ13により囲まれた範囲)にヒートゾーンを形成する。すると、ガラス微粒子堆積体14におけるヒートゾーンに配置された下方部分が加熱して焼結される。   Next, the inside of the core tube 11 is heated to about 1500 ° C. by the heater 13, thereby forming a heat zone at a predetermined position in the core tube 11 (a range surrounded by the heater 13). Then, the lower part arrange | positioned in the heat zone in the glass particulate deposit 14 is heated and sintered.

また、ガス供給部17から炉心管11の下部へヘリウムガス等の不活性ガスを供給する。すると、この不活性ガスは、炉心管11の内周面とガラス微粒子堆積体14の外周面との間を通過してガラス微粒子堆積体14の上方側へ送り込まれ、その後、ガス排出部18から排出される。   Further, an inert gas such as helium gas is supplied from the gas supply unit 17 to the lower part of the furnace core tube 11. Then, this inert gas passes between the inner peripheral surface of the core tube 11 and the outer peripheral surface of the glass fine particle deposit 14 and is sent to the upper side of the glass fine particle deposit 14. Discharged.

把持機構によって出発種棒15とともにガラス微粒子堆積体14を下降させることで、ヒートゾーンでの焼結位置を次第にガラス微粒子堆積体14の上方側へ移動させる。
このようにすると、仕切り板20は、ガラス微粒子堆積体14とともに下方へ移動する。これにより、仕切り板20と炉心管11の蓋部12との間に、徐々に拡がるバッファ空間Sが形成される。
By lowering the glass fine particle deposit 14 together with the starting seed bar 15 by the gripping mechanism, the sintering position in the heat zone is gradually moved to the upper side of the glass fine particle deposit 14.
In this way, the partition plate 20 moves downward together with the glass particulate deposit 14. Thereby, a buffer space S that gradually expands is formed between the partition plate 20 and the lid portion 12 of the core tube 11.

さらに、ガラス微粒子堆積体14が下降されて所定の位置(図2(a)に示す位置)に達すると、仕切り板20が留め部22に係止される。すると、それ以降では、仕切り板20は、ガラス微粒子堆積体14とともに下方へ移動することなく、蓋部12の上端より500mm以上下方に離れた留め部22との係止位置である停止位置に留まることとなる。その後は、図2(b)に示すように、ガラス微粒子堆積体14のみが下降されることとなる。   Further, when the glass particulate deposit 14 is lowered and reaches a predetermined position (position shown in FIG. 2A), the partition plate 20 is locked to the fastening portion 22. Then, after that, the partition plate 20 does not move downward together with the glass fine particle deposit 14, but stays at a stop position that is a locking position with the fastening portion 22 that is separated by 500 mm or more from the upper end of the lid portion 12. It will be. After that, as shown in FIG. 2 (b), only the glass particulate deposit 14 is lowered.

ガラス微粒子堆積体14が炉心管11内を下方へ移動し、炉心管11内でガラス微粒子堆積体14の上部空間が大きくなると、上部空間では、不活性ガスの上昇気流により乱流が発生することがある。   When the glass fine particle deposit 14 moves downward in the core tube 11 and the upper space of the glass fine particle deposit 14 increases in the core tube 11, turbulent flow is generated in the upper space due to the rising air flow of the inert gas. There is.

このような乱流が発生すると、図3に示すように、仕切り板20を備えていない装置では、炉心管11内は圧力変動が大きくなって負圧となり、炉心管11の蓋部12と出発種棒15との隙間から炉心管11内に外気が巻き込まれやすい。これにより、焼結時にガラス母材に不純物が混入しやすくなり、焼結後のガラス母材から光ファイバを線引きすると、その光ファイバの伝送損失が大きくなる場合がある。この場合、炉心管11内への不活性ガスの供給量を多くして外気の巻き込みを抑制すると、使用するガス量が増加してコストが嵩んでしまう。   When such a turbulent flow occurs, as shown in FIG. 3, in an apparatus that does not include the partition plate 20, the pressure fluctuation in the core tube 11 becomes large and a negative pressure is generated. Outside air is likely to be caught in the core tube 11 through the gap with the seed rod 15. Thereby, impurities are likely to be mixed into the glass base material during sintering, and when the optical fiber is drawn from the sintered glass base material, transmission loss of the optical fiber may increase. In this case, if the amount of inert gas supplied into the core tube 11 is increased to suppress the entrainment of outside air, the amount of gas used increases and the cost increases.

これに対して、本実施形態では、ガラス微粒子堆積体14が下降すると、仕切り板20と炉心管11の蓋部12との間にバッファ空間Sが形成される。そのため、ガラス微粒子堆積体14の上部空間で乱流が生じたとしても、図2(a),(b)に示すように、この乱流は仕切り板20によって遮られる。そして、乱流によって生じる圧力変動はバッファ空間Sで吸収され、ガラス微粒子堆積体14の焼結箇所へ影響を与えることはない。したがって、焼結時におけるガラス母材への不純物の混入を防止することができ、この焼結後のガラス母材から光ファイバを線引きして製造することで、伝送特性の良好な光ファイバを得ることができる。   On the other hand, in this embodiment, when the glass particulate deposit 14 is lowered, a buffer space S is formed between the partition plate 20 and the lid portion 12 of the core tube 11. Therefore, even if a turbulent flow occurs in the upper space of the glass particulate deposit 14, the turbulent flow is blocked by the partition plate 20 as shown in FIGS. The pressure fluctuation caused by the turbulent flow is absorbed in the buffer space S and does not affect the sintered portion of the glass particulate deposit 14. Therefore, mixing of impurities into the glass base material during sintering can be prevented, and an optical fiber having good transmission characteristics can be obtained by drawing an optical fiber from the glass base material after sintering. be able to.

また、ガラス微粒子堆積体14が炉心管11の上方側に配置されているときには仕切り板20をガラス微粒子堆積体14とともに移動させるため、ガラス微粒子堆積体14の上部空間が拡がることがなく、この空間で乱流が発生することがない。したがって、外気の巻き込みを抑えるために不活性ガスの供給量を多くする必要もなくすことができる。しかも、バッファとなる空間を予め炉心管11に設けておくような設備の大型化も必要なくなる。このように、製造費や設備費の増加を抑制しつつ良好に焼結して不良率を低下させ、高品質なガラス母材を得ることができる。   Further, since the partition plate 20 is moved together with the glass fine particle deposit 14 when the glass fine particle deposit 14 is disposed on the upper side of the core tube 11, the upper space of the glass fine particle deposit 14 does not expand, and this space There is no turbulence. Therefore, it is possible to eliminate the need to increase the supply amount of the inert gas in order to suppress the entrainment of outside air. In addition, it is not necessary to increase the size of the facility in which a space serving as a buffer is provided in the core tube 11 in advance. As described above, it is possible to obtain a high-quality glass base material by satisfactorily sintering and reducing a defect rate while suppressing an increase in manufacturing cost and equipment cost.

なお、バッファ空間Sは、500mm以上の高さ方向の寸法がないと、外気を巻き込んだ際に外気がバッファ空間Sを通過してガラス微粒子堆積体14側へ入り込むおそれがある。したがって、本実施形態では、仕切り板20を蓋部12の上端より500mm以上下方に離れた停止位置に配置させることで、バッファ空間Sの厚みを十分に確保し、外気の巻き込みを防止している。但し、バッファ空間Sが大きくなりすぎると、バッファ空間Sで乱流が発生しやすくなる、仕切り板20がヒートゾーンに入ってしまう、などの問題が生じるため、少なくともヒートゾーンの上方に仕切り板20を配置させるようにしている。   If the buffer space S does not have a dimension in the height direction of 500 mm or more, the outside air may pass through the buffer space S and enter the glass particulate deposit 14 side when the outside air is involved. Therefore, in the present embodiment, the partition plate 20 is disposed at a stop position separated by 500 mm or more from the upper end of the lid portion 12 to sufficiently secure the thickness of the buffer space S and prevent the outside air from being caught. . However, if the buffer space S becomes too large, turbulent flow is likely to occur in the buffer space S and the partition plate 20 enters the heat zone. Therefore, at least the partition plate 20 above the heat zone. Is arranged.

なお、上記実施形態では、ガラス微粒子堆積体14を下降させることで長手方向にわたって焼結させる場合を例示したが、ガラス微粒子堆積体14を上昇させながら焼結を行うこともできる。この場合、まず炉心管11内の下方側にガラス微粒子堆積体14を配置させ、ガラス微粒子堆積体14を上昇させていく。仕切り板20は、焼結開始時には停止位置(留め部22によって係止される位置)に配置され、ガラス微粒子堆積体14のみが上昇されつつ焼結されていく。そして、ガラス微粒子堆積体14の上昇の途中(図2(a)に示す所定の位置)から仕切り板20もガラス微粒子堆積体14とともに上方へ移動されることとなる。この場合でも、焼結開始時に炉心管11内でガラス微粒子堆積体14の上部空間が大きくなるが、仕切り板20によって乱流や圧力変動の影響をなくして焼結を行うことができる。   In the above embodiment, the case where the glass fine particle deposit 14 is lowered to sinter along the longitudinal direction is exemplified. However, the glass fine particle deposit 14 can be sintered while being raised. In this case, first, the glass particulate deposit 14 is arranged on the lower side in the core tube 11 and the glass particulate deposit 14 is raised. The partition plate 20 is disposed at a stop position (position locked by the fastening portion 22) at the start of sintering, and only the glass fine particle deposit 14 is raised and sintered. The partition plate 20 is also moved upward together with the glass fine particle deposit 14 from the middle of the rise of the glass fine particle deposit 14 (predetermined position shown in FIG. 2A). Even in this case, although the upper space of the glass particulate deposit 14 becomes large in the furnace core tube 11 at the start of sintering, the partition plate 20 can perform the sintering without the influence of turbulent flow or pressure fluctuation.

また、上記実施形態では、平板状の蓋部12を例示して説明したが、蓋部の形状はこれに限らない。炉心管の上端位置よりさらに上方にバッファ空間が形成されるような帽子状の蓋部としてもよい。   Moreover, in the said embodiment, although the flat cover part 12 was illustrated and demonstrated, the shape of a cover part is not restricted to this. It is good also as a cap-shaped lid part in which a buffer space is formed further above the upper end position of the core tube.

本発明に係るガラス母材の製造方法および製造装置の作用効果を確認するためにガラス微粒子堆積体の焼結を行う例を示す。   An example in which a glass fine particle deposit is sintered in order to confirm the effects of the method and apparatus for producing a glass base material according to the present invention will be described.

炉心管の内径:250mm
ガラス微粒子堆積体の外径:200mm
焼結温度:1500℃
Inner diameter of the core tube: 250 mm
Outer diameter of glass particulate deposit: 200mm
Sintering temperature: 1500 ° C

実施例として、ガラス微粒子堆積体の上部に仕切り板が設けられ、蓋部の上端より500mmの位置を停止位置として仕切り板が留まる製造装置(図1参照)を用いて、ガラス微粒子堆積体を焼結させる。また、比較例として、仕切り板を備えていない製造装置(図3参照)でガラス微粒子堆積体を焼結させる。   As an example, the glass fine particle deposit is fired using a manufacturing apparatus (see FIG. 1) in which a partition plate is provided on the upper part of the glass fine particle deposit and the partition plate stays at a position 500 mm from the upper end of the lid. Tie. Further, as a comparative example, the glass fine particle deposit is sintered by a manufacturing apparatus (see FIG. 3) that does not include a partition plate.

実施例及び比較例のそれぞれで、不活性ガスの供給量を変えてガラス微粒子堆積体を焼結させ、得られるガラス母材から光ファイバを製造し、各光ファイバの伝送損失を測定する。測定する伝送損失の内、基準値より高くなったものを不良ファイバとし、その不良ファイバの発生率を各炉内ガス流量において算出した結果を図4に示す。なお、図4では、仕切り板を備えていない製造装置(図3参照)で乱流によるガラス母材への影響が生じない程度に供給されるガス流量を100(%)とし、実施例、比較例ともに、これとの比率でガス流量を表している。   In each of the examples and comparative examples, the glass fine particle deposits are sintered by changing the supply amount of the inert gas, an optical fiber is manufactured from the obtained glass base material, and the transmission loss of each optical fiber is measured. FIG. 4 shows the result of calculating the occurrence rate of the defective fiber at each furnace gas flow rate, with the measured transmission loss being higher than the reference value as a defective fiber. In FIG. 4, the gas flow rate supplied to the extent that the turbulent flow does not affect the glass base material in a manufacturing apparatus (see FIG. 3) that does not include a partition plate is set to 100 (%). In both examples, the gas flow rate is expressed in proportion to this.

図4に示すように、実施例では、炉内ガス流量を20%削減しても光ファイバの伝送損失不良率は増加しない。つまり、実施例では、伝送損失不良率を増加させることなく、比較例と比べて炉内ガス流量を80%に低減させてコストダウンが図れることがわかる。   As shown in FIG. 4, in the embodiment, even if the furnace gas flow rate is reduced by 20%, the transmission loss defect rate of the optical fiber does not increase. That is, it can be seen that in the example, the gas flow rate in the furnace can be reduced to 80% and the cost can be reduced without increasing the transmission loss defect rate.

これに対して、比較例では、炉内ガス流量を削減することで、光ファイバの伝送損失不良率が急激に増加する。例えば、炉内ガス流量を20%削減すると、光ファイバの伝送損失不良率は80%を超えるほどに増加する。このため、仕切り板を備えていない製造装置では、不活性ガスの供給量を多くして外気の巻き込みを防ぐ必要があり、使用するガス量が実施例より増加するためにコストアップを招いてしまうことがわかる。   On the other hand, in the comparative example, the transmission loss defect rate of the optical fiber is rapidly increased by reducing the gas flow rate in the furnace. For example, when the gas flow rate in the furnace is reduced by 20%, the transmission loss defect rate of the optical fiber increases to exceed 80%. For this reason, in a manufacturing apparatus that does not include a partition plate, it is necessary to increase the supply amount of inert gas to prevent entrainment of outside air, resulting in an increase in cost because the amount of gas used is greater than in the embodiment. I understand that.

10:製造装置、11:炉心管、12:蓋部、13:ヒータ、14:ガラス微粒子堆積体、16:仕切り板保持部、20:仕切り板、22:留め部 10: Manufacturing apparatus, 11: Core tube, 12: Lid, 13: Heater, 14: Glass particulate deposit, 16: Partition plate holder, 20: Partition plate, 22: Fastener

Claims (2)

炉心管の下部から前記炉心管内に不活性ガスを供給しながら、前記炉心管内に配置したガラス微粒子堆積体を下方または上方へ移動させて前記炉心管におけるヒートゾーンの熱により加熱して焼結させるガラス母材の製造方法であって、
前記炉心管の上部に蓋部を設け、前記ガラス微粒子堆積体の上方に仕切り板を設け、
前記ガラス微粒子堆積体が所定の位置より上方にあるときは、前記仕切り板を前記ガラス微粒子堆積体ととともに移動させ、
前記ガラス微粒子堆積体が所定の位置より下方にあるときは、前記仕切り板を前記蓋部の上端より500mm以上下方に離れた停止位置に配置させて、前記ガラス微粒子堆積体のみを移動させることを特徴とするガラス母材の製造方法。
While supplying an inert gas from the lower part of the core tube, the glass particulate deposit disposed in the core tube is moved downward or upward to be heated by the heat of the heat zone in the core tube and sintered. A method for producing a glass base material,
A lid is provided at the top of the furnace core tube, a partition plate is provided above the glass particulate deposit,
When the glass particulate deposit is above a predetermined position, the partition plate is moved together with the glass particulate deposit,
When the glass particulate deposit is below a predetermined position, the partition plate is disposed at a stop position 500 mm or more below the upper end of the lid, and only the glass particulate deposit is moved. The manufacturing method of the glass base material characterized.
出発種棒によって吊り下げられたガラス微粒子堆積体を上下に移動可能に収容する炉心管と、
前記炉心管の上部に設けられた蓋部と、
前記炉心管の下部から前記炉心管内に不活性ガスを供給するガス供給部と、
前記炉心管の外周側に設けられた熱源と、
前記ガラス微粒子堆積体の上方における前記出発種棒に設けられた仕切り板と、
前記出発種棒に設けられて前記ガラス微粒子堆積体の上部近傍で前記仕切り板を支持する仕切り板保持部と、
前記仕切り板を前記蓋部の上端より500mm以上下方に離れた停止位置に留める配置される留め部と、を備え、
前記ガラス微粒子堆積体が所定の位置より上方にあるときは、前記仕切り板が前記仕切り板保持部に支持された状態で前記ガラス微粒子堆積体ととともに移動され、
前記ガラス微粒子堆積体が所定の位置より下方にあるときは、前記仕切り板が前記留め部により移動が規制されて前記ガラス微粒子堆積体のみが移動されることを特徴とするガラス母材の製造装置。
A reactor core tube that accommodates the glass particulate deposit suspended by the starting seed rod so as to be movable up and down;
A lid provided at the top of the furnace core tube;
A gas supply unit for supplying an inert gas into the furnace core tube from a lower part of the core tube;
A heat source provided on the outer peripheral side of the core tube,
A partition plate provided on the starting seed bar above the glass particulate deposit;
A partition plate holding part that is provided on the starting seed bar and supports the partition plate in the vicinity of the upper part of the glass particulate deposit;
A fastening part arranged to fasten the partition plate at a stop position 500 mm or more away from the upper end of the lid part, and
When the glass particulate deposit is above a predetermined position, the partition plate is moved together with the glass particulate deposit while being supported by the partition plate holder,
The glass base material manufacturing apparatus, wherein when the glass particulate deposit is below a predetermined position, the partition plate is restricted from moving by the fastening portion and only the glass particulate deposit is moved. .
JP2012120624A 2012-05-28 2012-05-28 Glass base material manufacturing method and manufacturing apparatus Active JP5935508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120624A JP5935508B2 (en) 2012-05-28 2012-05-28 Glass base material manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120624A JP5935508B2 (en) 2012-05-28 2012-05-28 Glass base material manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013245141A true JP2013245141A (en) 2013-12-09
JP5935508B2 JP5935508B2 (en) 2016-06-15

Family

ID=49845202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120624A Active JP5935508B2 (en) 2012-05-28 2012-05-28 Glass base material manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5935508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789590A1 (en) * 2013-04-10 2014-10-15 Shin-Etsu Chemical Co., Ltd. Sintering apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343137A (en) * 1998-04-03 1999-12-14 Sumitomo Electric Ind Ltd Optical fiber drawing furnace and optical fiber drawing
JP2000219519A (en) * 1999-01-28 2000-08-08 Shin Etsu Chem Co Ltd Porous glass preform sintering device
JP2002068773A (en) * 2000-08-31 2002-03-08 Sumitomo Electric Ind Ltd Furnace for drawing optical fiber and method of drawing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343137A (en) * 1998-04-03 1999-12-14 Sumitomo Electric Ind Ltd Optical fiber drawing furnace and optical fiber drawing
JP2000219519A (en) * 1999-01-28 2000-08-08 Shin Etsu Chem Co Ltd Porous glass preform sintering device
JP2002068773A (en) * 2000-08-31 2002-03-08 Sumitomo Electric Ind Ltd Furnace for drawing optical fiber and method of drawing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789590A1 (en) * 2013-04-10 2014-10-15 Shin-Etsu Chemical Co., Ltd. Sintering apparatus

Also Published As

Publication number Publication date
JP5935508B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
KR101821851B1 (en) Production method for polycrystalline silicon, and reactor for polycrystalline silicon production
CN111918987B (en) Method for controlling convection pattern of silicon melt, method for producing single-crystal silicon, and single-crystal silicon pulling apparatus
KR101997600B1 (en) Raw material filling method, method for manufacturing single crystal, and device for manufacturing single crystal
JP5830979B2 (en) Sintering apparatus and sintering method for glass base material
JP5556117B2 (en) Optical fiber drawing method and drawing apparatus
JP5561785B2 (en) Silicon single crystal pulling apparatus and silicon single crystal pulling method using the same
JP2015074600A (en) Method of manufacturing optical fiber
US8661857B2 (en) Method of manufacturing optical fiber preform
JP5935508B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP2014201513A (en) Sintering apparatus
JP5821443B2 (en) Manufacturing method of glass base material and sintering furnace for manufacturing glass base material
JP2021519252A (en) Flow instability suppression method and equipment in optical fiber drawing system
TW201432100A (en) Weir for improved crystal growth in a continuous Czochralski process
CN112074626B (en) Method for controlling convection mode of silicon melt and method for producing single-crystal silicon
JP5170038B2 (en) Optical fiber drawing method
JP6675197B2 (en) Silicon carbide single crystal manufacturing equipment
US11673822B2 (en) Method and apparatus for controlling glass tube taper
JP2007022871A (en) Method for producing glass microparticle deposit
JP5915028B2 (en) Method for sintering glass particulate deposit
JP4499178B2 (en) Silicon melt contamination prevention device
TW201300584A (en) Feed tool for shielding a portion of a crystal puller
JP7155631B2 (en) Optical fiber drawing method
JP2014080342A (en) Silicon single crystal pulling apparatus
JP2017100910A (en) Production method of optical fiber preform
KR20220164617A (en) Nitrogen-doped silicon melt obtaining facility, method and nitrogen-doped monocrystalline silicon manufacturing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250