JP5915028B2 - Method for sintering glass particulate deposit - Google Patents

Method for sintering glass particulate deposit Download PDF

Info

Publication number
JP5915028B2
JP5915028B2 JP2011185683A JP2011185683A JP5915028B2 JP 5915028 B2 JP5915028 B2 JP 5915028B2 JP 2011185683 A JP2011185683 A JP 2011185683A JP 2011185683 A JP2011185683 A JP 2011185683A JP 5915028 B2 JP5915028 B2 JP 5915028B2
Authority
JP
Japan
Prior art keywords
glass
deposit
sintering
fine particle
glass particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011185683A
Other languages
Japanese (ja)
Other versions
JP2013047156A (en
Inventor
浩二 楠
浩二 楠
広田 弘
弘 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011185683A priority Critical patent/JP5915028B2/en
Publication of JP2013047156A publication Critical patent/JP2013047156A/en
Application granted granted Critical
Publication of JP5915028B2 publication Critical patent/JP5915028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、ガラス微粒子堆積体を加熱炉内で焼結させるガラス微粒子堆積体の焼結方法に関する。   The present invention relates to a method for sintering a glass fine particle deposit, in which the glass fine particle deposit is sintered in a heating furnace.

従来、ガラス微粒子堆積体を焼結する焼結炉には、例えば、特許文献1に記載されているようなものが知られている。図5に示すように、焼結炉である焼結装置100は、蓋109を有する炉心管106と、炉心管106の周囲に配置され熱源104を有する加熱炉105とを備えている。また、焼結装置100は、炉心管106の下端にHeガス等を供給する不活性ガス導入管102を備え、炉心管106の上方に排気装置108を備えている。   Conventionally, as a sintering furnace which sinters a glass fine particle deposit body, what is described in patent document 1 is known, for example. As shown in FIG. 5, a sintering apparatus 100 as a sintering furnace includes a core tube 106 having a lid 109 and a heating furnace 105 having a heat source 104 disposed around the core tube 106. Further, the sintering apparatus 100 includes an inert gas introduction pipe 102 that supplies He gas or the like to the lower end of the furnace core tube 106, and an exhaust device 108 above the furnace core tube 106.

前記焼結装置100は、多孔質ガラス母材111の上方に上部熱遮蔽具107を設置して、多孔質ガラス母材111の焼結完了部位116である下方に下部熱遮蔽具103が設置されている。上部熱遮蔽具107及び下部熱遮蔽具103は、石英ガラスからなり、多孔質ガラス母材111の上下に設置されることで、コーン体113からの輻射熱の逃散を制御して炉心管106の温度ムラや自然対流を抑制している。   In the sintering apparatus 100, an upper heat shield 107 is installed above the porous glass base material 111, and a lower heat shield 103 is installed below the sintering completion part 116 of the porous glass base material 111. ing. The upper heat shield 107 and the lower heat shield 103 are made of quartz glass, and are installed above and below the porous glass base material 111 to control the escape of radiant heat from the cone body 113 to control the temperature of the core tube 106. It suppresses unevenness and natural convection.

そして、上記焼結装置100では、種棒である出発棒112にガラス微粒子を堆積させたガラス微粒子堆積体である多孔質ガラス母材111を炉心管106内に挿入して、多孔質ガラス母材111を回転させながら降下させて加熱炉105により加熱し、焼結させる。   In the sintering apparatus 100, the porous glass preform 111, which is a glass particulate deposit obtained by depositing glass particulates on the starting rod 112, which is a seed rod, is inserted into the core tube 106, and the porous glass preform is inserted. 111 is rotated while being rotated, heated by a heating furnace 105, and sintered.

特開2000−219519号公報JP 2000-219519 A

しかしながら、多孔質ガラス母材111を焼結させる工程では、熱が十分伝わらなかったり、散逸してしまったりするため、多孔質ガラス母材111の上部を完全に透明にすることはできず、未焼結部が生じる。多孔質ガラス母材111の上部に未焼結部ができると、焼結部との収縮の違いにより割れが入り、多孔質ガラス母材111が落下してしまうことがある。また、その後の火炎研磨時に、未焼結部と焼結部の境界で、熱膨張率の差により割れて落下するなどの問題が生じることもある。   However, in the process of sintering the porous glass base material 111, heat is not sufficiently transferred or dissipated, so the upper part of the porous glass base material 111 cannot be made completely transparent, A sintered part is formed. If an unsintered part is formed on the upper part of the porous glass base material 111, cracks may occur due to the difference in shrinkage from the sintered part, and the porous glass base material 111 may fall. Moreover, at the time of subsequent flame polishing, there may be a problem such as cracking and dropping due to the difference in thermal expansion coefficient at the boundary between the unsintered part and the sintered part.

さらに、焼結時の未焼結部が大きいと、その後の線引き工程で未焼結部が焼結されるため、多孔質ガラス母材111が線引き炉内で変形したり、偏心したりすることがある。   Furthermore, if the unsintered part during sintering is large, the unsintered part is sintered in the subsequent drawing process, so the porous glass base material 111 may be deformed or eccentric in the drawing furnace. There is.

一方、未焼結部を小さくするために必要以上に多孔質ガラス母材111の上部を加熱し過ぎると、出発棒112に過度に熱が加わり、出発棒112が引き伸ばされ、多孔質ガラス母材111の曲がりや落下などの問題が生じる。   On the other hand, if the upper portion of the porous glass base material 111 is heated excessively to reduce the size of the unsintered portion, heat is excessively applied to the starting bar 112 and the starting bar 112 is stretched, and the porous glass base material is stretched. Problems such as 111 bending and dropping occur.

本発明の目的は、上述した事情に鑑みてなされたものであり、焼結時に未焼結部をできるだけ小さくすることにより、多孔質ガラス母材の割れや落下を防ぎ、また、線引き時の変形や偏心などの不具合を最小限に抑えることができるガラス微粒子堆積体の焼結方法を提供することにある。   The object of the present invention has been made in view of the above-mentioned circumstances, and by preventing the unsintered portion as small as possible during sintering, it prevents cracking and dropping of the porous glass base material, and also enables deformation during drawing. It is an object of the present invention to provide a method for sintering a glass fine particle deposit capable of minimizing inconveniences, such as eccentricity and eccentricity.

上記課題を解決することができる本発明に係るガラス微粒子堆積体の焼結方法は、出発種棒にガラス微粒子を堆積させたガラス微粒子堆積体をヒータの熱により加熱焼結させるガラス微粒子堆積体の焼結方法であって、焼結後のガラス微粒子堆積体上部のテーパ状ガラス微粒子堆積部における上部透明化率を、0.4以上にすることを特徴としている。   The method for sintering a glass fine particle deposit according to the present invention that can solve the above-described problem is a glass fine particle deposit in which a glass fine particle deposit in which glass fine particles are deposited on a starting seed rod is heated and sintered by the heat of a heater. The sintering method is characterized in that the upper transparency rate in the tapered glass fine particle deposition portion above the sintered glass fine particle deposit is 0.4 or more.

前記ガラス微粒子堆積体の焼結方法において、前記ガラス微粒子堆積体上部の前記テーパ状ガラス微粒子堆積部の上部近傍に、前記ガラス微粒子堆積体の長手方向に位置調整が可能な遮熱治具を配置して、前記ヒータ及び前記テーパ状ガラス微粒子堆積部から前記ガラス微粒子が堆積されていない種棒部へ伝わる熱を遮熱しながら、前記ガラス微粒子堆積体を焼結することが好ましい。   In the sintering method of the glass particulate deposit, a heat shielding jig capable of adjusting the position in the longitudinal direction of the glass particulate deposit is disposed near the upper portion of the tapered glass particulate deposit on the glass particulate deposit. Then, it is preferable to sinter the glass fine particle deposit while shielding heat transmitted from the heater and the tapered glass fine particle accumulation portion to the seed rod portion where the glass fine particles are not accumulated.

本発明に係るガラス微粒子堆積体の焼結方法によれば、焼結後のガラス微粒子堆積体の上部にあるテーパ状ガラス微粒子堆積部における焼結部分の割合を示す上部透明化率を0.4以上としているので、多孔質ガラス母材の割れや落下を防ぎ、また、線引き時の変形や偏心などの不具合を最小限に抑えることができ、高品質な光ファイバを得ることができる。   According to the sintering method of the glass fine particle deposit according to the present invention, the upper transparency ratio indicating the ratio of the sintered portion in the tapered glass fine particle deposit on the upper part of the sintered glass fine particle deposit is 0.4. As described above, the porous glass preform can be prevented from being broken or dropped, and defects such as deformation and eccentricity during drawing can be minimized, and a high-quality optical fiber can be obtained.

本発明に係るガラス微粒子堆積体の焼結方法の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the sintering method of the glass fine particle deposition body which concerns on this invention. 図1の遮熱治具周辺の要部拡大図である。It is a principal part enlarged view of the heat shield jig periphery of FIG. 本発明に係る上部透明化率の説明図であり、(a)は上部透明長さを示し、(b)は線引変形長さを示している。It is explanatory drawing of the upper transparency rate which concerns on this invention, (a) shows upper transparent length, (b) has shown the drawing deformation length. 本発明に係る上部透明化率と不良発生率との関係を示すグラフである。It is a graph which shows the relationship between the top transparency rate and defect incidence which concern on this invention. 従来のガラス微粒子堆積体を焼結する焼結炉を示す概略図である。It is the schematic which shows the sintering furnace which sinters the conventional glass fine particle deposit.

以下、本発明に係るガラス微粒子堆積体の焼結方法の一実施形態について、図1〜図4を参照して詳細に説明する。   Hereinafter, an embodiment of a method for sintering a glass fine particle deposit according to the present invention will be described in detail with reference to FIGS.

図1に示すように、本実施形態のガラス微粒子堆積体1を焼結する焼結炉10は、上部を蓋部13により閉塞され、出発種棒3にガラス微粒子を堆積させたガラス微粒子堆積体1を収容する炉心管11と、炉心管11の外周側にガラス微粒子堆積体1を加熱焼結させる熱源であるヒータ12とを備えている。   As shown in FIG. 1, a sintering furnace 10 for sintering a glass particulate deposit 1 according to the present embodiment is closed at the top by a lid 13, and a glass particulate deposit in which glass particulates are deposited on a starting seed rod 3. 1 and a heater 12 which is a heat source for heating and sintering the glass particulate deposit 1 on the outer peripheral side of the core tube 11.

ガラス微粒子堆積体1は、円柱状のガラス微粒子定常堆積部4と、ガラス微粒子定常堆積部4の上下端部にテーパ状ガラス微粒子堆積部2,5と、上部のテーパ状ガラス微粒子堆積部2の上部部分でガラス微粒子が堆積されていない種棒部8と、を有している。ガラス微粒子堆積体1は、炉心管11内に連結部材14によって吊り下げられている。炉心管11の下部には、Heガス等の不活性ガスを供給するガス供給部15と、上部にガス排出部16を備えている。   The glass fine particle deposit 1 includes a cylindrical glass fine particle deposition unit 4, tapered glass particle deposition units 2 and 5 at the upper and lower ends of the glass fine particle deposition unit 4, and an upper tapered glass particle deposition unit 2. And a seed bar portion 8 in which glass fine particles are not deposited in the upper portion. The glass particulate deposit 1 is suspended in the furnace core tube 11 by a connecting member 14. A gas supply unit 15 that supplies an inert gas such as He gas and a gas discharge unit 16 are provided at the lower portion of the core tube 11 and the upper portion thereof.

図2に示すように、焼結炉10は、ガラス微粒子堆積体1上部のテーパ状ガラス微粒子堆積部2近傍に、該ガラス微粒子堆積体1の長手方向の位置調整が可能なカーボン製の遮熱治具20を備えている。なお、遮熱治具の構造は、図2の構造に限定されるものではなく、特許文献1に記載のように1枚の板であっても構わないが、固定位置を調整できることが必要である。位置調整可能な遮熱治具の一例について、次に詳細説明する。   As shown in FIG. 2, the sintering furnace 10 is a heat shield made of carbon capable of adjusting the position of the glass fine particle deposit 1 in the longitudinal direction in the vicinity of the tapered glass fine particle deposit 2 at the top of the glass fine particle deposit 1. A jig 20 is provided. Note that the structure of the heat shield jig is not limited to the structure of FIG. 2 and may be a single plate as described in Patent Document 1, but it is necessary to be able to adjust the fixing position. is there. Next, an example of the heat shielding jig whose position can be adjusted will be described in detail.

遮熱治具20は、出発種棒3の所定位置に固定される上部治具21と、遮熱機能を有する円板状の下部治具22と、3本の吊りボルト23と、各吊りボルト23に螺合された調整ナット26A,26Bと、から構成されている。   The heat shield jig 20 includes an upper jig 21 fixed to a predetermined position of the starting seed bar 3, a disk-shaped lower jig 22 having a heat shield function, three suspension bolts 23, and each suspension bolt. And adjustment nuts 26 </ b> A and 26 </ b> B screwed to 23.

上部治具21は、3方に延設され、各先端部近傍にボルト貫通孔を有し、中心に出発種棒3を挿通する取付孔27を有している。   The upper jig 21 extends in three directions, has a bolt through hole in the vicinity of each tip, and has an attachment hole 27 through which the starting seed rod 3 is inserted.

下部治具22は、種棒部8への取り付け時用の切欠部を有する第1遮熱板24と、第1遮熱板24に嵌合する第2遮熱板25とから構成されている。第1遮熱板24は、中心に種棒部8が貫通する種棒貫通孔を有し、外側に吊りボルト23を挿通する3つのボルト貫通孔を有している。第2遮熱板25は、第1遮熱板24の上方から嵌合させることで切欠部を覆うような、例えば扇形状となっている。   The lower jig 22 is composed of a first heat shield plate 24 having a notch for attaching to the seed rod portion 8 and a second heat shield plate 25 fitted to the first heat shield plate 24. . The first heat shield plate 24 has a seed rod through hole through which the seed rod portion 8 penetrates at the center, and has three bolt through holes through which the suspension bolts 23 are inserted. The second heat shield plate 25 has, for example, a fan shape so as to cover the notch portion by fitting from above the first heat shield plate 24.

遮熱治具20の外径D1は、炉心管11の内径をD0とすると、0.3D0<D1<0.98D0の範囲内に収まる外径寸法に設定されている。例えば、内径D0が200mmであると、略外径D1は、60mm〜196mmの範囲内に設定される。遮熱治具20の高さH1は、下部治具22の位置H0が出発種棒3の上端から例えば300mmであると、約400mm程度に設定される。   The outer diameter D1 of the heat shield jig 20 is set to an outer diameter dimension that falls within a range of 0.3D0 <D1 <0.98D0, where D0 is the inner diameter of the core tube 11. For example, when the inner diameter D0 is 200 mm, the substantially outer diameter D1 is set within a range of 60 mm to 196 mm. The height H1 of the heat shield jig 20 is set to about 400 mm when the position H0 of the lower jig 22 is, for example, 300 mm from the upper end of the starting seed bar 3.

次に、遮熱治具20のガラス微粒子堆積体1への取付けとガラス微粒子堆積体1の炉心管11内への取付け手順を説明する。
(遮熱治具の組み立て)
図2に示すように、下部治具22の第1遮熱板24の下方側から3本の吊りボルト23を貫入させる。次に、第1調整ナット26Aを各吊りボルト23に螺合させ、上部治具21のボルト貫通孔に吊りボルト23を貫入させる。その後、第2調整ナット26Bを各吊りボルト23に螺合させる。調整ナット26A,26Bの螺合位置は、遮熱治具20を連結部材14の係止部15に係合させたときに、下端の第1遮熱板24がガラス微粒子堆積体1上部のテーパ状ガラス微粒子堆積部2の上部近傍に配置されるように調整される。
Next, a procedure for mounting the heat shielding jig 20 to the glass particulate deposit body 1 and attaching the glass particulate deposit body 1 into the furnace core tube 11 will be described.
(Assembly of heat shield jig)
As shown in FIG. 2, three suspension bolts 23 are inserted from the lower side of the first heat shield plate 24 of the lower jig 22. Next, the first adjustment nut 26 </ b> A is screwed into each suspension bolt 23, and the suspension bolt 23 is inserted into the bolt through hole of the upper jig 21. Thereafter, the second adjustment nut 26 </ b> B is screwed into each suspension bolt 23. The screwing positions of the adjustment nuts 26A and 26B are such that when the heat shield jig 20 is engaged with the locking portion 15 of the connecting member 14, the first heat shield plate 24 at the lower end is a taper on the upper part of the glass particulate deposit 1. It adjusts so that it may arrange | position in the upper part vicinity of the glass-like fine particle deposition part 2. FIG.

(遮熱治具の取付け)
遮熱治具20は、出発種棒3を接続する連結部材14が炉心管11内に貫入される前に、予め連結部材14に固定される。連結部材14は、遮熱治具20の上部治具21を係合する係止部15を有している。遮熱治具20は、第2遮熱板25を外した状態で、上部治具21の取付孔27が連結部材14の上方から係止部15に係合される。
(Installation of heat shield jig)
The heat shielding jig 20 is fixed to the connecting member 14 in advance before the connecting member 14 connecting the starting seed bar 3 is inserted into the core tube 11. The connecting member 14 has a locking portion 15 that engages the upper jig 21 of the heat shield jig 20. In the heat shield jig 20, the mounting hole 27 of the upper jig 21 is engaged with the locking portion 15 from above the connecting member 14 with the second heat shield plate 25 removed.

(ガラス微粒子堆積体の取付け)
ガラス微粒子堆積体1は、遮熱治具20を連結部材14に固定した状態で、炉心管11内に吊り下げられる。即ち、下部治具22の第2遮熱板25は外れており、連結部材14に出発種棒3と一体のガラス微粒子堆積体1が連結され、炉心管11内に吊り下げられる。
(Installation of glass particulate deposit)
The glass particulate deposit 1 is suspended in the core tube 11 with the heat shield jig 20 fixed to the connecting member 14. That is, the second heat shield plate 25 of the lower jig 22 is detached, and the glass particulate deposit 1 integrated with the starting seed rod 3 is connected to the connecting member 14 and suspended in the core tube 11.

このとき、ガラス微粒子堆積体1上部のテーパ状ガラス微粒子堆積部2と種棒部8との境界部分は、予め炉心管11内に係合されている第1遮熱板24の切欠部付近に配置される。第1遮熱板24がガラス微粒子堆積体1に接触せず、且つ境界部分に正確に配置されるように、3組の調整ナット26A,26Bによって位置の微調整を行う。最後に、第1遮熱板24上に第2遮熱板25を嵌合させて、焼結前のガラス微粒子堆積体1の取付けが完了する。   At this time, the boundary portion between the tapered glass particulate depositing portion 2 and the seed rod portion 8 on the upper portion of the glass particulate depositing body 1 is in the vicinity of the notch portion of the first heat shield plate 24 engaged in the core tube 11 in advance. Be placed. Fine adjustment of the position is performed by the three sets of adjustment nuts 26A and 26B so that the first heat shield plate 24 is not in contact with the glass particulate deposit 1 and is accurately disposed at the boundary portion. Finally, the second heat shield plate 25 is fitted onto the first heat shield plate 24 to complete the attachment of the glass particulate deposit 1 before sintering.

次に、ガラス微粒子堆積体の焼結方法について説明する。
(ガラス微粒子堆積体の焼結工程)
ヒータ12により炉心管11内を約1600℃に加熱することで、ガラス微粒子堆積体1を焼結して透明化する。このとき、ガラス微粒子堆積体1上部のテーパ状ガラス微粒子堆積部2と種棒部8との境界部分に、遮熱治具20の下部治具22が配置されている。これにより、ヒータ12及び透明化されたガラス母材などから種棒部8へ伝わる熱を遮熱しながら、ガラス微粒子堆積体1を焼結する。
Next, a method for sintering the glass particulate deposit will be described.
(Sintering process of glass particulate deposits)
By heating the inside of the furnace tube 11 to about 1600 ° C. by the heater 12, the glass fine particle deposit 1 is sintered and made transparent. At this time, the lower jig 22 of the heat shield jig 20 is disposed at the boundary portion between the tapered glass fine particle accumulation portion 2 and the seed rod portion 8 above the glass fine particle accumulation body 1. As a result, the glass fine particle deposit 1 is sintered while heat transmitted from the heater 12 and the transparent glass base material to the seed rod portion 8 is shielded.

これにより、ヒータ12の熱による出発種棒3の引き伸びを防止しつつ、ガラス微粒子堆積体1上部の未焼結部の領域を小さくすることができる。   Thereby, the area | region of the unsintered part of glass fine particle deposit 1 upper part can be made small, preventing the elongation of the starting seed | rod 3 by the heat | fever of the heater 12. FIG.

本実施形態のガラス微粒子堆積体の焼結方法によれば、上記した構成の遮熱板などを用い、焼結後のガラス微粒子堆積体1の上部にあるテーパ状ガラス微粒子堆積部2における焼結部分の割合を示す上部透明化率を0.4以上にする。未焼結部の割合を小さくすることにより、多孔質ガラス母材の割れや落下を防ぎ、また、線引き時の変形や偏心などの不具合を最小限に抑えることができ、高品質な光ファイバを得ることができる。   According to the sintering method of the glass fine particle deposit of the present embodiment, the sintering in the tapered glass fine particle deposition portion 2 on the upper portion of the sintered glass fine particle deposit 1 is performed using the heat shield plate having the above-described configuration. The upper transparency ratio indicating the proportion of the part is set to 0.4 or more. By reducing the proportion of unsintered parts, it is possible to prevent cracking and dropping of the porous glass base material, and to minimize defects such as deformation and eccentricity during drawing, and to produce high-quality optical fibers. Can be obtained.

前記上部透明化率は、(上部透明長さL1)/(線引き変形長さL2)によって算出することができる。図3に示すように、上部透明長さL1は、テーパ状ガラス微粒子堆積部2における未焼結部9の下端からガラス微粒子堆積体1の中心にあるコア部7上端までの距離であり、目視で光が通り抜けていることがわかる部分(透明な部分)の長さである。また、線引き変形長さL2は、線引き時におけるガラス微粒子堆積体1の溶融開始端P0から、ガラス微粒子堆積体1の外径が有効部径E0(線引き時の母材溶融の開始端位置での外径)の半分のE0/2になる位置P1までの距離である。ここで云う上部透明化率が0.4以上である、とは、例えば、線引き変形長さL2が100mmとなる線引炉を使用する場合、ガラス微粒子堆積体1の上部透明長さL1が40mm以上であることを意味する。   The upper transparency rate can be calculated by (upper transparent length L1) / (drawing deformation length L2). As shown in FIG. 3, the upper transparent length L1 is a distance from the lower end of the unsintered portion 9 in the tapered glass fine particle deposition portion 2 to the upper end of the core portion 7 at the center of the glass fine particle deposit 1, and visually This is the length of the part (transparent part) where light can be seen through. Further, the drawing deformation length L2 is such that the outer diameter of the glass fine particle deposit 1 from the melting start end P0 of the glass fine particle deposit 1 at the time of drawing is an effective part diameter E0 (at the start end position of the base material melting at the time of drawing). This is the distance to the position P1 where E0 / 2 is half of the outer diameter. The upper transparency rate referred to here is 0.4 or more, for example, when a drawing furnace having a drawing deformation length L2 of 100 mm is used, the upper transparent length L1 of the glass particulate deposit 1 is 40 mm. That means that.

線引き変形長さL2は、線引き炉のヒートゾーンの長さに比例する。したがって、上部透明長さL1(未焼結部9の体積割合に依存する)が同じでも、線引き変形長さL2が長い場合には、未焼結部9がヒートゾーンに掛かり易くなり、未焼結であることの影響(不良の発生)が出やすくなる。つまり、同じ上部透明長さL1であっても、線引き変形長さL2によってその影響は異なり、上部透明化率は、この影響の度合いを示していることになる。   The drawing deformation length L2 is proportional to the length of the heat zone of the drawing furnace. Therefore, even when the upper transparent length L1 (depending on the volume ratio of the unsintered portion 9) is the same, when the drawing deformation length L2 is long, the unsintered portion 9 is easily applied to the heat zone, and the unfired The influence (occurrence of defects) is likely to occur. That is, even if the upper transparent length L1 is the same, the influence differs depending on the drawing deformation length L2, and the upper transparency rate indicates the degree of this influence.

この上部透明化率(0.4以上)となるようにするため、上記したように、ガラス微粒子堆積体1上部のテーパ状ガラス微粒子堆積部2の上部近傍に、ガラス微粒子堆積体1の長手方向に位置調整が可能な遮熱治具20を配置して、ヒータ12及びテーパ状ガラス微粒子堆積部2から種棒部8へ伝わる熱を遮熱しながら、ガラス微粒子堆積体1を焼結する。これにより、種棒部8をヒータ12による焼結炉10内の加熱領域であるヒートゾーンぎりぎりまで近づけても種棒部8側へ伝わる熱を遮熱でき、種棒部8の引き伸びを防止しつつ、テーパ状ガラス微粒子堆積部2の未焼結部9の体積を小さくすることができる。   In order to achieve this upper transparency ratio (0.4 or more), as described above, in the longitudinal direction of the glass particulate deposit 1 near the upper portion of the tapered glass particulate deposit 2 on the glass particulate deposit 1. A heat shielding jig 20 that can be adjusted in position is disposed on the glass particle sintering body 1 while the heat transmitted from the heater 12 and the tapered glass particle deposition unit 2 to the seed bar unit 8 is shielded. Thereby, even if the seed rod part 8 is brought close to the heat zone, which is the heating region in the sintering furnace 10 by the heater 12, heat transmitted to the seed rod part 8 side can be shielded, and the elongation of the seed rod part 8 is prevented. However, the volume of the unsintered portion 9 of the tapered glass fine particle deposition portion 2 can be reduced.

なお、本発明は、上述した各実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

例えば、上記実施形態では焼結工程について説明したが、線引工程での線引炉にも適用することができる。また、遮熱治具の取付位置は、出発種棒や連結部材以外に、焼結炉の炉心管や蓋部であっても良い。   For example, although the sintering process has been described in the above embodiment, it can also be applied to a drawing furnace in the drawing process. Further, the mounting position of the heat shield jig may be a core tube or a lid part of a sintering furnace in addition to the starting seed bar and the connecting member.

次に、本発明に係るガラス微粒子堆積体の焼結方法の作用効果を確認するために行った実施例について説明する。   Next, examples carried out for confirming the effects of the sintering method of the glass fine particle deposit according to the present invention will be described.

(焼結炉)
・使用焼結炉の内径D0:200mm
・焼結温度:1600℃
(遮熱治具)
・使用遮熱治具:連結部材に固定するカーボン製タイプ
・遮熱治具の外径D1:185mm
・遮熱治具の高さH1:400mm
・下部治具の位置H0:出発種棒の上端から300mm
(ガラス母材)
・使用多孔質ガラス母材:外径180mmのガラス微粒子堆積体
(Sintering furnace)
・ Used sintering furnace inner diameter D0: 200 mm
・ Sintering temperature: 1600 ℃
(Heat shield jig)
-Heat shield used: carbon type fixed to the connecting member-Heat shield jig outer diameter D1: 185mm
・ Heating shield height H1: 400mm
-Lower jig position H0: 300 mm from the upper end of the starting seed bar
(Glass base material)
・ Porous glass base material: Glass fine particle deposit with an outer diameter of 180 mm

遮熱治具の位置を調整するなどして上部透明長さL1を変化させ、上部未焼結部の大きさが異なるガラス母材を、同一の線引炉内(線引き変形長さL2は約100mm)で線引きしたときの、線引き終了端でのコア偏心等の不良事態が発生する頻度を集計する。結果を図4に示す。   The upper transparent length L1 is changed by adjusting the position of the heat shield jig, etc., and the glass base material having a different size of the upper unsintered portion is placed in the same drawing furnace (the drawing deformation length L2 is about The frequency of occurrence of defects such as core eccentricity at the end of drawing when 100 mm) is drawn is totaled. The results are shown in FIG.

図4に示したように、上部透明化率が0.1から0.2の間では不良発生率が50パーセント以上と高く、上部透明化率が0.2から0.3の間では不良発生率が約40パーセントから10パーセント程度まで下がることが分かる。そして、上部透明化率が0.4付近では不良発生率が約10パーセント以下になり、上部透明化率0.4以上になると不良事態がほぼ発生しないことが分かる。   As shown in FIG. 4, when the upper transparency rate is between 0.1 and 0.2, the failure rate is as high as 50% or more, and when the upper transparency rate is between 0.2 and 0.3, a failure occurs. It can be seen that the rate drops from about 40 percent to about 10 percent. It can be seen that when the upper transparency ratio is around 0.4, the defect occurrence rate is about 10% or less, and when the upper transparency ratio is 0.4 or more, almost no failure occurs.

以上のように焼結後のガラス微粒子堆積体の上部透明化率を0.4以上にすることにより、線引き工程での変形や偏心などの不具合を最小限に抑えることができ、高品質な光ファイバを得ることができる。   As described above, by setting the upper transparent ratio of the sintered glass fine particle body to 0.4 or more, it is possible to minimize defects such as deformation and eccentricity in the drawing process, and to produce high-quality light. A fiber can be obtained.

1…ガラス微粒子堆積体、2…テーパ状ガラス微粒子堆積部、3…出発種棒、8…種棒部、10…焼結炉、11…炉心管、12…ヒータ、14…連結部材、20…遮熱治具、21…上部治具、22…下部治具、23…吊りボルト、24…第1遮熱板、25…第2遮熱板、26…調整ナット、27…取付孔、L1…上部透明長さ、L2…線引き変形長さ
DESCRIPTION OF SYMBOLS 1 ... Glass particulate deposit body, 2 ... Tapered glass particulate deposit part, 3 ... Starting seed rod, 8 ... Seed rod part, 10 ... Sintering furnace, 11 ... Reactor core tube, 12 ... Heater, 14 ... Connecting member, 20 ... Heat shield jig, 21 ... upper jig, 22 ... lower jig, 23 ... suspension bolt, 24 ... first heat shield plate, 25 ... second heat shield plate, 26 ... adjustment nut, 27 ... mounting hole, L1 ... Upper transparent length, L2 ... Drawing deformation length

Claims (2)

出発種棒にガラス微粒子を堆積させたガラス微粒子堆積体をヒータの熱により加熱焼結させるガラス微粒子堆積体の焼結方法であって、
結後のガラス微粒子堆積体を線引きする線引炉と同一の線引炉のヒートゾーンの長さに比例する線引き変形長さをL2とし、
焼結後のガラス微粒子堆積体上部のテーパ状ガラス微粒子堆積部における上部透明長さをL1としたとき、L1/L2で定義される上部透明化率を、0.4以上にするように、前記ガラス微粒子堆積体を焼結させることを特徴とする、ガラス微粒子堆積体の焼結方法。
A method for sintering a glass particulate deposit, in which a glass particulate deposit obtained by depositing glass particulate on a starting seed bar is heated and sintered by the heat of a heater,
The drawing deformation length proportional to the length of the heating zone of the same drawing furnace as the drawing furnace for drawing the sintered glass fine particle deposit is set to L2,
When the upper transparent length in the tapered glass fine particle deposit part on the upper part of the glass fine particle deposit after sintering is L1, the upper transparency defined by L1 / L2 is 0.4 or more. A method for sintering a glass particulate deposit, which comprises sintering the glass particulate deposit.
上記請求項1に記載のガラス微粒子堆積体の焼結方法において、
前記ガラス微粒子堆積体上部の前記テーパ状ガラス微粒子堆積部の上部近傍に、前記ガラス微粒子堆積体の長手方向に位置調整が可能な遮熱治具を配置して、前記ヒータ及び前記テーパ状ガラス微粒子堆積部から前記ガラス微粒子が堆積されていない種棒部へ伝わる熱を遮熱しながら、前記ガラス微粒子堆積体を焼結することを特徴とする、ガラス微粒子堆積体の焼結方法。
In the sintering method of the glass fine particle deposit according to claim 1,
A heat shielding jig capable of adjusting the position of the glass particulate deposit in the longitudinal direction is disposed near the upper portion of the tapered glass particulate deposit on the glass particulate deposit, and the heater and the tapered glass particulate are arranged. A method for sintering a glass particulate deposit, wherein the glass particulate deposit is sintered while shielding heat transmitted from the deposit to the seed rod portion where the glass particulate is not deposited.
JP2011185683A 2011-08-29 2011-08-29 Method for sintering glass particulate deposit Active JP5915028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011185683A JP5915028B2 (en) 2011-08-29 2011-08-29 Method for sintering glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011185683A JP5915028B2 (en) 2011-08-29 2011-08-29 Method for sintering glass particulate deposit

Publications (2)

Publication Number Publication Date
JP2013047156A JP2013047156A (en) 2013-03-07
JP5915028B2 true JP5915028B2 (en) 2016-05-11

Family

ID=48010415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011185683A Active JP5915028B2 (en) 2011-08-29 2011-08-29 Method for sintering glass particulate deposit

Country Status (1)

Country Link
JP (1) JP5915028B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223833A (en) * 1994-02-15 1995-08-22 Fujikura Ltd Production in optical fiber preform

Also Published As

Publication number Publication date
JP2013047156A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5821443B2 (en) Manufacturing method of glass base material and sintering furnace for manufacturing glass base material
JP5830979B2 (en) Sintering apparatus and sintering method for glass base material
JP2022518858A (en) Semiconductor crystal growth device
KR20170115551A (en) Components made of sintered material, in particular sintering furnace for dental parts
CN203373445U (en) Gradient-adjusted-axial-temperature heat insulation structure applied to Kyropoulos-method sapphire monocrystal growth
JP5915028B2 (en) Method for sintering glass particulate deposit
US20240183062A1 (en) Infrared transmissivity measurement method of quartz glass crucible
CN110035980B (en) Sealing structure of optical fiber drawing furnace and method for manufacturing optical fiber
EP2351714B1 (en) Method for manufacturing optical fiber preform
JP2006193370A (en) Optical fiber preform and method of manufacturing the same
US4382776A (en) Quartz tube for thermal processing of semiconductor substrates
US8341979B2 (en) Method of heat treating a porous optical fiber preform
JP2013056808A (en) Method for producing glass preform
JP2009526732A (en) A heater having a plurality of high temperature zones, a melting furnace for drawing an optical fiber from a preform of an optical fiber having the heater, and a method of drawing an optical fiber using the melting furnace
KR102419569B1 (en) Synthetic quartz glass manufacturing device capable of uniformly controlling the deposition surface temperature
CN212713263U (en) Sintering protection device for OVD (over-voltage-reduction) method deposition loose body
JP5935508B2 (en) Glass base material manufacturing method and manufacturing apparatus
CN108101355A (en) A kind of body core stick heat preservation degassing equipment of production capacity extension
JPH07223833A (en) Production in optical fiber preform
CN107285615B (en) Crystallization heat treatment device for zero-expansion microcrystalline glass
JP6573560B2 (en) Heat treatment equipment
JP6960728B2 (en) Equipment for manufacturing glass fine particle deposits
CN112368428A (en) Method for manufacturing silicon ingots involving monitoring a moving average of ingot neck pull rate
JP2015071517A (en) Manufacturing method for glass base material for optical fiber
JP2004339014A (en) Method and apparatus for producing glass preform

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5915028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250