JP5830979B2 - Sintering apparatus and sintering method for glass base material - Google Patents

Sintering apparatus and sintering method for glass base material Download PDF

Info

Publication number
JP5830979B2
JP5830979B2 JP2011148150A JP2011148150A JP5830979B2 JP 5830979 B2 JP5830979 B2 JP 5830979B2 JP 2011148150 A JP2011148150 A JP 2011148150A JP 2011148150 A JP2011148150 A JP 2011148150A JP 5830979 B2 JP5830979 B2 JP 5830979B2
Authority
JP
Japan
Prior art keywords
core tube
glass
rectifying plate
inert gas
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011148150A
Other languages
Japanese (ja)
Other versions
JP2013014468A (en
Inventor
和昌 牧原
和昌 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011148150A priority Critical patent/JP5830979B2/en
Publication of JP2013014468A publication Critical patent/JP2013014468A/en
Application granted granted Critical
Publication of JP5830979B2 publication Critical patent/JP5830979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Description

本発明は、ガラス微粒子堆積体を加熱炉内で加熱焼結させるガラス母材の焼結装置および焼結方法に関する。   The present invention relates to a glass base material sintering apparatus and sintering method for heating and sintering a glass particulate deposit in a heating furnace.

従来、ガラス母材を製造する焼結装置としては、例えば、特許文献1に記載されているようなものが知られている。図3に示すように、焼結炉である焼結装置100は、上蓋102を有する炉心管104と、炉心管104の周囲に配置された加熱ヒータ106とを備えている。   Conventionally, as a sintering apparatus which manufactures a glass base material, what is described in patent document 1 is known, for example. As shown in FIG. 3, a sintering apparatus 100 that is a sintering furnace includes a furnace core tube 104 having an upper lid 102, and a heater 106 disposed around the furnace core tube 104.

焼結装置100は、支持棒108にガラス微粒子を堆積させた多孔質ガラス母材110を炉心管104内に挿入して、多孔質ガラス母材110を回転させながら降下させて、加熱ヒータ106により焼結させる。焼結装置100は、炉心管104の下端にHeガス等を供給する不活性ガス導入管112を備え、炉心管104の上方に排気管114を備えている。   The sintering apparatus 100 inserts a porous glass preform 110 in which glass fine particles are deposited on a support rod 108 into a furnace core tube 104 and lowers the porous glass preform 110 while rotating it. Sinter. The sintering apparatus 100 includes an inert gas introduction pipe 112 that supplies He gas or the like to the lower end of the furnace core tube 104, and an exhaust pipe 114 above the furnace core tube 104.

また、別の特許文献2には、多孔質ガラス母材の上方及び下方に熱遮蔽具を配置し、輻射熱の逃散を制御して炉心管の温度ムラや自然対流を抑制することが記載されている。   Another Patent Document 2 describes that heat shields are arranged above and below a porous glass base material to control the escape of radiant heat to suppress temperature unevenness and natural convection in the core tube. Yes.

特開2003−212559号公報Japanese Patent Laid-Open No. 2003-212559 特開2000−219519号公報JP 2000-219519 A

しかしながら、上記焼結装置100は、炉心管104上部の上蓋102と支持棒108との隙間から外気を巻き込み、多孔質ガラス母材110の上部が不純物で汚染されることがある。多孔質ガラス母材110が不純物で汚染されると、多孔質ガラス母材110から製造される光ファイバの伝送損失が悪化することになる。   However, the sintering apparatus 100 may involve outside air from the gap between the upper lid 102 and the support rod 108 above the core tube 104, and the upper portion of the porous glass base material 110 may be contaminated with impurities. When the porous glass preform 110 is contaminated with impurities, the transmission loss of an optical fiber manufactured from the porous glass preform 110 is deteriorated.

なお、特許文献2に記載の焼結装置では、多孔質ガラス母材の上方に上部熱遮蔽具を設置しているが、この熱遮蔽具は遮熱を目的とするものであり、特に外気の巻き込みを考慮したものではない。   In addition, in the sintering apparatus described in Patent Document 2, an upper heat shield is installed above the porous glass base material. This heat shield is intended for heat insulation, and is particularly useful for outside air. It is not a consideration for entrainment.

本発明の目的は、上述した事情に鑑みてなされたものであり、ガラス母材への不純物の付着をしにくくすることで光ファイバの伝送損失を抑制することができるガラス母材の焼結装置および焼結方法を提供することにある。   An object of the present invention is made in view of the above-described circumstances, and a glass base material sintering apparatus capable of suppressing transmission loss of an optical fiber by making it difficult for impurities to adhere to the glass base material. And providing a sintering method.

上記課題を解決することができる本発明に係るガラス母材の焼結装置は、炉心管の下部から不活性ガスを導入するガス供給部と、前記炉心管の上部から不要なガスを排出するガス排出部と、ヒートゾーンを形成するヒータと、を備え、前記炉心管内に配置したガラス微粒子堆積体を、ヒートゾーンの熱により加熱焼結させるガラス母材の焼結装置であって、前記ガラス微粒子堆積体の上部に前記炉心管の断面積の50%以上90%以下の大きさの整流板を配置して該整流板と前記炉心管の内壁との間を流れる前記不活性ガスの平均流速を55mm/秒以上とし、且つ前記整流板下面と前記ガラス微粒子堆積体の上端部との距離を400mm以下としたことを特徴としている。   The glass base material sintering apparatus according to the present invention capable of solving the above-described problems includes a gas supply unit for introducing an inert gas from the lower part of the core tube, and a gas for discharging unnecessary gas from the upper part of the core tube. A glass base material sintering apparatus comprising: a discharge part; and a heater for forming a heat zone, wherein the glass particulate deposit disposed in the furnace core tube is heated and sintered by heat of the heat zone, the glass particulate A rectifying plate having a size of 50% or more and 90% or less of the cross-sectional area of the core tube is disposed above the deposit, and the average flow rate of the inert gas flowing between the rectifying plate and the inner wall of the core tube is set. The distance between the lower surface of the rectifying plate and the upper end of the glass particulate deposit is 400 mm or less.

このように構成されたガラス母材の焼結装置によれば、炉心管の断面積の50%以上90%以下の大きさの整流板をガラス微粒子堆積体の上部に配置して、炉心管との隙間に流れる不活性ガスの平均流速を55mm/秒以上とすることで、整流板と不活性ガスにより炉心管の上部から浸入した外気が整流板の下に回り込むのを遮断し、外気中に混入している不純物のガラス微粒子堆積体への付着をしにくくすることができる。また、整流板下面とガラス微粒子堆積体の上端部との距離を400mm以下にすることで、整流板の下方の空間で不活性ガスの乱流が発生するのを防止し、下方から上方への不活性ガスの層流の流れを保つことができる。   According to the glass base material sintering apparatus configured as described above, a rectifying plate having a size of 50% or more and 90% or less of the cross-sectional area of the core tube is arranged on the upper part of the glass particulate deposit, By making the average flow velocity of the inert gas flowing through the gap of 55 mm / second or more, the outside air that has entered from the upper part of the core tube by the rectifying plate and the inert gas is prevented from flowing under the rectifying plate, and into the outside air It is possible to make it difficult for adhering impurities to adhere to the glass particulate deposit. In addition, by making the distance between the lower surface of the rectifying plate and the upper end of the glass particulate deposit to be 400 mm or less, it is possible to prevent the turbulent flow of the inert gas in the space below the rectifying plate and A laminar flow of inert gas can be maintained.

上記課題を解決することができる本発明に係るガラス母材の焼結方法は、炉心管内に配置したガラス微粒子堆積体を、ヒートゾーンからの熱により加熱焼結させるガラス母材の焼結方法であって、前記炉心管の下部から不活性ガスを導入して前記炉心管の上部から不要なガスを排出するとともに、前記炉心管の断面積の50%以上90%以下の大きさの整流板を前記ガラス微粒子堆積体の上部に配置し、前記炉心管の内壁と前記整流板との間を流れる前記不活性ガスの平均流速を55mm/秒以上にして、前記ガラス微粒子堆積体を加熱焼結させることを特徴としている。   The glass base material sintering method according to the present invention that can solve the above-mentioned problems is a glass base material sintering method in which a glass particulate deposit placed in a furnace core tube is heated and sintered by heat from a heat zone. An inert gas is introduced from the lower part of the core tube to discharge unnecessary gas from the upper part of the core tube, and a rectifying plate having a size of 50% to 90% of the cross-sectional area of the core tube is provided. The glass particulate deposit is placed on top of the glass particulate deposit, and the glass particulate deposit is heated and sintered at an average flow rate of the inert gas flowing between the inner wall of the reactor core tube and the current plate of 55 mm / second or more. It is characterized by that.

このように構成されたガラス母材の焼結方法によれば、ガラス微粒子堆積体の上部に配置した整流板と炉心管下部から上部に流す不活性ガスにより炉心管の上部から浸入した外気を遮断して、整流板の下方に外気が回り込むのを阻止するので、外気中に混入している不純物のガラス微粒子堆積体への付着をしにくくすることができる。   According to the sintering method of the glass base material configured in this way, the outside air that has entered from the upper part of the core tube is blocked by the rectifying plate arranged on the upper part of the glass particulate deposit and the inert gas flowing from the lower part to the upper part of the core tube. Then, since the outside air is prevented from flowing under the rectifying plate, it is possible to make it difficult for impurities mixed in the outside air to adhere to the glass particulate deposit.

本発明に係るガラス母材の焼結装置および焼結方法によれば、ガラス微粒子堆積体の上部に配置した整流板の大きさを炉心管の断面積の50%以上90%以下とするとともに、整流板と炉心管の内壁との間を流れる不活性ガスの平均流速を55mm/秒以上とすることで、外気中に混入している不純物のガラス母材への付着をしにくくすることができる。また、整流板下面とガラス微粒子堆積体の上端部との距離を400mm以下にすることで、整流板の下方の空間で不活性ガスの乱流が発生するのを防止し、不活性ガスの層流の流れを保つことができる。これにより、前記ガラス母材から光ファイバを製造した場合、伝送損失の良好な光ファイバを得ることができる。   According to the sintering apparatus and the sintering method of the glass base material according to the present invention, the size of the rectifying plate disposed on the upper part of the glass particulate deposit is set to 50% or more and 90% or less of the cross-sectional area of the core tube, By making the average flow rate of the inert gas flowing between the rectifying plate and the inner wall of the core tube 55 mm / second or more, it is possible to make it difficult for impurities mixed in the outside air to adhere to the glass base material. . In addition, by setting the distance between the lower surface of the rectifying plate and the upper end portion of the glass particulate deposit to be 400 mm or less, it is possible to prevent the turbulent flow of the inert gas in the space below the rectifying plate and The flow of the flow can be kept. Thereby, when an optical fiber is manufactured from the glass base material, an optical fiber with good transmission loss can be obtained.

本発明に係るガラス母材を製造する焼結装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the sintering apparatus which manufactures the glass base material which concerns on this invention. 炉心管内の不活性ガスの平均流速と光ファイバの伝送損失不良率との関係を示すグラフである。It is a graph which shows the relationship between the average flow velocity of the inert gas in a furnace core tube, and the transmission loss defect rate of an optical fiber. 従来のガラス母材の焼結装置を示す概略図である。It is the schematic which shows the sintering apparatus of the conventional glass base material.

以下、本発明に係るガラス母材の焼結装置および焼結方法の一実施形態について、図1に基づいて説明する。   Hereinafter, an embodiment of a glass base material sintering apparatus and sintering method according to the present invention will be described with reference to FIG.

図1に示すように、本実施形態のガラス母材を製造する焼結装置10は、上部を蓋部12により閉塞され、出発種棒15にガラス微粒子を堆積させたガラス微粒子堆積体14を収容する炉心管11と、炉心管11の外周側にガラス微粒子堆積体14を加熱焼結させる熱源であるヒータ13とを備えている。焼結装置10は、ヒータ13により炉心管11内の所定位置にヒートゾーンを形成し、ヒートゾーン内に配置したガラス微粒子堆積体14を加熱焼結させる。   As shown in FIG. 1, the sintering apparatus 10 for producing the glass base material of the present embodiment accommodates a glass particulate deposit 14 in which the upper portion is closed by a lid 12 and glass particulates are deposited on a starting seed rod 15. And a heater 13 which is a heat source for heating and sintering the glass particulate deposit 14 on the outer peripheral side of the core tube 11. The sintering apparatus 10 forms a heat zone at a predetermined position in the furnace core tube 11 with the heater 13 and heat-sinters the glass particulate deposit 14 disposed in the heat zone.

炉心管11は、下部にHeガス等の不活性ガスを供給するガス供給部17と、上部に不要なガスを排出するガス排出部18とを備えている。ガラス微粒子堆積体14は、出発種棒15を介して連結部材16によって炉心管11内に吊り下げられている。   The core tube 11 includes a gas supply unit 17 that supplies an inert gas such as He gas at a lower portion, and a gas discharge unit 18 that discharges an unnecessary gas at an upper portion. The glass particulate deposit 14 is suspended in the core tube 11 by a connecting member 16 via a starting seed rod 15.

焼結装置10は、ガラス微粒子堆積体14の上部近傍に、該ガラス微粒子堆積体14の長手方向に沿って位置調整可能な大型の整流板20を備えている。整流板20は、例えば出発種棒15に付けられた段部に固定されるようにしても良いし、別の固定治具などを用いて固定するようにしても良い。   The sintering apparatus 10 includes a large rectifying plate 20 that can be adjusted in position along the longitudinal direction of the glass particulate deposit 14 near the upper portion of the glass particulate deposit 14. The rectifying plate 20 may be fixed to, for example, a step portion attached to the starting seed bar 15, or may be fixed using another fixing jig or the like.

本実施形態の整流板20は、外径D1の円形であり、石英、不透明石英またはセラミックスからなる。整流板20の平面積S1は、内径D0の炉心管11の仮想断面積S0の50%〜90%の範囲内に設定されている。なお、仮想断面積とは、炉心管11の内径D0から算出される炉心管11内の空間断面積を意味する。   The rectifying plate 20 of the present embodiment has a circular shape with an outer diameter D1, and is made of quartz, opaque quartz, or ceramics. The flat area S1 of the rectifying plate 20 is set within a range of 50% to 90% of the virtual sectional area S0 of the core tube 11 having the inner diameter D0. The virtual cross-sectional area means a space cross-sectional area in the core tube 11 calculated from the inner diameter D0 of the core tube 11.

さらに、整流板20の平面積S1は、ガラス微粒子堆積体14の外径D2から算出できるガラス微粒子堆積体14の断面積S2の90%以上に設定するのが好ましい。このような条件を満たすように、整流板20の外径D1を決定する。   Furthermore, the plane area S1 of the current plate 20 is preferably set to 90% or more of the cross-sectional area S2 of the glass fine particle deposit 14 that can be calculated from the outer diameter D2 of the glass fine particle deposit 14. The outer diameter D1 of the rectifying plate 20 is determined so as to satisfy such a condition.

なお、整流板20が炉心管11の仮想断面積S0の90%以上になると、不活性ガスGが整流板20の下部で滞留してしまい、炉心管11の上部から排気できなくなる。また、整流板20が炉心管11の仮想断面積S0の50%以下となると、不活性ガスGの流速を上げることができず、外気F0を整流板20の下方へ巻き込んでしまい整流効果が得られない。   When the rectifying plate 20 is 90% or more of the virtual sectional area S0 of the core tube 11, the inert gas G stays in the lower portion of the rectifying plate 20, and cannot be exhausted from the upper portion of the core tube 11. Further, when the flow straightening plate 20 becomes 50% or less of the virtual cross-sectional area S0 of the core tube 11, the flow rate of the inert gas G cannot be increased, and the outside air F0 is engulfed below the flow straightening plate 20 to obtain a flow straightening effect. I can't.

加えて、本実施形態の整流板20は、整流板20の外周縁27と炉心管11の内壁28との隙間を流れる不活性ガスGの平均流速Vが55mm/秒以上に設定されている。具体的には、上記隙間の断面積の値と不活性ガスGの流量から、平均流速が55mm/秒以上になるように、不活性ガス流量を調整する。整流板20近傍の炉心管11に、速度センサを取り付け、不活性ガスGの流速Vをモニターしながら、ガス供給部17からの不活性ガスGの供給量を調整することとしても良い。なお、不活性ガスGの平均流速Vが55mm/秒未満になると、整流板20の隙間を流れる不活性ガスGが、うまく層流として上方に流れなくなり、外気F0の流れが、整流板20の下部に回り込むのを遮ることができなくなる。また、不活性ガスGの平均流速Vが250mm/秒を超えると、流量が多くなり過ぎるため、整流板20などが振動する、などの不具合が生じる。   In addition, in the rectifying plate 20 of this embodiment, the average flow velocity V of the inert gas G flowing through the gap between the outer peripheral edge 27 of the rectifying plate 20 and the inner wall 28 of the core tube 11 is set to 55 mm / second or more. Specifically, the inert gas flow rate is adjusted from the value of the cross-sectional area of the gap and the flow rate of the inert gas G so that the average flow velocity is 55 mm / second or more. A speed sensor may be attached to the core tube 11 in the vicinity of the rectifying plate 20, and the supply amount of the inert gas G from the gas supply unit 17 may be adjusted while monitoring the flow velocity V of the inert gas G. When the average flow velocity V of the inert gas G is less than 55 mm / second, the inert gas G flowing through the gaps in the rectifying plate 20 does not flow upward as a laminar flow, and the flow of the outside air F0 is It will not be possible to block the lower part. In addition, when the average flow velocity V of the inert gas G exceeds 250 mm / second, the flow rate becomes too high, causing problems such as vibration of the rectifying plate 20 and the like.

さらに好ましくは、整流板20の下面とガラス微粒子堆積体14の上端部との距離Hを、400mm以下に設定する。これにより、整流板20の下方で不活性ガスGの乱流が発生するのを防止することができる。整流板20とガラス微粒子堆積体14との距離Hが400mmより大きくなると、整流板20の下方の空間に不活性ガスGが回り込むように流れ込んでしまうため、上記同様に整流板20の隙間を流れる不活性ガスGが、うまく層流として上方に流れにくくなり、外気F0の流れが、整流板20の下部に回り込むのを遮ることができなくなる。なお、上記ガラス微粒子堆積体14の上端部とは、ススが付着している最上部の位置とし、具体的には、出発種棒15の径からの増大が目視で確認できる位置とする。   More preferably, the distance H between the lower surface of the rectifying plate 20 and the upper end portion of the glass particulate deposit 14 is set to 400 mm or less. Thereby, it is possible to prevent the turbulent flow of the inert gas G from occurring below the rectifying plate 20. When the distance H between the rectifying plate 20 and the glass particulate deposit 14 is greater than 400 mm, the inert gas G flows into the space below the rectifying plate 20 and thus flows through the gap between the rectifying plates 20 as described above. The inert gas G does not easily flow upward as a laminar flow, and the flow of the outside air F0 cannot be blocked from flowing around the lower portion of the rectifying plate 20. The upper end of the glass particulate deposit 14 is the uppermost position where the soot is attached, and specifically, the position where the increase from the diameter of the starting seed rod 15 can be visually confirmed.

上述したように本実施形態の焼結装置10は、ガラス微粒子堆積体14の上部に炉心管11の仮想断面積S0の50%以上90%以下の大きさの整流板20を配置して、この整流板20の外周縁27と炉心管11の内壁28との間の隙間を下方から上方へ流れる不活性ガスGの平均流速Vを55mm/秒以上とし、且つ整流板20下面とガラス微粒子堆積体14の上端部との距離を400mm以下とした。これにより、焼結装置10は、炉心管11上部の蓋部12から浸入した外気F0が整流板の下に回り込むのを遮断し、外気F0中に混入している不純物F1を整流板20下方のガラス微粒子堆積体14に付着しにくくできる。また、整流板20の下面とガラス微粒子堆積体14の上端部との距離を400mm以下にすることで、整流板20の下方の空間で不活性ガスGの乱流が発生するのを防止し、下方から上方への不活性ガスGの層流の流れを保つことができる。   As described above, the sintering apparatus 10 of the present embodiment arranges the rectifying plate 20 having a size of 50% or more and 90% or less of the virtual cross-sectional area S0 of the core tube 11 on the upper part of the glass particulate deposit 14. The average flow velocity V of the inert gas G flowing from below to above the gap between the outer peripheral edge 27 of the rectifying plate 20 and the inner wall 28 of the core tube 11 is set to 55 mm / second or more, and the lower surface of the rectifying plate 20 and the glass particulate deposit The distance from the upper end of 14 was 400 mm or less. As a result, the sintering device 10 blocks the outside air F0 that has entered from the lid 12 at the top of the core tube 11 from flowing under the rectifying plate, and removes the impurities F1 mixed in the outside air F0 below the rectifying plate 20. It can be made difficult to adhere to the glass particulate deposit 14. Further, by setting the distance between the lower surface of the rectifying plate 20 and the upper end portion of the glass particulate deposit 14 to 400 mm or less, it is possible to prevent the turbulent flow of the inert gas G in the space below the rectifying plate 20, A laminar flow of the inert gas G from the bottom to the top can be maintained.

次に、整流板20のガラス微粒子堆積体14への取り付け手順を説明する。   Next, a procedure for attaching the rectifying plate 20 to the glass particulate deposit 14 will be described.

(整流板の取り付け)
整流板20は、出発種棒15を挿通し、例えば出発種棒15に設けられた段部などで上下方向の位置を固定する。
(Attaching the current plate)
The rectifying plate 20 is inserted through the starting seed rod 15 and fixed in the vertical direction by, for example, a step provided on the starting seed rod 15.

(ガラス微粒子堆積体の取り付け)
整流板20を取り付けたガラス微粒子堆積体14は、炉心管11内の上部に配置された連結部材16に連結することで、炉心管11内の所定位置に吊り下げられる。
(Installation of glass particulate deposit)
The glass particulate deposit body 14 to which the rectifying plate 20 is attached is suspended at a predetermined position in the core tube 11 by being connected to a connecting member 16 disposed in the upper part in the core tube 11.

次に、ガラス微粒子堆積体の焼結工程について説明する。
(ガラス微粒子堆積体の焼結工程)
ヒータ13により炉心管11内を約1600℃に加熱することで、ガラス微粒子堆積体14を焼結して透明化する。このとき、ガラス微粒子堆積体14の上端部近傍に、内径D0の炉心管11の仮想断面積S0の50%〜90%の範囲の平面積S1を有する整流板20を配置しているので、ヒータ13及び透明化されたガラス微粒子堆積体14などから出発種棒15へ伝わる熱を遮熱しながら、ガラス微粒子堆積体14を焼結する。
Next, the sintering process of the glass fine particle deposit will be described.
(Sintering process of glass particulate deposits)
By heating the inside of the furnace tube 11 to about 1600 ° C. by the heater 13, the glass particulate deposit 14 is sintered and made transparent. At this time, since the rectifying plate 20 having a plane area S1 in the range of 50% to 90% of the virtual cross-sectional area S0 of the core tube 11 having the inner diameter D0 is disposed in the vicinity of the upper end of the glass particulate deposit 14, the heater The glass fine particle deposit 14 is sintered while shielding the heat transmitted to the starting seed rod 15 from 13 and the transparent glass fine particle deposit 14.

また、整流板20の外周縁27と炉心管11の内壁28との間の隙間を流れる不活性ガスGの平均流速Vを55mm/秒以上になるように、炉心管11下部のガス供給部17から所定量の不活性ガスGを導入して、炉心管11上部のガス排出部18から不要なガスを排出している。また、整流板20下面とガラス微粒子堆積体14上端との距離Hが400mm以下に調整されている。   Further, the gas supply unit 17 below the core tube 11 is set so that the average flow velocity V of the inert gas G flowing through the gap between the outer peripheral edge 27 of the rectifying plate 20 and the inner wall 28 of the core tube 11 is 55 mm / second or more. Then, a predetermined amount of inert gas G is introduced, and unnecessary gas is discharged from the gas discharge portion 18 at the top of the core tube 11. The distance H between the lower surface of the rectifying plate 20 and the upper end of the glass fine particle deposit 14 is adjusted to 400 mm or less.

焼結装置10は、上記平面積S1の整流板20と平均流速Vの不活性ガスGによって、炉心管11の上部から浸入した外気F0を遮断して、整流板20の下方への外気F0の浸入を阻止する。これにより、焼結装置10は、外気F0中に混入している不純物F1のガラス微粒子堆積体14への付着を抑制することができる。したがって、このガラス微粒子堆積体14から光ファイバを製造した場合、伝送損失の良好な光ファイバを得ることができる。   The sintering apparatus 10 blocks the outside air F0 that has entered from the upper portion of the core tube 11 by the rectifying plate 20 having the flat area S1 and the inert gas G having an average flow velocity V, and the outside air F0 below the rectifying plate 20 is blocked. Prevent intrusion. Thereby, the sintering apparatus 10 can suppress adhesion of the impurities F1 mixed in the outside air F0 to the glass particulate deposits 14. Therefore, when an optical fiber is manufactured from this glass fine particle deposit 14, an optical fiber with good transmission loss can be obtained.

なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

例えば、上記実施形態では焼結工程について説明したが、線引工程での線引装置にも適用することができる。また、整流板の取付位置は、出発種棒以外に、連結部材や炉心管や蓋部であっても良い。   For example, although the sintering process has been described in the above embodiment, it can also be applied to a drawing apparatus in the drawing process. Moreover, the attachment position of the current plate may be a connecting member, a core tube, or a lid in addition to the starting seed bar.

次に、本発明に係るガラス母材の焼結装置および焼結方法の作用効果を確認するために行った実施例について説明する。   Next, examples carried out for confirming the effects of the sintering apparatus and sintering method of the glass base material according to the present invention will be described.

炉心管の内径D0:250mm
ガラス微粒子堆積体の外径D2:200mm
焼結温度:1500℃
Inner diameter D0 of core tube: 250mm
Outer diameter D2 of glass fine particle deposit: 200 mm
Sintering temperature: 1500 ° C

整流板の外径D1を固定(210mm)して、ガス供給流量を変化させる、若しくはガス供給流量を一定にして整流板の外径D1を炉心管内の仮想断面積S0の50%〜90%の範囲内で変化させる、などしてガス平均流量を変更し、各ガス平均流量において各々数本づつのガラス微粒子堆積体の焼結を行った。このガラス微粒子堆積体から光ファイバを製造して、各光ファイバの伝送損失を測定した。測定した伝送損失の内、基準値より高くなったものを不良ファイバとし、その不良ファイバの発生率を各ガス平均流量において算出した結果を図2に示す。   The outer diameter D1 of the rectifying plate is fixed (210 mm), and the gas supply flow rate is changed, or the gas supply flow rate is fixed, and the outer diameter D1 of the rectifying plate is 50% to 90% of the virtual cross-sectional area S0 in the core tube. The gas average flow rate was changed, for example, by changing within the range, and several glass particle deposits were sintered at each gas average flow rate. An optical fiber was manufactured from this glass particulate deposit, and the transmission loss of each optical fiber was measured. FIG. 2 shows the result of calculating the occurrence rate of the defective fiber at each gas average flow rate, with the measured transmission loss being higher than the reference value as a defective fiber.

図2に示すように、ガス平均流速Vが55mm/秒以上であると、伝送損失の不良率が0%であることが判る。これは、ガス平均流速Vが55mm/秒以上になると、整流板の隙間を流れる不活性ガスが層流として上方に流れるため、整流板の下方への外気の浸入が阻止され、外気中の不純物がガラス微粒子堆積体に殆んど付着していないものと考えられる。   As shown in FIG. 2, when the gas average flow velocity V is 55 mm / second or more, it can be seen that the defective rate of transmission loss is 0%. This is because when the average gas flow velocity V is 55 mm / second or more, the inert gas flowing through the gap between the rectifying plates flows upward as a laminar flow, so that intrusion of outside air below the rectifying plate is prevented, and impurities in the outside air Is considered to have hardly adhered to the glass particulate deposit.

これに対して、ガス平均流速Vが54mm/秒になると、伝送損失の不良率が12%に悪化する。また、ガス平均流速Vが45mm/秒前後になると、不良率が70〜80%前後にまで悪化することが判る。これは、ガス平均流速Vが55mm/秒未満であると、整流板の隙間を流れる不活性ガスが層流としてうまく上方に流れず、整流板の下方へ外気が浸入して、外気中に混入している不純物がガラス微粒子堆積体に付着しているためと考えられる。   On the other hand, when the gas average flow velocity V becomes 54 mm / sec, the defective rate of transmission loss deteriorates to 12%. Further, it can be seen that when the gas average flow velocity V is around 45 mm / sec, the defect rate deteriorates to around 70 to 80%. This is because when the average gas flow velocity V is less than 55 mm / sec, the inert gas flowing through the gap between the rectifying plates does not flow well upward as a laminar flow, and the outside air enters the lower portion of the rectifying plate and enters the outside air. This is probably because the impurities that are attached to the glass particulate deposits.

10…焼結装置、11…炉心管、13…ヒータ、14…ガラス微粒子堆積体、15…出発種棒、17…ガス供給部、18…ガス排出部、20…整流板、D0…炉心管の内径、D1…整流板の外径、D2…ガラス微粒子堆積体の外径、F0…外気、F1…不純物、G…不活性ガス、H…整流板下面とガラス微粒子堆積体上端との距離、V…不活性ガスの平均流速、S0…炉心管の仮想断面積、S1…整流板の平面積、S2…ガラス微粒子堆積体の断面積
DESCRIPTION OF SYMBOLS 10 ... Sintering apparatus, 11 ... Core tube, 13 ... Heater, 14 ... Glass fine particle deposit, 15 ... Starting seed rod, 17 ... Gas supply part, 18 ... Gas discharge part, 20 ... Current plate, D0 ... Core tube Inner diameter, D1 ... outer diameter of current plate, D2 ... outer diameter of glass particulate deposit, F0 ... outside air, F1 ... impurities, G ... inert gas, H ... distance between lower surface of current plate and upper end of glass particulate deposit, V ... average flow velocity of inert gas, S0 ... virtual sectional area of core tube, S1 ... flat area of rectifying plate, S2 ... sectional area of glass particulate deposit

Claims (2)

炉心管の下部から不活性ガスを導入するガス供給部と、前記炉心管の上部から不要なガスを排出するガス排出部と、ヒートゾーンを形成するヒータと、を備え、
前記炉心管内に配置したガラス微粒子堆積体を、ヒートゾーンの熱により加熱焼結させるガラス母材の焼結装置であって、
前記ガラス微粒子堆積体の上部に前記炉心管の断面積の50%以上90%以下の大きさの整流板を配置して該整流板と前記炉心管の内壁との間を流れる前記不活性ガスの平均流速を55mm/秒以上とし、且つ前記整流板下面と前記ガラス微粒子堆積体の上端部との距離を400mm以下としたことを特徴とするガラス母材の焼結装置。
A gas supply unit for introducing an inert gas from the lower part of the core tube, a gas discharge unit for discharging unnecessary gas from the upper part of the core tube, and a heater for forming a heat zone,
A glass base material sintering apparatus that heats and sinters a glass particulate deposit disposed in the furnace core tube by heat in a heat zone,
A rectifying plate having a size of 50% or more and 90% or less of the cross-sectional area of the core tube is disposed on the glass particulate deposit, and the inert gas flowing between the rectifying plate and the inner wall of the core tube is disposed. An apparatus for sintering a glass base material, wherein an average flow rate is 55 mm / second or more, and a distance between the lower surface of the rectifying plate and the upper end of the glass fine particle deposit is 400 mm or less.
炉心管内に配置したガラス微粒子堆積体を、ヒートゾーンからの熱により加熱焼結させるガラス母材の焼結方法であって、
前記炉心管の下部から不活性ガスを導入して前記炉心管の上部から不要なガスを排出するとともに、前記炉心管の断面積の50%以上90%以下の大きさの整流板を前記ガラス微粒子堆積体の上部に配置し、前記炉心管の内壁と前記整流板との間を流れる前記不活性ガスの平均流速を55mm/秒以上にして、前記ガラス微粒子堆積体を加熱焼結させることを特徴とするガラス母材の焼結方法。
A glass base material sintering method in which a glass particulate deposit disposed in a furnace core tube is heated and sintered by heat from a heat zone,
An inert gas is introduced from the lower part of the furnace core tube, unnecessary gas is discharged from the upper part of the furnace core tube, and a rectifying plate having a size of 50% or more and 90% or less of the cross-sectional area of the furnace core tube is replaced with the glass particles The glass fine particle deposit is heat-sintered at an upper portion of the deposit, with an average flow rate of the inert gas flowing between the inner wall of the furnace core tube and the rectifying plate being 55 mm / sec or more. A method for sintering a glass base material.
JP2011148150A 2011-07-04 2011-07-04 Sintering apparatus and sintering method for glass base material Active JP5830979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148150A JP5830979B2 (en) 2011-07-04 2011-07-04 Sintering apparatus and sintering method for glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148150A JP5830979B2 (en) 2011-07-04 2011-07-04 Sintering apparatus and sintering method for glass base material

Publications (2)

Publication Number Publication Date
JP2013014468A JP2013014468A (en) 2013-01-24
JP5830979B2 true JP5830979B2 (en) 2015-12-09

Family

ID=47687525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148150A Active JP5830979B2 (en) 2011-07-04 2011-07-04 Sintering apparatus and sintering method for glass base material

Country Status (1)

Country Link
JP (1) JP5830979B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762374B2 (en) * 2012-09-20 2015-08-12 信越化学工業株式会社 Porous glass base material manufacturing equipment
JP2014201513A (en) * 2013-04-10 2014-10-27 信越化学工業株式会社 Sintering apparatus
JP6163923B2 (en) * 2013-07-10 2017-07-19 住友電気工業株式会社 Glass base material manufacturing apparatus and manufacturing method
CN111138078A (en) * 2018-11-06 2020-05-12 中天科技精密材料有限公司 Deposition apparatus and deposition system
WO2021118833A1 (en) * 2019-12-11 2021-06-17 Corning Incorporated Apparatuses and methods for processing an optical fiber preform
CN115490418B (en) * 2022-09-06 2023-11-03 烽火通信科技股份有限公司 Gas sealing device and gas sealing method for melting shrinkage furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274533A (en) * 1988-09-12 1990-03-14 Sumitomo Electric Ind Ltd Production of glass parent material for optical fiber
JP3141464B2 (en) * 1991-12-02 2001-03-05 住友電気工業株式会社 Optical fiber drawing furnace
JPH06199537A (en) * 1993-01-05 1994-07-19 Sumitomo Electric Ind Ltd Optical fiber drawing furnace
JP3017990B1 (en) * 1999-01-28 2000-03-13 信越化学工業株式会社 Porous glass base material sintering equipment
JP4456054B2 (en) * 2005-09-29 2010-04-28 信越化学工業株式会社 Method for producing fluorine-added quartz glass

Also Published As

Publication number Publication date
JP2013014468A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5830979B2 (en) Sintering apparatus and sintering method for glass base material
EP2476786B1 (en) Silica glass crucible for pulling silicon single crystal and method for producing same
JP5969230B2 (en) Polycrystalline silicon rod
TWI588101B (en) Apparatus and methods for providing a clean glass-making environment
KR20110036675A (en) Apparatus and method for manufacturing virteous silica crucible
JP2013532111A (en) Method and apparatus for producing polycrystalline silicon ingot
JP6951661B2 (en) Manufacturing method and manufacturing equipment for glass articles
JP5103194B2 (en) Solid raw material input device, melt raw material supply device and crystal manufacturing device
US20030029202A1 (en) Method and apparatus for producing porous glass soot body
CN111217516A (en) Quartz glass ingot, and method and apparatus for manufacturing same
JP4800292B2 (en) Melting equipment
JP2013056808A (en) Method for producing glass preform
JP2013203621A (en) Drawing furnace and drawing method for optical fiber
JP4494325B2 (en) Manufacturing method of glass preform for optical fiber
JP6536576B2 (en) Heterogeneous material discharge structure for molten glass, apparatus and method for manufacturing glass article
JP5935508B2 (en) Glass base material manufacturing method and manufacturing apparatus
CN110121482B (en) Method and apparatus for controlling taper of glass tube
JP5598872B2 (en) Optical fiber preform manufacturing method
JP5174096B2 (en) Optical fiber preform manufacturing apparatus and optical fiber preform manufacturing method
JP5915028B2 (en) Method for sintering glass particulate deposit
JP5528516B2 (en) Optical fiber preform manufacturing apparatus and optical fiber preform manufacturing method
JP2021527020A (en) Reconfigurable muffle housing used in glass manufacturing operations
WO2012090843A1 (en) Impurity separation method, impurity separation device, and continuous casting method
JP6295108B2 (en) Molten metal filtration cartridge and molten metal filtration device
JPH061630A (en) Production of optical fiber base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5830979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250