JP2015074600A - Method of manufacturing optical fiber - Google Patents

Method of manufacturing optical fiber Download PDF

Info

Publication number
JP2015074600A
JP2015074600A JP2013213822A JP2013213822A JP2015074600A JP 2015074600 A JP2015074600 A JP 2015074600A JP 2013213822 A JP2013213822 A JP 2013213822A JP 2013213822 A JP2013213822 A JP 2013213822A JP 2015074600 A JP2015074600 A JP 2015074600A
Authority
JP
Japan
Prior art keywords
optical fiber
glass preform
reduced diameter
furnace
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013213822A
Other languages
Japanese (ja)
Inventor
小西 達也
Tatsuya Konishi
達也 小西
巌 岡崎
Iwao Okazaki
巌 岡崎
山崎 卓
Taku Yamazaki
卓 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013213822A priority Critical patent/JP2015074600A/en
Priority to CN201410534458.5A priority patent/CN104556677A/en
Publication of JP2015074600A publication Critical patent/JP2015074600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical fiber that reduces pressure change in a drawing furnace and change of a flow of gas caused as drawing of a glass perform advances, and suppresses external diameter variation of an optical fiber small.SOLUTION: There is provided a method of manufacturing an optical fiber in which a dummy bar 13 is connected to an upper end of a glass preform 11 for optical fiber which has a diameter reduced part 11c at an upper part, and the glass preform for optical fiber is heated and fused in a drawing furnace so as to draw an optical fiber. A member 25 having volume which is 50% or larger of the space between the diameter reduced part of the glass preform and a furnace tube is arranged at the position of the diameter reduced part, and the optical fiber is drawn.

Description

本発明は、光ファイバ用ガラス母材の上端の縮径部にダミー棒を連結し、線引炉内で光ファイバ用ガラス母材を加熱溶融して光ファイバを線引きする光ファイバの製造方法に関する。   The present invention relates to an optical fiber manufacturing method in which a dummy rod is connected to a reduced diameter portion at the upper end of an optical fiber glass preform, and the optical fiber glass preform is heated and melted in a drawing furnace to draw the optical fiber. .

光ファイバ用線引炉(以下、線引炉という)による光ファイバの線引きは、石英を主成分とする光ファイバ用ガラス母材(以下、ガラス母材という)をヒータなどで加熱溶融して行われる。このときの線引炉内の温度は、約2000℃と非常に高温となるので、線引炉内の部品には、耐熱性に優れたカーボンが用いられている。このカーボンは、高温の酸素含有雰囲気中で酸化して消耗する性質を有する。このため、線引炉内は、アルゴンガスやヘリウムガス等の希ガス、窒素ガス(以下、不活性ガス等という)の雰囲気に保つ必要がある。   Optical fiber drawing using an optical fiber drawing furnace (hereinafter referred to as a drawing furnace) is performed by heating and melting an optical fiber glass base material (hereinafter referred to as a glass base material) mainly composed of quartz with a heater or the like. Is called. Since the temperature in the drawing furnace at this time is as high as about 2000 ° C., carbon having excellent heat resistance is used for the parts in the drawing furnace. This carbon has the property of being oxidized and consumed in a high-temperature oxygen-containing atmosphere. For this reason, it is necessary to keep the inside of a drawing furnace in the atmosphere of noble gases, such as argon gas and helium gas, and nitrogen gas (henceforth inert gas etc.).

通常、ガラス母材は、小径のシード棒にガラス微粒子を堆積させたものをガラス化しているため、直胴部(本体部ともいう)の上端の、シード棒との境界部がテーパ状に縮径されており、シード棒に同径のダミー棒を連結して、線引炉の炉心管内に吊り下げ支持される。
このように、ガラス母材の径が大きく変化しているため、径が大きく変化しているテーパ部が線引炉の上端を通過する際に、このテーパ部をシールするのが非常に難しい。また、径が大きく変化すると、線引炉内空間の容積が線引の進行に連れて変化し、線引炉内のガスの流れが変わるため、光ファイバの外径変動が大きくなる場合がある。そこで、例えば、特許文献1には、ガラス母材とほぼ同径のパイプをガラス母材の上方に配置することにより、テーパ部が通過する際も封止状態を維持し、また、ガラス母材の線引きが進行してもガラス母材の上部空間の容積をほぼ一定に保ち、外径変動を抑えることが開示されている。
また、特許文献2には、線引炉上部に内筒管を設け、内筒管内の空間を複数組の仕切り板により仕切り、ガラス母材の上部空間の容積を一定に保つことにより、外径変動を抑える技術が開示されている。
Normally, the glass base material is vitrified by depositing glass particles on a small-diameter seed rod, so the boundary between the upper end of the straight barrel (also called the main body) and the seed rod is tapered. A dummy rod having the same diameter is connected to the seed rod, and is suspended and supported in the core tube of the drawing furnace.
As described above, since the diameter of the glass base material is greatly changed, it is very difficult to seal the tapered portion when the tapered portion whose diameter is greatly changed passes through the upper end of the drawing furnace. In addition, when the diameter changes greatly, the volume of the drawing furnace space changes as the drawing progresses, and the flow of gas in the drawing furnace changes, so the outer diameter fluctuation of the optical fiber may increase. . Therefore, for example, in Patent Document 1, a pipe having substantially the same diameter as the glass base material is disposed above the glass base material so that the sealed state is maintained even when the tapered portion passes, and the glass base material is also provided. It has been disclosed that the volume of the upper space of the glass base material is kept substantially constant and fluctuations in the outer diameter are suppressed even when the wire drawing is continued.
Further, in Patent Document 2, an inner cylinder pipe is provided at the upper part of the drawing furnace, a space in the inner cylinder pipe is partitioned by a plurality of sets of partition plates, and the volume of the upper space of the glass base material is kept constant. A technique for suppressing fluctuation is disclosed.

特開2011−84409号公報JP 2011-84409 A 特開平11−343137号公報Japanese Patent Laid-Open No. 11-343137

しかしながら、特許文献2の方法では、ガラス母材の縮径部が加熱部に近づいた場合、ガラス母材の所謂「肩」の部分の熱放射により縮径部の温度が局所的に上昇するため、縮径部がヒータに近づくに連れてガラス母材上方(縮径部の位置など)の空間でガス流れ(自然対流ともいう)が変化し、このガス流れが線引炉内の圧力変動に影響を及ぼす。この現象は、炉内ガスとして熱伝導率の高いヘリウムガスを用いる場合は生じにくいが、熱伝導率の低いアルゴンガス、窒素ガスなどで生じやすく、このような圧力変動が大きくなると、光ファイバの外径変動も大きくなる。
特許文献1の方法では、ガラス母材の縮径部の位置の空間が囲われているため、この空間での対流は生じないが、ガラス母材の縮径部が加熱部に近づいた時に、パイプとガラス母材とが溶着してしまうという問題がある。溶着してしまうと、その後、これらを切り離す処理が必要になり、またパイプの再利用も難しくなる。一方で、パイプをガラス母材から離してしまうと、空間容積を一定に保つことができず、外径変動を抑えることが難しい。
However, in the method of Patent Document 2, when the reduced diameter portion of the glass base material approaches the heating portion, the temperature of the reduced diameter portion locally increases due to thermal radiation of the so-called “shoulder” portion of the glass base material. As the reduced diameter part approaches the heater, the gas flow (also called natural convection) changes in the space above the glass base material (such as the position of the reduced diameter part), and this gas flow causes pressure fluctuations in the drawing furnace. affect. This phenomenon is unlikely to occur when helium gas with high thermal conductivity is used as the furnace gas, but it is likely to occur with argon gas, nitrogen gas, etc. with low thermal conductivity. Outer diameter fluctuation also increases.
In the method of Patent Document 1, since the space at the position of the reduced diameter portion of the glass base material is enclosed, convection does not occur in this space, but when the reduced diameter portion of the glass base material approaches the heating portion, There is a problem that the pipe and the glass base material are welded. If they are welded, it will be necessary to separate them later, and it will be difficult to reuse the pipes. On the other hand, if the pipe is separated from the glass base material, the space volume cannot be kept constant, and it is difficult to suppress fluctuations in the outer diameter.

本発明は、上述のような実情に鑑みてなされたもので、ガラス母材の線引き進行によって生じる線引炉内の圧力変動やガスの流れの変動を小さくし、光ファイバの外径変動を小さく抑える光ファイバの製造方法の提供を目的とする。   The present invention has been made in view of the above situation, and reduces fluctuations in pressure and gas flow in the drawing furnace caused by drawing of the glass base material, and reduces fluctuations in the outer diameter of the optical fiber. It aims at providing the manufacturing method of the optical fiber to suppress.

本発明による光ファイバの製造方法は、上部に縮径部が存在する光ファイバ用ガラス母材の上端にダミー棒を連結し、線引炉内で前記光ファイバ用ガラス母材を加熱溶融して光ファイバを線引きする光ファイバの製造方法であって、前記光ファイバ用ガラス母材の前記縮径部の位置に、前記縮径部と炉心管との間の空間の50%以上の体積を持つ部材を配して、光ファイバを線引きする。   In the method of manufacturing an optical fiber according to the present invention, a dummy rod is connected to the upper end of an optical fiber glass preform having a reduced diameter portion at the upper portion, and the optical fiber glass preform is heated and melted in a drawing furnace. An optical fiber manufacturing method for drawing an optical fiber having a volume of 50% or more of a space between the reduced diameter portion and a core tube at a position of the reduced diameter portion of the optical fiber glass preform. Arrange the members and draw the optical fiber.

本発明によれば、ガラス母材の線引き進行によって縮径部が加熱位置に近づいても、線引炉内の圧力変動を小さくすることが可能となり、光ファイバの外径変動を小さく抑えることができる。   According to the present invention, even when the reduced diameter portion approaches the heating position due to the drawing of the glass preform, it is possible to reduce the pressure fluctuation in the drawing furnace, and to suppress the outer diameter fluctuation of the optical fiber. it can.

本発明の一形態による光ファイバの製造方法の概略を説明する図である。It is a figure explaining the outline of the manufacturing method of the optical fiber by one form of the present invention. 本発明による部材の例を示す図である。It is a figure which shows the example of the member by this invention. 本発明による他の部材の例を示す図である。It is a figure which shows the example of the other member by this invention. 線引炉内の圧力変動と光ファイバの外径変動の関係を示す図である。It is a figure which shows the relationship between the pressure fluctuation in a drawing furnace, and the outer diameter fluctuation | variation of an optical fiber. 線引終了端近傍における母材長と線引炉内の圧力変動の関係を示す図である。It is a figure which shows the relationship between the base material length in the drawing end end vicinity, and the pressure fluctuation in a drawing furnace. 本発明に用いる線引炉のその他の例を示す図である。It is a figure which shows the other example of the drawing furnace used for this invention.

[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
本願の光ファイバの製造方法発明は、(1)上部に縮径部が存在する光ファイバ用ガラス母材の上端にダミー棒を連結し、線引炉内で前記光ファイバ用ガラス母材を加熱溶融して光ファイバを線引きする光ファイバの製造方法であって、前記光ファイバ用ガラス母材の前記縮径部の位置に、前記縮径部と炉心管との間の空間の50%以上の体積を持つ部材を配して、光ファイバを線引きする。このように、縮径部によって生じる空間を部材により埋めているので、この空間部分でのガスの対流を抑制できる。また、ガラス母材の縮径部近傍は局所的に高温となるが、この縮径部の熱は部材により分散化されるため、急激な温度変化は緩和されて上部空間に直接伝わりにくくなり、上部空間での熱による自然対流も軽減される。この結果、ガラス母材の線引き進行によって縮径部が加熱位置に近づいても、線引炉内の圧力変動を小さくすることが可能となり、光ファイバの外径変動を小さく抑えることができる。
[Description of Embodiment of Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.
The optical fiber manufacturing method of the present invention is as follows. (1) A dummy rod is connected to the upper end of the optical fiber glass preform having a reduced diameter portion at the upper portion, and the optical fiber glass preform is heated in a drawing furnace. An optical fiber manufacturing method in which an optical fiber is melted and drawn, wherein at least 50% of the space between the reduced diameter portion and the core tube is located at the reduced diameter portion of the glass preform for optical fiber. An optical fiber is drawn by arranging a member having a volume. As described above, since the space generated by the reduced diameter portion is filled with the member, convection of gas in the space portion can be suppressed. In addition, although the vicinity of the reduced diameter portion of the glass base material is locally high in temperature, the heat of this reduced diameter portion is dispersed by the member, so a sudden temperature change is relaxed and is not easily transmitted directly to the upper space, Natural convection due to heat in the upper space is also reduced. As a result, even if the reduced diameter portion approaches the heating position due to the drawing of the glass base material, it is possible to reduce the pressure fluctuation in the drawing furnace, and to suppress the fluctuation in the outer diameter of the optical fiber.

(2)前記部材は、カーボン又はセラミックスからなる。部材がカーボン又はセラミックスからなるので、ガラス母材と溶着することは無い。
(3)前記部材は、中央に孔が空いた円筒形状であり、前記部材上端の内径より前記部材下端の内径が大きい。このような形状の部材であれば、光ファイバ用ガラス母材の縮径部と炉心管との間の空間を埋めやすく、上記した効果を好適に得ることができる。
(4)前記線引炉内に炉内ガスを流入させるガス流入口が、前記光ファイバ用ガラス母材の線引き開始から終了まで、前記部材の上端より上部には存在しないように設定される。ガス流入口が部材の上端より下部となるように設定されているので、上部空間での炉内ガスの流れが抑えられ、線引炉内の圧力変動の軽減に寄与する。
(2) The member is made of carbon or ceramics. Since the member is made of carbon or ceramics, it is not welded to the glass base material.
(3) The member has a cylindrical shape with a hole in the center, and the inner diameter of the lower end of the member is larger than the inner diameter of the upper end of the member. If it is a member of such a shape, it will be easy to fill the space between the reduced diameter part of the glass preform for optical fibers, and a core tube, and the above-mentioned effect can be acquired suitably.
(4) The gas inlet for allowing the in-furnace gas to flow into the drawing furnace is set so as not to exist above the upper end of the member from the start to the end of drawing of the optical fiber glass preform. Since the gas inlet is set to be lower than the upper end of the member, the flow of the gas in the furnace in the upper space is suppressed, which contributes to the reduction of pressure fluctuations in the drawing furnace.

(5)前記部材の荷重が前記光ファイバ用ガラス母材の前記縮径部に直接にかかることのないように、前記光ファイバ用ガラス母材の前記縮径部の上部に、前記部材を係止する係止部材を設ける。部材は係止部材で係止されており、縮径部から浮かせるので、部材に力が掛からず、部材が割れることは無い。
(6)前記部材の下方端が前記光ファイバ用ガラス母材に接触する。部材の下方縁を光ファイバ用ガラス母材に接触させれば、部材の内側の空間が閉じられて部材の外側の空間につながらないので、線引炉内の空間でのガスの対流を更に抑制できる。
(7)前記部材の上部に前記光ファイバ用ガラス母材と略同径のスリーブ部材を配する。部材の上にスリーブ部材(パイプ材)を配置したので、線引炉内の空間容積を小さく保つことができる。
(5) Engage the member above the reduced diameter portion of the optical fiber glass preform so that the load of the member is not directly applied to the reduced diameter portion of the optical fiber glass preform. A locking member for stopping is provided. Since the member is locked by the locking member and floats from the reduced diameter portion, no force is applied to the member, and the member does not break.
(6) The lower end of the member contacts the optical fiber glass preform. If the lower edge of the member is brought into contact with the optical fiber glass preform, the space inside the member is closed and does not lead to the space outside the member, so that gas convection in the space in the drawing furnace can be further suppressed. .
(7) A sleeve member having substantially the same diameter as the glass preform for optical fiber is disposed on the upper part of the member. Since the sleeve member (pipe material) is disposed on the member, the space volume in the drawing furnace can be kept small.

[本願発明の実施形態の詳細]
図1により、本発明が適用される光ファイバの製造方法の概略を説明する。なお、以下ではヒータにより炉心管を加熱する抵抗炉を例に説明するが、コイルに高周波電源を印加し、炉心管を誘導加熱する誘導炉にも、本発明は適用可能である。
図において、10は線引炉、11は光ファイバ用ガラス母材、12は光ファイバ、13はダミー棒、14は連結部分、15は炉心管、16はヒータ、17は断熱材、18は炉筐体、19は下部チャンバ、20は上部チャンバ、21は蓋体、21aは上端開口、22はガス導入路、23はガス供給部、24は測定部、25は部材、26は係止具を示す。
[Details of the embodiment of the present invention]
An outline of a manufacturing method of an optical fiber to which the present invention is applied will be described with reference to FIG. In the following, a resistance furnace that heats the core tube with a heater will be described as an example. However, the present invention can also be applied to an induction furnace in which a high-frequency power source is applied to the coil to induction-heat the core tube.
In the figure, 10 is a drawing furnace, 11 is an optical fiber glass base material, 12 is an optical fiber, 13 is a dummy rod, 14 is a connecting portion, 15 is a core tube, 16 is a heater, 17 is a heat insulating material, and 18 is a furnace. A housing, 19 is a lower chamber, 20 is an upper chamber, 21 is a lid, 21a is an upper end opening, 22 is a gas introduction path, 23 is a gas supply section, 24 is a measurement section, 25 is a member, and 26 is a locking tool. Show.

図1に示した線引炉10は、炉筐体18、下部チャンバ19、上部チャンバ20からなる。炉心管15は、炉筐体18の中央部に円筒状で形成され、下部チャンバ19及び上部チャンバ20と連通している。炉心管15はカーボン製で、この炉心管15内には、光ファイバ用ガラス母材11(以下、ガラス母材という)が上部チャンバ20を介して挿入される。   The drawing furnace 10 shown in FIG. 1 includes a furnace casing 18, a lower chamber 19, and an upper chamber 20. The core tube 15 is formed in a cylindrical shape at the center of the furnace casing 18 and communicates with the lower chamber 19 and the upper chamber 20. The core tube 15 is made of carbon, and an optical fiber glass base material 11 (hereinafter referred to as a glass base material) is inserted into the core tube 15 through the upper chamber 20.

上部チャンバ20は、例えば、炉心管15と同程度の内径を有し、その上端に蓋体21を配して封止(シール)される。蓋体21には上端開口21aが形成され、ガラス母材11と同種のガラスロッドからなるダミー棒13を挿通させる。
炉筐体18内には、ヒータ16が炉心管15を囲むように配され、断熱材17がヒータ16の外側を覆うように収納される。ヒータ16は、炉心管15の内部に挿入されたガラス母材11を加熱溶融し、溶融縮径した光ファイバ12を下部チャンバ19から垂下させる。
The upper chamber 20 has, for example, an inner diameter similar to that of the core tube 15 and is sealed (sealed) with a lid 21 disposed on the upper end thereof. An upper end opening 21 a is formed in the lid 21, and a dummy rod 13 made of the same kind of glass rod as the glass base material 11 is inserted therethrough.
A heater 16 is arranged in the furnace casing 18 so as to surround the furnace core tube 15, and a heat insulating material 17 is accommodated so as to cover the outside of the heater 16. The heater 16 heats and melts the glass base material 11 inserted into the core tube 15, and causes the optical fiber 12 that has been melted and reduced in diameter to hang down from the lower chamber 19.

ガラス母材11は、ダミー棒13に連結する連結部分14にて溶着、若しくは、連結部材を介して接続一体化される。ガラス母材11は、移動機構(図示省略)により線引き方向(上下方向)に移動可能となっている。
線引炉10には不活性ガス等による炉内ガスの供給機構が設けられている。詳しくは、上部チャンバ20にガス導入路22が設けられており、例えば、アルゴンガスとヘリウムガスとを混合した不活性ガス等が炉心管15内に送り込まれ、これにより、炉心管15内やヒータ16の周りの酸化や劣化防止を図る。このガス導入路22により炉内ガスが供給される位置は、部材25の上端部より下部となるように設定される。この不活性ガス等の供給量は、一定量流したり、ガス供給部(マスフローコントローラ(MFC)ともいう)23でP制御(Proportional Control:比例制御)、I制御(Integral Control:積分制御)、D制御(Derivative Control:微分制御)、あるいは、これらを適宜組み合わせた各種制御を適用したりすることができる。しかし、制御方法はこれらに限定されるものではない。
The glass base material 11 is welded at a connecting portion 14 connected to the dummy bar 13 or connected and integrated through a connecting member. The glass base material 11 can be moved in the drawing direction (vertical direction) by a moving mechanism (not shown).
The drawing furnace 10 is provided with an in-furnace gas supply mechanism such as an inert gas. Specifically, a gas introduction path 22 is provided in the upper chamber 20. For example, an inert gas or the like in which argon gas and helium gas are mixed is sent into the reactor core tube 15, whereby the reactor core tube 15 and the heater are heated. 16 to prevent oxidation and deterioration around 16. The position where the in-furnace gas is supplied by the gas introduction path 22 is set to be lower than the upper end portion of the member 25. The supply amount of the inert gas or the like flows at a constant amount, or P control (Proportional Control), I control (Integral Control), D in the gas supply unit (also referred to as mass flow controller (MFC)) 23, D Control (Derivative Control: differential control) or various controls in which these are appropriately combined can be applied. However, the control method is not limited to these.

なお、この不活性ガス等は、ガラス母材11と炉心管15の隙間を通り、線引きされた光ファイバ12と共に、下部チャンバ19の下方のシャッター部分などからも外部に放出される。
また、上部チャンバ20には測定部24が設けられ、線引炉10内の圧力を測定している。この測定結果を受け取り、線引炉10内の圧力変動を所定値に保持する制御部を設けることとしてもよい。
The inert gas or the like passes through the gap between the glass base material 11 and the core tube 15 and is released to the outside from the drawn optical fiber 12 and the shutter portion below the lower chamber 19.
The upper chamber 20 is provided with a measuring unit 24 for measuring the pressure in the drawing furnace 10. It is good also as providing the control part which receives this measurement result and hold | maintains the pressure fluctuation in the drawing furnace 10 to a predetermined value.

図2にも示すように、ガラス母材11は、直胴部11aの上端部分にテーパ部11bを持つ縮径部11cを有し、縮径部11cの上端部とダミー棒13とが連結部分14で連結されている。そして、縮径部11cの位置に、耐熱性のある部材25が設けられており、この縮径部11cの温度を分散化して、急激な温度変化を緩和するようにしている。   2, the glass base material 11 has a reduced diameter portion 11c having a tapered portion 11b at the upper end portion of the straight body portion 11a, and the upper end portion of the reduced diameter portion 11c and the dummy bar 13 are connected to each other. 14 are connected. A heat-resistant member 25 is provided at the position of the reduced diameter portion 11c, and the temperature of the reduced diameter portion 11c is dispersed to alleviate a rapid temperature change.

部材25は、縮径部11cにより生じた空間を埋めるように配置され、その体積は、縮径部11cと炉心管15との間の空間の50%以上である。なお、部材25はカーボン又はセラミックスからなり、その形状は、図1のように中央に孔が空いた円筒形状で、断面形状が長方形であってもよいし、縮径部の形状と合うように、上端の内径より下端の内径が大きいものであっても良い。後者の例として、図3(A)に示すような円板の外周縁が下方に向けて延びたカップ状のものや、図3(B)に示すような断面形状が三角形のものを示す。何れの形状であっても、その中心部分には、ダミー棒13を挿通させる挿通孔25aが設けられている。また、部材25は、縮径部11cの上部又はダミー棒13に係合する例えばリング26aを用いて縮径部11cの上部又はダミー棒13に固定されている。なお、部材25は、二つ割り構造など、分割できる構造にしておくと、ガラス母材11を線引炉10にセットした後、部材25をガラス母材11の縮径部11cに配置することができるので、作業性が良く、好ましい。   The member 25 is disposed so as to fill the space generated by the reduced diameter portion 11c, and the volume thereof is 50% or more of the space between the reduced diameter portion 11c and the core tube 15. The member 25 is made of carbon or ceramics, and the shape thereof may be a cylindrical shape with a hole in the center as shown in FIG. 1, the cross-sectional shape may be a rectangle, or the shape of the reduced diameter portion may be matched. The inner diameter at the lower end may be larger than the inner diameter at the upper end. As an example of the latter, a cup shape in which the outer peripheral edge of the disk as shown in FIG. 3 (A) extends downward, and a triangular cross section as shown in FIG. 3 (B) are shown. Regardless of the shape, an insertion hole 25a through which the dummy bar 13 is inserted is provided at the center portion thereof. The member 25 is fixed to the upper part of the reduced diameter part 11c or the dummy bar 13 using, for example, a ring 26a that engages with the upper part of the reduced diameter part 11c or the dummy bar 13. If the member 25 has a structure that can be divided, such as a split structure, after the glass base material 11 is set in the drawing furnace 10, the member 25 can be disposed in the reduced diameter portion 11 c of the glass base material 11. Therefore, workability is good and preferable.

縮径部11cに対する部材25の位置は、リング26a上に、例えば複数枚重ねたスペーサ26bを載せて調整してもよい。なお、このリングに替え、例えばダミー棒13から突出して部材25に係合するピンを用いて位置を固定してもよい。   The position of the member 25 with respect to the reduced diameter portion 11c may be adjusted by placing, for example, a plurality of stacked spacers 26b on the ring 26a. Instead of this ring, the position may be fixed by using a pin that protrudes from the dummy bar 13 and engages with the member 25, for example.

部材25は、縮径部11cによって生じる空間を50%以上埋めているので、この部分でのガスの対流は生じない。また、高温となる縮径部11cと上部空間との間の急激な温度変化を緩和することができ、上部空間での熱による自然対流も低減することが可能となる。   Since the member 25 fills the space formed by the reduced diameter portion 11c by 50% or more, gas convection does not occur in this portion. In addition, a rapid temperature change between the reduced diameter portion 11c and the upper space that becomes high temperature can be reduced, and natural convection due to heat in the upper space can also be reduced.

図4は、線引炉内の圧力変動と光ファイバの外径変動の関係を示す図である。図4に示すように、線引炉内の圧力変動と光ファイバの外径変動とは相関があり、圧力変動が大きくなるに連れて、光ファイバの外径変動も大きくなる。
なお、アルゴンガスは、熱伝導率が10倍近くヘリウムガスより低いため、線引炉内ガスとしてヘリウムガスを100%使用する場合に比べて、アルゴンガスまたはアルゴンガスをヘリウムガスに混合したガスをした場合では、温度むらに起因した圧力変動が発生しやすくなり、光ファイバの外径変動は大きくなる。アルゴンガスに替えて窒素ガスを用いても概ね似たような結果となる。
FIG. 4 is a diagram showing the relationship between the pressure fluctuation in the drawing furnace and the outer diameter fluctuation of the optical fiber. As shown in FIG. 4, there is a correlation between the pressure fluctuation in the drawing furnace and the outer diameter fluctuation of the optical fiber, and the outer diameter fluctuation of the optical fiber increases as the pressure fluctuation increases.
Since argon gas has a thermal conductivity nearly 10 times lower than that of helium gas, argon gas or a gas obtained by mixing argon gas with helium gas is used as compared with the case where 100% helium gas is used as the drawing furnace gas. In this case, pressure fluctuation due to temperature unevenness is likely to occur, and the outer diameter fluctuation of the optical fiber becomes large. Even if nitrogen gas is used instead of argon gas, a similar result is obtained.

線引炉内の圧力変動と光ファイバの外径変動とは相関があるため、光ファイバの外径変動を抑えるには、線引炉内の圧力変動を抑えればよい。例えば、線引炉内の圧力変動を±2.0Pa以下にすれば、光ファイバの外径変動を±1.0μmにまで、圧力変動を±1.0Paまで低減すれば、光ファイバの外径変動を±0.4μmにまで、圧力変動を±0.5Paまで低減すれば、光ファイバの外径変動を±0.15μmにまで抑制することができる。   Since there is a correlation between the pressure fluctuation in the drawing furnace and the outer diameter fluctuation of the optical fiber, the pressure fluctuation in the drawing furnace may be suppressed in order to suppress the outer diameter fluctuation of the optical fiber. For example, if the pressure fluctuation in the drawing furnace is ± 2.0 Pa or less, the outer diameter fluctuation of the optical fiber is reduced to ± 1.0 μm, and if the pressure fluctuation is reduced to ± 1.0 Pa, the outer diameter of the optical fiber is reduced. If the fluctuation is reduced to ± 0.4 μm and the pressure fluctuation is reduced to ± 0.5 Pa, the outer diameter fluctuation of the optical fiber can be suppressed to ± 0.15 μm.

図5は、線引終了端近傍における母材長と線引炉内の圧力変動の関係を示す図である。横軸に示した母材長0〜120mmは、ガラス母材上部の縮径開始端が炉心管上端を通過する時を0mmとし、以降に線引きされたガラス母材の長さを示す。この線引終了端近傍では、ガラス母材の直胴部は降下し、縮径部がヒータに近づいた状態になる。   FIG. 5 is a diagram showing the relationship between the base metal length in the vicinity of the drawing end and the pressure fluctuation in the drawing furnace. The base material length 0 to 120 mm shown on the horizontal axis indicates the length of the glass base material drawn after that, when the diameter reduction start end of the upper part of the glass base material passes through the upper end of the core tube, 0 mm. In the vicinity of the drawing end, the straight body portion of the glass base material is lowered, and the reduced diameter portion is close to the heater.

図5に示すように、比較例(図1,2で説明した部材25を配置しない線引炉)では、母材長が110mmに至ると、線引炉内の圧力変動が±5.0Paを超え、図4から、光ファイバの外径変動は±4.0μmを大きく超えてしまうことが分かる。
これに対し、実施例(図1,2で説明した部材25を配置した線引炉)では、母材長が110mmに至っても、線引炉内の圧力変動が継続して±0.5Pa以下に低減されており、図4から、光ファイバの外径変動を±0.15μm以下に維持できることが分かる。
As shown in FIG. 5, in the comparative example (drawing furnace in which the member 25 described in FIGS. 1 and 2 is not disposed), when the base material length reaches 110 mm, the pressure fluctuation in the drawing furnace becomes ± 5.0 Pa. From FIG. 4, it can be seen that the variation in the outer diameter of the optical fiber greatly exceeds ± 4.0 μm.
On the other hand, in the example (drawing furnace in which the member 25 described with reference to FIGS. 1 and 2 is disposed), even if the base metal length reaches 110 mm, the pressure fluctuation in the drawing furnace continues to be ± 0.5 Pa or less. It can be seen from FIG. 4 that the fluctuation of the outer diameter of the optical fiber can be maintained at ± 0.15 μm or less.

なお、線引炉内に炉内ガスを流入させるガス流入口(ガス供給部23の線引炉内への供給口)が、光ファイバ用ガラス母材の線引き開始から終了まで、部材25の上端より上部には存在しないように設定されることが好ましい。ガス流入口が部材25の上部にあると、上部空間でガスの流れが生じ、線引炉内の圧力変動が生じるからである。
なお、図5の実施例では、ガス流入口が、光ファイバ用ガラス母材の線引き開始から終了まで、部材25の上端より上部には存在しないように設定されている。
It should be noted that the gas inlet for supplying the in-furnace gas into the drawing furnace (the supply port of the gas supply unit 23 into the drawing furnace) is the upper end of the member 25 from the start to the end of the drawing of the optical fiber glass preform. It is preferable that it is set so as not to exist in the upper part. This is because if the gas inlet is at the upper part of the member 25, a gas flow occurs in the upper space, and a pressure fluctuation in the drawing furnace occurs.
In the embodiment of FIG. 5, the gas inlet is set so as not to exist above the upper end of the member 25 from the start to the end of drawing of the optical fiber glass preform.

また、部材25では、下方端がガラス母材に軽く接触するようにすれば、部材25で囲まれる空間が閉じられ、線引炉内空間とはつながらないため、さらに好ましい。25がカーボン又はセラミックスからなる部材であれば、ガラス母材の縮径部が加熱部に近づいても、溶けたり、ガラス母材と溶着する心配は無い。   Moreover, in the member 25, if the lower end is lightly in contact with the glass base material, the space surrounded by the member 25 is closed and is not connected to the drawing furnace space. If 25 is a member made of carbon or ceramics, there is no fear of melting or welding to the glass base material even if the reduced diameter part of the glass base material approaches the heating part.

なお、縮径部で径が変化しているので、この縮径部に図1の形状の部材を係合する(載せる)ことも考えられるが、縮径部に部材の荷重を直接かけると、高温となる縮径部の熱により部材が膨張し、下にずり落ちてしまい、冷却縮径後に割れてしまうことがあるため、係止部材を設けて部材を係止するのが好ましい。   In addition, since the diameter is changed in the reduced diameter portion, it is possible to engage (load) the member having the shape of FIG. 1 on this reduced diameter portion, but when a load of the member is directly applied to the reduced diameter portion, Since the member expands due to the heat of the reduced diameter portion that becomes high temperature and slides down and may crack after the cooling diameter reduction, it is preferable to provide a locking member to lock the member.

図6は、本発明に用いる線引炉のその他の例を示す図である。上記実施例では、上部チャンバ上端の蓋体でシールする線引炉の例を挙げて説明したが、図6に示す線引炉は、炉筐体18の上端にガラス母材11の挿入口を有し、この挿入口に、直胴部11aとの間の隙間をシールする第1のシール部32を設置している。
第1のシール部32の上には、図1に示した上部チャンバ20に比べて高さを低くした円筒状の上部チャンバ34が設けられている。この上部チャンバ34の上端には、第1のシール部32と同様なシール機能を有する第2のシール部33が配される。なお、第1のシール部32及び第2のシール部33には、不活性ガス等を炉心管内に供給するガス供給口32a,33aを設けることができる。
FIG. 6 is a diagram showing another example of a drawing furnace used in the present invention. In the above embodiment, an example of a drawing furnace sealed with a lid at the upper end of the upper chamber has been described. However, the drawing furnace shown in FIG. 6 has an insertion port for the glass base material 11 at the upper end of the furnace casing 18. And a first seal portion 32 for sealing a gap between the straight body portion 11a and the insertion portion.
A cylindrical upper chamber 34 having a height lower than that of the upper chamber 20 shown in FIG. 1 is provided on the first seal portion 32. A second seal portion 33 having a sealing function similar to that of the first seal portion 32 is disposed at the upper end of the upper chamber 34. The first seal portion 32 and the second seal portion 33 can be provided with gas supply ports 32a and 33a for supplying an inert gas or the like into the core tube.

なお、30はダミー棒13の外周を囲って配されたスリーブ部材である。このスリーブ部材30は、蓋部材31に固定されると共に、部材25の上方に配されており、耐熱性のある石英ガラス、金属、カーボン、SiCコートされたカーボンなどで形成され、その外径が直胴部11aの外径と同径、もしくは直胴部11aの外径の2/3以上の大きさとするのが好ましい。また、スリーブ部材30の外周面は、ガラス母材11の外径変動と同程度以上の精度を有するように研削する等、加工されていることが好ましい。また、この場合、部材25の外径も、直胴部11aの外径と同径、もしくは直胴部11aの外径の2/3以上の大きさとするのが好ましい。   Reference numeral 30 denotes a sleeve member disposed around the outer periphery of the dummy bar 13. The sleeve member 30 is fixed to the lid member 31 and is disposed above the member 25. The sleeve member 30 is made of heat-resistant quartz glass, metal, carbon, SiC-coated carbon, or the like, and has an outer diameter. The outer diameter of the straight body portion 11a is preferably equal to or larger than 2/3 of the outer diameter of the straight body portion 11a. Moreover, it is preferable that the outer peripheral surface of the sleeve member 30 is processed such as grinding so as to have an accuracy equal to or higher than the outer diameter variation of the glass base material 11. In this case, the outer diameter of the member 25 is preferably the same as the outer diameter of the straight body portion 11a or 2/3 or more of the outer diameter of the straight body portion 11a.

第1のシール部32及び第2のシール部33は、ガラス母材11、部材25やスリーブ部材30の外周面を環状に封止し、炉心管との隙間から外気が侵入しないようにしたり、炉心管内の不活性ガス等が外部に漏出しないようにできる。
このように、スリーブ部材30とガラス母材11との間に、カーボン又はセラミックスからなる部材25を配しているので、スリーブ部材をより縮径部に近い位置に配してもスリーブ部材が溶けることはなく、線引炉内の空間容積を小さく保つことができる。
The first seal portion 32 and the second seal portion 33 seal the outer peripheral surface of the glass base material 11, the member 25 and the sleeve member 30 in an annular shape so that outside air does not enter from the gap with the core tube, It is possible to prevent the inert gas in the furnace core tube from leaking outside.
Thus, since the member 25 made of carbon or ceramics is disposed between the sleeve member 30 and the glass base material 11, the sleeve member melts even when the sleeve member is disposed at a position closer to the reduced diameter portion. There is nothing, and the space volume in the drawing furnace can be kept small.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10…線引炉、11…光ファイバ用ガラス母材、11a…直胴部、11b…テーパ部、11c…縮径部、12…光ファイバ、13…ダミー棒、14…連結部分、15…炉心管、16…ヒータ、17…断熱材、18…炉筐体、19…下部チャンバ、20,34…上部チャンバ、21…蓋体、21a…上端開口、22…ガス導入路、23…ガス供給部、24…測定部、25…部材、25a…挿通孔、26…係止具、26a…リング、26b…スペーサ、30…スリーブ部材、31…蓋部材、32…第1のシール部、32a,33a…ガス供給口、33…第2のシール部。 DESCRIPTION OF SYMBOLS 10 ... Drawing furnace, 11 ... Glass base material for optical fibers, 11a ... Straight body part, 11b ... Tapered part, 11c ... Reduced diameter part, 12 ... Optical fiber, 13 ... Dummy rod, 14 ... Connection part, 15 ... Core Pipes, 16 ... heaters, 17 ... heat insulation, 18 ... furnace casing, 19 ... lower chamber, 20, 34 ... upper chamber, 21 ... lid, 21a ... upper end opening, 22 ... gas introduction path, 23 ... gas supply section , 24 ... measurement part, 25 ... member, 25a ... insertion hole, 26 ... locking tool, 26a ... ring, 26b ... spacer, 30 ... sleeve member, 31 ... lid member, 32 ... first seal part, 32a, 33a ... gas supply port, 33 ... second seal part.

Claims (7)

上部に縮径部が存在する光ファイバ用ガラス母材の上端にダミー棒を連結し、線引炉内で前記光ファイバ用ガラス母材を加熱溶融して光ファイバを線引きする光ファイバの製造方法であって、
前記光ファイバ用ガラス母材の前記縮径部の位置に、前記縮径部と炉心管との間の空間の50%以上の体積を持つ部材を配して、光ファイバを線引きする光ファイバの製造方法。
An optical fiber manufacturing method in which a dummy rod is connected to an upper end of an optical fiber glass preform having a reduced diameter portion at an upper portion, and the optical fiber glass preform is heated and melted in a drawing furnace to draw the optical fiber. Because
An optical fiber for drawing an optical fiber by arranging a member having a volume of 50% or more of the space between the reduced diameter portion and the core tube at the position of the reduced diameter portion of the glass preform for optical fiber. Production method.
前記部材は、カーボン又はセラミックスからなる、請求項1に記載の光ファイバの製造方法。   The optical fiber manufacturing method according to claim 1, wherein the member is made of carbon or ceramics. 前記部材は、中央に孔が空いた円筒形状であり、前記部材上端の内径より前記部材下端の内径が大きい、請求項1又は2に記載の光ファイバの製造方法。   The method of manufacturing an optical fiber according to claim 1, wherein the member has a cylindrical shape with a hole in the center, and an inner diameter of the lower end of the member is larger than an inner diameter of the upper end of the member. 前記線引炉内に炉内ガスを流入させるガス流入口が、前記光ファイバ用ガラス母材の線引き開始から終了まで、前記部材の上端より上部には存在しないように設定される、請求項1から3のいずれか1項に記載の光ファイバの製造方法。   2. The gas inflow port through which the in-furnace gas flows into the drawing furnace is set so as not to exist above the upper end of the member from the start to the end of drawing of the optical fiber glass preform. 4. The method for producing an optical fiber according to any one of items 1 to 3. 前記部材の荷重が前記光ファイバ用ガラス母材の前記縮径部に直接にかかることのないように、前記光ファイバ用ガラス母材の前記縮径部の上部に、前記部材を係止する係止部材を設ける、請求項1から4のいずれか1項に記載の光ファイバの製造方法。   Engaging the member on the upper portion of the reduced diameter portion of the optical fiber glass preform so that the load of the member is not directly applied to the reduced diameter portion of the optical fiber glass preform. The manufacturing method of the optical fiber of any one of Claim 1 to 4 which provides a stop member. 前記部材の下方端が前記光ファイバ用ガラス母材に接触する、請求項1から5のいずれか1項に記載の光ファイバの製造方法。   The manufacturing method of the optical fiber of any one of Claim 1 to 5 with which the lower end of the said member contacts the said glass preform | base_material for optical fibers. 前記部材の上部に前記光ファイバ用ガラス母材と略同径のスリーブ部材を配する、請求項1から6のいずれか1項に記載の光ファイバの製造方法。   The optical fiber manufacturing method according to any one of claims 1 to 6, wherein a sleeve member having substantially the same diameter as that of the optical fiber glass preform is disposed on an upper portion of the member.
JP2013213822A 2013-10-11 2013-10-11 Method of manufacturing optical fiber Pending JP2015074600A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013213822A JP2015074600A (en) 2013-10-11 2013-10-11 Method of manufacturing optical fiber
CN201410534458.5A CN104556677A (en) 2013-10-11 2014-10-11 Manufacturing method of fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213822A JP2015074600A (en) 2013-10-11 2013-10-11 Method of manufacturing optical fiber

Publications (1)

Publication Number Publication Date
JP2015074600A true JP2015074600A (en) 2015-04-20

Family

ID=52999735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213822A Pending JP2015074600A (en) 2013-10-11 2013-10-11 Method of manufacturing optical fiber

Country Status (2)

Country Link
JP (1) JP2015074600A (en)
CN (1) CN104556677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088463A (en) * 2015-11-16 2017-05-25 住友電気工業株式会社 Method of manufacturing optical fiber
JP2017214256A (en) * 2016-06-01 2017-12-07 住友電気工業株式会社 Wire drawing method for optical fiber
US10611670B2 (en) 2016-09-14 2020-04-07 Rosendahl Nextrom Gmbh Sealing arrangement of a drawing furnace

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2020854B1 (en) 2018-03-22 2019-10-02 Corning Inc Method and apparatus for suppressing flow instabilities in an optical fiber draw system
JP7155631B2 (en) * 2018-06-11 2022-10-19 住友電気工業株式会社 Optical fiber drawing method
CN114867695B (en) * 2019-12-24 2024-05-28 住友电气工业株式会社 Optical fiber manufacturing method and optical fiber manufacturing apparatus
WO2021150367A1 (en) * 2020-01-24 2021-07-29 Corning Incorporated Optical fiber draw furnace system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145452A (en) * 1988-11-28 1990-06-04 Furukawa Electric Co Ltd:The Drawing of optical fiber
EP0386756A1 (en) * 1989-03-08 1990-09-12 Sumitomo Electric Industries, Ltd. Furnace and process for optical fiber drawing
JPH0733471A (en) * 1993-07-22 1995-02-03 Furukawa Electric Co Ltd:The Method for drawing optical fiber
JPH11343137A (en) * 1998-04-03 1999-12-14 Sumitomo Electric Ind Ltd Optical fiber drawing furnace and optical fiber drawing
US20030205068A1 (en) * 1998-04-03 2003-11-06 Sumitomo Electric Industries, Ltd. Furnace and method for optical fiber wire driwing
JP2006508884A (en) * 2002-12-05 2006-03-16 ネクストロム ホールディング エス.アー. Optical fiber manufacturing method
US20070283722A1 (en) * 2007-01-29 2007-12-13 Pathak Abhijit P Apparatus and method for drawing an optical fiber having reduced and low attenuation loss, and optical fiber produced therefrom
JP2011084409A (en) * 2009-10-13 2011-04-28 Sumitomo Electric Ind Ltd Method and apparatus for drawing optical fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023016B2 (en) * 2007-08-10 2012-09-12 信越化学工業株式会社 Optical fiber manufacturing apparatus and drawing furnace sealing method
CN103304135B (en) * 2013-07-05 2015-01-21 江苏法尔胜光子有限公司 Optical fiber drawing method for large-diameter optical fiber preform rod

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145452A (en) * 1988-11-28 1990-06-04 Furukawa Electric Co Ltd:The Drawing of optical fiber
EP0386756A1 (en) * 1989-03-08 1990-09-12 Sumitomo Electric Industries, Ltd. Furnace and process for optical fiber drawing
JPH038738A (en) * 1989-03-08 1991-01-16 Sumitomo Electric Ind Ltd Furnace and method for drawing optical fiber
JPH0733471A (en) * 1993-07-22 1995-02-03 Furukawa Electric Co Ltd:The Method for drawing optical fiber
JPH11343137A (en) * 1998-04-03 1999-12-14 Sumitomo Electric Ind Ltd Optical fiber drawing furnace and optical fiber drawing
US20030205068A1 (en) * 1998-04-03 2003-11-06 Sumitomo Electric Industries, Ltd. Furnace and method for optical fiber wire driwing
JP2006508884A (en) * 2002-12-05 2006-03-16 ネクストロム ホールディング エス.アー. Optical fiber manufacturing method
US20060130524A1 (en) * 2002-12-05 2006-06-22 Nextrom Holding S.A. Method and apparatus for making optical fibres
US20070283722A1 (en) * 2007-01-29 2007-12-13 Pathak Abhijit P Apparatus and method for drawing an optical fiber having reduced and low attenuation loss, and optical fiber produced therefrom
JP2011084409A (en) * 2009-10-13 2011-04-28 Sumitomo Electric Ind Ltd Method and apparatus for drawing optical fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088463A (en) * 2015-11-16 2017-05-25 住友電気工業株式会社 Method of manufacturing optical fiber
WO2017086175A1 (en) * 2015-11-16 2017-05-26 住友電気工業株式会社 Method for manufacturing optical fiber
KR20180081069A (en) 2015-11-16 2018-07-13 스미토모 덴키 고교 가부시키가이샤 Manufacturing method of optical fiber
US20200199009A1 (en) * 2015-11-16 2020-06-25 Sumitomo Electric Industries, Ltd. Method for manufacturing optical fiber
US11040906B2 (en) 2015-11-16 2021-06-22 Sumitomo Electric Industries, Ltd. Method for manufacturing optical fiber
KR102594267B1 (en) * 2015-11-16 2023-10-25 스미토모 덴키 고교 가부시키가이샤 Manufacturing method of optical fiber
JP2017214256A (en) * 2016-06-01 2017-12-07 住友電気工業株式会社 Wire drawing method for optical fiber
US10611670B2 (en) 2016-09-14 2020-04-07 Rosendahl Nextrom Gmbh Sealing arrangement of a drawing furnace

Also Published As

Publication number Publication date
CN104556677A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP2015074600A (en) Method of manufacturing optical fiber
JP5880522B2 (en) Optical fiber manufacturing method and optical fiber drawing furnace
JP6119299B2 (en) Optical fiber drawing method
KR102594267B1 (en) Manufacturing method of optical fiber
JP2011230978A (en) Apparatus and method for manufacturing optical fiber strand
US20140308621A1 (en) Sintering apparatus
CN103979789A (en) Optical fiber drawing furnace
JPWO2018101228A1 (en) Optical fiber drawing furnace seal structure, optical fiber manufacturing method
WO2015050103A1 (en) Method for manufacturing optical fiber
JPWO2018047778A1 (en) Optical fiber drawing method and drawing apparatus
JP2016028989A (en) Manufacturing method and manufacturing apparatus for optical fibers
JP6513147B2 (en) Manufacturing method and cap
WO2007094551A1 (en) Heater having multi hot-zones, furnace having the heater for drawing down optical fiber preform into optical fiber, and method for drawing optical fiber using the same
JP6299088B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP2012082089A (en) Method for manufacturing optical fiber
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP6638432B2 (en) Method and apparatus for manufacturing optical fiber
JP2013151393A (en) Optical fiber drawing furnace and drawing method
JP6277605B2 (en) Optical fiber manufacturing method and manufacturing apparatus
US20220315473A1 (en) Optical fiber draw furnace system and method
JP6816670B2 (en) Seal structure of optical fiber drawing furnace, optical fiber manufacturing method
JP5757192B2 (en) Optical fiber drawing furnace
JP4407648B2 (en) Heating furnace and heating method of object to be heated
CN113522393A (en) Nested balance crucible and control method
JPH05147970A (en) Optical fiber drawing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180220